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Abstract

We introduce COMI-LINGUA, the largest001
human-annotated Hindi-English code-mixed002
dataset, with 125K+ instances spanning five003
core NLP tasks: Matrix Language ID, Token-004
level Language ID, POS Tagging, NER, and005
Machine Translation. With 376K+ expert an-006
notations and strong agreement (Fleiss’ Kappa007
>= 0.81), it covers both Roman and Devana-008
gari scripts across diverse domains. Eval-009
uations show that closed-source Large Lan-010
guage Models (LLMs) outperform existing011
tools, and one-shot prompting significantly012
boosts performance—especially in structure-013
sensitive tasks—highlighting its value for code-014
mixed, low-resource NLP. Dataset available at015
this URL1.016

1 Introduction017

Code-mixing is the blending of multiple languages018

within a single utterance—a pervasive phenomenon019

in multilingual societies, especially on social me-020

dia platforms (Jamatia et al., 2020; Srivastava and021

Singh, 2020). Over half of the world’s popula-022

tion is bilingual or multilingual and frequently uses023

mixed-language expressions in digital communi-024

cation (Grosjean, 2021). In the Indian context,025

Hindi-English code-mixed (Hinglish) text is partic-026

ularly widespread and presents significant compu-027

tational challenges due to orthographic complex-028

ity, frequent language switches, and script varia-029

tion between Devanagari and Roman forms (Bali030

et al., 2014; Takawane et al., 2023; Thara and Poor-031

nachandran, 2018). A characteristic example is:032

Kal mujhe ऑिफस जाना hai, but ट्रािफक will be an033

issue, where Hindi and English tokens co-occur034

and certain English words like “office” and “traffic”035

may appear in Devanagari script. (English Trans-036

lation: “Tomorrow I have to go to the office, but037

traffic will be an issue.”)038

1https://anonymous.4open.science/r/CodeMixing/

Despite growing interest, current Hinglish 039

datasets have critical limitations: (1) a predomi- 040

nant focus on Roman script, ignoring natural script 041

variation (Begum et al., 2016; Bali et al., 2014; Sri- 042

vastava et al., 2020), (2) limited scale and coverage 043

(Srivastava and Singh, 2021a; Kumar et al., 2018; 044

Tiwari et al., 2024; Kartik et al., 2024), (3) insuffi- 045

cient task diversity within single datasets (Aguilar 046

et al., 2020; Khanujaa et al., 2020; Bohra et al., 047

2018; Khanuja et al., 2020), and (4) reliance on 048

synthetic data generation rather than human annota- 049

tion (Chatterjee et al., 2022; Srivastava and Singh, 050

2021c; Kartik et al., 2024; Sravani and Mamidi, 051

2023). 052

To address these limitations, we present a novel 053

comprehensive dataset COMI-LINGUA (COde- 054

MIxing and LINGuistic Insights on Natural 055

Hinglish Usage and Annotation) that advances 056

Hindi-English code-mixing research. The key con- 057

tributions include: 058

• Curation of the largest publicly available 059

Hinglish dataset (376K manually annotated in- 060

stances), released under a CC-BY-4.0 license, 061

capturing real-world code-mixing behavior 062

across both Roman and Devanagari scripts. 063

Each instance is annotated by three annotators 064

across five key NLP tasks: matrix language 065

identification, token-level language identifi- 066

cation, part-of-speech tagging, named entity 067

recognition, and translation. 068

• Robust benchmarking of state-of-the-art multi- 069

lingual LLMs (mLLMs) including both open- 070

weight and closed-source models—alongside 071

traditional NLP tools, under two inference 072

paradigms: zero-shot and one-shot in-context 073

learning. 074

• In-depth error analysis of mLLMs on code- 075

mixed tasks, uncovering critical limitations 076

such as misclassification of English borrow- 077

ings in Devanagari script, context trunca- 078
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Figure 1: Sample Annotations Across COMI-LINGUA Tasks: Shown here are annotated instances for each of the
five tasks defined in the COMI-LINGUA task set, emphasizing the annotation strategy and linguistic diversity.

