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Abstract001

Traditional RLHF-based LLM alignment meth-002
ods and direct alignment counterparts like DPO003
assume a Bradley-Terry model of pairwise pref-004
erences. This assumption is challenged by non-005
deterministic or noisy preference labels, such006
as scoring of two candidate outputs with low007
confidence or low reward difference. This pa-008
per introduces DRDO (Direct Reward Distil-009
lation and policy-Optimization), which simul-010
taneously models rewards and preferences to011
avoid such degeneracy. DRDO directly mim-012
ics rewards assigned by an oracle while learn-013
ing human preferences with a novel preference014
likelihood formulation, while being fully of-015
fline. Results on Ultrafeedback, TL;DR, and016
AlpacaEval 2.0 show that DRDO-trained poli-017
cies surpass methods such as DPO and e-DPO018
in terms of expected rewards and are more019
robust to noisy preference signals and out-of-020
distribution (OOD) settings.021

1 Introduction022

Robust modeling of human preferences is essen-023

tial for producing usable large language models024

(LLMs). While popular alignment approaches im-025

plicitly assume that pairs of preferred and dispre-026

ferred samples in preference data have an unam-027

biguous winner, this does not reflect the reality of028

actual data, where human-annotated preferences029

may have low labeler confidence or the preference030

strength itself might be weak. As such, reward031

functions estimated on such data lead to a “pref-032

erence gap” between the reward model and the033

true preference distribution, and concomitant pol-034

icy degeneracy and underfitting. We address these035

challenges with the following novel contributions:036

1) We introduce Direct Reward Distillation and037

policy-Optimization (DRDO), a novel effi-038

cient, non-ensemble, reference-free method039

for preference optimization that explicitly dis-040

tills rewards into the policy model (Fig. 1);041

042

2) We provide a theoretical and practical ground- 043

ing of problems with alignment methods that 044

assume the Bradley-Terry model, demonstrat- 045

ing why they are challenged by nuanced or 046

“non-deterministic” preference pairs, and show 047

how DRDO avoids similar limitations; 048

3) Through experiments on Ultrafeedback, 049

TL;DR, and AlpacaEval 2.0, we show that 050

DRDO is better able to fit to nuanced or am- 051

biguous preferences without sacrificing per- 052

formance on clear preferences or large-scale 053

data. 054

2 Background and Related Work 055

Offline and Online Preference Optimization 056

Reinforcement Learning from Human Feedback 057

(RLHF) aims to harmonize LLMs with human pref- 058

erences and values (Christiano et al., 2017). Con- 059

ventional RLHF typically consists of three phases: 060

supervised fine-tuning, reward model training, and 061

policy optimization. Proximal Policy Optimization 062

(PPO; Schulman et al. (2017a)) is a widely used al- 063

gorithm in the third phase of RLHF. RLHF has been 064

extensively applied across various domains, includ- 065

ing mitigating toxicity (Korbak et al., 2023; Amini 066

et al., 2024), addressing safety-concerns (Dai et al., 067

2023), enhancing helpfulness (Tian et al., 2024), 068

web search and navigation (Nakano et al., 2021), 069

and enhancing reasoning in models (Havrilla et al., 070

2024). Casper et al. (2023) identified challenges 071

and problems throughout the entire RLHF pipeline, 072

from gathering preference data to model training 073

to biased results such as verbose outputs (Dubois 074

et al., 2024; Singhal et al., 2023; Wang et al., 2023). 075

Given the intricacy and complexity of online 076

preference optimization (Zheng et al., 2023), re- 077

search has proliferated into more efficient and sim- 078

pler offline algorithms. Direct Preference Optimiza- 079

tion (DPO; Rafailov et al. (2024b)) is a notable 080

example, which demonstrates that the same KL- 081

constrained objective as RLHF can be optimized 082
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Figure 1: Unlike popular supervised preference alignment algorithms like Direct Preference Optimization (DPO; Rafailov et al.
(2024b)) that learns rewards implicitly, DRDO directly optimizes for explicit rewards from an Oracle while simultaneously
learning diverse kinds of preference signals during alignment. Optimized with a simple regression loss based on difference
of rewards assigned by the Oracle and the introduction of a focal-log-unlikelihood component (see Sec. 4), DRDO bridges the
gap between the preference distribution estimated from the data and the true preference distribution p∗. Additionally, DRDO
does not require an additional reference model during training and can leverage reward signals even when preference labels are
not directly accessible.

