

000 001 002 003 POSITIONAL ENCODING FIELD 004 005 006 007

008 **Anonymous authors**
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Diffusion Transformers (DiTs) have emerged as the dominant architecture for visual generation, powering state-of-the-art image and video models. By representing images as patch tokens with positional encodings (PEs), DiTs combine Transformer scalability with spatial and temporal inductive biases. In this work, we revisit how DiTs organize visual content and discover that patch tokens exhibit a surprising degree of independence: even when PEs are perturbed, DiTs still produce globally coherent outputs, indicating that spatial coherence is primarily governed by PEs. Motivated by this finding, we introduce the Positional Encoding Field (PE-Field), which extends positional encodings from the 2D plane to a structured 3D field. PE-Field incorporates depth-aware encodings for volumetric reasoning and hierarchical encodings for fine-grained sub-patch control, enabling DiTs to model geometry directly in 3D space. Our PE-Field-augmented DiT achieves state-of-the-art performance on single-image novel view synthesis and generalizes to controllable spatial image editing.

1 INTRODUCTION

Diffusion Transformers (DiTs) (Peebles & Xie, 2023) have rapidly emerged as the dominant architecture in visual generation, forming the backbone of recent state-of-the-art image and video models such as Flux.1 Kontext (Labs et al., 2025), Qwen-Image (Wu et al., 2025a), CogVideo (Yang et al., 2024), and Wan (Wan et al., 2025). By encoding images into sequences of patch tokens and applying 2D positional encodings (PEs) (Vaswani et al., 2017), DiTs leverage the scalability of Transformers while preserving the spatial inductive biases necessary for visual synthesis. This design has enabled remarkable progress, supporting high-fidelity image generation and temporally coherent video synthesis (where additional temporal PEs are employed).

Despite their empirical success, the internal mechanisms by which DiTs organize and compose visual content remain relatively underexplored. In this work, we begin with a simple yet striking observation: patch tokens in DiTs exhibit a surprising degree of independence. When positional encodings are reassigned, the model still produces globally coherent output, though with patches reorganized according to the altered PEs. This suggests that spatial coherence in DiTs is primarily enforced by positional encodings rather than by explicit token-to-token dependencies and that manipulating PEs alone can induce structured reconfiguration of spatial content. This property offers a new avenue for spatially controllable generation, where images can be reorganized according to PEs transformation without modifying the token content itself.

Building on this insight, we focus on single-image novel view synthesis (NVS) and extend the positional encodings of DiTs beyond the 2D image plane into a structured 3D field, which we term the Positional Encoding Field (PE-Field). The PE-Field introduces two key innovations: First, we extend standard 2D RoPE (Su et al., 2024) to a 3D depth-aware encoding, embedding tokens in a volumetric field that supports reasoning across viewpoints. Second, we design a hierarchical scheme that subdivides tokens into finer sub-patch levels, allowing different sub-vectors to capture spatial information at varying granularities. Together, these designs transform DiTs into a geometry-aware generative framework that reasons directly in a 3D positional encoding field. As a result, our approach achieves state-of-the-art results in novel view synthesis (NVS) from a single image, and naturally generalizes to spatial editing tasks, where manipulating the PE-Field enables structured control of image content at both global and local levels.

Our contributions are as follows: 1) We show that DiTs can reorganize image content purely through positional encodings, revealing a previously underexplored property that enables structured spatial

054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 editing. **2)** We introduce a depth-augmented positional encoding field that embeds tokens into a 3D space, enabling volumetric reasoning and geometric consistency. **3)** We extend DiTs with multi-level positional encodings, allowing fine-grained spatial control at sub-patch granularity. **4)** Our PE-Field-augmented DiT achieves state-of-the-art results on novel view synthesis (NVS) from a single image, and further generalizes to spatial image editing tasks.

2 RELATED WORKS

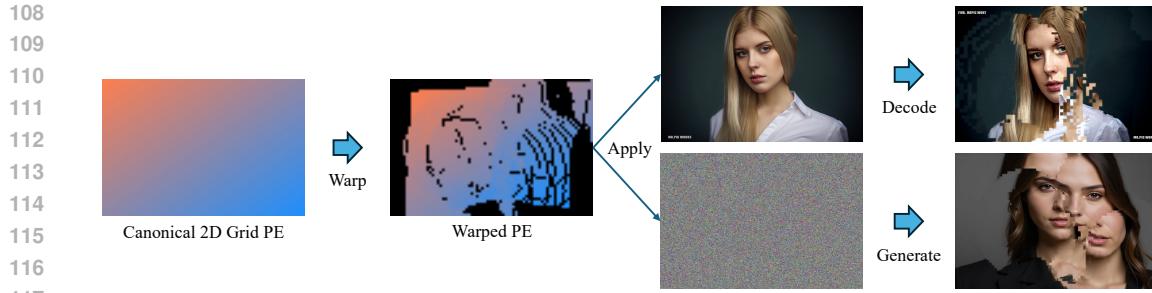
2.1 NOVEL VIEW SYNTHESIS

Novel view synthesis (NVS) is a widely studied and discussed problem which can be broadly divided into two categories: methods based on multiple input images and those based on a single input image. In this work, we focus on the latter. The simplest approach is to directly use a feed-forward model (Hong et al., 2024; Jin et al., 2025) to generate novel views from an input image. Such methods typically rely on learning intermediate, general 3D representations from data. For example, early works adopt multi-plane representations (Zhou et al., 2018; Han et al., 2022; Tucker & Snavely, 2020), PixelNeRF (Yu et al., 2021) employs NeRF (Mildenhall et al., 2020) as the 3D representation, LRM (Hong et al., 2024) uses tri-plane representations, and 3D-GS (Kerbl et al., 2023) has also been adopted by methods such as PixelSplat (Charatan et al., 2024). Other methods (Wiles et al., 2020; Rombach et al., 2021; Rockwell et al., 2021; Park et al., 2024) incorporate additional results from monocular reconstruction to provide an explicit geometric structure, where warping into the target view is used which is then followed by inpainting to synthesize novel views.

Recently, with the breakthrough of diffusion-based generative models, an increasing number of works have investigated the use of diffusion models for NVS, including GeNVS (Chan et al., 2023), Zero-1-to-3 (Liu et al., 2023), ZeroNVS (Sargent et al., 2024), and CAT3D (Gao et al., 2024; Wu et al., 2025b). However, directly encoding camera pose conditions as text embeddings makes it difficult to precisely control viewpoint changes. Reconfusion (Wu et al., 2024) uses PixelNeRF (Yu et al., 2021) features as diffusion conditions, but consistency across views cannot be guaranteed. The paradigm of monocular reconstruction followed by warping and inpainting has also been adopted in diffusion-based methods (Zhang et al., 2024; Chung et al., 2023; Shriram et al., 2024; Yu et al., 2024; Cao et al., 2025), where diffusion is used for the inpainting stage. However, reprojection errors in the warped image may disrupt the semantics of the source image and are difficult to correct during inpainting. To address this issue, GenWarp (Seo et al., 2024) proposes to use warped 2D coordinates as input instead of directly warping the image, and this idea has been extended to videos in later work (Seo et al., 2025). However, since view transformation inherently occurs in 3D space, relying solely on 2D coordinates remains ambiguous, and these methods require training additional branches to handle coordinate input. Many video-based models (Sun et al., 2024; Huang et al., 2025; Chen et al., 2025; Ren et al., 2025; Zhang et al., 2025; Song et al., 2025; Liang et al., 2025) incorporate camera control to achieve NVS, but when only the target view is required, generating intermediate frames is unnecessary. CausNVS (Kong et al., 2025) also explores an autoregressive approach for novel view synthesis.

2.2 DiTs FOR IMAGE GENERATION AND EDITING

Diffusion Transformers (DiTs) were first introduced by (Peebles & Xie, 2023), who replaced the commonly used U-Net backbone in diffusion models (Rombach et al., 2022) with a pure Transformer architecture. This design leveraged the scalability and flexibility of Transformers while retaining the generative power of diffusion, and has since become the foundation of many state-of-the-art image and video generation models. Building on DiT, subsequent works such as Stable Diffusion 3 (SD3) (Esser et al., 2024), Flux.1 Kontext (Labs et al., 2025), Qwen-Image (Wu et al., 2025a), CogVideo (Yang et al., 2024), and Wan (Wan et al., 2025) have established DiT as the main backbone for large-scale generative modeling. Owing to its flexible architecture, DiT can be naturally extended by incorporating the tokens of a context image directly into the input sequence, enabling end-to-end image editing within the same generative framework. This simple yet effective strategy has been widely adopted in current mainstream editing models (Labs et al., 2025; Wu et al., 2025a), demonstrating the versatility of DiTs for controllable generation tasks. In contrast, we propose equipping DiTs with a 3D-aware hierarchical positional encoding field, enabling controllable and geometry-aware generation and editing solely through transformations on positional encodings.



118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Figure 1: Illustration of DiT patch-level independence. When positional encodings (PEs) of image tokens or noise tokens are reassigned, the decoded or generated outputs still produce semantically meaningful images. The resulting structures follow the positional encoding reassignment, while boundaries between patches remain visually distinct.

Figure 2: Illustration of our direct novel view synthesis (NVS) Results. We apply 2D positional encodings (PEs) derived from 3D reconstruction and view transformation directly to the source-view image tokens. Using these modified tokens as image conditions in DiT enables direct generation of a relatively accurate novel-view image.

3 METHOD

3.1 TOKEN MANIPULATION FOR VIEW SYNTHESIS

Patch-level independence in DiT-based generative models. DiT-based architectures model image generation by patchifying the input and representing each patch as a token with a 2D positional encoding (PE). While tokens collectively reconstruct the image, we find that each token mainly encodes its local patch and retains a degree of independence. As shown in Figure 1 (Top), reassigning tokens’ PEs leads to images reorganized according to the new layout, with clear patch boundaries indicating independent decoding. This independence also appears during denoising: as shown in Figure 1 (Bottom), reassigning PEs of noise tokens still yields globally coherent results (e.g., a face) but with block-wise discontinuities aligned with the modified positions. These findings suggest that global coherence is largely enforced by PEs, enabling the possibility of spatial editing by manipulating token positions through their PEs without altering token content.

