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ABSTRACT
User-adaptive image retrieval/recommendation has drawn a
lot of research interests in recent years, owing to fast devel-
opment of various Web applications where retrieving images
is a key enabling task. Existing challenges include the lack
of user-adaptive training data, the ambiguity of user query
and the real-time interactivity of a system. This paper pro-
poses a hybrid learning strategy that fuses knowledge from
both pointwise and pairwise training data into one frame-
work for attribute-based, user-adaptive image retrieval. Un-
der this framework, we develop an online learning algorithm
for updating the ranking performance based on user feed-
back. Furthermore, we derive the framework into a kernel
form, allowing easy application of kernel techniques. The
proposed approach is evaluated on two image datasets and
experimental results show that it achieves obvious perfor-
mance gains over ranking and zero-shot learning from either
type of training data independently. In addition, the on-
line learning algorithm is able to deliver much better perfor-
mance than batch learning, given the same elapsed running
time, or can achieve better performance in much less time.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: [Miscella-
neous]; I.4.8 [Image Processing and Computer Vision]:
[Scene Analysis]

General Terms
Algorithms, Design, Experiment

Keywords
Adaptive Image Retrieval, Attribute Learning, Learning to
Rank
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(a) unstylish (b) stylish? (c) stylish

(d) more stylish? (e) more stylish?

Figure 1: stylish and unstylish cars. Considering
pointwise label, to most people (a) would be un-
stylish and (c) would be considered stylish. How-
ever, it is ambiguous to classify (b) to be stylish or
unstylish. Considering pairwise label, people may
have different preference to compare whether (d) or
(e) is more stylish.

1. INTRODUCTION
The social media era has witnessed phenomenal growth

of user-generated images on the Internet. The ever-growing
number of images has brought about new challenges for effi-
cient image retrieval, and in turn, for applications that rely
on image retrieval. Conventional content-based image re-
trieval approaches learn some general ranking models purely
based on the underlying images. In recent years, adaptive
image retrieval [5][10][20] has emerged as a new trend, which
intends to satisfy a user’s specific requirements or prefer-
ence. For example, in search of art images, some people
like realism paintings while some may prefer abstract art. A
retrieval engine being able to support such personalization
would have the best potential to deliver what a user is re-
ally looking for. In practice, it is still difficult to learn a well
generalized model due to the lack of user-adaptive training
data. For example, in applications like on-line shopping, it
is unreasonable to assume a user’s personal preference data
have been made available a priori for training the system.
Often, desired is an on-line learning approach that accu-
mulates such information over time interactively. Our ap-
proach adopts a model adaptation strategy and proposes a
new ranking model and an online learning algorithm. Such



a method is especially proper for applications that utilize
interactive input/feedback of a user in achieving adaptive
image retrieval/recommendation.
Beneath the above challenge of personalization lie the fun-

damental problems of semantic gap and intent gap in
general image retrieval. The semantic gap refers to the dis-
crepancy between extractable low-level image features and
high-level semantic concepts of images, while the intent gap
refers to inadequacy of the representation of a query in
expressing a user’s true intent. In recent years, towards
bridging the semantic gap, methods exploiting semantic at-
tributes of visual objects have attracted significant attention
in applications including object recognition [26][14][6], face
verification [13] and image search [25][12][18]. Instead of us-
ing low-level features, these approaches describe images by
high-level, human-nameable visual attributes, such as keep
hair color, presence of beard or mustache, presence of eye-
glasses, etc., to describe human faces.
In the meantime, towards bridging the intent gap, learning-

to-rank approaches have been proposed. Recent literature
on this regard includes three types of approaches distin-
guished by how the training data are used: pointwise, pair-
wise and listwise approaches. The first two types of ap-
proaches have been adopted in image ranking problems.
Pointwise approaches [15][23] adopt category labels in the
training samples to learn a ranking function. For example,
to describe the car images in Fig. 1, the car in Fig. 1(c)
is categorized as a “stylish” car and the one in Fig. 1(a) is
labelled “unstylish”. In a different way, pairwise approaches
[2][24][7][8][3] learn a ranking function by taking compara-
tive sample pairs for training. For example, most people
would agree that the car in Fig. 1(c) looks more “stylish”
than the one in Fig. 1(a). Such pair of samples with relative
labels can be used to learn ranking functions for processing
new images.
Pointwise data and pairwise data have different advan-