without explicitly learning a reward function. The083

problem is reformulated as a maximum likelihood084

estimation (MLE) over the distribution πθ.085

With the growing focus on offline alignment,086

recent work has proposed various solutions to087

preference underfitting in this setting. These088

include learning from a confidence set of re-089

wards (Fisch et al., 2024), adopting a general prefer-090

ence model (Munos et al., 2023; Azar et al., 2024),091

or applying a straightforward regularization of the092

original DPO objective (Pal et al., 2024). All these093

approaches rely on a reference model, not only094

for expressing the optimal policy as the analyti-095

cal solution to the minimum relative entropy prob-096

lem (Ziebart et al., 2008; Peng et al., 2019) but097

also to stabilize training by constraining the policy098

distribution close to the reference model. While099

theoretically sound, Munos et al. (2023) suggests100

this constraint can make policies prioritize high101

rewards over truly learning human preferences.102

As such, certain works avoid this constraint103

and focus on lightweight “reference model-104

free” solutions using a careful construction of105

DPO-inspired Bradley-Terry (BT)-based implicit106

rewards—such as logit-based (Hong et al., 2024),107

length-normalized (Meng et al., 2024), or un-108

normalized implicit rewards (Xu et al., 2024)—109

or relative preference label strength (Nath et al.,110

2025). Similarly, efforts to learn policies from111

general preference models aim to reduce depen-112

dence on the sampling distribution, a key limita-113

tion of Bradley-Terry models. Munos et al. (2023),114

Rosset et al. (2024), and Calandriello et al. (2024)115

use game-theoretic “online” approaches for robust-116

ness, while Choi et al. (2024) propose a Chain-of-117

Thought (CoT) policy with pairwise conditioning118

to improve alignment. However, these methods of-119

ten suffer from sample inefficiency due to iterative 120

sampling from approximate geometric mixtures 121

of policies (Rosset et al., 2024), and while they 122

mitigate dependence on the sampling distribution, 123

they do not model non-deterministic preferences in 124

policy training. 125

Several different classes of preference optimiza- 126

tion objective have been explored. Ranking ob- 127

jectives extend comparisons beyond pairs (Dong 128

et al., 2023; Liu et al., 2024; Song et al., 2024; Yuan 129

et al., 2023), while Hong et al. (2024) and Xu et al. 130

(2023) propose reference-free methods. Bansal 131

et al. (2024) optimize instructions and responses 132

jointly, improving on DPO, and Zheng et al. (2024) 133

enhances post-training extrapolation between SFT 134

and aligned models. 135

In contrast to the aforementioned approaches, 136

DRDO adaptively learns such preferences while 137

decoupling its learning from a reference model- 138

based KL-divergence constraint, and derives its ob- 139

jective from knowledge distillation (Hinton, 2015) 140

and focal-loss literature (Lin et al., 2018; Yi et al., 141

2020) with a novel contrastive log-unlikelihood 142

objective that learns preferences adaptively. 143

3 Motivation for DRDO 144

Problem Formulation Let Dpref = 145

{(x, yw, yl)}Ni=1 be an offline dataset of pairwise 146

preferences with sufficient coverage, where yw 147

and yl are the respective winning (preferred) and 148

losing (less preferred) completions given a context 149

x. In contrast to deterministic preferences, which 150

are defined as those where p∗ ∈ {0, 1} (Fisch 151

et al., 2024), let Dnd ⊂ Dpref denote the subset 152

of non-deterministic preference pairs where 153

P (yw ≻ yl|x) ≈ 1
2 . These cannot be perfectly 154

captured by Bradley-Terry models but are prevalent 155
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in popular preference alignment datasets.1 Assume156

three possible completions y1, y2, y3 ∈ Y , the157

space of all possible completions. Let r∗(x, y) ∈ R158

be an underlying true reward function that is159

deterministic and finite for all completions,160

πθ∗(y|x) be the learned policy, and πref(y|x) be161

the reference policy with supp(πref) = Y . Given162

supp(ρ) = supp(µ) × Y × Y where ρ is the163

data distribution and µ is the context distribution,164

the challenge is leaning a policy to effectively165

handle both deterministic and non-deterministic166

preferences in an offline fashion.167

Misalignment of Rewards and Preferences Al-168

though preferences p∗ can be implicit in rewards,169

refining LLMs based on rewards alone does not im-170

ply that they learn preferences optimally. We call171

this the misalignment problem, where the two ob-172

jectives are fundamentally divergent (Munos et al.,173

2023). This issue is particularly significant in align-174

ing high-dimensional policies like LLMs—where175

the training data often contains non-deterministic176

samples or weak learning signals. Such uncer-177

tainty often appears in equal or near-equal rewards178

or ambiguous expert judgments (Stiennon et al.,179

2020). In other words, traditional reward model-180

ing assumes that maximizing reward leads to op-181

timal behavior, but in preference-based learning,182

the best policy can be different from the highest-183

reward policy. Where the reward-optimal policy,184

or the policy that maximizes Elo score under the185

BT assumption, fundamentally diverges from the186

preference optimal policy, or the policy that maxi-187

mizes the probability of selecting the ground truth188

winning response—this creates a “preference gap”189

and the misalignment problem occurs. However,190

since LLMs are overparameterized with many near-191

optimal solutions (Rafailov et al., 2024a) and are192

expected to generalize across diverse and often un-193

certain preferences (Zeng et al., 2024), it is essen-194

tial to understand this divergence or preference gap,195

as it can be especially sensitive to the existence of196

non-deterministic preferences in training.2197

This insight motivates the core of DRDO: to ef-198

fectively learn from non-deterministic preferences199

while maintaining performance across general pref-200

1For instance, an analysis of the popular RLAIF-inspired
scalable alignment benchmark Ultrafeedback (Cui et al., 2024)
reveals that it contains approximately 17% non-deterministic
samples as defined above (Nath et al., 2025).

2Non-deterministic preferences differ from noisy (flipped)
labels (Chowdhury et al., 2024; Wang et al., 2024a), which are
often handled with label smoothing, data pruning, or noise-
aware training.

erence data, we bound this preference gap to pos- 201

sible sources of errors scaled by the offline data 202

coverage, while simultaneously learning both high- 203

quality distilled rewards and preferences in an effi- 204

cient offline manner. Mathematically, we illustrate 205

this sensitivity to non-deterministic pairs in the 206

BT model in Lemma 1 and then provide an upper 207

bound to this preference gap in Lemma 2. 208

Lemma 1 (Sensitivity of Preference Gap to 209

Non-Deterministic Preferences). The preference 210

gap δP between reward-optimal (π∗
R) and 211

preference-optimal (π∗
P ) policies can be highly sen- 212

sitive to the presence of non-deterministic prefer- 213

ence pairs (where P(y ≻ y′) = P(y′ ≻ y) = 214

1/2). Such non-determinism can lead to a sub- 215

stantial increase in δP even when the reward gap 216

δR (based on a fixed reward function R) remains 217

unchanged. 218

(See proof in Appendix A.1.) The core insight 219

here is that common approaches like DPO that as- 220

sume a BT preference model are more likely to 221

be sensitive to this preference gap, since they as- 222

sume that true preferences are learnable from a 223

mapping of preferences onto differences in scalar 224

implicit rewards. Prior work (Azar et al., 2024; 225

Fisch et al., 2024) highlights DPO’s practical ten- 226

dency to underfit the true preference distribution 227

because of unboundedness of its implicit rewards. 228

For example, for two completions y and y′ with a 229

non-deterministic preference relation, the DPO esti- 230

mate of p∗(y ≻ y′) using σ
(
β log πθ(y|x)πref(y

′|x)
πθ(y′|x)πref(y|x)