tion, overfitting in one-shot settings, prompt079

mimicry, repetitive or hallucinated outputs,080

and practical deployment barriers like API us-081

age constraints—highlighting persistent chal-082

lenges in script-aware and context-sensitive083

language modeling.084

2 Related Work085

Code-mixing—the blending of multiple languages086

in a single utterance—poses major challenges for087

NLP due to its structural variability (Srivastava and088

Singh, 2021a). This is especially true for Hindi-089

English, given their distinct scripts and syntax (Bali090

et al., 2014). Progress is hindered by the lack of091

large, annotated datasets, as collecting and label-092

ing such data remains costly and labor-intensive093

(Srivastava and Singh, 2021a).094

Language Identification is a foundational task in095

code-mixed NLP. Multiple approaches have been096

developed to detect language boundaries within097

mixed-language sequences, including statistical098

models, CRFs, and deep learning-based techniques099

(Shekhar et al., 2020; Singh et al., 2018a; Gundapu100

and Mamidi, 2018; Molina et al., 2016). These101

efforts have paved the way for improved prepro-102

cessing and downstream modeling of code-mixed103

data.104

Part-of-Speech Tagging A variety of annotated105

datasets have been introduced for POS tagging in106

code-mixed contexts. Singh et al. (2018b) and107

Vyas et al. (2014) developed corpora from Twit- 108

ter and Facebook, respectively, while Pratapa et al. 109

(2018) generated synthetic datasets for evaluating 110

bilingual word embeddings. Sequiera et al. (2015) 111

experimented with various machine learning algo- 112

rithms, and Chatterjee et al. (2022) introduced PAC- 113

MAN, a large-scale synthetic POS-tagged dataset 114

that achieved state-of-the-art performance in code- 115

mixed POS tagging tasks. 116

Named Entity Recognition in code-mixed text 117

has seen significant progress through both resource 118

development and model improvements. Dowla- 119

gar and Mamidi (2022) showed that leveraging 120

multilingual data enhances NER accuracy, while 121

Ansari et al. (2019) created cross-script datasets us- 122

ing Wikipedia. Transformer-based approaches and 123

meta-embeddings have also been effective in im- 124

proving NER for Indian code-mixed data (Priyad- 125

harshini et al., 2020). 126

Machine Translation for code-mixed content re- 127

mains a growing research area. Dhar et al. (2018) 128

and Srivastava and Singh (2020) developed par- 129

allel corpora for Hindi-English code-mixed sen- 130

tences, while Hegde and Lakshmaiah (2022) pro- 131

posed translation models using transliteration and 132

pseudo-translation, achieving competitive results 133

in the MixMT shared task at WMT 2022. 134

Benchmarking and Evaluation Frameworks 135

Several benchmark datasets have been introduced 136

to evaluate NLP systems on code-mixed tasks. 137
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Task Data Source (Hi-En) Dataset Size Script QA Annotators/Models
L

ID

Facebook (Bali et al., 2014) 1,062 R & D Yes 3
Twitter (Singh et al., 2018a) 2,079 R Yes 3
Twitter (Swami et al., 2018) 5,250 R Yes Not mentioned
Twitter (Mave et al., 2018) 5,567 R Yes 3

Facebook, Twitter, WhatsApp (Veena et al., 2018) 3,071 R No Embedding Model
Twitter (Joshi and Joshi, 2022) 18,461 R No Not mentioned

Twitter, YouTube, Press Releases, News (Ours) 25,772 R & D Yes 3

PO
S

Twitter, Facebook (Sequiera et al., 2015) 628 R & D No 1
Facebook (Bali et al., 2014) 1,062 R & D Yes 3

Twitter, Facebook (Jamatia et al., 2015) 1,106 R No 2
Twitter (Singh et al., 2018b) 1,190 R Yes 3

Synthetically generated (Chatterjee et al., 2022) 51,118 R & D No 0
Existing Benchmarks (Kodali et al., 2022) 55,474 R No Trained POS tagger

Twitter, YouTube, Press Releases, News (Ours) 24,598 R & D Yes 3

N
E

R

Facebook (Bali et al., 2014) 1,062 R & D Yes 3
Twitter (Singh et al., 2018a) 2,079 R Yes 3

Twitter (Bhargava et al., 2016) 2,700 R No Supervised algorithm
Twitter (Singh et al., 2018c) 3,638 R Yes 2

Tourism, News (Murthy et al., 2022) 108,608 R & D No 1
Twitter, YouTube, Press Releases, News (Ours) 24,913 R & D Yes 3

M
T

TED Talks, News, Wikipedia (Kartik et al., 2024) 2,787 R & D Yes 2
Twitter, Facebook (Srivastava and Singh, 2021b) 3,952 R & D Yes 5

Social Media (Dhar et al., 2018) 6,096 R Yes 4
Twitter, Facebook (Srivastava and Singh, 2020) 13,738 R Yes 54 (400 instances)

Existing Benchmarks (Kunchukuttan et al., 2017) 14,95,854 R & D No PBSMT, NMT
Twitter, YouTube, Press Releases, News (Ours) 24,558 R & D Yes 2

M
L

I

Twitter, Facebook (Sequiera et al., 2015) 628 R & D No 1
Facebook (Bali et al., 2014) 1,062 R & D Yes 3

Social Media (Dhar et al., 2018) 6,096 R Yes 4
Twitter, YouTube, Press Releases, News (Ours) 25,772 R & D Yes 3

Table 1: Comprehensive Comparison of Existing Datasets for Hindi-English Code-Mixing NLP Tasks, including
the proposed dataset. NLP tasks covered in the dataset include Language Identification (LID), Part-of-speech (POS)
tagging, Named Entity Recognition (NER), and Matrix Language Identification (MLI). (R) and (D) denote Roman
and Devanagari scripts, respectively, while QA represents annotations by Qualified Annotators.

LinCE (Aguilar et al., 2020) provides a com-138

prehensive benchmark covering 11 corpora and139

4 language pairs. GLUECoS (Khanuja et al.,140

2020) demonstrated the benefits of fine-tuning141

multilingual models on code-switched datasets142

across multiple tasks. Emotion and sentiment an-143

notation efforts, such as the Hindi-English Twit-144

ter corpus by Vijay et al. (2018), the L3Cube-145

HingCorpus (Nayak and Joshi, 2022), and the146

emotion-annotated SentiMix dataset by Ghosh et al.147

(2023), further support affective computing in code-148

mixed settings.149

Despite ongoing efforts, standardized benchmarks150

for evaluating LLMs on diverse Hinglish code-151

mixed tasks—such as acceptability judgments, syn-152

tactic fluency, and translation fidelity—remain lim-153

ited. Existing benchmarks are often narrow in 154

scope and rely on synthetic or small-scale data. 155

To address this, we curate the largest high-quality, 156

human-annotated dataset for training and evaluat- 157

ing LLMs on a broad range of Hinglish code-mixed 158

phenomena. It serves as both an evaluation suite 159

and a diagnostic tool to advance research in multi- 160

lingual and code-mixed language understanding. 161

3 The COMI-LINGUA dataset 162

3.1 Raw Dataset Curation 163

We curated raw data from publicly accessible and li- 164

censed platforms spanning diverse categories such 165

as news, politics, entertainment, social events, 166

sports, and informational content, with a focus on 167
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the Indian subcontinent. Sources included promi-168