Towards novel view synthesis via token manipulation. In this work, we mainly want to leverage these findings to address novel view synthesis (NVS) problem from a single image. A straightforward solution is to perform single-view 3D reconstruction followed by view transformation and inpainting, but this pipeline is often prone to errors (Seo et al., 2024). Instead, we directly manipulate DiT’s image token positions: conditioned on the source reconstruction and target camera pose, we reassign positional encodings so that tokens migrate to their new projected locations. This allows recomposing image content under novel viewpoints within the DiT generative process, avoiding errors from direct image-space warping. As shown in Figure 2, this approach demonstrates a partial but effective ability to perform NVS, but artifacts remain due to: (1) resolution mismatch—positional grids from patch tokens (e.g., 16×16 pixels) are coarser than dense 3D reconstructions, limiting alignment precision. The manipulation can only rearrange image content at the patch level, but it cannot alter the content within each patch. and (2) depth ambiguity—multiple 3D points may project to the same token location. Without explicit mechanisms to disambiguate depth, generated tokens

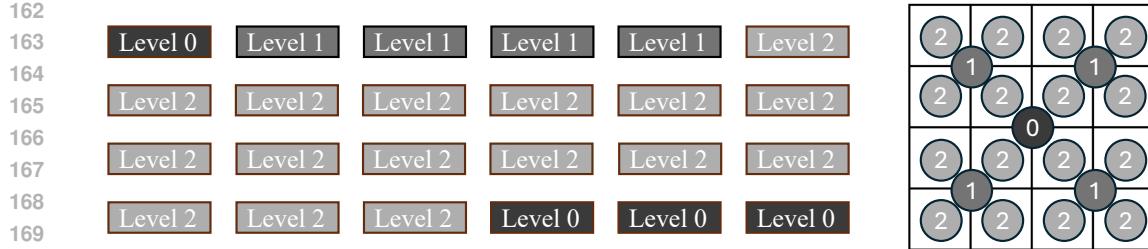


Figure 3: Illustration of hierarchical RoPE allocation in Flux (24 heads). Each rectangle on the left represents the subvector computed by one head, with colors indicating the RoPE level. Black denotes the original patch-level RoPE ($l = 0$), covers a 256 pixels patch. Level $l = 1$ corresponds to 64 pixels, and level $l = 2$ to 16 pixels. The square on the right represents a patch corresponding to one token, illustrating how different levels of positional encodings map to their respective 2D spatial locations, where $l = 2$ corresponds to a 1/16-sized patch.

can collapse into inconsistent local structures. To adapt DiTs for NVS through positional encoding transformations, we introduce two key modifications to the existing PE design, extending it into a structured 3D field representation.

3.2 MULTI-LEVEL POSITIONAL ENCODINGS FOR SUB-PATCH DETAIL MODELING

In the current DiT architecture, each image patch is represented as a single token, i.e., a one-dimensional vector $\mathbf{x}_i \in \mathbb{R}^d$, which is fed into the transformer for computation. Within the transformer, multi-head self-attention (MHA) is applied by projecting \mathbf{x}_i into multiple subspaces (heads), $h \in \{1, \dots, H\}$ with per-head dimension d_h (typically $d_h = d/H$) enabling the model to capture diverse relationships across tokens. Current mainstream DiT models, such as Flux and SD3, first obtain queries, keys, and values by linear projections of the hidden states: $Q = XW_Q, K = XW_K, V = XW_V, X \in \mathbb{R}^{B \times T \times d}$. The results are then reshaped into H heads with per-head dimension $d_h = d/H$: $Q, K, V \in \mathbb{R}^{B \times T \times d} \rightarrow \mathbb{R}^{B \times H \times T \times d_h}$. For each head, attention is computed as $\text{head}^{(h)} = \text{softmax}\left(\frac{Q^{(h)}K^{(h)\top}}{\sqrt{d_h}}\right)V^{(h)}$. Finally, the outputs of all heads are concatenated and projected back to dimension d . However, all heads share the same positional encodings (specifically RoPEs (Su et al., 2024)), which are tied to patch-level locations. Thus, although each token is divided across multiple heads for modeling, it still encodes the holistic content of an entire patch, without explicitly capturing finer-grained details within the patch.

We argue that this design limits the transformer’s ability to capture sub-patch structures that are crucial for tasks involving fine spatial transformations, such as novel view synthesis. Our goal is not to discard the different correspondences already learned by different heads at the patch level, but rather to enrich them with intra-patch detail modeling. To this end, we build directly on the head-splitting structure of MHA, augmenting it with multi-level hierarchical positional encodings so that each head’s subspace captures not only patch-level information but also finer-grained details, while remaining highly compatible with the original architecture since the finer-level PEs differ little from the original ones.

Concretely, we retain a subset of heads that use the original patch-level RoPE ($l_h = 0$) to preserve the pretrained global structure, while other heads adopt finer-grained RoPEs derived from higher resolution grids (see Figure 3). At level $l_h = 0$, each positional encoding corresponds to the original patch-level RoPE (e.g., one token covers 16×16 pixels). When moving to higher levels, the positional grid resolution is increased: each step doubles the resolution along both axes, so the effective cell size shrinks by a factor of 2 per axis (i.e., by 4 in area). Let $\{\text{RoPE}^{(l_h)}\}_{l_h=0}^{M-1}$ denote the hierarchy of positional encodings, where larger l_h corresponds to higher spatial resolution (doubling per axis per level). Queries and keys in head h are rotated by the level-specific RoPE: $\mathbf{Q}_h = \text{RoPE}^{(l_h)}(Q^{(h)}), \mathbf{K}_h = \text{RoPE}^{(l_h)}(K^{(h)})$. We automatically choose the number of levels M from the total number of heads H in the pretrained architecture:

216
217
218

$$M = \lfloor \log_4(3H + 1) \rfloor, \quad W = \frac{4^M - 1}{3},$$

219 where W is the cumulative geometric series $1 + 4 + \dots + 4^{M-1}$, which represents the total number
220 of hierarchical heads that can be accommodated under the current architecture. Each head index
221 $h \in \{1, \dots, H\}$ maps directly to a level via the rule that exactly matches the geometric quotas
222 $1:4:16:\dots$ whose total sums to W , and falls back to the original RoPE ($l = 0$) for surplus heads:
223

$$224 \quad l_h = \begin{cases} \lceil \log_4(3h + 1) \rceil - 1, & h \leq W, \\ 225 \quad 0, & h > W, \end{cases} \quad \text{clipped to } [0, M - 1].$$

226 Any heads beyond the geometric budget W default to $l = 0$ to minimize disruption of pretrained
227 patch-level priors. Taking Flux as an example, we divide each sub-vector into three levels: In Flux,
228 there are 24 heads in total. The first head corresponds to $l = 0$, i.e., the original patch-level RoPE.
229 Heads 2–5 are assigned to $l = 1$, and heads 6–21 to $l = 2$. The remaining heads 22–24 cannot be
230 allocated under this scheme and are therefore reassigned back to $l = 0$. As illustrated in Figure 3,
231 different colors indicate different PE levels. The coarsest level corresponds to a 16×16 -pixel patch,
232 while the finest level corresponds to a 4×4 -pixel patch. This hierarchical design enables flexible
233 spatial transformations: direct manipulations of sub-patch RoPE yield local geometric adjustments
234 in the reconstruction while preserving pretrained patch-level correspondences.
235

236
237

3.3 DEPTH-AWARE ROTARY POSITIONAL ENCODING

238

In standard 2D RoPE, the horizontal (x) and vertical (y) coordinates are encoded independently.
239 Each axis is assigned a dedicated subspace of the embedding vector, within which a 1D RoPE is
240 applied. Concretely, the token vector is partitioned into two segments, one modulated by the RoPE
241 corresponding to the horizontal coordinate x and the other by the RoPE for the vertical coordinate y .
242 This factorized scheme ensures that the dot product of two rotated queries and keys encodes relative
243 displacements along both axes, while keeping the rotations invertible and dimensionally consistent.
244

245
246
247
248
249
250

To allow DiT to leverage positional encodings for reasoning about depth relationships between to-
251 kens that overlap in the 2D projection, following the above principle, we extend RoPE to include
252 a third spatial axis for depth, which refers to the distance of each pixel’s corresponding 3D point
253 from the camera along the optical axis (that is, its z coordinate in the camera coordinate system). In
254 addition to the subspaces for (x, y) , we introduce another subspace for the depth z . Each coordinate
255 (x, y, z) thus has its own 1D RoPE encoding, applied to a disjoint part of the embedding vector:
256

257

$$\mathbf{Q}^{(h)} = [\text{RoPE}_x^{(l_h)}(\mathbf{Q}_x^{(h)}), \text{RoPE}_y^{(l_h)}(\mathbf{Q}_y^{(h)}), \text{RoPE}_z^{(l_h)}(\mathbf{Q}_z^{(h)})],$$

$$\mathbf{K}^{(h)} = [\text{RoPE}_x^{(l_h)}(\mathbf{K}_x^{(h)}), \text{RoPE}_y^{(l_h)}(\mathbf{K}_y^{(h)}), \text{RoPE}_z^{(l_h)}(\mathbf{K}_z^{(h)})],$$

258

259 where $\mathbf{Q}_x^{(h)}$, $\mathbf{Q}_y^{(h)}$, $\mathbf{Q}_z^{(h)}$ (and $\mathbf{K}_x^{(h)}$, $\mathbf{K}_y^{(h)}$, $\mathbf{K}_z^{(h)}$) denote the corresponding vector segments allocated
260 to each axis. This extension yields a 3D spatial RoPE that encodes relative offsets not only in the
261 image plane but also along the depth axis, enabling the Transformer to model volumetric correspon-
262 dences and maintain geometric consistency across viewpoints.
263

264

3.4 OVERALL ARCHITECTURE AND TRAINING OBJECTIVE

265
266
267
268
269

270 These two components together form a new 3D field-based positional encoding, which we apply
271 to the DiT architecture to jointly process noise tokens and source-view image tokens, resulting in
272 our NVS-DiT model. As illustrated in Figure 4, noise tokens are placed on a regular 2D grid with
273 depth initialized to zero, while source-view image tokens are projected into the target camera view
274 via monocular reconstruction and view transformation. Each image token is assigned a hierarchical
275 3D positional encoding (x, y, z) that captures its detailed target spatial location and depth. Tokens
276 projected outside the valid grid are discarded, and empty positions are filled with noise tokens,
277 which are progressively refined by the transformer to generate geometrically consistent content.
278 This design enables the model to integrate observed image evidence with generative completion,
279 achieving novel view synthesis within the DiT framework.
280

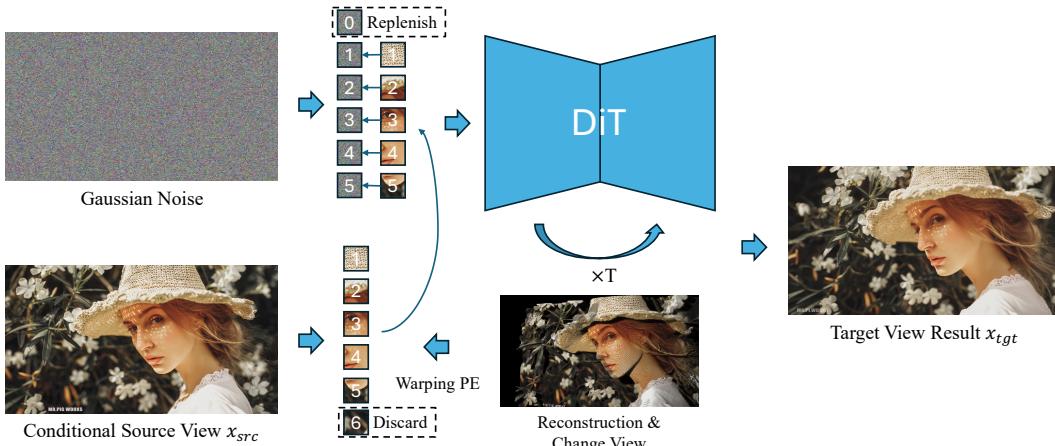


Figure 4: The transformer takes both noise tokens and source-view image tokens. Noise tokens are placed on a 2D grid with depth set to zero, while image tokens are assigned hierarchical PEs according to their projected positions from monocular reconstruction and view transformation, with depth values taken from the reconstruction. Tokens projected outside the grid (e.g., index 6) are discarded, and empty grid locations without image tokens (e.g., index 0) are filled by noise, which is refined to generate plausible content.