tages and limitations in terms of data availability, labelling
complexity and representational capability, as elaborated
below.
Data availability In practical applications pointwise

and pairwise labels are not always available for every data
sample, especially considering the subjectivity of the labels.
For example, in pointwise labelling, most people would agree
that Fig. 1(c) is a“stylish”car and Fig. 1(a) is an“unstylish”
car, but it would be difficult to tell whether Fig. 1(b) is a
“stylish”car. Some people may think it is“stylish”because of
the design of the headlights, while some others may deem the
body design unattractive. Similarly, ambiguity also exists in
pairwise data labelling. For example, comparing Fig. 1(d)
and 1(e), people may have different opinions on which car
is more “stylish” because of subjective preference. When
ambiguity exists, it is better not to allow the data to be
labeled so as not to produce noisy labels.
Labelling complexity In general, pairwise data may

be more expensive to label. For example, given 10 images,
we only need to label 10 samples to assign each image into
one category. Also, category labels can be acquired from
other sources such as image tags. On the other hand, to
assign pairwise labels for all 10 images, we would need to
compare 45 pairs to completely capture the ranking informa-
tion. (Although the relative relation is transferable such as
(A≻B)&(B≻C)⇒A≻C, it is difficult to discover those “key
pairs” since we usually have to randomly pick pairs without

any prior knowledge.) We note, however, that sometimes it
is easier for a user to assign pairwise labels through com-
parison than having to give a pointwise label for a given
image.

Representational capability Pairwise data tend to
have stronger representational capability than pointwise data
in ranking problems, as pointwise label only implies the rel-
ative order of data samples from different categories but not
those from the same category. In contrast, pairwise labels al-
ready give the relative order of every training pairs, and thus
contain more knowledge to learn a better ranking model.

As pointwise and pairwise labels encapsulate information
of different types/amounts and may have different availabil-
ity, we set out to develop a new framework for fusing both
types of training data for improved ranking performance.
Most of current fusion approaches [16][19] only use pointwise
labels and the fusion only appears in the cost function. To
our best knowledge, the only work considering fusing point-
wise and pairwise data is presented by Sculley [21] whose
object function is simply a linear combination of loss func-
tions from regression and ranking.

In this paper, towards supporting adaptive image retrieval,
we propose a new ranking-based framework. Our approach
uses visual attributes to describe images, which helps to par-
tially overcome the semantic gap problem. To alleviate the
problem of lacking adaptive training samples, our approach
attempt to maximize the utilization of all available training
data by fusing both pointwise and pairwise labelled data in
training. Compared to [21], our approach is formulated as a
soft margined SVM which is able to achieve better general-
ization performance. Furthermore, to support interactivity,
which is one natural way of gathering adaptive training data
on the fly, we derive an online learning algorithm which can
incrementally acquire a user’s online feedback to improve
the performance of the model incrementally with additional
amount of data. As will be demonstrated by experiments,
the proposed framework is able to take advantage of both
types of data and deliver better performance than the base-
line approaches that use only one type of data for learning.

There are three key contributions of our work. (1) We
propose a new ranking framework termed “hybrid ranking”
which takes both pointwise and pairwise labelled data for
learning. (2) We propose an online learning algorithm for
our proposed hybrid ranking framework, which can better
support applications like adaptive image ranking. (3) We
derive our hybrid ranking framework into a kernel form so
that different kernel functions (depending on the applica-
tion) may be applied for better performance.

In the remaining of the paper, we first give a formal prob-
lem definition in Section 2. The proposed approach is pre-
sented in Section 3. Experiments and results are demon-
strated in Section 4. We conclude the paper in Section 5.