nent news portals and official digital archives, de-169

tailed in Appendix A.1. The collected content170

was cleaned using regex-based preprocessing to171

remove noise such as advertisements, HTML tags,172

and footers, and then segmented into individual173

sentences. A Code-Mixing Index (CMI, Das and174

Gambäck (2014)) was computed for each sentence,175

and only those sentences with a CMI score ≥9176

were retained to ensure a substantial degree of177

code-mixing. Given the underrepresentation of178

mixed Devanagari-Roman script samples in ex-179

isting datasets, we also collected supplementary180

data to enhance coverage and linguistic diversity.181

This includes enriching the dataset by incorporat-182

ing additional Hinglish code-mixed samples from183

prior works (Srivastava and Singh, 2020; Gupta184

et al., 2023; Singh et al., 2018c) and from Hugging-185

Face2.186

3.2 Dataset Processing187

The preprocessing pipeline was designed to en-188

hance the quality and neutrality of the corpus189

through rigorous noise reduction techniques. To190

ensure the dataset was both clean and relevant, we191

removed duplicate instances, hate speech, and abu-192

sive content. Sentences containing offensive or193

inappropriate language were identified and filtered194

out using established profanity and hate speech195

detection tools, including thisandagain3 and Hate-196

Speech-Detection-in-Hindi4.197

At the token level, additional preprocessing steps198

were applied. Sentences with fewer than five to-199

kens were discarded to eliminate non-informative200

content such as fragments, abbreviations, emojis,201

and filler phrases—commonly arising from typing202

errors or social media discourse. Examples of such203

removed content include: #GuessTheSong’, during204

dinner’, and ‘@enlightenedme bas ek hi’. Further205

data refinement was conducted during the manual206

annotation process (see Section 3.4 for more de-207

tails).208

3.3 Data Annotation209

To annotate the Hindi-English code-mixed cor-210

pus, we employed COMMENTATOR (Sheth et al.,211

2https://huggingface.co/datasets/pardeep/
youtube-vidoes-transcripts-hindi-english/

3https://github.com/thisandagain/
washyourmouthoutwithsoap/blob/develop/README.md

4https://github.com/victorknox/
Hate-Speech-Detection-in-Hindi/blob/main/README.
md

2024), a robust annotation framework specifically 212

designed for multilingual code-mixed text. 213

The annotation was carried out by a team of three 214

graduate-level experts proficient in both Hindi and 215

English. All annotators possess prior experience 216

with social media content and demonstrate strong 217

programming capabilities, along with familiarity 218

in using version control systems. These compe- 219

tencies contributed to a systematic, efficient, and 220

reproducible annotation process. The annotators 221

were recruited specifically for this project and were 222

compensated at a rate of approximately $1.64 per 223

hour. The funding for the annotation work was pro- 224

vided through a government-sponsored initiative; 225

the compensation adheres to standard remuneration 226

practices considered appropriate for the annotators’ 227

qualifications and the economic context of their 228

country of residence. 229

We selected five diverse annotation tasks, balanc- 230

ing well-established tasks with high reliability and 231

underexplored challenges. Annotators followed 232

detailed guidelines with examples to ensure con- 233

sistency and clarity across tasks (Appendix A.3, 234

Figure 1). The tasks are: 235

1. Token-level Language Identification (LID): 236

In this task, each token in the dataset was 237

assigned one of three possible language la- 238

bels: English (en), Hindi (hi), or Other (ot). 239

Initial language tags were generated using 240

Microsoft’s Language Identification Tool5, 241

which served as a baseline for further man- 242

ual refinement. As shown in Figure 1, each 243

token is assigned a language tag. 244

2. Matrix Language Identification (MLI): Each 245

sentence is annotated with a Matrix Language, 246

which identifies the dominant language gov- 247

erning the grammatical structure of the sen- 248

tence. In code-mixed text, even when multiple 249

languages are interspersed, one language typ- 250

ically dictates the syntactic and morphosyn- 251

tactic framework of the utterance. Figure 1 252

showcases a sentence annotated with its ma- 253

trix language. 254

3. Named Entity Recognition (NER): In the 255

NER task, each token in a sentence is anno- 256

tated with a label from a predefined set of en- 257

tity types outlined in Table 2. These include 258

both conventional categories, such as Per- 259

son, Location, Organization, Date/Time, and 260

5https://github.com/microsoft/LID-tool
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Entity Type Description

Person Names of individuals
Location Non-political physical locations
Organization Institutions or companies
Date/Time Temporal expressions (e.g., dates)
GPE Geo-Political Entities
Hashtags Words prefixed by ‘#’
Mentions User mentions prefixed by ‘@’
Emoji Emoticons conveying emotions

Table 2: Named entity types and their descriptions in
our annotation schema.