To train the model, we leverage multi-view supervision under a rectified-flow (Liu et al., 2022) objective. Specifically, we adopt the rectified flow-matching loss:

$$\mathcal{L}_\theta = \mathbb{E}_{t \sim p(t), x_{tgt}, x_{src}^{trans-PE}} \left[\|v_\theta(z_t, t, x_{src}^{trans-PE}) - (\varepsilon - x_{tgt})\|_2^2 \right],$$

where $x_{src}^{trans-PE}$ and x_{tgt} denote the image tokens of the source view with transformed PEs and the target view, respectively, obtained by the corresponding DiT's VAE encoder. z_t is the linearly interpolated latent between clean latent x_{tgt} and Gaussian noise $\varepsilon \sim \mathcal{N}(0, 1)$, defined as $z_t = (1 - t)x_{tgt} + t\varepsilon$.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Our model is built on Flux.1 Kontext (Labs et al., 2025), which generates images conditioned jointly on a text prompt and a reference image. This architecture naturally aligns with our design, as it already integrates reference-image tokens, providing a seamless foundation for incorporating our PE-Field framework. We remove its text input and condition solely on the reference image. To train our NVS model, we use two multi-view datasets, DL3DV (Ling et al., 2024) and MannequinChallenge (Li et al., 2020), both processed with VGGT (Wang et al., 2025) to obtain per-image depth maps and corresponding camera poses. Additional details are provided in the **Appendix**.

4.2 COMPARISONS WITH RELEVANT METHODS

We mainly compare our approach with several baseline methods (listed in Table 1) in the single-image novel view synthesis setting. Experiments are conducted on three datasets, Tanks-and-Temples (Knapitsch et al., 2017), RE10K (Zhou et al., 2018), and DL3DV (Ling et al., 2024). In each case, a single input image is provided, and subsequent frames are generated under different target viewpoints. For methods that require depth or point cloud as conditional input, we uniformly use the predictions obtained from VGGT as input. We then calculated three metrics, PSNR, SSIM (Wang et al., 2004), and LPIPS (Zhang et al., 2018), and reported the average scores for all test samples in Table 1. Our method outperforms existing approaches across all metrics on all three datasets. Qualitative comparison with a subset of representative methods is presented in Figure 5.

345 Figure 5: Visualization of novel view synthesis results where the source image (left) is rotated 30° to
346 the right. Compared with other methods, our approach achieves accurate viewpoint transformation
347 while preserving consistency with the source image and avoiding noticeable artifacts.

357 Figure 6: Comparison with prompt-based image editing methods. Our approach enables accurate
358 control of rotation angles while maintaining consistency with the input image.
359

360
361 We observe that GEN3C often propagates reconstruction artifacts into the final results, leading to
362 noticeable white streaks and irregular boundaries. NVS-Solver and ViewCrafter tend to introduce
363 depth-warping errors, which negatively affect the geometric accuracy of the synthesized novel views.
364 GenWarp produces unsatisfactory results due to the absence of depth information in its coordinate
365 representation and the misalignment between its coordinate system and the input image. Due to
366 space limitations, **more qualitative comparisons are provided in the Appendix**. It is worth noting
367 that, unlike many video-based models listed here, our approach does not require generating inter-
368 mediate frames between viewpoints, making it over an order of magnitude faster than video-based
369 method to generate target view while still producing geometrically consistent results.

370 Beyond pose-conditioned approaches, recent image editing models such as Flux.1 Kontext (Labs
371 et al., 2025) and Qwen-Image-Edit (Wu et al., 2025a) also demonstrate strong capabilities in view-
372 point manipulation. We further compare our method with these prompt-based editing results, as il-
373 lustrated in Figure 6. Flux is generally insensitive to prompts specifying spatial viewpoint changes,
374 often producing only minor viewpoint variations while introducing noticeable artifacts. Qwen, on
375 the other hand, achieves more pronounced spatial editing effects than Flux, but tends to alter the
376 original image tokens. As shown in the rightmost example of Figure 6, the result appears overly
377 smoothed and even alters the person’s identity. Overall, it remains very challenging to precisely
378 control viewpoint changes through prompts. More comparisons can be found in the **Appendix**.

Method	Tanks-and-Temples			RE10K			DL3DV		
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
ZeroNVS (Sargent et al., 2024)	13.14	0.327	0.516	15.23	0.540	0.386	14.17	0.441	0.481
CameraCtrl (He et al., 2024)	15.34	0.534	0.331	17.74	0.681	0.278	16.31	0.552	0.352
GenWarp (Seo et al., 2024)	16.45	0.513	0.377	15.30	0.538	0.371	15.81	0.531	0.382
NVS-Solver (You et al., 2024)	16.73	0.521	0.323	17.00	0.673	0.314	16.86	0.543	0.341
ViewCrafter (Yu et al., 2024)	17.18	0.589	0.346	17.75	0.681	0.315	17.24	0.571	0.329
DimensionX (Sun et al., 2024)	17.78	0.635	0.228	18.21	0.717	0.307	18.22	0.653	0.201
SEVA (Zhou et al., 2025)	17.61	0.621	0.235	17.58	0.688	0.334	18.01	0.638	0.214
MVGenMaster (Cao et al., 2025)	18.03	0.622	0.253	17.87	0.701	0.321	17.71	0.586	0.277
See3D (Ma et al., 2025)	18.35	0.641	0.244	18.24	0.735	0.293	18.41	0.631	0.215
Voyager (Huang et al., 2025)	18.61	0.669	0.238	18.56	0.723	0.264	18.84	0.636	0.227
FlexWorld (Chen et al., 2025)	18.91	0.675	0.236	18.03	0.691	0.282	18.67	0.645	0.218
GEN3C (Ren et al., 2025)	19.18	0.681	0.207	20.64	0.754	0.229	19.14	0.658	0.198
Original PE	20.03	0.683	0.221	20.17	0.752	0.233	19.92	0.667	0.201
w/o Depth	20.63	0.692	0.217	20.33	0.767	0.227	20.46	0.695	0.194
w/o Multi-Level	21.97	0.718	0.180	21.42	0.809	0.168	21.91	0.733	0.162
Ours	22.12	0.732	0.174	21.65	0.816	0.162	22.23	0.742	0.154

Table 1: Quantitative comparison of different methods on Tanks-and-Temples, RE10K, and DL3DV datasets. We report the average PSNR, SSIM, and LPIPS scores for novel view synthesis from a single input image.

Figure 7: Ablation studies. Removing the detailed positional encoding or depth leads to different types of degradation in the generated results.

4.3 ABLATION STUDIES

We mainly analyze the effect of removing our two key components: the hierarchical detailed positional encodings and the additional depth-aware extension. The quantitative impact of removing each component can be observed in Table 1, while Figure 7 provides two illustrative cases. As shown in the top example of Figure 7, when the multi-level positional encoding (particularly the detailed level) is removed, undesirable distortions appear due to the mismatch between patch-level positional encodings and the reconstruction. When depth information is removed (see bottom example in Figure 7), the generated images suffer from severe spatial misalignment.

When applying our method to generate results under large viewpoint changes, the model is required to directly generate a substantial amount of unseen content, which increases the generation burden and may compromise consistency with the source image. To mitigate this issue, we decompose the transformation into multiple steps, in which the model only needs to complete a small portion of the missing content in each step. As shown in Figure 8, we divide the transformation of the target viewpoint into five steps. After each step, the newly generated content is fused back into the image tokens of the original viewpoint, and the fused tokens (or point cloud) are then transformed to the next intermediate viewpoint for subsequent generation. Compared to directly transforming to the target viewpoint in one step (rightmost result in Figure 8), this progressive strategy produces results that are more consistent with the source view. See **Appendix** for quantitative comparisons.

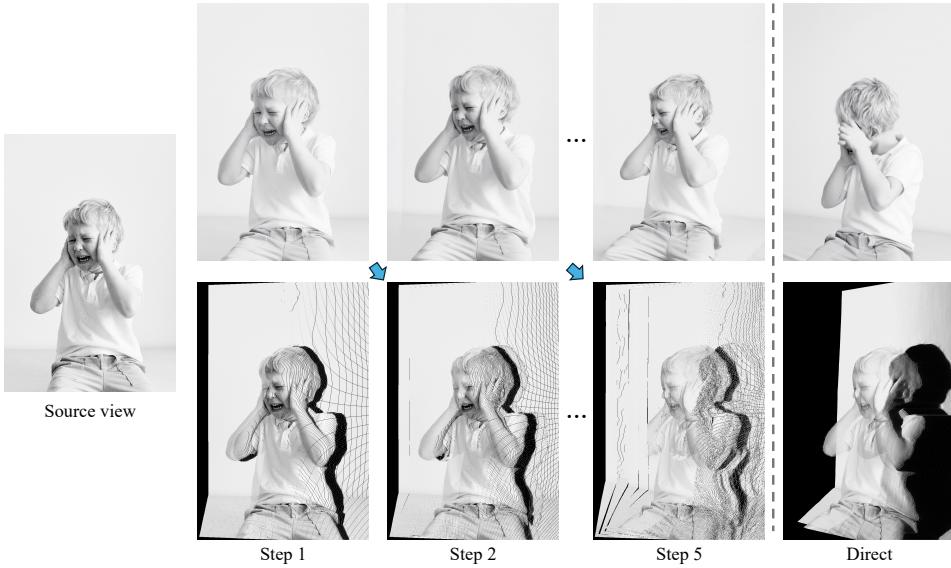


Figure 8: Multi-step generation. Left: input image. Top: generated results. Bottom: rotated point clouds. Right: direct one-step generation.

Figure 9: Applications. The left example shows object 3D editing, while the right example shows object removal, highlighting the versatility of our model in different spatial editing tasks.

4.4 OTHER APPLICATIONS

After training, our NVS model acquires the ability to reason over visual tokens in 3D space and generate consistent content. Consequently, it can naturally adapt to other tasks with similar spatial logic, even in the **absence of task-specific training**. As illustrated in Figure 9, in the left example we perform object-level 3D editing by isolating the point cloud of the book, rotating it to a new viewpoint, and recomposing it with the original background. In the right example, we achieve object removal by discarding the tokens corresponding to the masked human region and replenishing them with noise, resulting in a realistic removal effect. More results can be found in the **Appendix**.

5 CONCLUSIONS

In this work, we revisited the internal mechanisms of Diffusion Transformers and revealed that spatial coherence is largely governed by positional encodings rather than explicit token interactions. Building on this observation, we introduced the Positional Encoding Field (PE-Field), which extends standard 2D encodings into a 3D, depth-aware and hierarchical framework. This design equips DiTs with geometry-aware generative capabilities, achieving state-of-the-art results on single-image novel view synthesis while also enabling flexible and controllable spatial image editing. We hope our study sheds light on the overlooked role of positional encodings and inspires future research into more principled and spatially grounded generative architectures.

486 REFERENCES
487

488 Adel Ahmadyan, Liangkai Zhang, Artsiom Ablavatski, Jianing Wei, and Matthias Grundmann. Ob-
489 jectron: A large scale dataset of object-centric videos in the wild with pose annotations. In
490 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 7822–
491 7831, 2021.

492 Chenjie Cao, Chaohui Yu, Shang Liu, Fan Wang, Xiangyang Xue, and Yanwei Fu. Mvgenmas-
493 ter: Scaling multi-view generation from any image via 3d priors enhanced diffusion model. In
494 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 6045–6056, 2025.

495 Eric R Chan, Koki Nagano, Matthew A Chan, Alexander W Bergman, Jeong Joon Park, Axel Levy,
496 Miika Aittala, Shalini De Mello, Tero Karras, and Gordon Wetzstein. Generative novel view
497 synthesis with 3d-aware diffusion models. In *ICCV*, 2023.