2. PROBLEM DEFINITION
Adaptive Image Retrieval We consider the follow-

ing adaptive image retrieval procedure illustrated in Fig.
2: Given a training dataset including both the attribute
existence labels of images (pointwise) and the relative at-
tribute strength labels of image pairs (pairwise), we first
train a general image ranking functions (the “Offline trained
model” in the figure). This is used to retrieve images for
a user based on his/her query. Looking at the initial re-
trieval results, the user may interactively provide feedback,



Figure 2: Adaptive image retrieval via on-line feed-
back.

in forms of newly labelled attribute existence labels and/or
relative attribute strength labels. Such feedback is used as
new training samples by an on-line-learning algorithm for
updating the ranking function. As the feedback is specific to
a user, the updated ranking function (and thus the retrieval
engine) is presumably adapted to a user’s preferences and
hence achieving some level of personalization.
Hybrid Ranking To solve the above adaptive image

retrieval task, we propose a hybrid ranking SVM framework.
Given (1) the pointwise dataset P where each data sample
xi ∈ P is assigned a category label and (2) the pairwise
datasets including both the ordered pair set O and the un-
ordered pair set S where for any pair (xi,xj) ∈ O, xi ≻ xj

(e.g., xi has a stronger attribute than xj), and for any pair
(xi,xj) ∈ S, xi ∼ xj (e.g., xi has a similar attribute value
to xj), we attempt to learn a ranking model taking both the
pointwise and pairwise data into consideration. This hybrid
ranking approach aims to capture as much information as
possible from all available data so as to achieve better rank-
ing performance especially when labelled data are scarce.
Notations In this paper, we represent scalars as lower

case letters (e.g., x), vectors as bold face lower case letters
(e.g., x), matrices as capital letters (e.g., X) and sets as
calligraphic capital letters (e.g., X ). The standard inner
product between the vectors u∈Rn and v∈Rn is denoted as
⟨u,v⟩ =

∑n
i=1 uivi with ui/vi the i-th element of u/v.

3. PROPOSED APPROACH
In this section we propose a general hybrid ranking SVM

framework and an online algorithm to solve this problem.

3.1 Hybrid Ranking SVM
To make the best use of the available knowledge, we pro-

pose a hybrid ranking SVM which takes both pointwise and
pairwise labelled data samples for learning.
The approach presented in [23] for ordinal regression learns

a number of parallel hyperplanes by the large margin princi-
ple as a ranking model. One implementation of the approach
tries to maximize a fixed margin for all the adjacent classes.
Relative attributes [18] applies pairwise learning-to-rank ap-
proach on image attributes for image ranking. This ap-
proach learns a ranking function for each human-nameable
attribute of an image. The relative“strength”of an attribute
is measured by some distance metrics learned through SVM-

like optimization using (relatively) labeled pairs. Both of
these two SVM models aim to optimize a project direction
w, such that ⟨w,w⟩ (i.e., the inverse of the margin) is min-
imized subject to the separability constraints (modulo mar-
gin errors in the non-separable case).

In the situation that the training data are very limited,
learning w based on both pointwise and pairwise datasets
jointly would become a necessity in order to achieve reason-
able performance. To fuse information from both types of
data, the margins assigned to them should be different. To
this end, we introduce a new superparameter ρ representing
the margin corresponding to the pairwise data. We propose
the hybrid ranking approach as follows:

min
w,b,ξ,ζ,η

1

2
∥w∥2 + c1τ1

∑
i

∑
j

(ξji + ξ∗j+1
i )

+ c2τ2
∑

ζij + c2τ3
∑

ηij

s.t. w · xj
i − bj≤− 1 + ξji ,

w · xj+1
i − bj≥1− ξ∗j+1

i ,

w · (xi − xj) ≥ ρ− ζij , ∀(i, j) ∈ O,
|w · (xi − xj)| ≤ ηij ,∀(i, j) ∈ S,

ξji≥0, ξ
∗j
i ≥0, ζij ≥ 0; ηij ≥ 0

where xj
i ∈ R

n is an object (feature vector) with j =
1, ..., k − 1 denoting the class number, i = 1, ..., ij is the
index within class j, and k is the total number of classes.
(xi,xj) is sample pairs, ξji and ξ∗ji are non-negative slack
variables measuring the degree of misclassified data, ζij and
ηij are soft margin slack variables for pairwise ranking, c1
and c2 are super parameters controlling the weight for the
pointwise and pairwise data, τi is the weight function pe-
nalizing different training datasets according to the data
size. Specifically, let n1, n2 and n3 denote the data sizes
of the pointwise, ordered and unordered pairwise datasets
respectively, then τi =

ni∑3
j=1 nj

, i = 1, 2, 3. Note that if only

pointwise data are provided then the framework is equiva-
lent to regression, and if only pairwise data are provided the
framework becomes pairwise ranking.

