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ABSTRACT

Diffusion Transformers (DiTs) have emerged as the dominant architecture for vi-
sual generation, powering state-of-the-art image and video models. By repre-
senting images as patch tokens with positional encodings (PEs), DiTs combine
Transformer scalability with spatial and temporal inductive biases. In this work,
we revisit how DiTs organize visual content and discover that patch tokens ex-
hibit a surprising degree of independence: even when PEs are perturbed, DiTs
still produce globally coherent outputs, indicating that spatial coherence is pri-
marily governed by PEs. Motivated by this finding, we introduce the Positional
Encoding Field (PE-Field), which extends positional encodings from the 2D plane
to a structured 3D field. PE-Field incorporates depth-aware encodings for volu-
metric reasoning and hierarchical encodings for fine-grained sub-patch control,
enabling DiTs to model geometry directly in 3D space. Our PE-Field—augmented
DiT achieves state-of-the-art performance on single-image novel view synthesis
and generalizes to controllable spatial image editing.

1 INTRODUCTION

Diffusion Transformers (DiTs) (Peebles & Xiel 2023) have rapidly emerged as the dominant archi-
tecture in visual generation, forming the backbone of recent state-of-the-art image and video models
such as Flux.1 Kontext (Labs et al., 2025), Qwen-Image (Wu et al [2025a)), CogVideo (Yang et al.,
2024), and Wan (Wan et al.| | 2025). By encoding images into sequences of patch tokens and applying
2D positional encodings (PEs) (Vaswani et al., 2017)), DiTs leverage the scalability of Transformers
while preserving the spatial inductive biases necessary for visual synthesis. This design has enabled
remarkable progress, supporting high-fidelity image generation and temporally coherent video syn-
thesis (where additional temporal PEs are employed).

Despite their empirical success, the internal mechanisms by which DiTs organize and compose vi-
sual content remain relatively underexplored. In this work, we begin with a simple yet striking
observation: patch tokens in DiTs exhibit a surprising degree of independence. When positional
encodings are reassigned, the model still produces globally coherent output, though with patches
reorganized according to the altered PEs. This suggests that spatial coherence in DiTs is primarily
enforced by positional encodings rather than by explicit token-to-token dependencies and that ma-
nipulating PEs alone can induce structured reconfiguration of spatial content. This property offers a
new avenue for spatially controllable generation, where images can be reorganized according to PEs
transformation without modifying the token content itself.

Building on this insight, we focus on single-image novel view synthesis (NVS) and extend the
positional encodings of DiTs beyond the 2D image plane into a structured 3D field, which we term
the Positional Encoding Field (PE-Field). The PE-Field introduces two key innovations: First, we
extend standard 2D RoPE (Su et al.l 2024) to a 3D depth-aware encoding, embedding tokens in
a volumetric field that supports reasoning across viewpoints. Second, we design a hierarchical
scheme that subdivides tokens into finer sub-patch levels, allowing different sub-vectors to capture
spatial information at varying granularities. Together, these designs transform DiTs into a geometry-
aware generative framework that reasons directly in a 3D positional encoding field. As a result, our
approach achieves state-of-the-art results in novel view synthesis (NVS) from a single image, and
naturally generalizes to spatial editing tasks, where manipulating the PE-Field enables structured
control of image content at both global and local levels.

Our contributions are as follows: 1) We show that DiTs can reorganize image content purely through
positional encodings, revealing a previously underexplored property that enables structured spatial
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editing. 2) We introduce a depth-augmented positional encoding field that embeds tokens into a 3D
space, enabling volumetric reasoning and geometric consistency. 3) We extend DiTs with multi-
level positional encodings, allowing fine-grained spatial control at sub-patch granularity. 4) Our
PE-Field—augmented DiT achieves state-of-the-art results on novel view synthesis (NVS) from a
single image, and further generalizes to spatial image editing tasks.

2 RELATED WORKS

2.1 NOVEL VIEW SYNTHESIS

Novel view synthesis (NVS) is a widely studied and discussed problem which can be broadly divided
into two categories: methods based on multiple input images and those based on a single input
image. In this work, we focus on the latter. The simplest approach is to directly use a feed-forward
model (Hong et al., 2024} Jin et al., 2025) to generate novel views from an input image. Such
methods typically rely on learning intermediate, general 3D representations from data. For example,
early works adopt multi-plane representations (Zhou et al., 2018} [Han et al., 2022} |Tucker & Snavely,
2020), PixelNeRF (Yu et al.,2021) employs NeRF (Mildenhall et al.;|2020) as the 3D representation,
LRM (Hong et al.| [2024])) uses tri-plane representations, and 3D-GS (Kerbl et al.,2023) has also been
adopted by methods such as PixelSplat (Charatan et al., 2024). Other methods (Wiles et al., [2020;
Rombach et al.| 2021; [Rockwell et al., 2021} [Park et al., |2024)) incorporate additional results from
monocular reconstruction to provide an explicit geometric structure, where warping into the target
view is used which is then followed by inpainting to synthesize novel views.