498 David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d gaus-
499 sian splats from image pairs for scalable generalizable 3d reconstruction. In *CVPR*, 2024.

500 Luxi Chen, Zihan Zhou, Min Zhao, Yikai Wang, Ge Zhang, Wenhao Huang, Hao Sun, Ji-Rong Wen,
501 and Chongxuan Li. Flexworld: Progressively expanding 3d scenes for flexible-view synthesis.
502 *arXiv preprint arXiv:2503.13265*, 2025.

503 Jaeyoung Chung, Suyoung Lee, Hyeongjin Nam, Jaerin Lee, and Kyoung Mu Lee. Luciddreamer:
504 Domain-free generation of 3d gaussian splatting scenes. *arXiv preprint arXiv:2311.13384*, 2023.

505 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
506 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
507 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
508 2024.

509 Ruiqi Gao, Aleksander Holynski, Philipp Henzler, Arthur Brussee, Ricardo Martin-Brualla, Pratul
510 Srinivasan, Jonathan T Barron, and Ben Poole. Cat3d: Create anything in 3d with multi-view
511 diffusion models. *arXiv preprint arXiv:2405.10314*, 2024.

512 Yuxuan Han, Ruicheng Wang, and Jiaolong Yang. Single-view view synthesis in the wild with
513 learned adaptive multiplane images. In *SIGGRAPH Conference*, 2022.

514 Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan
515 Yang. Cameractrl: Enabling camera control for text-to-video generation. *arXiv preprint*
516 *arXiv:2404.02101*, 2024.

517 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
518 Gans trained by a two time-scale update rule converge to a local nash equilibrium. In *NeurIPS*,
519 2017.

520 Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu, Kalyan Sunkavalli,
521 Trung Bui, and Hao Tan. Lrm: Large reconstruction model for single image to 3d. In *ICLR*, 2024.

522 Tianyu Huang, Wangguandong Zheng, Tengfei Wang, Yuhao Liu, Zhenwei Wang, Junta Wu, Jie
523 Jiang, Hui Li, Rynson WH Lau, Wangmeng Zuo, et al. Voyager: Long-range and world-consistent
524 video diffusion for explorable 3d scene generation. *arXiv preprint arXiv:2506.04225*, 2025.

525 Haian Jin, Hanwen Jiang, Hao Tan, Kai Zhang, Sai Bi, Tianyuan Zhang, Fujun Luan, Noah
526 Snavely, and Zexiang Xu. Lvsm: A large view synthesis model with minimal 3d inductive
527 bias. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
528 <https://openreview.net/forum?id=QQBPWtvtn>.

529 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
530 ting for real-time radiance field rendering. *ACM TOG*, 2023.

531 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
532 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceed-
533 ings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.

540 Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
 541 large-scale scene reconstruction. *ACM Transactions on Graphics (ToG)*, 36(4):1–13, 2017.
 542

543 Xin Kong, Daniel Watson, Yannick Strümpler, Michael Niemeyer, and Federico Tombari. Caus-
 544 nvs: Autoregressive multi-view diffusion for flexible 3d novel view synthesis. *arXiv preprint*
 545 *arXiv:2509.06579*, 2025.

546 Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril
 547 Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, Sumith Kulal, Kyle Lacey,
 548 Yam Levi, Cheng Li, Dominik Lorenz, Jonas Müller, Dustin Podell, Robin Rombach, Harry Saini,
 549 Axel Sauer, and Luke Smith. Flux.1 kontext: Flow matching for in-context image generation and
 550 editing in latent space, 2025. URL <https://arxiv.org/abs/2506.15742>.

551 Zhengqi Li, Tali Dekel, Forrester Cole, Richard Tucker, Noah Snavely, Ce Liu, and William T
 552 Freeman. Mannequinchallenge: Learning the depths of moving people by watching frozen people.
 553 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43(12):4229–4241, 2020.
 554

555 Hanwen Liang, Junli Cao, Vudit Goel, Guocheng Qian, Sergei Korolev, Demetri Terzopoulos, Kon-
 556 stantinos N Plataniotis, Sergey Tulyakov, and Jian Ren. Wonderland: Navigating 3d scenes from
 557 a single image. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp.
 558 798–810, 2025.

559 Lu Ling, Yichen Sheng, Zhi Tu, Wentian Zhao, Cheng Xin, Kun Wan, Lantao Yu, Qianyu Guo,
 560 Zixun Yu, Yawen Lu, et al. Dl3dv-10k: A large-scale scene dataset for deep learning-based 3d
 561 vision. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 562 pp. 22160–22169, 2024.

563 Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
 564 Zero-1-to-3: Zero-shot one image to 3d object. In *ICCV*, 2023.
 565

566 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 567 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training
 568 for open-set object detection. In *European conference on computer vision*, pp. 38–55. Springer,
 569 2024.

570 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 571 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.
 572

573 Baorui Ma, Huachen Gao, Haoge Deng, Zhengxiong Luo, Tiejun Huang, Lulu Tang, and Xinlong
 574 Wang. You see it, you got it: Learning 3d creation on pose-free videos at scale. In *Proceedings*
 575 *of the Computer Vision and Pattern Recognition Conference*, pp. 2016–2029, 2025.

576 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
 577 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In *ECCV*, 2020.

578 Byeongjun Park, Hyojun Go, and Changick Kim. Bridging implicit and explicit geometric transfor-
 579 mation for single-image view synthesis. *IEEE TPAMI*, 2024.

580 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 581 *the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 4195–4205, October
 582 2023.

583 Pexels. Pexels — Free Stock Videos and Photos. <https://www.pexels.com/>.

584

585 Xuanchi Ren, Tianchang Shen, Jiahui Huang, Huan Ling, Yifan Lu, Merlin Nimier-David, Thomas
 586 Müller, Alexander Keller, Sanja Fidler, and Jun Gao. Gen3c: 3d-informed world-consistent video
 587 generation with precise camera control. In *Proceedings of the Computer Vision and Pattern*
 588 *Recognition Conference*, pp. 6121–6132, 2025.

589

590 Chris Rockwell, David F Fouhey, and Justin Johnson. Pixelsynth: Generating a 3d-consistent expe-
 591 rience from a single image. In *ICCV*, 2021.

592

593 Robin Rombach, Patrick Esser, and Björn Ommer. Geometry-free view synthesis: Transformers and
 no 3d priors. In *ICCV*, 2021.

594 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 595 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 596 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

597

598 Kyle Sargent, Zizhang Li, Tanmay Shah, Charles Herrmann, Hong-Xing Yu, Yunzhi Zhang,
 599 Eric Ryan Chan, Dmitry Lagun, Li Fei-Fei, Deqing Sun, and Jiajun Wu. ZeroNVS: Zero-shot
 600 360-degree view synthesis from a single real image. In *CVPR*, 2024.

601

602 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
 603 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
 604 open large-scale dataset for training next generation image-text models. *Advances in neural in-
 605 formation processing systems*, 35:25278–25294, 2022.

606

607 Junyoung Seo, Kazumi Fukuda, Takashi Shibuya, Takuya Narihira, Naoki Murata, Shoukang Hu,
 608 Chieh-Hsin Lai, Seungryong Kim, and Yuki Mitsufuji. Genwarp: Single image to novel views
 609 with semantic-preserving generative warping. *Advances in Neural Information Processing Sys-
 610 tems*, 37:80220–80243, 2024.

611

612 Junyoung Seo, Jisang Han, Jaewoo Jung, Siyoon Jin, Joungbin Lee, Takuya Narihira, Kazumi
 613 Fukuda, Takashi Shibuya, Donghoon Ahn, Shoukang Hu, et al. Vid-camedit: Video cam-
 614 era trajectory editing with generative rendering from estimated geometry. *arXiv preprint
 615 arXiv:2506.13697*, 2025.

616

617 Chenxi Song, Yanming Yang, Tong Zhao, Ruibo Li, and Chi Zhang. Worldforge: Unlocking
 618 emergent 3d/4d generation in video diffusion model via training-free guidance. *arXiv preprint
 619 arXiv:2509.15130*, 2025.

620

621 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
 622 hanced transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

623

624 Wenqiang Sun, Shuo Chen, Fangfu Liu, Zilong Chen, Yueqi Duan, Jun Zhang, and Yikai Wang.
 625 Dimensionx: Create any 3d and 4d scenes from a single image with controllable video diffusion.
 626 *arXiv preprint arXiv:2411.04928*, 2024.

627

628 Richard Tucker and Noah Snavely. Single-view view synthesis with multiplane images. In *CVPR*,
 629 2020.

630

631 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 632 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, 2017.

633

634 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 635 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
 636 models. *arXiv preprint arXiv:2503.20314*, 2025.

637

638 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 639 Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the Computer Vision
 640 and Pattern Recognition Conference*, pp. 5294–5306, 2025.

641

642 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 643 from error visibility to structural similarity. *IEEE TIP*, 13(4):600–612, 2004.

644

645 Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin Johnson. Synsin: End-to-end view
 646 synthesis from a single image. In *CVPR*, 2020.

647

648 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
 649 Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*,
 650 2025a.

651

652 Rundi Wu, Ben Mildenhall, Philipp Henzler, Keunhong Park, Ruiqi Gao, Daniel Watson, Pratul P
 653 Srinivasan, Dor Verbin, Jonathan T Barron, Ben Poole, et al. Reconfusion: 3d reconstruction with
 654 diffusion priors. In *CVPR*, 2024.

648 Rundi Wu, Ruiqi Gao, Ben Poole, Alex Trevithick, Changxi Zheng, Jonathan T Barron, and Alek-
 649 sander Holynski. Cat4d: Create anything in 4d with multi-view video diffusion models. In *Pro-
 650 ceedings of the Computer Vision and Pattern Recognition Conference*, pp. 26057–26068, 2025b.
 651

652 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 653 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 654 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.

655 Meng You, Zhiyu Zhu, Hui Liu, and Junhui Hou. Nvs-solver: Video diffusion model as zero-shot
 656 novel view synthesizer. *arXiv preprint arXiv:2405.15364*, 2024.
 657

658 Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from
 659 one or few images. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 660 Recognition*, pp. 4578–4587, 2021.

661 Wangbo Yu, Jinbo Xing, Li Yuan, Wenbo Hu, Xiaoyu Li, Zhipeng Huang, Xiangjun Gao, Tien-
 662 Tsin Wong, Ying Shan, and Yonghong Tian. Viewcrafter: Taming video diffusion models for
 663 high-fidelity novel view synthesis. *arXiv preprint arXiv:2409.02048*, 2024.
 664

665 Jingbo Zhang, Xiaoyu Li, Ziyu Wan, Can Wang, and Jing Liao. Text2nerf: Text-driven 3d scene
 666 generation with neural radiance fields. *IEEE TVCG*, 2024.

667 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 668 effectiveness of deep features as a perceptual metric. In *CVPR*, 2018.
 669

670 Songchun Zhang, Huiyao Xu, Sitong Guo, Zhongwei Xie, Hujun Bao, Weiwei Xu, and Changqing
 671 Zou. Spatialcrafter: Unleashing the imagination of video diffusion models for scene reconstruc-
 672 tion from limited observations. *arXiv preprint arXiv:2505.11992*, 2025.