In the following discussion, we focus on the image retrieval
task which can be simplified as a hybrid ranking model
with “binary type ” of pointwise label (i.e., existence/non-
existence of certain attribute). For clarity, in the follow-
ing, we use xP

i to denote the i-th pointwise training sample
xi∈P, and xO

i (xS
i ) denotes the difference of the i-th or-

dered(unordered) pairwise training sample as xp − xq for
any (xp, xq)∈ O(S). Then the ranking model can be for-
mulated as the following primal form of the hybrid learning
problem:

min
w,b,ξ,ζ,η

1

2
∥w∥2 + c1τ1

∑
i

ξi

+ c2τ2
∑

ζi + c2τ3
∑

ηi

s.t. yi · (w · xP
i + b)≥1− ξi,

w · xO
i ≥ ρ− ζi,∣∣∣w · xS
i

∣∣∣ ≤ ηi,

ξi≥0, ζi ≥ 0; ηi ≥ 0.

(1)

This formulation can be solved by quadratic programming.



Algorithm 1 The Mini-Batch Online Learning Algorithm

Input:
1. Training set A with data type flags;
2. Parameters ρ, c1, c2, t̃, k;

Output: wt̃;
1: Set w0 = 0;
2: for t = 1, 2, ..., t̃ do
3: Choose At ⊆ A where |At| = k uniformly at random;
4: Set AP

t = {i ∈ At : (xi, yi) ∈ P∧yi⟨xi,wt⟩ < 1},
n1 = |AP

t |;
5: Set AO

t = {i ∈ At : (xi, yi) ∈ O∧⟨xi,wt⟩ < ρ},
n2 = |AO

t |;
6: Set AS

t = {i ∈ At : (xi, yi) ∈ S, n3 = |AS
t |;

7: Set ηt =
1

(n1+n2+n3)t
;

8: Set τ1 = n1∑3
j=1 nj

, τ2 = n2∑3
j=1 nj

, τ3 = n3∑3
j=1 nj

;

9: Set wt ← (1 − ηt)wt−1 + ηt(c1τ1
∑

i∈AP
t
yixi +

c2τ2
∑

i∈AO
t
xi) + c2τ3

∑
i∈AS

t
sgn ⟨xi,wt⟩xi);

10: end for
11: return wt;

3.2 Mini-Batch Online Learning Algorithm
We now propose an online learning algorithm for the hy-

brid ranking SVM for adaptive image retrieval. In the re-
trieval application, we first train a general ranking function
for the user. Based on the retrieval results, the user may
provide feedback (new category and relative labels) accord-
ing to their preferences. Then our online learning approach
will update the ranking function based on the newly labelled
data to make the ranking results better fit to the user’s per-
sonal needs.
The constrained quadratic programming problem of Eq.

(1) can be cast as an unconstraint empirical loss minimiza-
tion with a penalty term for the norm of the classifier that
can be learned in the following form:

min
w

1

2
∥w∥2 + c1τ1

∑
i∈P

ℓ1(w; (xP
i , y

P
i ))

+ c2τ2
∑
i∈O

ℓ2(w;xO
i ) + c2τ3

∑
i∈S

ℓ3(w;xS
i )