Recently, with the breakthrough of diffusion-based generative models, an increasing number of
works have investigated the use of diffusion models for NVS, including GeNVS (Chan et al.||[2023),
Zero-1-to-3 (Liu et al., 2023), ZeroNVS (Sargent et al., [2024)), and CAT3D (Gao et al.| 2024} Wu
et al., 2025b). However, directly encoding camera pose conditions as text embeddings makes it
difficult to precisely control viewpoint changes. Reconfusion (Wu et al.,2024) uses PixelNeRF (Yu
et al.||202 1)) features as diffusion conditions, but consistency across views cannot be guaranteed. The
paradigm of monocular reconstruction followed by warping and inpainting has also been adopted
in diffusion-based methods (Zhang et al., [2024; |Chung et al, |2023; [Shriram et al., [2024; [Yu et al.,
2024} |Cao et al., 2025)), where diffusion is used for the inpainting stage. However, reprojection
errors in the warped image may disrupt the semantics of the source image and are difficult to correct
during inpainting. To address this issue, GenWarp (Seo et al.| [2024) proposes to use warped 2D
coordinates as input instead of directly warping the image, and this idea has been extended to videos
in later work (Seo et al., |2025). However, since view transformation inherently occurs in 3D space,
relying solely on 2D coordinates remains ambiguous, and these methods require training additional
branches to handle coordinate input. Many video-based models (Sun et al., 2024; Huang et al.,
2025; |Chen et al., 2025 [Ren et al., 2025; Zhang et al., [2025} [Song et al., [2025} |[Liang et al., [2025))
incorporate camera control to achieve NVS, but when only the target view is required, generating
intermediate frames is unnecessary. CausNVS (Kong et al., 2025) also explores an autoregressive
approach for novel view synthesis.

2.2 DITS FOR IMAGE GENERATION AND EDITING

Diffusion Transformers (DiTs) were first introduced by (Peebles & Xie| 2023)), who replaced the
commonly used U-Net backbone in diffusion models (Rombach et al., 2022) with a pure Trans-
former architecture. This design leveraged the scalability and flexibility of Transformers while
retaining the generative power of diffusion, and has since become the foundation of many state-
of-the-art image and video generation models. Building on DiT, subsequent works such as Stable
Diffusion 3 (SD3) (Esser et al.,[2024)), Flux.1 Kontext (Labs et al.| 2025)), Qwen-Image (Wu et al.,
2025a), CogVideo (Yang et al., |2024), and Wan (Wan et al.| 2025) have established DiT as the
main backbone for large-scale generative modeling. Owing to its flexible architecture, DiT can be
naturally extended by incorporating the tokens of a context image directly into the input sequence,
enabling end-to-end image editing within the same generative framework. This simple yet effective
strategy has been widely adopted in current mainstream editing models (Labs et al.,2025; Wu et al.,
2025al), demonstrating the versatility of DiTs for controllable generation tasks. In contrast, we pro-
pose equipping DiTs with a 3D-aware hierarchical positional encoding field, enabling controllable
and geometry-aware generation and editing solely through transformations on positional encodings.
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Figure 1: Illustration of DiT patch-level independence. When positional encodings (PEs) of image
tokens or noise tokens are reassigned, the decoded or generated outputs still produce semantically
meaningful images. The resulting structures follow the positional encoding reassignment, while
boundaries between patches remain visually distinct.
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Figure 2: Illustration of our direct novel view synthesis (NVS) Results. We apply 2D positional
encodings (PEs) derived from 3D reconstruction and view transformation directly to the source-view
image tokens. Using these modified tokens as image conditions in DiT enables direct generation of
a relatively accurate novel-view image.

3 METHOD

3.1 TOKEN MANIPULATION FOR VIEW SYNTHESIS

Patch-level independence in DiT-based generative models. DiT-based architectures model image
generation by patchifying the input and representing each patch as a token with a 2D positional
encoding (PE). While tokens collectively reconstruct the image, we find that each token mainly en-
codes its local patch and retains a degree of independence. As shown in Figure[I|(Top), reassigning
tokens’ PEs leads to images reorganized according to the new layout, with clear patch boundaries
indicating independent decoding. This independence also appears during denoising: as shown in
Figure[I] (Bottom), reassigning PEs of noise tokens still yields globally coherent results (e.g., a face)
but with block-wise discontinuities aligned with the modified positions. These findings suggest that
global coherence is largely enforced by PEs, enabling the possibility of spatial editing by manipu-
lating token positions through their PEs without altering token content.