673 Jensen Jinghao Zhou, Hang Gao, Vikram Voleti, Aaryaman Vasishta, Chun-Han Yao, Mark Boss,
 674 Philip Torr, Christian Rupprecht, and Varun Jampani. Stable virtual camera: Generative view
 675 synthesis with diffusion models. *arXiv preprint arXiv:2503.14489*, 2025.
 676

677 Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
 678 Learning view synthesis using multiplane images. *ACM TOG*, 2018.
 679

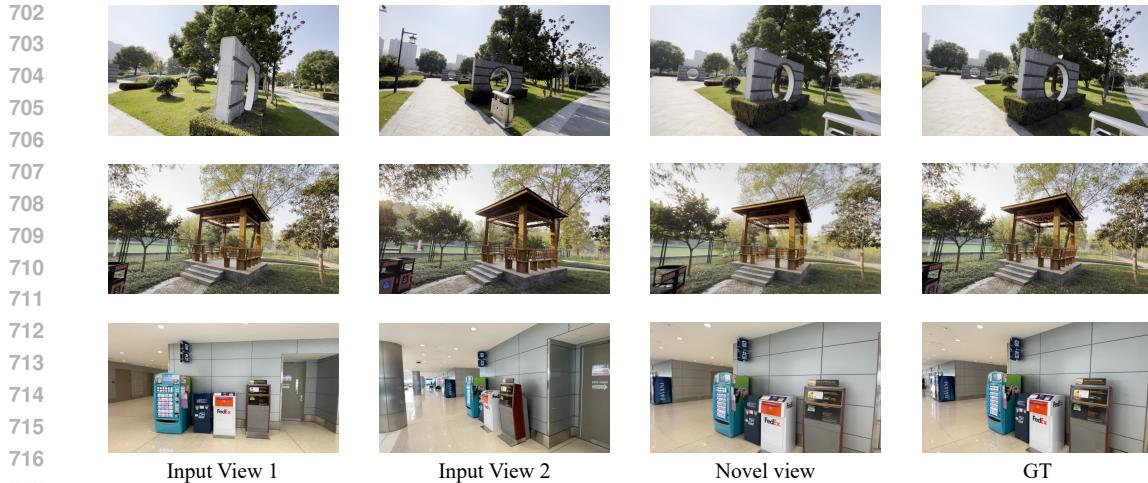
680

A APPENDIX

A.1 IMPLEMENTATION DETAILS

685 To better adapt the Flux transformer to our PE-Field design, we fine-tune all Flux transformer param-
 686 eters with a learning rate of 2×10^{-5} . All training images are resized to approximately 1024×1024 ,
 687 the default resolution supported by Flux. Experiments are conducted on 8 H100 GPUs with a batch
 688 size of 1 for about 15,000 training steps. Regarding the allocation of embedding dimensions across
 689 the three coordinate axes, Flux assigns a 128-dimensional vector to each head. We allocate 56 di-
 690 mensions to both the x and y axes, and 16 dimensions to the z axis. This design minimally modifies
 691 the original Flux structure, which also allocates 56 dimensions each for x and y , plus an additional
 692 16 binary dimensions to distinguish noise and reference-image tokens. For multi-level positional
 693 encodings, we obtain hierarchical features by bilinearly downsampling the original image grid by
 694 factors of 4, 8, and 16 along both axes. For the source-view image, the final positional encodings
 695 are constructed as follows: a point map is generated from VGGT-predicted depth and camera pa-
 696 rameters, transformed into the target viewpoint pointmap, and then directly downsampled to serve
 697 as the input positional encodings. Following previous work (Liang et al., 2025; Chen et al., 2025),
 698 we sample 100, 300, and 300 videos from T&T, RE10K, and DL3DV, respectively, for evaluation.

699 To enable object-level 3D editing (Figure 9), we first detect the target object using GroundingDINO
 700 (Liu et al., 2024) and obtain its mask with SAM (Kirillov et al., 2023). The mask is then used to
 701 extract the object’s point cloud. We perform viewpoint transformation within the object’s coordinate
 system and place the transformed object back into the corresponding location of the original point
 map. Finally, this warped point map is used as the positional encoding input.



718
 719 Figure 10: The results show how the depth and camera poses predicted by VGGT from the two
 720 left images are used to warp their image tokens into a shared intermediate target view, followed by
 721 synthesizing a novel view from these aligned tokens.
 722

723 A.2 ADDITIONAL QUALITATIVE RESULTS

724
 725 In this appendix, we provide additional qualitative comparisons and visualizations. Figures 16 to 41
 726 include comparisons between our approach and the baseline methods listed in Table 1. Figures 42
 727 to 47 present comparisons with recent prompt-based image editing models, Flux.1 Kontext and
 728 Qwen-Image-Edit. Figures 48 and 49 showcase our results on 3D-aware object editing, while Fig-
 729 ures 50 and 51 illustrate our method applied to object removal. The images in Figures 16 and 17 are
 730 sourced from the DL3DV dataset, Figures 48 and 49 are sourced from the Objectron dataset (Ah-
 731 madyan et al., 2021), while the remaining examples are collected from in-the-wild images, primarily
 732 originating from the (Pexels) website and the LAION (Schuhmann et al., 2022) dataset. Due to space
 733 limitations, some images here are compressed; **please refer to the supplementary material for the**
 734 **uncompressed versions.**

735 A.3 QUANTITATIVE COMPARISONS

736
 737 As discussed in the main text, gradually transforming to the target viewpoint through multiple steps
 738 can improve the quality of the generated results. Here we report the quantitative effects of varying
 739 the number of steps, as shown in Table 2. The results indicate that splitting the transformation into
 740 up to 5 steps consistently improves the metrics, while further increasing the number of steps yields
 741 only marginal gains.

742 To further demonstrate the effectiveness of our method, we additionally report Fréchet Inception
 743 Distance (FID) (Heusel et al., 2017) to assess the quality of the synthesized images, and Rotation
 744 error (R_{err}) and Translation error (T_{err}) to evaluate the accuracy of the novel-view poses. The
 745 computation of these metrics follows prior works (Liang et al., 2025; Chen et al., 2025; Yu et al.,
 746 2024), except that here the poses are directly estimated using VGGT. These results are shown in
 747 Table 3.

748
 749
 750
 751
 752
 753
 754
 755

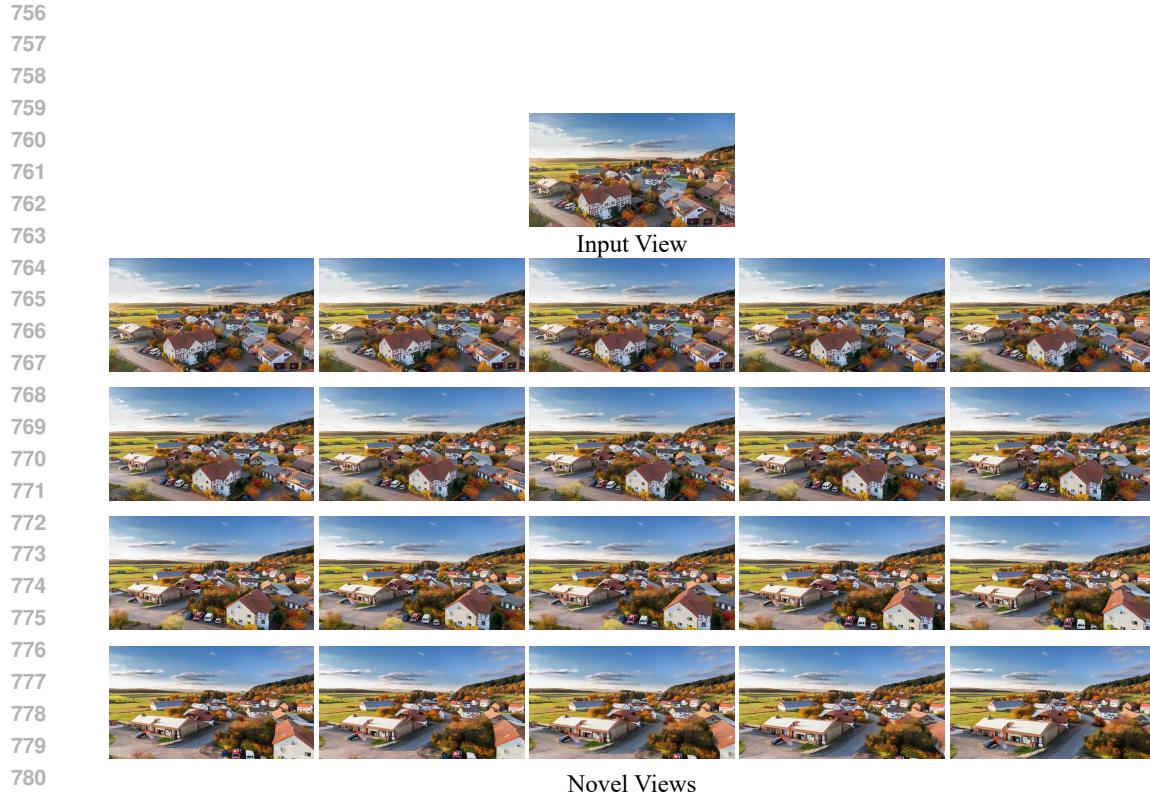


Figure 11: Visualization of a sequence of consecutive frames generated from a single input view.

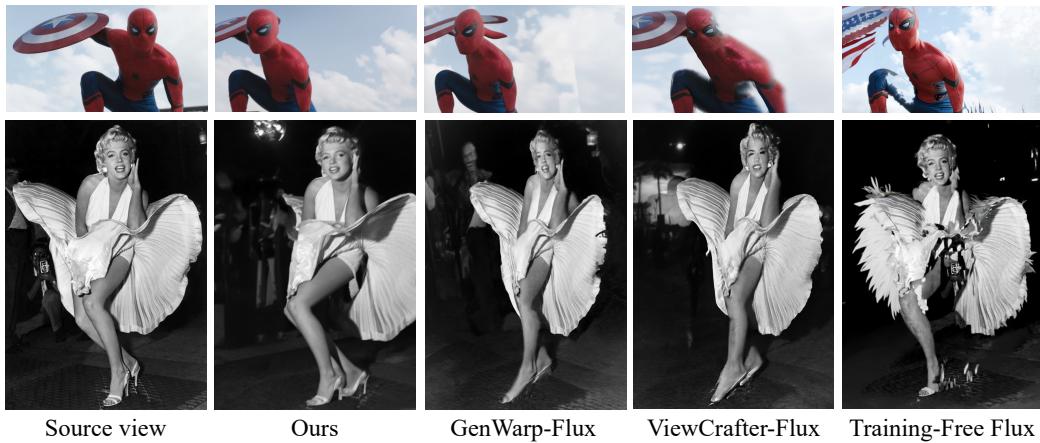


Figure 12: Comparison with several Flux-based baselines.