)
231

leads πθ to assign equal rewards to both, mean- 232

ing it learns that r∗(x, y) ≈ r∗(x, y′) for any 233

(x, y, y′) ∈ Dnd. This implies that the reward 234

model fails to strongly differentiate between com- 235

pletions in these cases, even though one is explicitly 236

“chosen” in the true preference data and the other is 237

“rejected,” thus leading to the preference gap, and 238

the motivation of DRDO to address these issues. 239

4 Direct Reward Distillation and 240

policy-Optimization (DRDO) 241

DRDO alignment involves two steps. First, we 242

fit an Oracle model O to the annotated preference 243

data. Second, we useO as a teacher to align the pol- 244

icy model (student) with a knowledge-distillation- 245

based multi-task loss (Hinton, 2015; Gou et al., 246

2021) that regresses the student’s rewards onto 247

those assigned by O. The student model simul- 248

taneously draws additional supervision from binary 249

preference labels for efficient use of finite data. 250
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Training the Oracle Reward Model We251

use Yang et al. (2024)’s strategy to optimize a qual-252

ity and generalizableO while retaining its language253

generation abilities. Regularizing the shared hidden254

states with a language generation loss in addition255

to the traditional RLHF-based reward modeling256

improves generalization to out-of-distribution pref-257

erences. For this we initialize a separate linear258

reward head (parametrized by ϕ′)3 on top of the259

base LM (parametrized by ϕ), which adds only260

0.003% more parameters compared to the LM’s261

language modeling head. This also helps minimize262

reward hacking (Kumar et al., 2022; Eisenstein263

et al., 2024), especially in offline settings. As such,264

O is optimized to minimize the following objective:265

266267

LO(rϕ,Dpref) = −E(x,yw,yl)∼Dpref

[
268

(1− α)(log σ(rϕ′(x, yw)−269

rϕ′(x, yl))) + α log(rϕ(yw))
]

(1)270

271 where α is the strength of language-generation272

regularization on the winning response log-273

likelihoods assigned by O (denoted log(rϕ(yw))274

and ϕ is the parameters of O being estimated.275

Simultaneous Student Policy Alignment to Re-276

wards and Preferences A converged Oracle O277

can plausibly estimate true pointwise reward dif-278

ferences r∗(x, y1) − r∗(x, y2) for any unlabeled279

sample (x, y1, y2), without needing explicit access280

to preference labels. Next, the student model πθ is281

optimized to match its own reward predictions r̂1282

and r̂2 to O’s reward differences, aligning closely283

with O’s behavior, while O itself does not get up-284

dated. The student model’s reward estimates are285

computed with a linear reward head on top of the286

base LM, similar to Oracle training. This opti-287

mization uses a knowledge-distillation loss (Lkd)288

that combines both a supervised ℓ2-norm term and289

a novel focal-softened (Lin et al., 2018; Welleck290

et al., 2020) log odds-unlikelihood component:291292

Lkd(r∗, πθ) = E(x,y1,y2)∼Dpref

[
293

(r∗(x, y1)− r∗(x, y2)− (r̂1 − r̂2))
2︸ ︷︷ ︸

Reward Difference

−294

α(1− pw)
γ log

(
πθ(yw | x)

1− πθ(yl | x)

)
︸ ︷︷ ︸

Contrastive Log-"unlikelihood"

]
, (2)295

3For simplicity of notation, on the LHS of Eq. 1 we sub-
sume parameters ϕ′ into ϕ.

Algorithm 1 DRDO: Direct Reward Distillation
and policy-Optimization
1: Input: Preference dataset Dpref = {(x, yw, yl)}; initial-

ized policy + reward head πθ,θ′ ← SFT(θ)⊕ rθ′
2: Output: Optimized parameters θ for aligned policy πθ

3: Train oracle reward model rϕ (Eq. 1)
4: for t = 1 to T do
5: for each (x, yw, yl) ∈ Dpref do
6: Compute oracle rewards: r∗1 = rϕ(x, yw), r∗2 =

rϕ(x, yl)
7: Compute student rewards: r̂1 = rθ′(x, yw), r̂2 =

rθ′(x, yl)
8: Compute distillation loss Lkd (Eq. 2)
9: Update πθ,θ′ using gradient step on Lkd

10: end for
11: end for
12: return Final policy πθ

where pw = σ(zw − zl) and quantifies the 296

student policy’s confidence in correctly assigning 297

the preference from zw = log πθ(yw | x) and 298

zl = log πθ(yl | x), or the log-probabilities of the 299

winning and losing responses, respectively. Hy- 300

perparameters γ and α regulate the strength of 301

the modulating term and weighting factor respec- 302

tively.4 As shown in Eq. 2, there is no shared 303

parametrization between the policy and O. LO 304

is only a function of O’s own parameters ϕ and the 305

preference dataset, Dpref. The Oracle parameters 306

are not updated during policy training. Algorithm 1 307

shows a detailed breakdown of DRDO training. 308

Theoretical Analysis: DRDO 309

Lemma 2 (DRDO Preference Gap Bound). For 310

a policy πθ trained with DRDO using Oracle re- 311

wards r∗oracle, the preference gap δP = VP(π
∗
P)− 312

VP(πθ) (w.r.t. true preferences P) is bounded by 313

δP ≤ C
(√

ϵOracle error +
√
ϵr,oracle

)
+ ϵopt, where 314

C is the concentrability coefficient, and ϵOracle error, 315

ϵr,oracle, and ϵopt are the error in the Oracle captur- 316

ing true reward differences, the student’s reward 317

distillation error, and the student’s policy optimiza- 318

tion error, respectively. See Lemma 4 and its proof 319

in Appendix B for a detailed explication. 320

Lemma 2 decomposes the preference gap in 321

DRDO into three potential sources of error: Oracle 322

quality (ϵOracle error), reward distillation (ϵr,oracle), 323

and policy optimization (ϵopt). This decomposition 324

is especially important when the true preferences 325

are non-deterministic or deviate from the BT as- 326

sumption, as learned BT-style Oracles may over- 327

4Note that we do not use α as it is traditionally used in focal
loss for weighting class imbalances (Mukhoti et al., 2020).
Instead, since the true preference distribution is unknown, we
tune the empirical optimal value based on validation data and
keep it fixed during training.
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fit to their training distributions. In such cases,328