(2)

where

ℓ1(w; (xP
i , y

P
i )) = max{0, 1− yP

i ⟨xP
i ,w⟩},

ℓ2(w;xO
i ) = max{0, ρ− ⟨xO

i ,w⟩},

ℓ3(w;xS
i ) =

∣∣∣⟨xS
i ,w⟩

∣∣∣ .
Inspired by the Pegasos algorithm [22], we also considered

the mini-batch algorithm which utilize k (1≤k≤m) examples
at each iteration. We initiate the model by setting w0 to the
zero vector. In iteration t of the algorithm, given a training
set A with m samples of both pointwise and pairwise data (a
flag bit is used to identify the type of the data), we choose a
subset At ⊆ A with k examples uniformly at random among
the training subset. Thus we will optimize the following

approximate objective function:

f(w;At) =
1

2
∥w∥2 + c1τ1

∑
i∈At

ℓ1(w; (xP
i , y

P
i ))

+ c2τ2
∑
i∈At

ℓ2(w;xO
i ) + c2τ3

∑
i∈At

ℓ3(w;xS
i )

(3)

We employ the stochastic gradient methods in our algo-
rithm. The sub-gradient of Eq. (3) at iteration t is given
by

∇t =wt − c1τ1
∑
i∈At

χℜ+(1− yP
i ⟨xP

i ,wt⟩)yP
i xP

i

− c2τ2
∑
i∈At

χℜ+(ρ− ⟨xO
i ,wt⟩)xO

i

− c2τ3
∑
i∈At

sgn ⟨xS
i ,wt⟩xS

i

(4)

where χA(x) is the eigenfunction and sgn(x) the symbolic
function. Then the weight vector can be updated by

wt+1 = wt − ηt∇t

with the step size ηt =
1

(n1+n2+n3)t
. After a predetermined

number t̃ of iterations, we output the final wt̃ as the learned
projection model. The pseudocode of our algorithm is given
in Algorithm (1). It can be shown that our proposed frame-
work have the same convergence property with [22] and thus
we can terminate the procedure at a random stopping time
and in at least half of the cases the last hypothesis is an
accurate solution.

3.3 Kernelization
We further derive the framework into the kernel form

which strengthens our approach to learn non-linear model.
Note that although the derivation is based on the online
learning form, it can be generalized to batch learning since
we are considering mini-batch learning in this paper.

Instead of considering predictors which are linear func-
tions of the training instances x themselves, we consider
predictors which are linear functions of some implicit map-
ping ϕ(x) of the instances. Then the original optimization
problem can be redefined as:

min
w

1

2
∥w∥2 + c1τ1

∑
i∈P

ℓ1(w; (ϕ(xi
P), yP

i ))

+ c2τ2
∑
i∈O

ℓ2(w;ϕ(xO
i )) + c2τ3

∑
i∈S

ℓ3(w;ϕ(xS
i ))

(5)

where

ℓ1(w; (ϕ(xP
i ), y

P
i )) = max{0, 1− yP

i ⟨ϕ(xP
i ),w⟩},

ℓ2(w;ϕ(xO
i )) = max{0, ρ− ⟨ϕ(xO

i ),w⟩},

ℓ3(w;ϕ(xS
i )) = |⟨ϕ(xS

i ),w⟩|.

(6)

Next we will directly derive the primal problem into the
kernel form. For each t, let xj represents the data sample,
and let

αt[j] = |{t′≤t : it′ = j∧yP
j ⟨wt′ , ϕ(x

P
j )⟩ < 1}|,

βt[j] = |{t′≤t : it′ = j∧⟨wt′ , ϕ(x
O
j )⟩ < ρ}|,

γt[j] =
∑
j

sgn ⟨ϕ(xS
j ),wt′⟩, ∀j ∈ {t′≤t : it′ = j},



then Eq. (5) and (6) can be rewritten as

wt+1 =
1

λt
(c1τ1

n1∑
j=1

αt+1[j]y
P
j ϕ(xP

j )

+ c2τ2

n2∑
j=1

βt+1[j]ϕ(x
O
j ) + c3τ3

n3∑
j=1

γt+1[j]ϕ(x
S
j )).