GPE (Geo-Political Entities), as well as social261

media-specific types like Hashtags, Mentions,262

and Emoji. An instance of annotated entities263

across different types is shown in Figure 1.264

This allows the annotation schema to compre-265

hensively capture the diversity and informal-266

ity often observed in code-mixed social media267

text.268

4. Part-of-Speech (POS) Tagging: Each token269

in the code-mixed dataset was annotated with270

a Part-of-Speech (POS) tag selected from the271

Universal POS tagset proposed by Singh272

et al. (2018b). The tagset, summarized in Ta-273

ble 3, was chosen for its language-agnostic de-274

sign, enabling consistent annotation of Hindi275

and English words in a single sentence—an276

essential feature for handling code-mixed con-277

tent effectively. A representative example is278

present in Figure 1. Initial predictions for POS279

tags were generated using the CodeSwitch280

NLP library6, which supports multilingual281

code-mixed data and provides pretrained mod-282

els suitable for tagging noisy, informal text283

commonly found on social media platforms.284

5. Machine Translation (MT): This task in-285

volves constructing parallel translations for286

code-mixed sentences into three distinct for-287

mats: (i) Romanized Hindi, (ii) Devanagari-288

script Hindi, and (iii) standard English. The289

goal is to facilitate a multilingual HINGLISH290

sentence to align with its respective transla-291

tions across scripts and languages. A repre-292

sentative translation instance across the three293

formats is shown in Figure 1. Initial trans-294

lation predictions were generated using the295

LLaMA 3.3 language model7.296

6https://github.com/sagorbrur/codeswitch
7https://github.com/meta-llama/llama-models/

blob/main/models/llama3_3/MODEL_CARD.md

POS Tag Description

NOUN Common nouns
PROPN Proper nouns
VERB Verbs in all tenses and moods
ADJ Adjectives describing nouns
ADV Adverbs modifying verbs
ADP Adpositions
PRON Pronouns
DET Determiners
CONJ Conjunctions
PART Grammatical particles
PRON_WH Wh-pronouns
PART_NEG Negative particles
NUM Numerals and cardinal numbers
X Typos, abbreviations, punctuation

Table 3: Part-of-speech tags and their descriptions used
in our annotation schema.

For all tasks, we used state-of-the-art NLP tools 297

or LLMs for automated pre-annotation, generating 298

initial labels based on task-specific criteria. Expert 299

annotators then refined these outputs through man- 300

ual post-editing. This two-stage process ensured 301

high-quality annotations while improving consis- 302

tency and speeding up dataset creation. 303

3.4 Manual Data Refinement 304

During the annotation phase, the dataset underwent 305

iterative refinement to ensure quality and consis- 306

tency, guided by annotator feedback on instances 307

to be excluded (see Table 7 in Appendix A.2). Sen- 308

tences were removed if they (i) were monolingual 309

English or Hindi, (ii) lacked relevant linguistic tags 310

or named entities, contained no meaningful con- 311

tent, or merged multiple instances into one, or (iii) 312

included languages other than Hindi and English, 313

which were beyond the scope of this study. This re- 314

finement process was crucial for preserving corpus 315

integrity and ensuring that the final dataset con- 316

sisted solely of high-quality Hindi-English code- 317

mixed text. The Raw and Filtered columns in Ta- 318

ble 4 represent the number of original instances 319

provided for initial annotation and the final number 320

of instances retained after annotation, respectively. 321

The difference between these values corresponds 322

to instances flagged by annotators as not satisfying 323

the manual annotation criteria. 324

3.5 Annotation Efforts and Quality 325

The manual annotation process involved substan- 326

tial human effort across all tasks, particularly in 327

refining the outputs of automated tools. For ex- 328

ample, for the LID task, each annotator reviewed 329

504,102 tokens and flipped an average of 95,670 330

5
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Task Raw Filtered IAA CMI

LID 29,950 25,772 0.834 20.87
MLI 29,950 25,772 0.976 20.87
POS 27,229 24,598 0.817 21.60
NER 26,929 24,913 0.852 14.38
MT 26,727 24,558 - 17.07

Total / Avg. 140,785 125,613 0.863 18.96

Table 4: Corpus Statistics: The Raw and Filtered
columns represent the number of original instances pro-
vided for initial annotation and the final instances re-
tained after annotation, respectively. Note: IAA was not
computed for the MT task as it is a generative task.