ϵOracle error can increase if different sampling dis-329

tributions induce different BT parameters. To ad-330

dress this, DRDO incorporates an SFT-based reg-331

ularization when training O (Eq. 1)—improving332

out-of-distribution generalization and lowering Or-333

acle error. Moreover, in offline settings, since the334

DRDO student is trained on the same data distribu-335

tion as the Oracle, the reward target r∗oracle (affect-336

ing ϵr,oracle) and policy preference learning signal337

(affecting ϵopt) remain aligned. This design enables338

minimizing the sources of error and places an upper339

bound on the preference gap, for effective knowl-340

edge transfer and robust policy learning even in the341

presence of non-trivial amount of non-deterministic342

samples, as our experiments show.343

Our above analysis of the problem of misaligned344

preferences and practical limitations in current345

methods directly motivate DRDO—we propose a346

simple offline alignment algorithm that optimizes347

for rewards and preferences simultaneously, thus348

circumventing the divergence issue. By distilling349

rewards from a converged oracle instead of implicit350

rewards, DRDO avoids policy collapse observed in351

popular algorithms like DPO and e-DPO under non-352

deterministic preference data, offering a principled353

alternative to conventional alignment approaches.354

How does the DRDO gradient update affect pref-355

erence learning? “Contrastive log-unlikelihood”356

in Eq. 2 is DRDO’s preference component. One357

can immediately draw a comparison with DPO358

which uses a fixed β parameter. DRDO uses359

a modulating focal-softened term, (1 − pw)
γ ,360

where πθ learns from both deterministic and non-361

deterministic preferences, effectively blending re-362

ward alignment with preference signals to guide363

optimization. Intuitively, unlike DPO’s β that is364

constant for every training sample, this modulating365

term amplifies gradient updates when preference366

signals are weak (pw ≈ 0.5) and tempering updates367

when they are strong (pw ≈ 1), thus ensuring ro-368

bust learning across varying preference scenarios.369

When πθ assigns high confidence to the winning re-370

sponse (pw ≈ 1), the focal loss contribution dimin-371

ishes (see Eq. 2), reflecting minimal penalty due372

to strong deterministic preference signals. How-373

ever, for harder cases with non-deterministic true374

preference (p∗(y ≻ y′) ≈ (p∗(y′ ≻ y)), the focal375

term α(1−pw)
γ keeps DRDO gradient updates ac-376

tive and promotes learning even when preferences377

are ambiguous (Fig. 4 in Appendix B.5). This378

adaptive behavior ensures that DRDO maintains 379

effective preference learning across varying pref- 380

erence strengths, where conventional methods like 381

DPO struggle. See Lemma 5 and Lemma 6 for 382

in-depth analysis. As shown in the gradient analy- 383

sis in Appendix B.5 (Fig. 4) with empirical proof 384

in Fig. 5 (bottom-right), this modulating term acts 385

like DPO’s gradient scaling term, in that it scales 386

the DRDO gradient when the model incorrectly 387

assigns preferences to easier samples. 388

5 Experimental Setup 389

Our experiments address two questions: How ro- 390

bust is DRDO alignment to nuanced or diverse 391

preferences, in OOD settings? and How well 392

does DRDO achieve reward distillation with 393

respect to model size? We empirically investi- 394

gate these questions on two tasks: summarization 395

and single-turn instruction following. Our exper- 396

iments, including choice of datasets and models 397

for each task are designed to to validate our ap- 398

proach as robustly as possible, subject to research 399

budget constraints (see Appendix C.2 for more). 400

We compare our approach with competitive base- 401

lines such as DPO (Rafailov et al., 2024b) and 402

e-DPO (Fisch et al., 2024) as well as on-policy 403

methods like PPO (Schulman et al., 2017b), includ- 404

ing the supervised finetuned (baseline) versions 405

depending on the experiment. Some minor notes 406

on the experimental setup described below can be 407

found in Appendix C. 408

How robust is DRDO alignment to nuanced or 409

diverse preferences, in OOD settings? We eval- 410

uate this using the Reddit TL;DR summarization 411

dataset (Völske et al., 2017; Stiennon et al., 2020) 412

and CNN/Daily Mail Corpus (Nallapati et al., 413

2016). For robust out-of-domain (OOD) evalua- 414

tion, we train models on Reddit TL;DR and use 415

CNN/Daily Mail articles for an OOD test distribu- 416

tion. We split the original training data (Dall) based 417

on human labeler confidence in their preference an- 418

notation (high-confidence vs. ℓow-confidence) and 419

token edit distance between the preferred and the 420

dispreferred responses (high-edit distance vs. ℓow- 421

edit distance). This results in two splits: Dhc,he 422

and Dℓc,ℓe. Each contains ∼10k training sam- 423

ples, where the former comprises samples from 424

the upper 50th percentile of the confidence and 425

edit distance scores, mutatis mutandis. Dhc,he and 426

Dℓc,ℓe represent “easy” (deterministic) and “hard” 427

(non-deterministic) preference samples where com- 428

bined labeler confidence and string-dissimilarity 429
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act as proxy for the extreme ends of preference430

strengths/signals. See Appendix C.3 for more de-431

tails. All baselines are initialized with Phi-3-Mini-432

4K-Instruct weights (Abdin et al., 2024) with super-433

vised fine-tuning (SFT) on Reddit TL;DR human-434

written summaries.435

How does model size affect reward distillation?436

We evaluate all baselines on the cleaned version437

of the Ultrafeedback dataset (Cui et al., 2024)438

This experiment is conducted on the OPT suite of439

models (Zhang et al., 2022), at 125M, 350M, 1.3B,440

and 2.7B parameter sizes. The student policy is441

trained with SFT on the chosen responses of the442

dataset, following Rafailov et al. (2024b). We ex-443

clude larger OPT models to focus on testing our dis-444

tillation strategy with full-scale training, rather than445

parameter-efficient methods (PEFT; Houlsby et al.446

(2019); Hu et al. (2021)) to allow a full-fledged447

comparison considering all trainable parameters of448

the base model. For completeness and comparison449

across model families, we also include Phi-3-Mini-450

4K-Instruct following the same initialization.451

Evaluation CNN/Daily Mail Corpus provides452

human-written reference summaries, so we use a453

high-capacity Judge to compute win-rates against454

baselines on 1,000 randomly-chosen samples. Fol-455

lowing Rafailov et al. (2024b), we use GPT-4o456

to compare the conciseness and the quality of the457

DRDO summaries and baseline summaries, while458

grounding its ratings to the human written sum-459

mary. See Appendix G for our prompt format. For460

instruction following on Ultrafeedback, we sam-461

ple generations from DRDO and all baselines at462

various diversity-sampling temperatures and report463

win-rates on the Ultrafeedback test set against O.464

Following Lambert et al. (2024), we consider a win465

to be when, for two generations y1 and y2, we get466

r(x, y1) > r(x, y2), where r(x, y1) and r(x, y2)467

are the expected rewards (logits) from the policies468

being compared. Additionally, we evaluate DRDO469

and baselines (all trained on Ultrafeedback) on Al-470

pacaEval 2.0, a 805-sample OOD benchmark with471

length-controlled comparisons judged by GPT-4472

Turbo (Dubois et al., 2025). Hyperparameters and473

model configurations are given in Appendix E.474

6 Results475

Non-deterministic preferences Table 1 shows476

the win rates computed with GPT-4o as judge477

for 1,000 randomly selected prompts from the478

CNN/Daily Mail test corpus under OOD settings.479

We follow similar settings as Rafailov et al. (2024b)480

but further ground the prompt using human-written 481

summaries as reference for GPT to conduct its 482

evaluation (see Appendix G). For a fairer eval- 483

uation (Wang et al., 2024c; Goyal et al., 2023; 484

Rafailov et al., 2024b), we swap positions of πθ- 485

generated summaries y in the prompt to eliminate 486

any positional bias and evaluate the generated sum- 487

maries on criteria like coherence, preciseness and 488

conciseness, with the human written summaries 489

explicitly in the prompt to guide evaluation. 490

CNN/Daily Mail (GPT-4o as Judge)