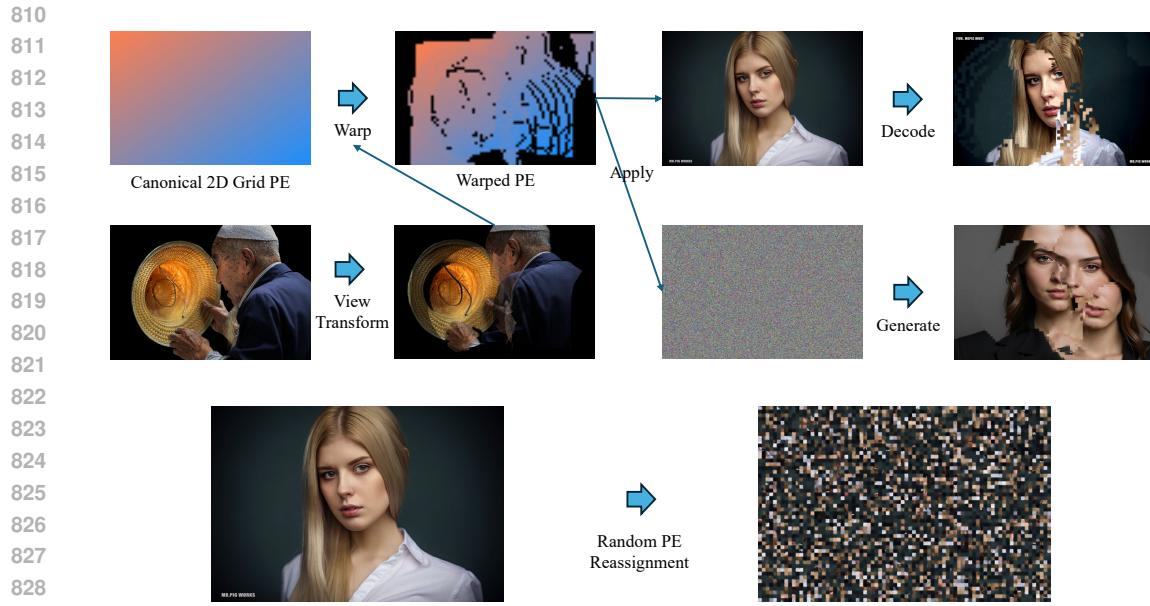


Figure 13: Interpretation of Figure 1 in the main paper.

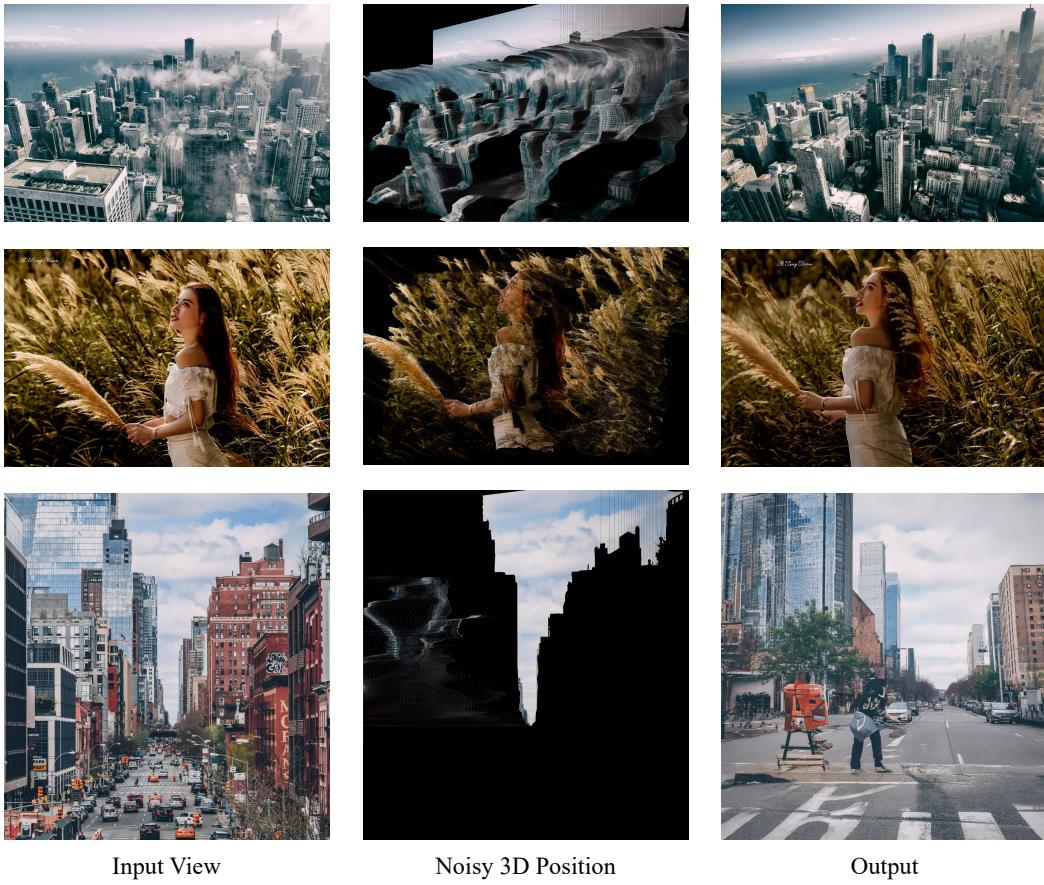


Figure 14: Across various noisy monocular 3D reconstruction scenarios, our model consistently produces robust outputs.

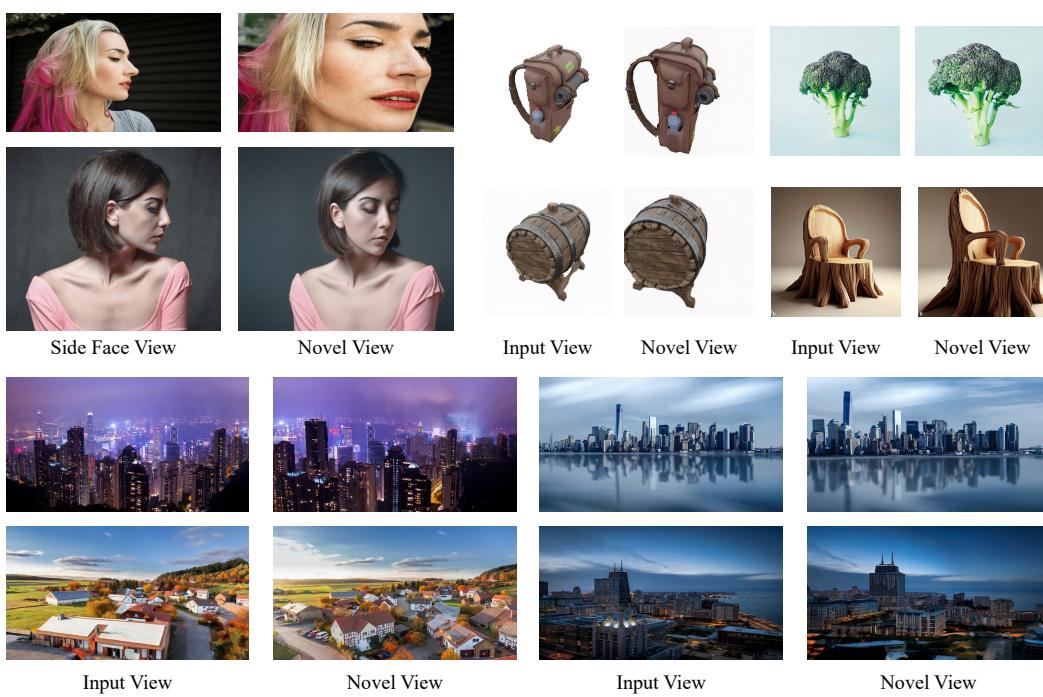


Figure 15: Novel-view synthesis results for three specific test conditions.

Method	Tanks-and-Temples			RE10K			DL3DV		
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
Ours 1 step	22.12	0.732	0.174	21.65	0.816	0.162	22.23	0.742	0.154
Ours 3 steps	22.23	0.734	0.171	22.04	0.818	0.160	22.65	0.743	0.153
Ours 5 steps	22.51	0.737	0.170	22.31	0.821	0.157	22.84	0.745	0.151
Ours 10 steps	22.46	0.738	0.169	22.35	0.822	0.156	22.90	0.748	0.152

Table 2: Quantitative evaluation of different generation steps on Tanks-and-Temples, RE10K, and DL3DV datasets. We report the average PSNR, SSIM, and LPIPS scores for novel view synthesis from a single input image.

Method	Tanks-and-Temples			RE10K			DL3DV		
	FID↓	R_{err} ↓	T_{err} ↓	FID↓	R_{err} ↓	T_{err} ↓	FID↓	R_{err} ↓	T_{err} ↓
ZeroNVS (Sargent et al., 2024)	39.532	0.907	1.751	25.888	0.162	0.263	32.558	0.588	1.405
CameraCtrl (He et al., 2024)	34.128	0.950	1.726	25.539	0.149	0.224	29.463	0.532	1.285
GenWarp (Seo et al., 2024)	31.663	0.832	1.498	23.633	0.161	0.245	23.588	0.419	0.992
NVS-Solver (You et al., 2024)	35.699	1.022	1.395	29.250	0.190	0.363	27.271	0.483	1.187
ViewCrafter (Yu et al., 2024)	26.067	0.144	0.356	24.088	0.063	0.172	23.409	0.105	0.275
DimensionX (Sun et al., 2024)	24.131	0.126	0.315	23.185	0.071	0.149	22.233	0.099	0.253
SEVA (Zhou et al., 2025)	26.263	0.114	0.280	27.322	0.067	0.176	26.526	0.142	0.301
MVGenMaster (Cao et al., 2025)	28.159	0.136	0.339	24.378	0.060	0.144	25.894	0.107	0.277
See3D (Ma et al., 2025)	27.134	0.086	0.240	27.775	0.054	0.144	24.215	0.166	0.318
Voyager (Huang et al., 2025)	22.903	0.074	0.194	17.456	0.050	0.156	20.964	0.083	0.155
FlexWorld (Chen et al., 2025)	22.194	0.108	0.201	18.519	0.062	0.129	20.408	0.069	0.147
GEN3C (Ren et al., 2025)	21.978	0.054	0.168	16.063	0.030	0.111	21.426	0.095	0.142
Ours	18.418	0.040	0.131	14.778	0.023	0.076	17.775	0.063	0.110

Table 3: Quantitative comparison of different methods on Tanks-and-Temples, RE10K, and DL3DV datasets. We report the average FID, R_{err} , and T_{err} for novel view synthesis.