tokens—approximately 19% of the original pre-331

dictions. In the POS task, 63,002 of 427,941 to-332

kens were corrected, indicating a 15% flip rate.333

Similarly, for the NER task, each annotator mod-334

ified about 98,760 out of 538,160 tokens, trans-335

lating to 18% manual corrections. For the MLI336

task, no initial predictions were provided, lead-337

ing to 100% of the sentences being annotated. To338

assess annotation reliability, we computed inter-339

annotator agreement (IAA) using Fleiss’ Kappa340

(Fleiss, 1971), a standard metric for evaluating con-341

sistency among multiple annotators on categorical342

labels (Hallgren, 2012). All classification tasks343

achieved Fleiss’ Kappa scores above 0.817, indicat-344

ing substantial to near-perfect agreement (Table 4).345

As machine translation is a generative task, IAA346

was not calculated. While not a direct measure347

of quality, the final dataset retains a high level of348

code-mixing, with an average CMI exceeding 14349

across tasks, ensuring strong code-mixing.350

The COMI-LINGUA consists of 125,613 1 high-351

quality instances spanning five tasks, each inde-352

pendently annotated by three expert annotators,353

yielding a total of 376,839 annotations. To our354

knowledge, it is the largest manually annotated355

code-mixed dataset to date. For each task, we pro-356

vide two random splits: a test set of 5,000 instances357

and a training set comprising the remainder.358

4 Experiments359

4.1 Baseline Tools and LLMs360

We conduct a comprehensive evaluation of existing361

tools and language models on the COMI-LINGUA362

Benchmark. Our experimental setup spans tradi-363

tional NLP toolkits, state-of-the-art open-source364

LLMs, and proprietary commercial models. These365

systems are evaluated on their performance across366

five diverse Hindi-English code-mixed NLP tasks,367

detailed in Section 3.3. 368

The traditional tools evaluated in this study in- 369

clude the Microsoft LID8 designed for token- 370

level language identification in multilingual text, 371

and the codeswitch toolkit9, which provides a 372

rule-based pipeline for annotating syntactic and 373

semantic information in code-switched corpora. 374

The open-source LLMs considered in our evalua- 375

tion include mistral-instruct (7B) (Jiang et al., 376

2023) and llama-3.3-instruct (70B) (Touvron 377

et al., 2023). In addition, we assess three com- 378

mercial state-of-the-art systems: GPT-4o (Achiam 379

et al., 2023), command-a-03-2025 (111B) (Co- 380

here et al., 2025), Claude-3.5-Sonnet (Anthropic, 381

2024) and Gemini-1.5-Flash (Anil et al., 2023). 382

We create specific prompt templates for each 383

task to generate accurate, task-aligned responses 384

from LLMs. The prompt template includes a high- 385

level description of the task, specific annotation or 386

tagging rules, and illustrative examples where ap- 387

plicable. For each of our 5 tasks, we developed two 388

prompt variants: a zero-shot version providing only 389

task instructions, and a one-shot version that in- 390

cludes a single demonstrative example with instruc- 391

tions. The prompts are presented as a system-level 392

instruction, followed by the user-supplied test in- 393

put (i.e., a code-mixed sentence or token sequence). 394

The complete prompt template used for one task is 395

detailed in Appendix B.1. 396

4.2 Evaluation Metrics 397

We employ a suite of standard evaluation metrics, 398

appropriately chosen for each task’s nature. For 399

token-level classification tasks—LID, POS, and 400

NER—we report Precision (P), Recall (R), and the 401

F1-score, computed at the macro level. For the MLI 402

task, which is a sentence-level classification prob- 403

lem, we adopt the same classification metrics—P, 404

R, and F1—computed on a per-sentence basis. For 405

MT, we use the BLEU score (Papineni et al., 2002) 406

to evaluate the quality of translated outputs. Given 407

the multilingual nature of our dataset, BLEU is 408

computed separately for each output format: Ben 409

for English, Brh for Romanized Hindi, and Bdh 410

for Devanagari Hindi. This disaggregated evalua- 411

tion helps assess script-specific translation quality 412

and is especially relevant given the transliteration 413

variability in informal code-mixed text. 414

8https://github.com/microsoft/LID-tool
9https://github.com/sagorbrur/codeswitch
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Model/Library LID POS NER MLI MT
P R F1 P R F1 P R F1 P R F1 Ben Brh Bdh

claude-3.5-sonnet 92.8 92.4 92.1 75.3 64.8 69.0 59.1 55.1 56.7 98.8 83.5 90.0 48.0 48.6 56.0
gpt-4o 92.8 92.8 92.7 76.1 66.0 70.1 60.5 60.1 60.1 98.4 97.9 98.1 28.8 27.4 31.9
gemini-1.5-Flash 82.9 40.4 47.9 73.4 62.4 66.5 44.2 44.2 43.8 98.8 21.4 33.7 48.1 28.9 56.9
LLaMA-3.3-instruct 73.4 73.7 73.3 74.3 65.5 68.9 67.5 67.3 66.8 98.8 59.0 73.1 55.4 50.4 59.8
mistral-instruct 54.5 39.0 42.4 10.2 6.72 7.78 65.1 41.5 50.2 98.1 58.7 72.3 23.5 5.36 18.05
command-a-03-2025 92.0 92.0 91.8 73.5 65.4 68.6 65.9 67.8 66.6 98.5 98.0 98.3 38.6 35.1 48.8
codeswitch - - - 89.1 87.8 88.2 81.6 83.1 81.2 - - - - - -
Microsoft LID 80.2 76.5 74.4 - - - - - - - - - - - -

Table 5: Zero-shot performance metrics on the COMI-LINGUA test sets for various models across different tasks:
LID, POS tagging, NER, MLI, and Translation. P , R, and F1 denote Precision, Recall, and F1-score respectively.
Ben, Brh, and Bdh represent BLEU scores for English, Romanized Hindi, and Devanagari Hindi translation outputs.
‘-’ indicates that the task is not supported by the respective tool.