DRDO vs. e-DPO
Dall 78.27%
Dhc,he 80.92%
Dℓc,ℓe 79.01%

DRDO vs. DPO
Dall 80.78%
Dhc,he 79.11%
Dℓc,ℓe 79.79%

Gold vs. DRDO 52.82%
Gold vs. e-DPO 54.38%
Gold vs. DPO 58.54%

AlpacaEval 2.0 (GPT-4 Turbo as Judge)

SFT vs. GPT-4 Turbo 8.86%
DPO vs. GPT-4 Turbo 11.01%
e-DPO vs. GPT-4 Turbo 11.65%
PPO vs. GPT-4 Turbo 13.67%
DRDO vs. GPT-4 Turbo 15.95%

Table 1: Length-controlled win rates computed for 1,000
randomly selected evaluation samples from the CNN/Daily
Mail Corpus, and for OOD evaluation on AlpacaEval 2.0
(N = 805) using the Phi-3 model. Dall, Dhc,he, and Dℓc,ℓe

represent TL;DR training splits. “Gold” refers to human-
written reference summaries used in prompts to ground the
win rate computations. Both e-DPO and PPO use the same
oracle reward as DRDO. See Table 6 for AlpacaEval dataset-
wise breakdown.

For all policies πθ trained on all three splits of 491

the training data—Dall, Dhc,he, and Dℓc,ℓe—we 492

compute the win-rates of DRDO vs. e-DPO and 493

DPO to evaluate how each method performs at var- 494

ious levels of preference types. Across all settings, 495

DRDO policies significantly outperform the two 496

baselines. For instance, DRDO’s average win rates 497

are almost 79.4% and 79.9% against e-DPO and 498

DPO, respectively. As we hypothesized, DRDO- 499

aligned πθ can learn all preferences, determinis- 500

tic and non-deterministic, effectively, and is supe- 501

rior at modeling Dℓc,ℓe the subset containing more 502

non-deterministic preference samples, without sac- 503

rificing performance on the deterministic subset 504

(Dhc,he) and overall (Dall). This suggests that 505

DRDO is more robust to OOD-settings at various 506

levels of difficulty in learning human preferences. 507
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Reward distillation Fig. 2 shows results from508

our evaluation of DRDO’s reward model distil-509

lation framework compared to DPO and e-DPO510

as well as baseline SFT-trained policies on the511

Ultrafeedback evaluation data, when compared512

across various model parameter sizes and at vary-513

ing levels of temperature sampling. We sample514

πθ-generated responses to instruction-prompts in515

the test set using top-p (nucleus) sampling (Holtz-516

man et al., 2019) of 0.8 at various temperatures517

∈ {0.2, 0.5, 0.7, 0.9}.518

Figure 2: Average Ultrafeedback win-rates computed with
DRDO’s Oracle reward model against SFT, DPO and e-DPO
baselines at various diversity sampling temperatures (T ).

DRDO significantly outperforms competing519

baselines, especially for larger models in the OPT520

family. DRDO-trained OPT-1.3B, OPT-2.7B, and521

Phi-3-Mini-4K-Instruct achieve average win rates522

of 76%, 74%, and 72%, respectively, across all523

baselines. This is notable as responses are sampled524

on unseen prompts, and DRDO’s policy alignment525

is reference-model free. DRDO’s robustness to di-526

versity sampling further boosts performance, up527

to an 88% win rate against DPO with the Phi-3-528

Mini-4K-Instruct model. At lower temperatures,529

DRDO’s posted gains are more modest. Our results530

also indicate that performance is correlated with531

model size, as DRDO policies of the same size532

as the Oracle (1.3B) show the strongest gains. In533

smaller models, results are more mixed.5 DRDO534

shows moderate improvement and posts smaller535

gains against SFT models.536

5Apart from lower overall model capacity, this may reflect
length bias (Singhal et al., 2024; Meng et al., 2024), as smaller
models averaged more tokens (211.9 vs. 190.8) than policies,
closer to Ultrafeedback targets (168.8). See Appendix E.

7 Analysis 537

Table 2 shows example generations from DRDO 538

and a competitor where the DRDO example was 539

preferred by the automatic judge. First is a sample 540

from Ultrafeedback against a DPO generation and 541

second is a TL;DR sample against an e-DPO gen- 542

eration. We see that the DRDO responses are more 543

concise and on-topic while the competitor output 544

condescends to the user, or includes extraneous text 545

about fulfilling the request. 546

Using GPT-4o as a judge to approximate true 547

human preferences may be prone to bias, so we 548

further validate our approach by investigating Or- 549

acle reward advantage over the above mentioned 550

human written summaries as well as on-policy gen- 551

erations from an SFT-trained model. Fig. 3a shows 552

the computed expected reward advantages on the 553

CNN Daily TL;DR evaluation set, sampled accord- 554

ing to the method outlined in Sec. 6. Rewards 555

were computed using our Oracle (trained with Phi- 556

3) on these sampled generations and normalized. 557

To compute the advantage, we used human writ- 558

ten summaries (Fig. 3a). DRDO improves perfor- 559

mance across various temperature samplings over 560

a baseline SFT policy, and brings in a considerable 561

performance gain over competitive baselines like 562

DPO and ensemble-based e-DPO while also being 563

robust to OOD settings. 564

(a) (b)

Figure 3: (a) Oracle expected reward advantage on CNN/Daily
Mail articles. DRDO shifts expected rewards rightward com-
pared to DPO/e-DPO. (b) Win rates against GPT-4 Turbo on
Alpaca Eval 2.0 vs. mean unique tokens across models.