Towards novel view synthesis via token manipulation. In this work, we mainly want to leverage
these findings to address novel view synthesis (NVS) problem from a single image. A straight-
forward solution is to perform single-view 3D reconstruction followed by view transformation and
inpainting, but this pipeline is often prone to errors (Seo et al.,2024). Instead, we directly manipulate
DiT’s image token positions: conditioned on the source reconstruction and target camera pose, we
reassign positional encodings so that tokens migrate to their new projected locations. This allows re-
composing image content under novel viewpoints within the DiT generative process, avoiding errors
from direct image-space warping. As shown in Figure [2] this approach demonstrates a partial but
effective ability to perform NVS, but artifacts remain due to: (1) resolution mismatch—positional
grids from patch tokens (e.g., 16 x 16 pixels) are coarser than dense 3D reconstructions, limiting
alignment precision. The manipulation can only rearrange image content at the patch level, but it
cannot alter the content within each patch. and (2) depth ambiguity—multiple 3D points may project
to the same token location. Without explicit mechanisms to disambiguate depth, generated tokens
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Figure 3: Illustration of hierarchical RoPE allocation in Flux (24 heads). Each rectangle on the
left represents the subvector computed by one head, with colors indicating the RoPE level. Black
denotes the original patch-level RoPE (I = 0), covers a 256 pixels patch. Level I = 1 corresponds to
64 pixels, and level [ = 2 to 16 pixels. The square on the right represents a patch corresponding to
one token, illustrating how different levels of positional encodings map to their respective 2D spatial
locations, where [ = 2 corresponds to a 1/16-sized patch.

can collapse into inconsistent local structures. To adapt DiTs for NVS through positional encoding
transformations, we introduce two key modifications to the existing PE design, extending it into a
structured 3D field representation.

3.2 MULTI-LEVEL POSITIONAL ENCODINGS FOR SUB-PATCH DETAIL MODELING

In the current DiT architecture, each image patch is represented as a single token, i.e., a one-
dimensional vector x; € R<, which is fed into the transformer for computation. Within the trans-
former, multi-head self-attention (MHA) is applied by projecting x; into multiple subspaces (heads),
h € {1,..., H} with per-head dimension dj (typically d;, = d/H) enabling the model to cap-
ture diverse relationships across tokens. Current mainstream DiT models, such as Flux and SD3,
first obtain queries, keys, and values by linear projections of the hidden states: @) = XWg, K =
XWg,V = XWy, X € REXTXd The results are then reshaped into H heads with per-head di-
mension d, = d/H: Q, K,V € REXTxd _ REXHXTxdn_ For each head, attention is computed

QM gMT
\/dh

as head™ = softmax ) 17408 Finally, the outputs of all heads are concatenated and

projected back to dimension d. However, all heads share the same positional encodings (specifi-
cally RoPEs (Su et al.| 2024))), which are tied to patch-level locations. Thus, although each token is
divided across multiple heads for modeling, it still encodes the holistic content of an entire patch,
without explicitly capturing finer-grained details within the patch.

We argue that this design limits the transformer’s ability to capture sub-patch structures that are
crucial for tasks involving fine spatial transformations, such as novel view synthesis. Our goal is
not to discard the different correspondences already learned by different heads at the patch level, but
rather to enrich them with intra-patch detail modeling. To this end, we build directly on the head-
splitting structure of MHA, augmenting it with multi-level hierarchical positional encodings so that
each head’s subspace captures not only patch-level information but also finer-grained details, while
remaining highly compatible with the original architecture since the finer-level PEs differ little from
the original ones.

Concretely, we retain a subset of heads that use the original patch-level RoPE (I;, = 0) to preserve
the pretrained global structure, while other heads adopt finer-grained RoPEs derived from higher
resolution grids (see Figure [3). At level [, = 0, each positional encoding corresponds to the orig-
inal patch-level RoPE (e.g., one token covers 16 x 16 pixels). When moving to higher levels, the
positional grid resolution is increased: each step doubles the resolution along both axes, so the

effective cell size shrinks by a factor of 2 per axis (i.e., by 4 in area). Let {ROPE(lh)}%;Ol de-
note the hierarchy of positional encodings, where larger [;, corresponds to higher spatial resolution
(doubling per axis per level). Queries and keys in head h are rotated by the level-specific RoPE:
Q» = RoPE!)(QM) K}, = RoPE!") (K (M), We automatically choose the number of levels M

from the total number of heads H in the pretrained architecture:
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M =|log,3H +1)|, W =41
where W is the cumulative geometric series 144 + - - - + 4M =1 which represents the total number
of hierarchical heads that can be accommodated under the current architecture. Each head index
h € {1,...,H} maps directly to a level via the rule that exactly matches the geometric quotas
1:4:16: -- - whose total sums to W, and falls back to the original RoPE (I = 0) for surplus heads:

log,(3h+1)] =1, h<W,
Iy = {[ 084 ) clipped to [0, M — 1].

0, h>W,

Any heads beyond the geometric budget W default to | = 0 to minimize disruption of pretrained
patch-level priors. Taking Flux as an example, we divide each sub-vector into three levels: In Flux,
there are 24 heads in total. The first head corresponds to [ = 0, i.e., the original patch-level RoPE.
Heads 2-5 are assigned to [ = 1, and heads 6-21 to [ = 2. The remaining heads 22-24 cannot be
allocated under this scheme and are therefore reassigned back to ! = 0. As illustrated in Figure
different colors indicate different PE levels. The coarsest level corresponds to a 16 x 16-pixel patch,
while the finest level corresponds to a 4 x 4-pixel patch. This hierarchical design enables flexible
spatial transformations: direct manipulations of sub-patch RoPE yield local geometric adjustments
in the reconstruction while preserving pretrained patch-level correspondences.