According to the Representer Theorem [9], the optimal
solution to Eq. (2) can be expressed as a linear combination
of the training instances, thus we can rewrite w as:

w =

n1∑
j=1

α[j]ϕ(xP
j ) +

n2∑
j=1

β[j]ϕ(xO
j ) +

n3∑
j=1

γ[j]ϕ(xS
j ),

Let ϑ be the whole parameter vector and D be the whole
training dataset include all three types of labeled data

ϑ = [α[1· · ·n1], β[1· · ·n2], γ[1· · ·n3]],

D = [ϕ(xP
[1···n1])

T , ϕ(xO
[1···n2])

T , ϕ(xS
[1···n3])

T ]T ,

and di is the i-th in D, n = n1 + n2 + n3, then the ob-
jective function can be written in the following kernel form
through a kernel operator K(x,x′) = ⟨ϕ(x), ϕ(x′)⟩, yielding
the inner products after the mapping ϕ(·):

min
ϑ

1

2

n∑
i,j=1

ϑ[i]ϑ[j]K(di,dj)

+ c1τ1

n1∑
i=1

max{0, 1− yP
i

n∑
j=1

ϑ[j]K(xP
i ,dj)}

+ c2τ2

n2∑
i=1

max{0, ρ−
n∑

j=1

ϑ[j]K(xO
i ,dj)}

+ c2τ3

n3∑
i=1

|
m∑

j=1

ϑ[j]K(xS
i ,dj)|

4. EXPERIMENTS
We evaluate our approach on two datasets with augmented

relative attribute labels: (1) the Outdoor Scene Recog-
nition(OSR) dataset [17][18] with 2688 images and 7 at-
tributes, and the Shoes dataset [1][11] with 14568 images
and 10 attributes. We directly use the features provided
with the dataset of 512-dimensional gist descriptor for the
OSR and 960-dimensional gist descriptor plus 20-dimensional
color histogram for the Shoes.

4.1 Accuracy of Hybrid Ranking
We first demonstrate that the proposed approach is capa-

ble of utilizing information from both type of labeled data
with the comparison of three baseline approaches: Relative
Attributes [18], pointwise SVM for ordinal regression [23]
and CRR [21] which optimizes regression and ranking si-
multaneously. We compute the average ranking accuracy
with standard deviation by running 10 rounds of each im-
plemented approach. The average ranking accuracy is evalu-
ated by the frequency of correctly ranked pairs. The param-
eters are selected by cross validation of 5 randomly selected
small subsets per dataset.
Tables 1 and 2 demonstrate the average ranking accu-

racy with standard deviation of each attribute per dataset.
Pointwise and pairwise training samples are randomly se-
lected as 100 for OSR and 200 for Shoes with the rest of

(a) OSR

(b) Shoes

Figure 3: Learning curve of average ranking accu-
racy and corresponding standard deviation with re-
gard to different number of pairwise or pointwise
training samples on both dataset.

OSR and 6000 samples (due to memory limitation) from
Shoes for test. The result shows that our approach appar-
ently outperforms all baseline approaches in average ranking
accuracies while generating lower standard deviations.

Fig. 3 illustrates how the ranking accuracy changes with
different size of training samples on the attribute “Natural”
of OSR and “Open” of Shoes. Specifically, the result in
Fig. 3 Left is achieved by keeping the pointwise data size
fixed at 100 and increasing the size of pairwise data. The
blue curve shows the average ranking accuracy and stan-
dard deviation of our approach and the red and cyan curves
shows the result of baseline approaches. In Fig. 3 Right,
results of our approach (blue curve) compared with base-
line approaches are shown where the size of training pairs
is fixed at 100 and the size of training samples increases
gradually. The results show that, in both configurations,
our approach achieves obvious higher ranking accuracy and
lower standard deviation than all baseline approaches. Be-
sides, the result implies that, when fewer training samples
were used, a higher performance gain was observed. For
example, the best performance gain is 11% compared with
Relative Attributes and 14% compared with pointwise SVM
in “natural”, when only 10 training samples or pairs are fed.