Our evaluations vs. “gold” summaries in Ta- 565

ble 1 also demonstrate where bias may arise in the 566

GPT-4o evaluation (win counts and win rates are 567

shown for gold samples). GPT-4o narrowly prefers 568

generated summaries to human-written ones. One 569

possible reason could be that Reddit TL;DR data is 570

massive and crowd-sourced which naturally results 571

in noisy labels. However, under this experiment 572

too, DRDO-trained policies are better-performing 573

than e-DPO and DPO, by about 1.5–6%. We should 574

note that human summaries may contain more im- 575

plicit diversity than generated summaries, and this 576
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Prompt/Context Competitor DRDO

Which of these sentences doesn’t make sense? 1. The sentence “the garden has so many flowers” makes Sentence B: “the garden has so many pigs” does not
Options: no sense. The phrase “so many flowers” makes no sense. make sense because the garden has no pigs. The sentence
- Sentence A: “the garden has so many flowers” The phrase “so many pigs” makes no sense. implies that there are pigs in the garden, but there is
- Sentence B: “the garden has so many pigs” 2. The sentence “the garden has so many flowers” makes no evidence to support this.
Hmm, let me think, I want to lay out the solution perfect sense. The phrase “so many flowers” makes
in detail perfect sense. The phrase “so many pigs” makes perfect

sense.
If you disagree, you’re wrong, and you should go back
to English class.

Summarize this news article clearly and concisely. TL;DR: Rocker Jack White will take a brief, $3 acoustic TL;DR: Jack White announces a $3 acoustic tour in
Use TL;DR in your response: tour to the U.S. states he has yet to perform in. Tickets five states he hasn’t played yet. Tickets are $3, one per
TITLE: Jack White to play mystery $3 shows are limited to one per person and will be sold on a first- person, and available only at the venue on a first-come,
<2015 Billboard article on upcoming Jack White come, first-served basis. first-served basis.
acoustic tour> (full text omitted for length) I’m sorry, but I cannot fulfill this request.

Table 2: Example generations from DRDO and competing methods, showing where DRDO generates more preferred responses.