3.3 DEPTH-AWARE ROTARY POSITIONAL ENCODING

In standard 2D RoPE, the horizontal (x) and vertical (y) coordinates are encoded independently.
Each axis is assigned a dedicated subspace of the embedding vector, within which a 1D RoPE is
applied. Concretely, the token vector is partitioned into two segments, one modulated by the RoPE
corresponding to the horizontal coordinate = and the other by the RoPE for the vertical coordinate y.
This factorized scheme ensures that the dot product of two rotated queries and keys encodes relative
displacements along both axes, while keeping the rotations invertible and dimensionally consistent.

To allow DiT to leverage positional encodings for reasoning about depth relationships between to-
kens that overlap in the 2D projection, following the above principle, we extend RoPE to include
a third spatial axis for depth, which refers to the distance of each pixel’s corresponding 3D point
from the camera along the optical axis (that is, its z coordinate in the camera coordinate system). In
addition to the subspaces for (x, y), we introduce another subspace for the depth z. Each coordinate
(z,y, z) thus has its own 1D RoPE encoding, applied to a disjoint part of the embedding vector:

Q™ = [ RoPE!(Q), RoPE{"(Q{"), RoPE!")(Q{M) ],
K" = [ RoPE{") (K{"), RoPE{")(K{"), RoPE!")(K(") ],

where Qg;h), ;h), Qgh) (and Kg;h), Kl(,h), th)) denote the corresponding vector segments allocated
to each axis. This extension yields a 3D spatial RoPE that encodes relative offsets not only in the
image plane but also along the depth axis, enabling the Transformer to model volumetric correspon-
dences and maintain geometric consistency across viewpoints.

3.4 OVERALL ARCHITECTURE AND TRAINING OBJECTIVE

These two components together form a new 3D field-based positional encoding, which we apply
to the DiT architecture to jointly process noise tokens and source-view image tokens, resulting in
our NVS-DiT model. As illustrated in Figure 4] noise tokens are placed on a regular 2D grid with
depth initialized to zero, while source-view image tokens are projected into the target camera view
via monocular reconstruction and view transformation. Each image token is assigned a hierarchical
3D positional encoding (x, y, z) that captures its detailed target spatial location and depth. Tokens
projected outside the valid grid are discarded, and empty positions are filled with noise tokens,
which are progressively refined by the transformer to generate geometrically consistent content.
This design enables the model to integrate observed image evidence with generative completion,
achieving novel view synthesis within the DiT framework.
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Figure 4: The transformer takes both noise tokens and source-view image tokens. Noise tokens
are placed on a 2D grid with depth set to zero, while image tokens are assigned hierarchical PEs
according to their projected positions from monocular reconstruction and view transformation, with
depth values taken from the reconstruction. Tokens projected outside the grid (e.g., index 6) are
discarded, and empty grid locations without image tokens (e.g., index 0) are filled by noise, which
is refined to generate plausible content.

To train the model, we leverage multi-view supervision under a rectified-flow 2022)
objective. Specifically, we adopt the rectified flow—matching loss:

_ trans—PFE 2
£0 - Eth(t)7xtgt7x§:%7Ls—PE |:||’U9(Zt, t, fﬂsm ) - (5 - xtgt)||2:| 5
where 274"~ PE and z,,, denote the image tokens of the source view with transformed PEs and

the target view, respectively, obtained by the corresponding DiT’s VAE encoder. z; is the linearly
interpolated latent between clean latent z;4; and Gaussian noise € ~ N(0,1), defined as z; =
(1 — t).fL'tgt + te.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Our model is built on Flux.1 Kontext 2025)), which generates images conditioned jointly
on a text prompt and a reference image. This architecture naturally aligns with our design, as it
already integrates reference-image tokens, providing a seamless foundation for incorporating our
PE-Field framework. We remove its text input and condition solely on the reference image. To train
our NVS model, we use two multi-view datasets, DL3DV (Ling et al.,[2024) and MannequinChal-

lenge (Li et all [2020), both processed with VGGT (Wang et al., 2025) to obtain per-image depth
maps and corresponding camera poses. Additional details are provided in the Appendix.

4.2 COMPARISONS WITH RELEVANT METHODS

We mainly compare our approach with several baseline methods (listed in Table [I) in the single-
image novel view synthesis setting. Experiments are conducted on three datasets, Tanks-and-
Temples (Knapitsch et al., 2017), RE1I0K 2018), and DL3DV 2024). In
each case, a single input image is provided, and subsequent frames are generated under different
target viewpoints. For methods that require depth or point cloud as conditional input, we uniformly
use the predictions obtained from VGGT as input. We then calculated three metrics, PSNR, SSIM
12004), and LPIPS (Zhang et al., [2018), and reported the average scores for all test
samples in Table [[] Our method outperforms existing approaches across all metrics on all three
datasets. Qualitative comparison with a subset of representative methods is presented in Figure [3]
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Figure 5: Visualization of novel view synthesis results where the source image (left) is rotated 30° to
the right. Compared with other methods, our approach achieves accurate viewpoint transformation
while preserving consistency with the source image and avoiding noticeable artifacts.