Model/Library LID POS NER MLI MT
P R F1 P R F1 P R F1 P R F1 Ben Brh Bdh

claude-3.5-sonnet 93.0 92.7 92.5 81.4 79.2 79.3 85.9 85.2 85.0 98.8 98.9 98.8 50.9 52.1 63.4
gpt-4o 93.9 94.0 93.8 81.6 78.0 78.9 77.4 75.8 76.0 98.7 97.7 98.1 50.1 50.2 58.26
gemini-1.5-Flash 80.2 76.5 74.4 72.9 64.6 68.0 66.5 67.5 66.0 98.4 40.4 56.4 44.4 42.9 66.1
LLaMA-3.3-instruct 90.3 89.6 89.3 85.1 84.0 84.1 79.0 79.1 78.4 98.8 97.8 98.2 62.2 54.4 60.6
mistral-instruct 72.1 70.0 70.1 77.3 66.9 69.8 65.5 44.4 52.6 98.3 88.1 92.7 30.0 19.5 18.5
command-a-03-2025 92.1 91.7 91.3 74.5 65.7 69.5 76.7 78.9 77.3 98.9 98.7 98.3 52.9 42.1 56.0

Table 6: One-shot performance metrics on the COMI-LINGUA test sets for various models across different tasks:
LID, POS tagging, NER, MLI, and Translation. P , R and F1 denote Precision, Recall and F1-score respectively.
Ben, Brh, and Bdh represent BLEU scores for English, Romanized Hindi, and Devanagari Hindi translation outputs.

4.3 Evaluation Configurations415

We evaluate model performance under two dis-416

tinct inference paradigms: zero-shot and one-shot417

(specifically, 1-shot) in-context learning. Tradi-418

tional NLP tools and libraries are inherently lim-419

ited to zero-shot settings, as they rely on fixed rule-420

based or statistical models without the capability421

for contextual adaptation. In contrast, LLMs are422

evaluated under both zero-shot and 1-shot config-423

urations to investigate their ability to generalize424

from instructions alone and to leverage minimal425

contextual supervision, respectively.426

In the zero-shot setting, the prompt includes427

only task-specific instructions and formatting con-428

straints without any illustrative examples. For the429

1-shot setting, we augment the prompt with a sin-430

gle representative example demonstrating the input-431

output structure of the task. This example is care-432

fully selected to reflect typical task behavior and is433

kept fixed across all evaluations to maintain consis-434

tency. Detailed illustrations of both prompt config-435

urations are provided in Appendix B.1.436

5 Results and Observations 437

Tables 5 and 6 present the empirical results ob- 438

tained under the two experimental configurations: 439

zero-shot and one-shot in-context learning, respec- 440

tively. It is important to note that traditional tools 441

such as codeswitch and Microsoft LID are lim- 442

ited in their task coverage; consequently, results for 443

tasks not supported by these tools are omitted from 444

the tables. 445

Traditional Tools vs. LLMs: The comparative 446

analysis of traditional NLP tools and LLMs 447

reveals clear distinctions in performance across 448

code-mixed tasks. As shown in Table 5, traditional 449

tools such as codeswitch and Microsoft LID 450

demonstrate strong performance on specific tasks 451

they were designed for, particularly POS and LID, 452

respectively. For instance, codeswitch achieves 453

the highest POS F1-score of 88.2, outperforming 454

all LLMs in this task, while Microsoft LID 455

attains a reasonable F1-score of 74.4 for LID. 456

However, these tools exhibit significant limitations 457

in task coverage; they do not support MLI, MT, 458

or tasks involving complex reasoning or generation. 459
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460