may demonstrate the “regression to the mean” ef-577

fect in LLM generation (Wu et al., 2024).578

On AlpacaEval 2.0 with GPT-4 Turbo as the579

judge (see Table 1 for overall results and Table 6 for580

detailed dataset-wise breakdown), DRDO achieves581

the highest overall win rate at 15.95%, outper-582

forming PPO (13.67%), e-DPO (11.65%), DPO583

(11.01%), and SFT (8.86%). These results re-584

flect DRDO’s ability to generalize effectively under585

length-controlled evaluation, surpassing both of-586

fline and on-policy baselines. To ensure that model587

performance evaluated with GPT-4 Turbo judge588

does is indeed robust to token-diversity bias (Wang589

et al., 2023), we plot the overall win-rates versus590

mean unique tokens across models in Figure 3b.591

No statistically significant correlation (r = 0.06, p592

= 0.93) exists between response diversity and win593

rates, indicating DRDO’s superior performance is594

not attributable to diversity-bias in LLM judges, in595

addition to length-bias (Dubois et al., 2025) and596

likely due to actual response quality.597

More importantly, while PPO is competitive with598

DRDO, Table 1 results suggest that DRDO more599

effectively leverages the oracle reward model while600

being fully offline, unlike PPO which requires on-601

line (on-policy) sampling and drastically increases602

compute requirements—even though both methods603

use the same oracle reward model.604

Ablations We conducted an ablation on 40 ran-605

domly sampled prompts from the CNN/Daily Mail606

test set, using GPT-4o as a judge, comparing a607

full DRDO-aligned model (Phi-3-Mini-4K-Instruct608

aligned using DRDO policies trained on Reddit609

TL;DR) to DRDO with only reward distillation and610

only contrastive log-unlikelihood. Full DRDO won611

over DRDO with only contrastive log-likelihood612

85%-15%, and over DRDO with only reward distil-613

lation 90%-10%. This shows that both components614

are critical to DRDO’s success.615

We also examined the sensitivity of DRDO’s γ616

vs. DPO’s β on randomly sampled prompts from 617

the Ultrafeedback evaluation set. We find that de- 618

spite DRDO’s exclusion of the KL constraint on 619

πref, DRDO recovers more expected rewards sig- 620

nifying a more optimal trade-off between reward 621

optimization and divergence from πref. At γ = 2, 622

DRDO wins on 5% more samples than DPO de- 623

spite a slightly larger KL-divergence. This suggests 624

that explicit reward distillation in DRDO with pref- 625

erences being learned adaptively (via γ) makes it 626

more Pareto-optimal especially in the presence of 627

non-deterministic preferences. See Appendices F.2 628

and J for a more comprehensive discussion. 629

8 Conclusion 630

We introduced Direct Reward Distillation and 631

policy-Optimization (DRDO), a principled ap- 632

proach to preference optimization that unifies the 633

reward distillation and policy learning stages into a 634

single, cohesive framework. Unlike popular meth- 635

ods like DPO that rely heavily on implicit reward- 636

based estimation of the preference distribution, 637

DRDO uses an Oracle to distill rewards directly 638

into the policy model, while simultaneously learn- 639

ing from varied preference signals, leading to a 640

more accurate estimation of true preferences. Our 641

experiments on Reddit TL;DR data for summariza- 642

tion as well on instruction-following in Ultrafeed- 643

back and AlpacaEval 2.0 suggest that DRDO is 644

not only high-performing when compared head- 645

to-head with competitive methods like DPO and 646

PPO but is also particularly robust to OOD settings. 647

More importantly, unlike traditional RLHF that 648

requires “online” rewards, reward distillation in 649

DRDO is simple to implement, is model-agnostic 650

since it is reference-model free and efficient, since 651

Oracle rewards are easy to precompute. 652

Limitations 653

DRDO still requires access to a separate Oracle 654

reward model even though the Oracle need not be 655

8



in loaded in memory during DRDO alignment as656

all expected rewards can effectively be precom-657

puted. However, our experimental results on three658

datasets including OOD settings suggest that this is659

a feasible trade-off especially when aligning mod-660

els of smaller sizes (when compared to models like661

LLaMA) when performance gains need to maxi-662

mized under limited compute settings. Some of our663

theoretical insights rely on strict assumptions, how-664

ever, our insights provide additional justification665

and likely explanations of how preference align-666

ment in realistic settings (where data might have667

a non-trivial amount of non-deterministic prefer-668

ences) can benefit from approaches like DRDO.669

We did not experiment with cross-model dis-670

tillation in this work, where data was mostly in671

English (except non-English instructions in Ultra-672

feedback). However, since DRDO is a reference-673

model free framework and Oracle rewards can be674

precomputed, one can easily extend our method675

for cross-model distillation frameworks. Finally,676

although in this paper, we approximated the non-677

deterministic preference settings using human la-678

beler confidence as a proxy for non-determinism,679

true human preferences may be subtle and prone680

to variations along multiple dimensions, at times681

even temporally (Tversky, 1969).682

Ethical Statement683

In this paper, we presented a general preference op-684

timization method, which was demonstrated using685

existing pretrained LLMs as base models. As with686

all LLMs pretrained on internet-scale raw data in a687

self- or unsupervised manner, the models we eval-688

uated, including those aligned with DRDO, share689

the general LLM tendency toward generating out-690

puts that reflect certain inherent risks and biases,691

even post-alignment. DRDO provides no inherent692

guarantees against stereotypes, misinformation, or693

the societal and cultural biases present in the orig-694

inal training data. Although we did not conduct695

any specific red-teaming efforts to root out such696

issues, we believe efforts in preference alignment697

like ours will be a crucial step towards resolving698

such limitations in modern LLMs.699
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A Proofs and Derivations 1073

A.1 Divergence under Non-deterministic 1074

Preferences for Constrained Optimization 1075

Lemma 3 (Sensitivity of Preference Gap to 1076

Non-Deterministic Preferences). The preference 1077

gap δP between reward-optimal (π∗
R) and 1078

preference-optimal (π∗
P ) policies can be highly sen- 1079

sitive to the presence of non-deterministic prefer- 1080

ence pairs (where P(y ≻ y′) = P(y′ ≻ y) = 1081

1/2). Such non-determinism can lead to a sub- 1082

stantial increase in δP even when the reward gap 1083

δR (based on a fixed reward function R) remains 1084

unchanged. 1085
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Proof. Below, we provide a concrete illustration1086