Input Ours FLUX.1 Kontext Qwen-Image-Edit

Figure 6: Comparison with prompt-based image editing methods. Our approach enables accurate
control of rotation angles while maintaining consistency with the input image.

We observe that GEN3C often propagates reconstruction artifacts into the final results, leading to
noticeable white streaks and irregular boundaries. NVS-Solver and ViewCrafter tend to introduce
depth-warping errors, which negatively affect the geometric accuracy of the synthesized novel views.
GenWarp produces unsatisfactory results due to the absence of depth information in its coordinate
representation and the misalignment between its coordinate system and the input image. Due to
space limitations, more qualitative comparisons are provided in the Appendix. It is worth noting
that, unlike many video-based models listed here, our approach does not require generating inter-
mediate frames between viewpoints, making it over an order of magnitude faster than video-based
method to generate target view while still producing geometrically consistent results.

Beyond pose-conditioned approaches, recent image editing models such as Flux.1 Kontext
2025) and Qwen-Image-Edit 2025a) also demonstrate strong capabilities in view-
point manipulation. We further compare our method with these prompt-based editing results, as il-
lustrated in Figure[6] Flux is generally insensitive to prompts specifying spatial viewpoint changes,
often producing only minor viewpoint variations while introducing noticeable artifacts. Qwen, on
the other hand, achieves more pronounced spatial editing effects than Flux, but tends to alter the
original image tokens. As shown in the rightmost example of Figure [f] the result appears overly
smoothed and even alters the person’s identity. Overall, it remains very challenging to precisely
control viewpoint changes through prompts. More comparisons can be found in the Appendix.
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Tanks-and-Temples RE10K DL3DV
PSNR{ SSIM?T LPIPS] PSNRt SSIM?T LPIPS| PSNRT SSIMfT LPIPS|

Method

ZeroNVS (Sargent et al., 2024)  13.14 0.327 0.516 1523 0.540 0.386 14.17 0.441 0481
CameraCtrl (He et al.| [2024) 15.34 0.534 0331 17.74 0.681 0.278 1631 0.552 0.352
GenWarp (Seo et al.,2024)) 1645 0.513 0377 1530 0.538 0371 15.81 0.531 0.382
NVS-Solver (You et al.| 2024) 16.73 0.521 0.323 17.00 0.673 0314 16.86 0.543 0.341
ViewCrafter (Yu et al.[|[2024) 17.18 0.589 0346 17.75 0.681 0315 17.24 0.571 0.329
DimensionX (Sun et al.| [2024) 17.78 0.635 0.228 1821 0.717 0307 18.22 0.653 0.201

SEVA (Zhou et al.,[2025) 17.61 0.621 0.235 17.58 0.688 0.334 18.01 0.638 0.214
MVGenMaster (Cao et al.,[2025) 18.03 0.622 0.253 17.87 0.701 0321 17.71 0.586 0.277
See3D (Ma et al.l 2025) 1835 0.641 0.244 1824 0.735 0.293 1841 0.631 0.215

Voyager (Huang et al.| [2025) 18.61 0.669 0.238 1856 0.723 0.264 18.84 0.636 0.227
FlexWorld (Chen et al.|[2025) 1891 0.675 0236 18.03 0.691 0.282 18.67 0.645 0.218

GEN3C (Ren et al.,[2025) 19.18 0.681 0.207 20.64 0.754 0.229 19.14 0.658 0.198
Original PE 20.03 0.683 0.221 20.17 0.752 0.233 1992 0.667 0.201
w/o Depth 20.63 0.692 0.217 2033 0.767 0.227 2046 0.695 0.194
w/o Multi-Level 21.97 0.718 0.180 21.42 0.809 0.168 2191 0.733 0.162
Ours 2212 0.732 0.174 21.65 0.816 0.162 22.23 0.742 0.154

Table 1: Quantitative comparison of different methods on Tanks-and-Temples, RE10K, and DL3DV
datasets. We report the average PSNR, SSIM, and LPIPS scores for novel view synthesis from a
single input image.

Input Warped Image w/o Depth Original PE

Figure 7: Ablation studies. Removing the detailed positional encoding or depth leads to different
types of degradation in the generated results.

4.3 ABLATION STUDIES

We mainly analyze the effect of removing our two key components: the hierarchical detailed po-
sitional encodings and the additional depth-aware extension. The quantitative impact of removing
each component can be observed in Table [T} while Figure [7] provides two illustrative cases. As
shown in the top example of Figure [7, when the multi-level positional encoding (particularly the
detailed level) is removed, undesirable distortions appear due to the mismatch between patch-level
positional encodings and the reconstruction. When depth information is removed (see bottom ex-
ample in Figure[7), the generated images suffer from severe spatial misalignment.