Fig. 4 shows some examples of ranked image pairs. In
each column, the top image is more “natural” than the bot-
tom image according to the ranking groundtruth. Fig. 4(a)
is the comparison of our hybrid approach with Relative At-
tributes. The first three pairs (columns) are correctly ranked
by our approach but incorrectly ranked by Relative At-
tributes, e.g., coast is more natural than highway, forest is
more natural than inside city, mountain is more natural than
buildings. The last three pairs are incorrectly ranked by our



Attribute Name Hybrid Ranking(%) CCR(%) Relative Attribute(%) Pointwise SVM(%)
Natural 91.56±0.89 88.75±0.90 87.09±2.08 88.86±2.24
Open 88.50±0.62 87.25±0.82 86.83±1.76 85.72±1.26

Perspective 83.40±0.78 82.23±0.81 80.20±1.69 80.56±1.73
Size-large 72.93±1.04 70.62±1.21 67.89±1.55 65.17±3.53

Diagonal-plane 80.35±1.15 78.42±1.08 76.25±1.76 76.61±2.73
Depth-cloth 87.06±0.87 85.24±0.95 84.27±1.66 82.32±1.51
Average 83.97±0.80 82.08±0.96 80.42 ±1.75 79.87±1.78

Table 1: Ranking accuracies and standard deviation of 6 attributes on the OSR dataset when the number of
training samples and pairs are 100 for each attribute.

Attribute Name Proposed Method(%) CRR(%) Relative Attribute(%) Pointwise SVM(%)
Point at the front 82.25±0.79 81.42±0.82 80.61±1.08 79.13±1.53

Open 76.02±0.83 74.24±0.80 71.72±0.88 69.10±1.78
Bright in color 64.40±0.76 62.43±0.75 59.38±1.86 58.63±0.76

Covered with ornaments 71.19±0.58 70.02±0.61 68.88±0.72 59.10±3.87
Shiny 79.60±0.52 78.28±0.68 76.94±0.66 74.12±1.30

High at the heel 80.71±0.75 78.93±0.77 77.43±0.99 76.59±1.60
Long on the leg 75.19±0.92 73.32±0.82 72.44±1.07 69.08±2.19

Formal 75.78±0.90 74.45±0.91 72.37±1.10 70.76±1.57
Sporty 80.24±0.90 78.25±0.95 77.39±0.90 68.98±1.70

Feminine 83.37±0.68 82.42±0.70 81.38±0.71 81.86±1.50
Average 76.88±0.76 75.38±0.78 73.85±1.00 70.74±1.78

Table 2: Ranking accuracies and standard deviation of 10 attributes on the Shoes dataset when the number
of training samples and pairs are 200 for each attribute.

approach but correctly ranked by Relative Attributes. The
reason for the incorrect classification may be that our ap-
proach assigned a wrong category label to the scene. For in-
stance, our approach also classified the bottom image of the
fifth column as forest because of a tree appears in the scene.
Fig. 4(b) illustrates the comparison of our approach with
pointwise SVM. The first three pairs are correctly ranked
by our approach but incorrectly ranked by pointwise SVM,
e.g., coast is more natural than street, mountain is more
natural than open county and forest is more natural than
inside city. The last three pairs are incorrectly ranked by
our approach but correctly ranked by pointwise SVM.
Based on these experiments, the potential performance

gains of our approach appear to come from the extra infor-
mation captured from different types of labels. In particular,
the smaller standard deviation may result from the joint use
of both information sources that help to denoise the training
process.

4.2 Zero-Shot Learning
To further evaluate the proposed approach, we now con-

sider the popular application of zero-shot learning. Given
some training samples from some“seen”categories and some
“unseen” categories without any training samples, zero-shot
learning would predict the category labels of new samples.
We compare our approach with the baseline approach Rela-
tive Attributes since [18] has shown that this approach out-
performs most of the state of the art approaches on this
regard. We followed the same parameter prediction rules of
unseen categories as [4]. We adopted the same super param-
eters in Sect. 4.1 for model training. The average ranking
accuracies with corresponding standard deviations are re-

(a) Hybrid v.s. Relative Attribute

(b) Hybrid v.s. Pointwise SVM

Figure 4: Samples illustrating the ranking results.
In groundtruth the top image is more“natrual” than
the bottom image. The left three column is correctly
ranked by the proposed approach while incorrectly
ranked by the baseline. The right three is inverse.