Open vs. Closed LLMs The performance gap461

between proprietary (closed) and open-source462

LLMs is evident across both zero-shot and463

few-shot settings. In zero-shot mode, closed464

models such as gpt-4o and claude-3.5-sonnet465

dominate with top-tier results in most tasks. For466

example, gpt-4o achieves 92.7 F1 on LID and 98.1467

F1 on MLI, while claude-3.5-sonnet reaches468

92.1 F1 on LID and 90.0 F1 on MLI. However,469

when moving to one-shot setting, open-source470

models like LLaMA-3.3-instruct start closing471

the gap. Its performance improves significantly:472

LID F1 rises from 73.3 to 89.3, POS tagging473

reaches 84.1 (even surpassing gpt-4o), and NER474

climbs to 78.4. MT performance also peaks at475

62.2 Ben for English, the highest across all models.476

477

Zero vs. One-shot Inference The transition from478

zero-shot to one-shot inference leads to notable479

performance improvements across most models480

and tasks. This is especially evident in complex481

tasks such as NER and MT, where providing one482

task-specific instance helps models disambiguate483

entities and manage code-mixed structures more484

effectively. For example, Claude-3.5-sonnet’s485

NER F1 score increases significantly from486

56.7 in the zero-shot setting to 85.0 in the487

one-shot setting, while its Brh for Devanagari488

Hindi translation improves from 31.9 to 63.4.489

gpt-4o similarly benefits, with NER performance490

rising from 60.1 to 76.0 and Devanagari Bdh491

improving from 31.9 to 58.26. Open models492

like LLaMA-3.3-instruct also see considerable493

gains, such as POS tagging jumping from 68.9 to494

84.1 and English MT Ben reaching 62.2. These495

results demonstrate that even minimal supervision496

through a single example can significantly enhance497

model performance on linguistically complex,498

low-resource, or code-mixed tasks. At the same499

time, tasks like MLI exhibit relatively modest500

gains, suggesting that more deterministic tasks501

benefit less from one-shot prompting. Overall,502

one-shot inference provides a practical and503

effective method to unlock the latent capabilities504

of LLMs in multilingual and code-mixed scenarios.505

506

6 Challenges with Current LLMs507

A consistent challenge across all models is the in-508

ability to accurately handle English borrowings509

written in Devanagari script—words like “कोड ” 510

and “ओलंिपक ” were frequently misclassified as 511

Hindi, reflecting a gap in script-aware language 512

identification. Another prominent issue is sentence 513

truncation; longer code-mixed inputs often lead to 514

incomplete or abruptly cut-off outputs, indicating 515

that many models struggle to preserve context over 516

extended sequences. In addition, models such as 517

gemini-1.5-flash and mistral-instruct dis- 518

played repetitive generation patterns, producing 519

redundant phrases within the same response. These 520

models also occasionally injected subjective ex- 521

planations into their outputs, despite clear instruc- 522

tions to extract objective information—for instance, 523

adding interpretive statements when identifying the 524

matrix language. A further concern is that several 525

models tended to mirror patterns from the prompt 526

rather than perform actual analysis, indicating shal- 527

low understanding and a tendency to copy input 528

structures. Sentences with high grammatical or 529

script variability posed yet another barrier, where 530

many models, especially gemini-1.5-flash and 531

mistral-instruct, failed to generate any output 532

at all. Overfitting to examples also emerged as a 533

concern, particularly in one-shot settings; models 534

like gpt-4o and command-a-03-2025 occasionally 535

produced outputs that mimicked example structures 536

rather than responding appropriately to the test in- 537

put. This over-reliance was particularly evident in 538

tasks such as MLI and LID, where one-shot per- 539

formance slightly declined. Additionally, some 540

models exhibited hallucination behaviors, introduc- 541

ing entities not present in the input, which likely 542

stems from overgeneralization in the presence of 543

minimal supervision (See Table 8 in the Appendix). 544

7 Conclusion and Future Directions 545

LLMs often struggle with tasks like POS tagging, 546

NER, and translation in Hindi-English code-mixed 547

text due to limited exposure to Indian multilin- 548

gual data. This results in errors such as entity 549

mislabeling and content hallucination, especially 550

with structurally complex and script-variable inputs. 551

The COMI-LINGUA dataset addresses these chal- 552

lenges by providing high-quality, richly annotated, 553

and task-diverse code-mixed text. Future work in- 554

cludes expanding the dataset and adding tasks such 555

as normalization, sentiment analysis, Q&A, sum- 556

marization, and dialogue understanding, creating 557

a stronger foundation for training and evaluating 558

LLMs on complex scenarios. 559
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Limitations560

While this study offers valuable insights into the561

annotation and processing of Hindi-English code-562

mixed text, several limitations warrant considera-563

tion:564

1. Language Pair Specificity: The findings de-565

rived from Hindi-English code-mixed data566

may not generalize to other language pairs567

(e.g., Spanish-English), given differences in568

syntactic structure, sociolinguistic norms, and569

code-switching behavior.570

2. Demographic Bias: The use of a relatively571

small and homogeneous group of annotators572

may introduce demographic bias, potentially573

limiting the broader applicability and reliabil-574

ity of the acceptability ratings.575

3. Resource Constraints: Scaling this work to576

other code-mixed language pairs remains chal-577

lenging due to the scarcity of high-quality an-578

notated corpora and the limited availability of579

models capable of robustly handling diverse580

code-mixing phenomena.581

Ethics Statement582

We adhere to established ethical guidelines in the583

creation of our benchmark dataset and in the eval-584

uation of existing LLMs for Hindi-English code-585

mixed text. Data curation was carried out responsi-586

bly, with careful attention to annotator well-being,587

informed consent, and workload management. We588

ensured that no personally identifiable information589

(PII) was included in the dataset, thereby main-590

taining user privacy and confidentiality. To mit-591

igate potential biases, annotation protocols were592

designed to capture diverse linguistic phenomena593

and were reviewed iteratively. Our study promotes594

fairness and inclusivity in multilingual NLP by fo-595

cusing on underrepresented code-mixed language596

scenarios. All datasets and models employed in597

this research are either publicly available or used598

in accordance with their respective licenses, such599

as Creative Commons.600
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A Appendix934

A.1 Dataset Sources935

For dataset collection, we implemented an article-936

wise scraping process that extracted high-quality937

data from diverse sources. News sources included 938

NDTV10, ABP News11, Zee News12, News1813, 939

TV914, and Aaj Tak.15 Digital platforms like X 940

(formerly “Twitter”)16 and YouTube17 provided 941

real-time discussions. Political channels from 942

INC, BJP, and AAP were included, along with of- 943

ficial sources such as Mann Ki Baat18 and Press 944

Information Bureau (PIB)19. 945

A.2 Examples of Noisy Text Instances in the 946

Scrapped Code-Mixed Data 947

Table 7 Presents examples of challenging text 948

patterns identified during manual annotation, in- 949

cluding incomplete variants, ambiguous scripts, 950

cross-article concatenation, and mixed-script forms. 951

These were carefully reviewed and, in some cases, 952

removed as part of our annotation methodology 953

and quality assurance process to improve dataset 954

consistency. 955

A.3 Annotation Guidelines for All Tasks 956

• Each instance was annotated independently by 957

all annotators without influence from model 958

predictions or other annotator’s decisions. 959

• Annotators were instructed to rely on con- 960

textual understanding to disambiguate code- 961

mixed tokens, resolve ambiguity, and accu- 962

rately assign labels. 963

• Only the content explicitly present in the sen- 964

tence was to be annotated; annotators were 965

advised to avoid adding any inferred or as- 966

sumed information. 967

• Instances containing noise (e.g., incomplete 968

fragments, junk tokens, or malformed words) 969

were marked and excluded during preprocess- 970

ing as per filtering heuristics as per Table7. 971

• Consistent labeling was promoted using uni- 972

form tags and task-specific instructions during 973

annotation training. 974

• Annotators were encouraged to flag uncertain, 975

ambiguous, or low-quality samples for further 976

review. 977

10https://ndtv.in/
11https://www.abplive.com/
12https://zeenews.india.com/hindi
13https://hindi.news18.com/
14https://www.tv9.com/
15https://www.aajtak.in/
16https://x.com/
17https://www.youtube.com/
18https://www.narendramodi.in/mann-ki-baat
19https://pib.gov.in/
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• Annotation disagreements were addressed us-978