When applying our method to generate results under large viewpoint changes, the model is required
to directly generate a substantial amount of unseen content, which increases the generation burden
and may compromise consistency with the source image. To mitigate this issue, we decompose the
transformation into multiple steps, in which the model only needs to complete a small portion of
the missing content in each step. As shown in Figure [} we divide the transformation of the target
viewpoint into five steps. After each step, the newly generated content is fused back into the image
tokens of the original viewpoint, and the fused tokens (or point cloud) are then transformed to the
next intermediate viewpoint for subsequent generation. Compared to directly transforming to the
target viewpoint in one step (rightmost result in Figure ), this progressive strategy produces results
that are more consistent with the source view. See Appendix for quantitative comparisons.



Under review as a conference paper at ICLR 2026

s
£ V=

Source view

Direct

Figure 8: Multi-step generation. Left: input image. Top: generated results. Bottom: rotated point
clouds. Right: direct one-step generation.

Input Transformation Result Input Removing Result

Figure 9: Applications. The left example shows object 3D editing, while the right example shows
object removal, highlighting the versatility of our model in different spatial editing tasks.

4.4 OTHER APPLICATIONS

After training, our NVS model acquires the ability to reason over visual tokens in 3D space and
generate consistent content. Consequently, it can naturally adapt to other tasks with similar spatial
logic, even in the absence of task-specific training. As illustrated in Figure[d] in the left example
we perform object-level 3D editing by isolating the point cloud of the book, rotating it to a new
viewpoint, and recomposing it with the original background. In the right example, we achieve object
removal by discarding the tokens corresponding to the masked human region and replenishing them
with noise, resulting in a realistic removal effect. More results can be found in the Appendix.

5 CONCLUSIONS

In this work, we revisited the internal mechanisms of Diffusion Transformers and revealed that
spatial coherence is largely governed by positional encodings rather than explicit token interactions.
Building on this observation, we introduced the Positional Encoding Field (PE-Field), which extends
standard 2D encodings into a 3D, depth-aware and hierarchical framework. This design equips
DiTs with geometry-aware generative capabilities, achieving state-of-the-art results on single-image
novel view synthesis while also enabling flexible and controllable spatial image editing. We hope
our study sheds light on the overlooked role of positional encodings and inspires future research into
more principled and spatially grounded generative architectures.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

To better adapt the Flux transformer to our PE-Field design, we fine-tune all Flux transformer param-
eters with a learning rate of 2 x 10~°. All training images are resized to approximately 1024 x 1024,
the default resolution supported by Flux. Experiments are conducted on 8 H100 GPUs with a batch
size of 1 for about 15,000 training steps. Regarding the allocation of embedding dimensions across
the three coordinate axes, Flux assigns a 128-dimensional vector to each head. We allocate 56 di-
mensions to both the = and y axes, and 16 dimensions to the z axis. This design minimally modifies
the original Flux structure, which also allocates 56 dimensions each for z and y, plus an additional
16 binary dimensions to distinguish noise and reference-image tokens. For multi-level positional
encodings, we obtain hierarchical features by bilinearly downsampling the original image grid by
factors of 4, 8, and 16 along both axes. For the source-view image, the final positional encodings
are constructed as follows: a point map is generated from VGGT-predicted depth and camera pa-
rameters, transformed into the target viewpoint pointmap, and then directly downsampled to serve
as the input positional encodings. Following previous work (Liang et al., 2025} |Chen et al., [2025)),
we sample 100, 300, and 300 videos from T&T, RE10K, and DL3DV, respectively, for evaluation.

To enable object-level 3D editing (Figure ), we first detect the target object using GroundingDINO
(L1u et al., 2024) and obtain its mask with SAM (Kirillov et al., [2023)). The mask is then used to
extract the object’s point cloud. We perform viewpoint transformation within the object’s coordinate
system and place the transformed object back into the corresponding location of the original point
map. Finally, this warped point map is used as the positional encoding input.
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Input View 1 Input View 2 Novel view

Figure 10: The results show how the depth and camera poses predicted by VGGT from the two
left images are used to warp their image tokens into a shared intermediate target view, followed by
synthesizing a novel view from these aligned tokens.

A.2 ADDITIONAL QUALITATIVE RESULTS

In this appendix, we provide additional qualitative comparisons and visualizations.

include comparisons between our approach and the baseline methods listed in Table (1} |Figures 4
to [47) present comparisons with recent prompt-based image editing models, Flux.1 Kontext and
Qwen-Image-Edit. and [49] showcase our results on 3D-aware object editing, while [Fig-]
ures 50]and [51]illustrate our method applied to object removal. The images in[Figures 16|and[I7|are
sourced from the DL3DV dataset, and [49] are sourced from the Objectron dataset
madyan et al.,[2021)), while the remaining examples are collected from in-the-wild images, primarily
originating from the website and the LAION (Schuhmann et al.}[2022)) dataset. Due to space
limitations, some images here are compressed; please refer to the supplementary material for the
uncompressed versions.