Accuracy 70% 72.5% 75% 77.5% 80% 82.5% 85%
Online Learning 0.003 s 0.004 s 0.006 s 0.009 s 0.042 s 0.105 s 0.156 s
Batch Learning 0.006 s 0.098 s 0.104 s 0.231 s 0.451 s 1.558 s 6.308 s

Table 3: Elapsed times in order to achieve the same ranking accuracy (the less the better). The first row
shows given ranking accuracies, and the second/third row shows the times needed for online/batch learning
respectively to achieve the corresponding accuracy.

(a) Different unseen categories

(b) Different training pairs

Figure 5: Learning curve of zero-shot learning accu-
racy with regard to different unseen category num-
bers and training sample size on both dataset.

ported by running each experiment 10 rounds. Assuming
the data follows a Gaussian distribution, we estimated the
mean and the covariance matrix of each (seen and unseen)
category and assigned the category label of the new sample
through maximum likelihood.
Fig. 5(a) shows the accuracy as a function of the number

of unseen categories. For each seen category 30 images are
left out for category parameter prediction, and 10 pointwise
and 10 pairwise labelled samples are randomly picked for
training. Results show that the ranking accuracy decreases
as the number of unseen category increases. Our approach
outperforms the baseline approach by around 3%.
Fig. 5(b) shows how the accuracy changes with the num-

ber of training pairs. In each run, 2 unseen categories and
30 images from the other seen categories are left out. 10
pointwise labelled samples are randomly picked for hybrid
approach. Results show that ranking accuracies of both ap-
proaches increase with the increase of training pairs. Our
approach yields performance gains by around 3% compared
with the baseline approach.

4.3 Online Learning Evaluation
In this subsection, we compare the performance of the

proposed online learning algorithm with the batch learning

Figure 6: Average ranking accuracy of 10 attributes
on the Shoes dataset by running the algorithms for
0.1 seconds. In each group the first bar is the result
of batch learning and the second bar is the result of
online learning.

algorithm on the shoes dataset. For the online learning al-
gorithm, the super parameters are set as c1 = 0.2, c2 = 3,
ρ = 0.1. In training, we first construct a data pool mixed
with both pointwise and pairwise data, and then randomly
pick one data sample without considering the specific label
type from the data pool for training. For batch learning,
we construct the training dataset as half pointwise and half
pairwise samples.

Fig. 6 illustrates the average ranking accuracy of 10 at-
tributes by running both implemented approaches 10 rounds
for a small time interval T (T=0.1 second in this experi-
ment), simulating very limited training data availability. In
each group, the first bar (blue) shows the result of batch
learning and the second bar (red) shows the result of online
learning. The results shows that in the same elapsed time of
0.1 second, the online learning algorithm clearly outperforms
batch learning. The highest performance gain is obtained on
the attribute “Sporty” by 9.69% and the lowest performance
gain is for the attribute “Formal” by 4.63%.

Table 3 collects the elapsed time after both approaches
achieved the same ranking performance from 70% to 85%.
The results show that the batch learning approach takes
longer time than online learning to achieve the same accu-
racy. With the ranking accuracy increased, the time differ-
ence become much more obvious. For example, batch learn-
ing takes double time (0.006s vs 0.003s) than online learning



to achieve the accuracy of 70%, and takes 40 times (6.308s
vs 0.156s) more time to achieve the accuracy of 85%.

5. CONCLUSIONS
We proposed a hybrid ranking framework for supporting

adaptive, attribute-based image retrieval. We evaluated the
proposed approach on two image datasets. The results show
that through capturing the information from both relative
attribute strength (pairwise) and absolute attribute scale
(pointwise), our method is able to achieve better ranking
performance than Relative Attribute and pointwise SVM,
which are current leading approaches that learn the rank-
ing function purely based on either pairwise or pointwise
data. We also proposed an online learning algorithm for the
proposed framework and derived the formulation into the
kernel form. The experiments of online learning and batch
learning show that our online learning algorithm can achieve
much better ranking performance than batch learning given
the same running time or can achieve better performance in
much less time. The results also suggest that the less train-
ing data are available, the more relative performance gains
can be obtained by our approach than independent learning.
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