ing majority voting. In cases where no major-979

ity existed, a manual adjudication process was980

conducted to finalize the labels.981

B Experimental Setup982

B.1 Zero-Shot Prompt983

Identify the named entities in the following
text:
Rules:
- Tag each word with one of these entity
types:
PERSON, ORGANISATION, LOCATION,
DATE, TIME, GPE, HASHTAG, EMOJI,
MENTION, X - for words that don’t fall
into above categories
Text: {row[‘sentence’]}

Return the output in the following
format:
[ { ‘word1’: ‘entity’}, { ‘word2’: ‘entity’ },
{ ‘word3’: ‘entity’ }, . . . ]

984

Few-Shot Prompt985

Identify the named entities in the following
text:
Rules: Tag each word with one of these
entity types:
PERSON - for names of people
ORGANISATION - for company/organiza-
tion names
LOCATION - for location names
DATE - for dates
TIME - for time expressions
GPE - for geo-political entities
HASHTAG - for words starting with #
EMOJI - for emojis
MENTION - for words starting with @
X - for words that don’t fall into above
categories

Only break tokens at spaces
Text: {row[‘Sentences’]}
Do not add any extra explanations or text
before or after the list.

986

Sentence: लंदन के Madame Tussauds में
Deepika Padukone के वैक्स स्टेच्यू का गुरुवार
को अनावरण हुआ।
Named Entities: ‘लंदन ’: GPE, ‘Madame
Tussauds’ : LOCATION, ‘Deepika
Padukone’: PERSON, ‘गुरुवार ’: DATE.

987

B.2 Computation Requirement and Budget 988

The experiments were conducted using API- 989

based access to state-of-the-art Large Lan- 990

guage Models (LLMs), including gpt-4o, Com- 991

mand R+ (command-a-03-2025) by Cohere, and 992

claude-3.5-sonnet. The estimated monthly 993

costs for API usage were approximately $200 for 994

Claude-3.5-sonnet, $150 for Cohere, and $50 995

for gpt-4o, resulting in a total estimated cost of 996

$400 per month. 997

998
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Category Example Text

Incomplete variant ), floppy disk, hard disk drive, magnetic stripe card, relational database, SQL
जीता (DRAM) (Dynamic Random-Access Memory) था

Ambiguous script Menu<br/>प्रोग्रािंम͆ग भाषा .jpg|thumb]] ===++ Image शािमल /
[[:en:Giridhar Lal Aggarwal Freedom Fighter | Giridhar Lal Aggar-
wal]] == |

Cross-article concatenation [[िचत्र:िगिरधर लाल अग्रवाल [.....] 08/10/2020 Satyam KushwahLeave a

Comment on श्री िगिरधर लाल अग्रवाल |

Mixed-script variant @Strawberigloz he barobar naahi aahe, aaplich manasa aaplyala paathi sodtat.
Aaplya itithasacha garva asla pahije.

Table 7: Examples of noisy text instances in the dataset containing mixed content and transitions. Takeaway: These
noisy text instances in the dataset reflect challenges in code-mixed annotation, require careful preprocessing.

Response Flaw Type Example Behavior or Observation

Script and entity Misidentifica-
tion

Words like, लंदन are borrowed English terms in Devanagari but
are incorrectly tagged as Hindi by most models. such as tagging
Union Home Minister as an ORGANISATION.

Sentence Truncation Long-form code-mixed inputs lead to abrupt endings or incom-
plete generations (e.g., output stops mid-sentence despite ample
context).

Repetitive Generation Models like gemini-1.5-flash and mistral-instruct fre-
quently exhibit repetitive generation patterns. For instance, they
may produce outputs such as: “The second tagging is more
accurate as it identifies ‘this’ as a determiner and ‘last’ as a
quantity. repeating similar explanations or sentence fragments
within the same response.

Subjective Additions Instead of remaining factual, models add speculative commen-
tary (e.g., “en: The given text is in English. The hashtag
"#MadeByGoogle" is also in English. ‘E’ (English).”).

Prompt Mimicry gpt-4o and command-r-plus mirror example formats from the
prompt, failing to adapt to new inputs and instead mimicking
example structure. Based on the given text, it is written in the
Hindi language. Therefore, the matrix language label for this
sentence is ‘h’.

High-variance Failure Inputs with abrupt transitions, broken grammar, or inconsistent
scripts result in empty, irrelevant, or default responses. Example:
lakhanOo: dr. apj abdul kalam bhArat kA 11veN rAShTrapati
thE karoDhON bhAratiyON ke lIyE prEraNAdhA kA strOt thE,
dR. apj abdul kalam
’, NA

Hallucination Some models fabricate non-existent locations or attributes (e.g.,
inventing MATCH, QUANTITY, or BUILDING categories not
present in the input).

Table 8: Observed limitations across LLMs while processing noisy, code-mixed text. Takeaway: Failures are
diverse - ranging from linguistic issues to structural hallucinations and prompt sensitivity - highlighting the need for
integrated data-centric training strategies that can effectively handle linguistic and structural complexities.
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