A.3 QUANTITATIVE COMPARISONS

As discussed in the main text, gradually transforming to the target viewpoint through multiple steps
can improve the quality of the generated results. Here we report the quantitative effects of varying
the number of steps, as shown in Table 2] The results indicate that splitting the transformation into
up to 5 steps consistently improves the metrics, while further increasing the number of steps yields
only marginal gains.

To further demonstrate the effectiveness of our method, we additionally report Fréchet Inception
Distance (FID) (Heusel et al., [2017) to assess the quality of the synthesized images, and Rotation
error (R,,,) and Translation error (7¢,,) to evaluate the accuracy of the novel-view poses. The
computation of these metrics follows prior works (Liang et al, 2025}, [Chen et al, [2025}, [Yu et al.}
[2024), except that here the poses are directly estimated using VGGT. These results are shown in
Table[3l
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=

Novel Views

Figure 11: Visualization of a sequence of consecutive frames generated from a single input view.

Source view GenWarp-Flux ViewCrafter-Flux  Training-Free Flux

Figure 12: Comparison with several Flux-based baselines.
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Figure 14: Across various noisy monocular 3D reconstruction scenarios, our model consistently
produces robust outputs.
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Figure 15: Novel-view synthesis results for three specific test conditions.

Tanks-and-Temples RE10K DL3DV
PSNR?T SSIM?T LPIPS| PSNRfT SSIM{T LPIPS| PSNR{ SSIM{ LPIPS|

Ours I step 2212 0.732 0.174 21.65 0.816 0.162 2223 0.742 0.154
Ours 3 steps 2223 0.734 0.171 22.04 0.818 0.160 22.65 0.743 0.153
Ours Ssteps 22,51 0.737 0.170 2231 0.821 0.157 22.84 0.745 0.151
Ours 10 steps  22.46 0.738 0.169 22.35 0.822 0.156 22.90 0.748 0.152

Method

Table 2: Quantitative evaluation of different generation steps on Tanks-and-Temples, RE10K, and
DL3DV datasets. We report the average PSNR, SSIM, and LPIPS scores for novel view synthesis
from a single input image.

Method Tanks-and-Temples RE10K DL3DV
FID] Rerr | Terr 4 FID) Rerr | Terr 4 FIDyL Rerr | Terr 4
ZeroNVS ( 39.532 0.907 1.751 25.888 0.162 0.263 32.558 0.588 1.405

CameraCul (He etal |2024) 34.128 0.950 1.726 25.539 0.149 0.224 29.463 0.532 1.285
GenWarp (Seo et al}[2024 31.663 0.832 1498 23.633 0.161 0.245 23.588 0.419 0.992
NVS-Solver ot 35699 1.022 1395 29.250 0.190 0.363 27.271 0.483 1.187
ViewCrafter (Yu et al} 20 26.067 0.144 0356 24.088 0.063 0.172 23.409 0.105 0.275

DimensionX (Sun et 1. 2024) 24.131 0.126 0.315 23.185 0.071 0.149 22.233 0.099 0.253
ﬁ‘ﬁﬂﬁ%

SEVA (Zhou et al. 26.263 0.114 0.280 27.322 0.067 0.176 26.526 0.142 0.301
MVGenMaster (Cao et al., 2025) 28.159 0.136 0.339 24.378 0.060 0.144 25.894 0.107 0.277
See3D (Ma et al. 27.134 0.086 0.240 27.775 0.054 0.144 24215 0.166 0.318
Voyager (Huang et al.|[2025) 22903 0.074 0.194 17.456 0.050 0.156 20.964 0.083 0.155
FlexWorld (Chen et al|[2025)  22.194 0.108 0.201 18.519 0.062 0.129 20.408 0.069 0.147
GENSC(Renetai.I 202 21.978 0.054 0.168 16.063 0.030 0.111 21.426 0.095 0.142
Ours 18.418 0.040 0.131 14.778 0.023 0.076 17.775 0.063 0.110

Table 3: Quantitative comparison of different methods on Tanks-and-Temples, RE10K, and DL3DV
datasets. We report the average FID, R, and T¢,,. for novel view synthesis.
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Source view
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Source view

rafte

p I
@ 2.4

Source view

ViewCrafter GenWarp

Figure 16: Supplementary novel view synthesis (NVS) examples on DL3DV dataset.
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Source view

Source view

CameraCtrl See3D O GT

Figure 17: Supplementary novel view synthesis (NVS) examples on DL3DV dataset.
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Source view Ours

A
ViewCrafter Gen3C

Figure 18: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
rightward rotation, ViewCrafter produces only a small rotation with hand distortions and skin color
changes, GEN3C introduces facial distortions.
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Source view Ours

CameraCitrl ZeroNVS

Figure 19: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
rightward rotation, CameraCtrl and ZeroN'VS both cause facial distortions.
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Source view Ours

e

See3D MV GenMaster

Figure 20: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
rightward rotation, See3D yields inaccurate viewpoint changes and significantly alters the original
appearance, MVGenMaster fails to complete reasonable content for the human face.
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Ours