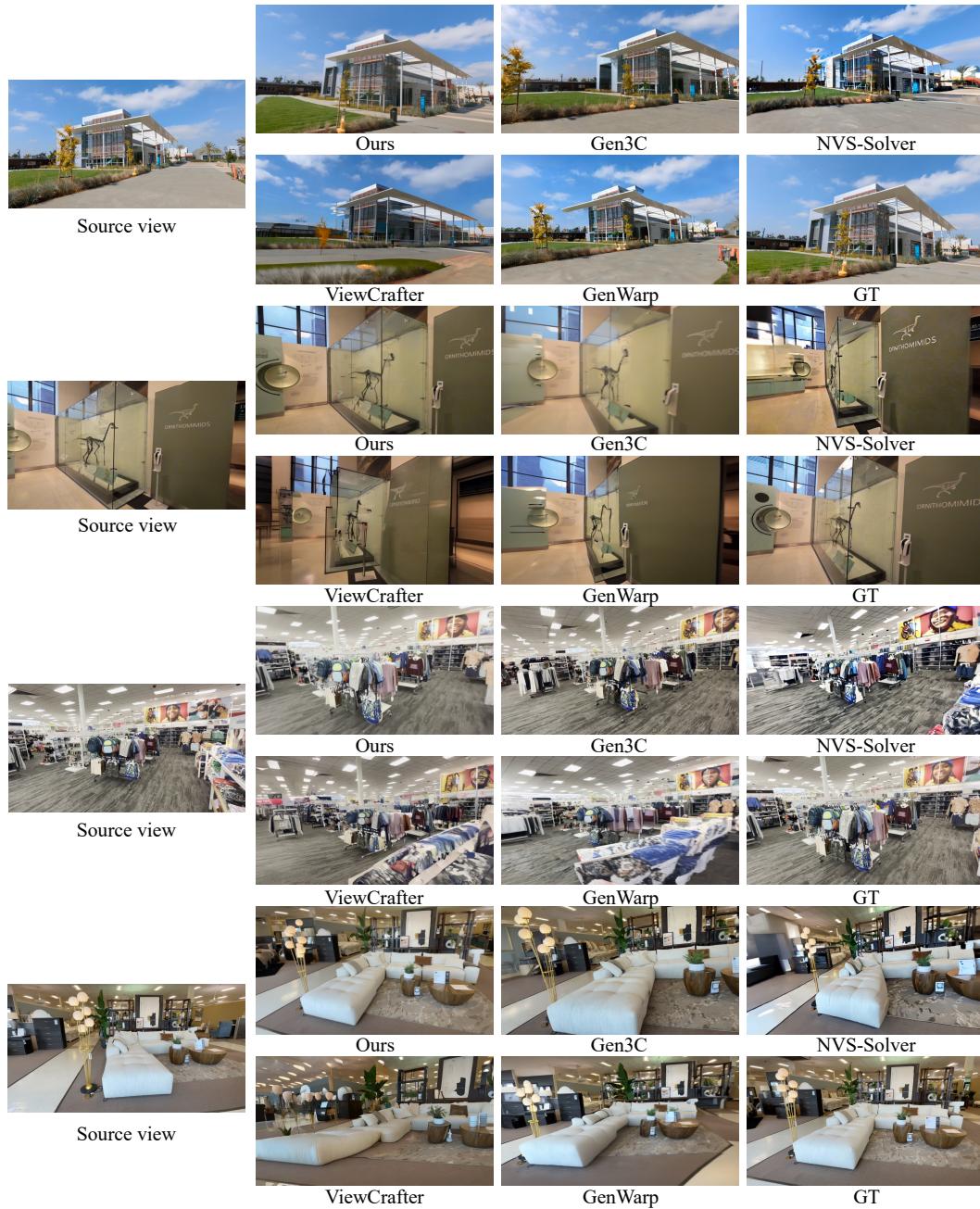


Figure 16: Supplementary novel view synthesis (NVS) examples on DL3DV dataset.

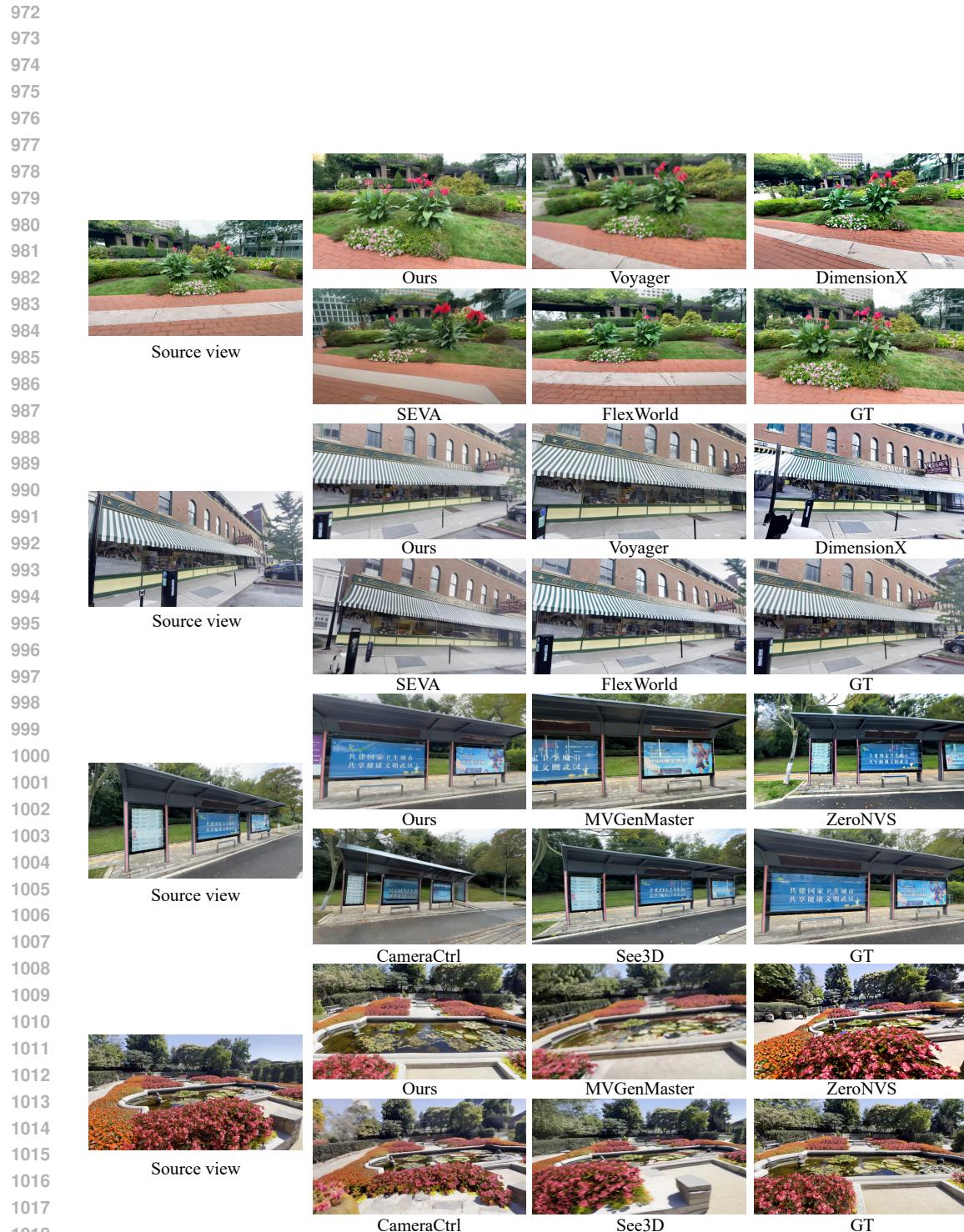


Figure 17: Supplementary novel view synthesis (NVS) examples on DL3DV dataset.

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049

Source view

Ours

1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072

ViewCrafter

Gen3C

1073
1074
1075
1076
1077
1078
1079

Figure 18: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° rightward rotation, ViewCrafter produces only a small rotation with hand distortions and skin color changes, GEN3C introduces facial distortions.

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103

Source view

1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125

Ours

1126
1127
1128
1129
1130
1131
1132
1133

CameraCtrl

ZeroNVS

Figure 19: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° rightward rotation, CameraCtrl and ZeroNVS both cause facial distortions.

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157

Source view

1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181

See3D

MVGenMaster

1182
 1183
 1184
 1185
 1186
 1187

Figure 20: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° rightward rotation, See3D yields inaccurate viewpoint changes and significantly alters the original appearance, MVGenMaster fails to complete reasonable content for the human face.

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211

Source view

1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235

ViewCrafter

1236
1237
1238
1239
1240
1241

Ours

Gen3C

Figure 21: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° rightward rotation, ViewCrafter produces only a small rotation with hand distortions and skin color changes, GEN3C introduces facial distortions.

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289

1290
1291
1292
1293
1294
1295

Figure 22: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° rightward rotation, CameraCtrl and ZeroNVS both cause facial distortions.

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Source view

Ours

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343

See3D

MVGenMaster

1344
1345
1346
1347
1348
1349

Figure 23: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° rightward rotation, See3D and MVGenMaster both introduce distortions in the human face and shoes.

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373

Source view

1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397

ViewCrafter

1398
1399
1400
1401
1402
1403

Ours

Gen3C

Figure 24: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° rightward rotation, ViewCrafter produces only a small rotation but completely distorts the face, GEN3C introduces facial distortions.

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427

Source view

1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451

Ours

1452
1453
1454
1455
1456
1457

DimensionX

Voyager

Figure 25: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° rightward rotation, DimensionX completely distorts the human figure, Voyager introduces facial distortions.

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481

Source view

Ours

1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505

SEVA

1506
1507
1508
1509
1510
1511

FlexWorld

Figure 26: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° rightward rotation, SEVA completely distorts the human face, FlexWorld introduces facial distortions.

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535

1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559

1560
1561
1562
1563
1564
1565

Figure 27: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° rightward rotation, ViewCrafter completely distorts the human figure, GEN3C introduces facial artifacts.

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589



Source view

1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611

Ours

1612
1613
1614
1615
1616
1617
1618
1619

CameraCtrl

ZeroNVS

Figure 28: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° rightward rotation, CameraCtrl and ZeroNVS both cause facial distortions.

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643

Source view

1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667

NVS-Solver

1668
1669
1670
1671
1672
1673

Ours

GenWarp

Figure 29: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° leftward rotation, NVS-Solver shows little change but introduces some distortions, GenWarp produces blurred results.

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698

Source view

Ours

1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721

See3D

MVGenMaster

1722
1723
1724
1725
1726
1727

Figure 30: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° leftward rotation, See3D distorts the scene, and MVGenMaster adds noise to the results.

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751

Source view

1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775

NVS-Solver

1776
1777
1778
1779
1780
1781

Ours

GenWarp

Figure 31: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° leftward rotation, NVS-Solver introduces distortions on the sheep and alters the overall color tone, GenWarp produces smaller changes but still distorts the sheep.

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805

Source view

1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829

Ours

1830
1831
1832
1833
1834
1835

DimensionX

Voyager

Figure 32: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° leftward rotation, DimensionX and Voyager both alter the shape of the flowers.

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859

1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879

1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Figure 33: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° leftward rotation, NVS-Solver and GenWarp show little change but generate blurred images.

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913

Source view

1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937

NVS-Solver

1938
1939
1940
1941
1942
1943

Ours

GenWarp

Figure 34: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° leftward rotation, NVS-Solver and GenWarp both introduce object distortions and produce blurred results.

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967

Source view

Ours

1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991

See3D

1992
1993
1994
1995
1996
1997

MVGenMaster

Figure 35: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° leftward rotation, See3D distorts the scene, and MVGenMaster adds noise to the results.

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021

Source view

2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Ours

DimensionX

Voyager

Figure 36: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° leftward rotation, DimensionX and Voyager both alter the shape of the goblet.

Figure 37: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° leftward rotation, SEVA produces completely distorted results, FlexWorld introduces object distortions and alters the overall image style.

2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129

Source view

Ours

2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153

NVS-Solver

GenWarp

2154
 2155
 2156
 2157
 2158
 2159

Figure 38: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° leftward rotation, NVS-Solver shows little change but introduces some distortions, GenWarp produces blurred results.

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183

Source view

2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Ours

See3D

MVGenMaster

Figure 39: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° leftward rotation, See3D distorts the scene, and MVGenMaster adds noise to the results.

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237

2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261

2262
2263
2264
2265
2266
2267

Figure 40: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° leftward rotation, SEVA shows little change, FlexWorld affects the floor patterns.

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291

2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

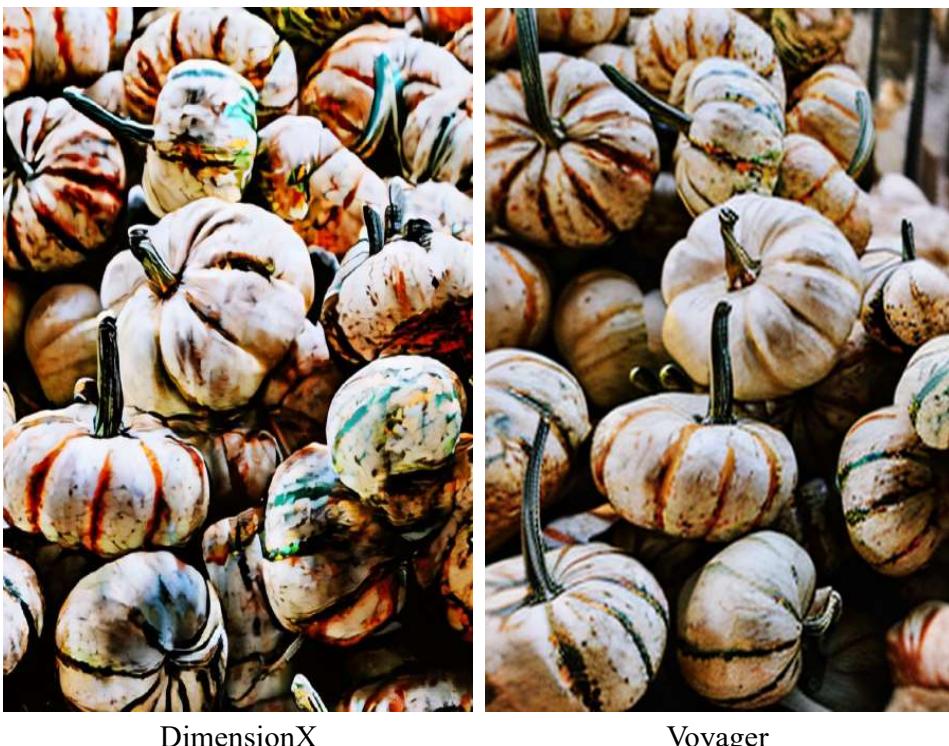


Figure 41: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° leftward rotation, DimensionX and Voyager alter both the object shapes and the overall image style.

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345

Source view

Ours

2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369

FLUX.1 Kontext

Qwen-Image-Edit

2370
2371
2372
2373
2374
2375

Figure 42: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° rightward rotation, FLUX only rotates the person without rotating the background, Qwen rotates in the opposite direction and also changes the person's pose.

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399

2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423

2424
2425
2426
2427
2428
2429

Figure 43: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° rightward rotation, FLUX shows only minor changes without rotating the background, Qwen alters the person's pose and expression without rotating the background.

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453

Source view

2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477

Ours

2478
2479
2480
2481
2482
2483

FLUX.1 Kontext

Qwen-Image-Edit

Figure 44: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° rightward rotation, FLUX shows only minor changes, Qwen changes the person's pose without rotating the background.

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507

2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527

2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Figure 45: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° rightward rotation, FLUX only rotates the person’s head, Qwen changes the person’s pose.

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561

2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588

2589
2590
2591

Figure 46: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° rightward rotation, FLUX shows only minor changes, Qwen changes the person's pose.

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615

2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639

2640
2641
2642
2643
2644
2645

Figure 47: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30° rightward rotation, FLUX shows only minor changes, Qwen changes the person's pose.

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658

2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670

2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683

2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695

Figure 48: Supplementary 3D-aware object editing examples on Objectron dataset.

2696
2697
2698
2699

Input

Transformation

Result

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712

2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724

2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737

2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749

Figure 49: Supplementary 3D-aware object editing examples on Objectron dataset.

2750
2751
2752
2753

Input

Transformation

Result

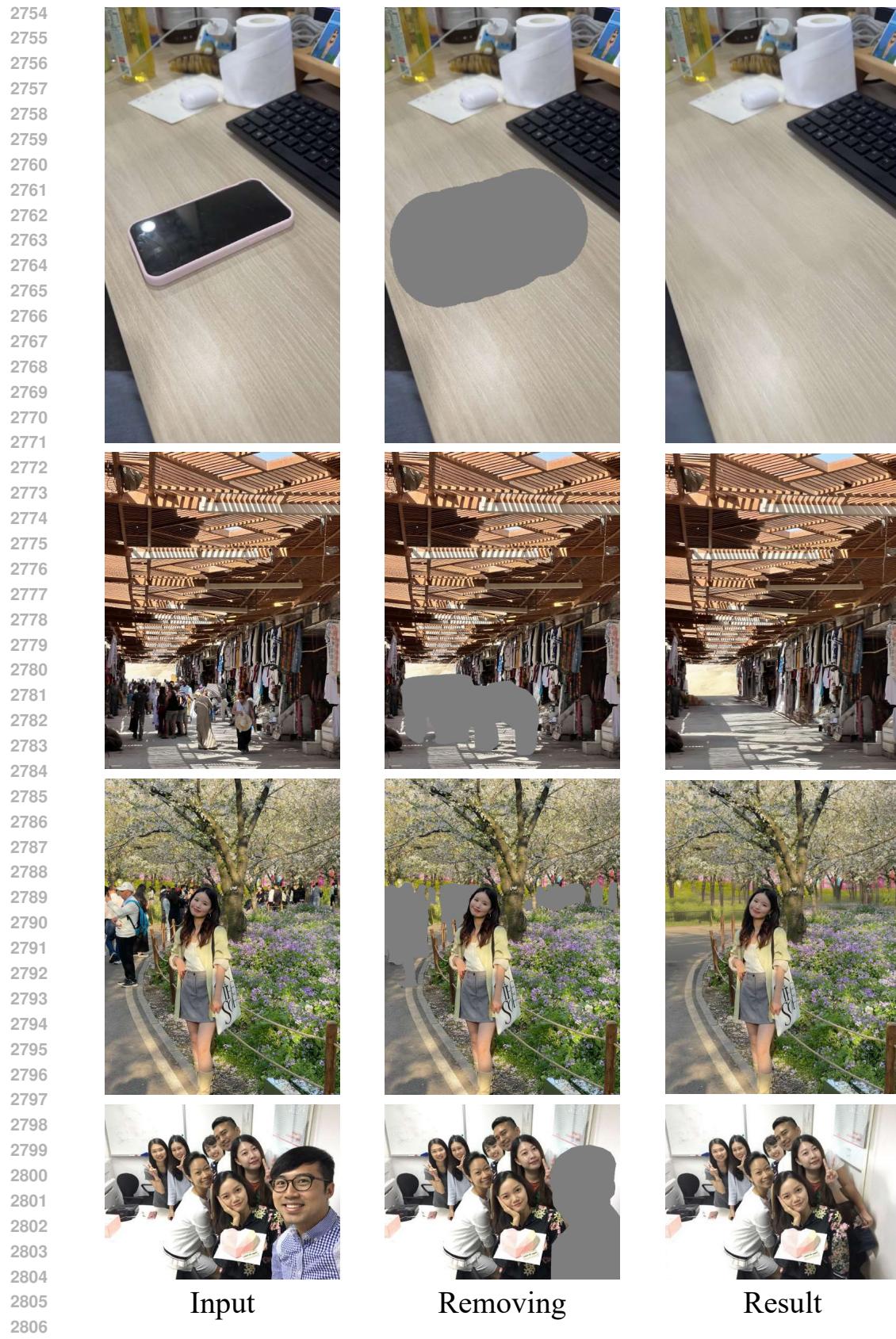


Figure 50: Supplementary object removing examples on in-the-wild images.

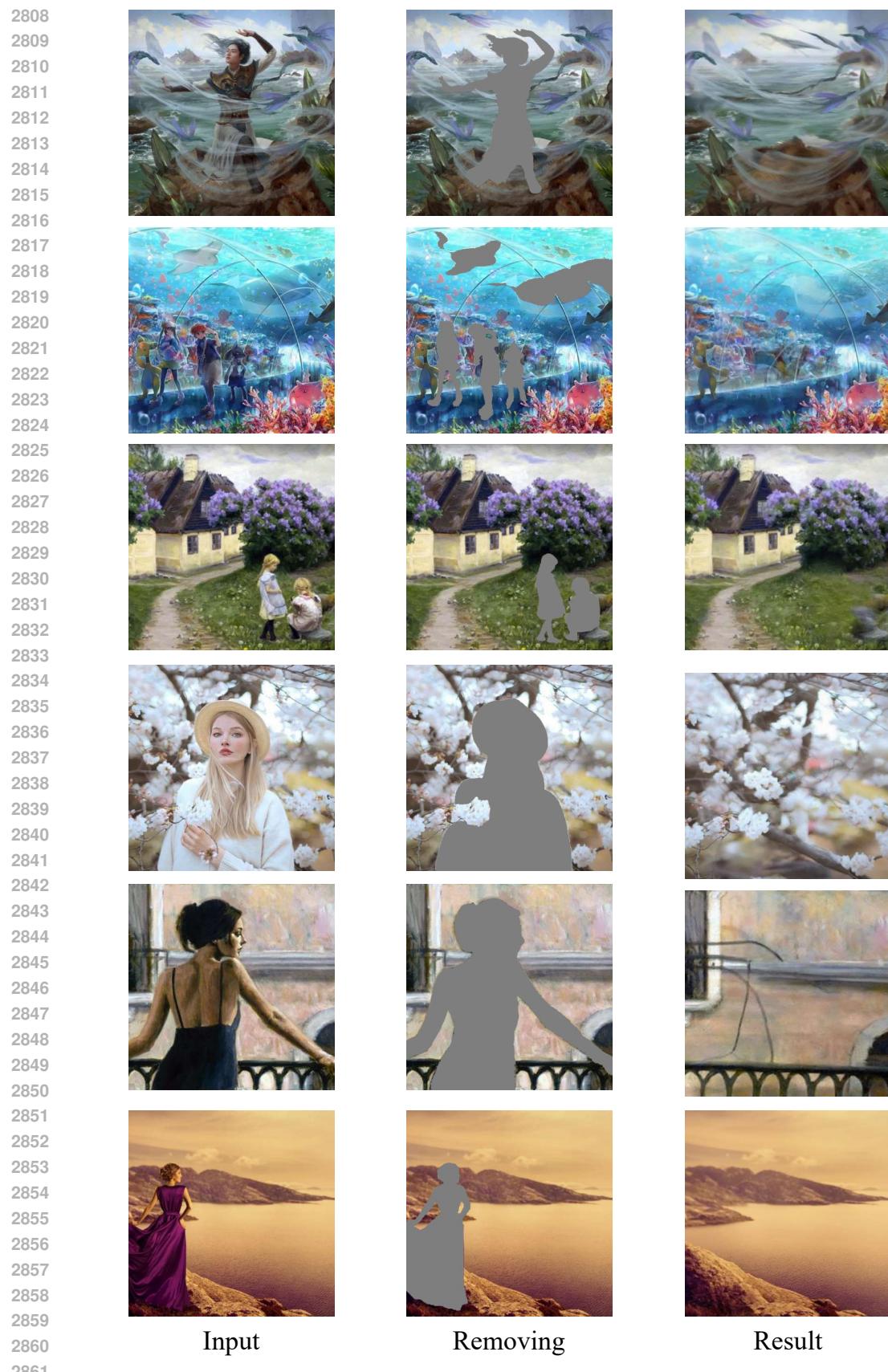


Figure 51: Supplementary object removing examples on in-the-wild images.