ViewCrafter

Figure 21: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
rightward rotation, ViewCrafter produces only a small rotation with hand distortions and skin color
changes, GEN3C introduces facial distortions.
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Source view Ours

CameraCtrl ZeroNVS

Figure 22: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
rightward rotation, CameraCtrl and ZeroN'VS both cause facial distortions.
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Source view Ours

See3D MVGenMaster

Figure 23: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the
30° rightward rotation, See3D and MVGenMaster both introduce distortions in the human face and
shoes.
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ViewCrafter Gen3C

Figure 24: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the
30° rightward rotation, ViewCrafter produces only a small rotation but completely distorts the face,
GEN3C introduces facial distortions.
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1454
1455 Figure 25: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
1455  rightward rotation, DimensionX completely distorts the human figure, Voyager introduces facial
1457 distortions.
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Source view Ours

SEVA FlexWorld

Figure 26: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
rightward rotation, SEVA completely distorts the human face, FlexWorld introduces facial distor-
tions.
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Figure 27: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the
30° rightward rotation, ViewCrafter completely distorts the human figure, GEN3C introduces facial
artifacts.
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Source view

CameraCtrl ZeroNVS

Figure 28: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
rightward rotation, CameraCtrl and ZeroN'VS both cause facial distortions.
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NVS-Solver GenWarp

Figure 29: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the
30° leftward rotation, NVS-Solver shows little change but introduces some distortions, GenWarp
produces blurred results.
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= 2

See3D R - MVGeﬁMaster

Figure 30: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
leftward rotation, See3D distorts the scene, and MVGenMaster adds noise to the results.
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Source view Ours

NVS-Solver GenWarp

Figure 31: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
leftward rotation, NVS-Solver introduces distortions on the sheep and alters the overall color tone,
GenWarp produces smaller changes but still distorts the sheep.
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Source view Ours

DimensionX Voyager

Figure 32: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
leftward rotation, DimensionX and Voyager both alter the shape of the flowers.
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NVS-Solver

Figure 33: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
leftward rotation, NVS-Solver and GenWarp show little change but generate blurred images.
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NVS-Solver

Figure 34: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
leftward rotation, NVS-Solver and GenWarp both introduce object distortions and produce blurred
results.
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Figure 35: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
leftward rotation, See3D distorts the scene, and MVGenMaster adds noise to the results.

37



Under review as a conference paper at ICLR 2026

DimensionX Voyager

Figure 36: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
leftward rotation, DimensionX and Voyager both alter the shape of the goblet.
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2109 Figure 37: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the
2101 30° leftward rotation, SEVA produces completely distorted results, FlexWorld introduces object
2102 distortions and alters the overall image style.
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Figure 38: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the
30° leftward rotation, NVS-Solver shows little change but introduces some distortions, GenWarp
produces blurred results.

40



Under review as a conference paper at ICLR 2026

Source view

See3D MVGenMaster

Figure 39: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
leftward rotation, See3D distorts the scene, and MVGenMaster adds noise to the results.
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Source view

FlexWorld

Figure 40: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
leftward rotation, SEVA shows little change, FlexWorld affects the floor patterns.
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Figure 41: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
leftward rotation, DimensionX and Voyager alter both the object shapes and the overall image style.

43



2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Source view Ours

FLUX.1 Kontext Qwen-Image-Edit

Figure 42: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
rightward rotation, FLUX only rotates the person without rotating the background, Qwen rotates in
the opposite direction and also changes the person’s pose.
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Source view Ours

FLUX.1 Kontext Qwen-Image-Edit

Figure 43: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
rightward rotation, FLUX shows only minor changes without rotating the background, Qwen alters
the person’s pose and expression without rotating the background.
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Source view Ours

FLUX.1 Kontext Qwen-Image-Edit

Figure 44: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the
30° rightward rotation, FLUX shows only minor changes, Qwen changes the person’s pose without
rotating the background.
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Source view Ours
FLUX.1 Kontext Qwen-Image-Edit

Figure 45: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
rightward rotation, FLUX only rotates the person’s head, Qwen changes the person’s pose.
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Source view Ours

FLUX.1 Kontext Qwen-Image-Edit

Figure 46: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
rightward rotation, FLUX shows only minor changes, Qwen changes the person’s pose.

48



2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Source view

FLUX.1 Kontext Qwen-Image-Edit

Figure 47: Supplementary novel view synthesis (NVS) examples on in-the-wild images. For the 30°
rightward rotation, FLUX shows only minor changes, Qwen changes the person’s pose.
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%
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Figure 48: Supplementary 3D-aware object editing examples on Objectron dataset.
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Input Transformation Result

Figure 49: Supplementary 3D-aware object editing examples on Objectron dataset.
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Removing Result

Figure 50: Supplementary object removing examples on in-the-wild images.
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Input Removing Result

Figure 51: Supplementary object removing examples on in-the-wild images.
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