of the sensitivity of the preference gap in the1087

presence of non-deterministic preference pairs1088

for a toy bandit example. Consider two prefer-1089

ence models, where the set of actions is Y =1090

{y1, y2, y3}. The strict preference table without1091

any non-deterministic preferences P1 is (from1092

Munos et al. (2023)):1093

P1(y ≻ y′) y = y1 y = y2 y = y3

y′ = y1 1/2 9/10 2/3
y′ = y2 1/10 1/2 2/11
y′ = y3 1/3 9/11 1/2

1094

And the perturbed preference table P2 with non-1095

deterministic preferences between y2 and y3 is:1096

P2(y ≻ y′) y = y1 y = y2 y = y3

y′ = y1 1/2 9/10 2/3
y′ = y2 1/10 1/2 1/2
y′ = y3 1/3 1/2 1/2

1097

Although the preference table P1 can be per-1098

fectly captured by a Bradley-Terry model, intro-1099

ducing even a single non-deterministic preference1100

pair (e.g., P2(y2 ≻ y3) = P2(y3 ≻ y2) = 1/2)1101

prevents the BT model from accurately represent-1102

ing the full set of preferences. Under this condi-1103

tion, the learned BT model becomes highly sen-1104

sitive to the sampling or data-generation distribu-1105

tion. If the training data overrepresents compar-1106

isons between y1 and y2, the model might still1107

correctly align reward estimates for these com-1108

parisons as R(y1) = 0, R(y2) = log 9. How-1109

ever, due to the non-deterministic relation between1110

y2 and y3, it may mis-specify R(y3) as log 2 in-1111

stead of log 9, which would have been the case had1112

the BT model perfectly captured these preferences.1113

This misalignment is fundamental: the preference1114

symmetry P2(y2 ≻ y3) = P2(y3 ≻ y2) = 1/21115

mathematically forces R(y2) = R(y3) in any BT-1116

based ranking. However, the preference inequali-1117

ties P2(y2 ≻ y1) = 9/10 and P2(y3 ≻ y1) = 2/31118

demand that R(y2) > R(y3). This inconsistency1119

leads to a larger divergence in the preference gap1120

under non-deterministic preferences. Therefore,1121

under the constraint π(y1) = 2π(y2) in set S with1122

S ⊂ ∆(Y), the full actions space—where the con-1123

straint may be softly applied w.r.t. a reference pol-1124

icy πref = (2/3, 1/3) by using a KL-regularization,1125

as in typically done in preference alignment in1126

LLMs (Rafailov et al., 2024b; Azar et al., 2024)—1127

we can clearly estimate this divergence.1128

To do this comparison, we first define the ex- 1129

pected reward E[R(y)] =
∑

y π(y)R(y) as a linear 1130

function of the policy π, prioritizing high-reward 1131

actions like y2. In contrast, the preference proba- 1132

bility P (π ≻ π′) =
∑

y

∑
y′ π(y)π

′(y′)P (y ≻ y′) 1133

is a non-linear function that depends on pairwise 1134

interactions, meaning it may favor actions with 1135

strong matchups rather than those with high re- 1136

wards. For the expected reward-maximizing policy 1137

π∗
R = (2/3, 1/3, 0), we maximize reward by set- 1138

ting π(y3) = 0 since y3 has a lower reward. Solv- 1139

ing 2x+x = 1 to obtain π(y1) = 2/3 and π(y2) = 1140

1/3, we get π∗
R. For the preference-maximizing 1141

policy π∗
P = (0, 0, 1), action y3 is chosen exclu- 1142

sively, satisfying the constraint π(y1) = 2π(y2) 1143

trivially by setting π(y1) = π(y2) = 0. Therefore, 1144

under this constrained set of policies, we thus de- 1145

rive the reward-optimal policy π∗
R

def
= (2/3, 1/3, 0) 1146

and the preference-optimal policy π∗
P

def
= (0, 0, 1). 1147

Therefore, for strict preferences P1, the ex- 1148

pected reward under the reward-optimal policy 1149

is Ey∼π∗
R
[R(y)] = 0 × 2/3 + log(9) × 1/3 > 1150

log(2) = Ey∼π∗
P
[R(y)], while the probability that 1151

the preference-optimal policy is preferred over 1152

the reward-optimal policy is P1(π∗
P ≻ π∗

R) = 1153

P1(y3 ≻ y1) × 2/3 + P1(y3 ≻ y2) × 1/3 = 1154

2/3 × 2/3 + 2/11 × 1/3 = 50/99 > 1/2. Sim- 1155

ilarly, for non-deterministic preferences P2, we 1156

have Ey∼π∗
R
[R(y)] = 0 × 2/3 + log(9) × 1/3 > 1157

log(2) = Ey∼π∗
P
[R(y)], while P2(π∗

P ≻ π∗
R) = 1158

P2(y3 ≻ y1)×2/3+P2(y3 ≻ y2)×1/3 = 2/3× 1159

2/3+1/2×1/3 = 11/18 > 1/2. Defining the pref- 1160

erence gap as δPi ≜ Pi(π∗
P ≻ π∗

R)− 1/2 and the 1161

reward gap as δR ≜ Ey∼π∗
R
[R(y)]−Ey∼π∗

P
[R(y)], 1162

we observe that δP1 = 50/99−1/2 ≈ 0.005 while 1163

δP2 = 11/18− 1/2 = 4/18 ≈ 0.111. 1164

While the reward gap remains constant at δR = 1165

log(9)/3− log(2) ≈ 0.04 for both preference mod- 1166

els, the preference gap increases ∼20-fold under 1167

non-deterministic preferences, demonstrating am- 1168

plified divergence between reward and preference 1169

optimization. This large gap indicates significant 1170

misalignment between rewards and preferences. 1171

Therefore, although this is a toy example, in re- 1172

alistic settings with LLMs containing billions of 1173

parameters and a large action space Y , this diver- 1174

gence can lead to drastically different optimization 1175

trajectories with significant consequences for align- 1176

ment. 1177

1178

Proposition 1 (Sampling Distribution Dependence 1179
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in the Induced Bradley-Terry (BT) Model). Con-1180

sider a preference model P that cannot be perfectly1181

captured by a Bradley-Terry (BT) reward model.1182

This is illustrated in Appendix A.1.1183

Specifically, let Pπ
BT (y ≻ y′) := σ(sπ(y) −1184

sπ(y′)) be the BT preference model corresponding1185

to the optimal scores (sπ(y), sπ(y′)) obtained from1186

sπ(solution to a standard Bradley-Terry reward1187

loss in RLHF (Stiennon et al., 2020)) under the1188

sampling distribution π. If sπ cannot match the1189

true preferences, then it has explicit dependence on1190

the sampling or behavior policy π. In other words,1191

if there exist completions y, y′ and a distribution1192

π where Pπ
BT (y ≻ y′) ̸= P(y ≻ y′), then we can1193

construct another distribution π′ (with the same1194

support as π) such that the difference in optimal1195

scores (sπ(y) − sπ(y′)) under π differs from the1196

optimal score difference under π′. Consequently,1197

Pπ
BT (y ≻ y′) ̸= Pπ′

BT (y ≻ y′).1198
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Proof. For this proof, we follow a similar approach as Munos et al. (2023) but we prove this
dependence for a more general class of perturbed distributions. We assume that there exist
completions y, y′ and distribution π such that Pπ

BT (y ≻ y′) ̸= P(y ≻ y′). We construct a
perturbed distribution π′ as follows:

π′(k) =

{
(1− δ)π(k) if k ̸= y′

cπ(y′) if k = y′
(3)

where δ ∈ (0, 1) and c is chosen to ensure normalization. For clarity, we first verify that π′(k) is a
valid probability distribution.

∑
z

π′(k) =
∑
k ̸=y′

(1− δ)π(k) + cπ(y′) (4)

= (1− δ)(1− π(y′)) + cπ(y′) = 1 (5)

This gives us:

c = 1 + δ
1− π(y′)

π(y′)
(6)

For any preference model Z , we can express the aggregate preference probability:

Z(y ≻ π′) =
∑
k

π′(k)Z(y ≻ k) (7)

=
∑
k ̸=y′

π′(k)Z(y ≻ k) + π′(y′)Z(y ≻ y′) (8)

=
∑
k ̸=y′

(1− δ)π(k)Z(y ≻ k) + cπ(y′)Z(y ≻ y′) (9)

= (1− δ)
∑
k ̸=y′

π(k)Z(y ≻ k) + cπ(y′)Z(y ≻ y′) (10)

= (1− δ)[
∑
k

π(k)Z(y ≻ k)− π(y′)Z(y ≻ y′)] + cπ(y′)Z(y ≻ y′) (11)

(split complete sum)

= (1− δ)[Z(y ≻ π)− π(y′)Z(y ≻ y′)] + cπ(y′)Z(y ≻ y′) (12)

= (1− δ)Z(y ≻ π)− (1− δ)π(y′)Z(y ≻ y′) + cπ(y′)Z(y ≻ y′) (13)

= (1− δ)Z(y ≻ π) + [c− (1− δ)]π(y′)Z(y ≻ y′) (14)

(collect terms with π(y′)Z(y ≻ y′))

Applying this equality to both P and Pπ
BT :

Pπ
BT (y ≻ π′) = (1− δ)Pπ

BT (y ≻ π) + (c− (1− δ))π(y′)Pπ
BT (y ≻ y′) (15)

P(y ≻ π′) = (1− δ)P(y ≻ π) + (c− (1− δ))π(y′)P(y ≻ y′) (16)
1199
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Proof. (cont’d.) By Proposition 2 in Munos et al. (2023), the induced Bradley-Terry preference
model satisfies Pπ

BT (y ≻ π) = P(y ≻ π). Therefore, subtracting the above expressions for
Pπ
BT (y ≻ π′) and P(y ≻ π′) and using the assumption Pπ

BT (y ≻ y′) ̸= P(y ≻ y′), it follows
that Pπ

BT (y ≻ π′) ̸= P(y ≻ π′).

Pπ
BT (y ≻ π′)− P(y ≻ π′) (17)

= (1− δ)[Pπ
BT (y ≻ π)− P(y ≻ π)]+ (18)

(c− (1− δ))π(y′)[Pπ
BT (y ≻ y′)− P(y ≻ y′)]

= 0 + (c− (1− δ))π(y′)[Pπ
BT (y ≻ y′)− P(y ≻ y′)] ̸= 0 (19)

Applying Proposition 2 in Munos et al. (2023) again, we obtain P(y ≻ π′) = Pπ′
BT (y ≻ π′),

which implies Pπ
BT (y ≻ π′) ̸= Pπ′

BT (y ≻ π′). Expanding this discrepancy using the Bradley-Terry
model definition, we get

∑
z π

′(k)[σ(sπ(y)−sπ(k))−σ(sπ
′
(y)−sπ

′
(k))] ̸= 0. Since σ is strictly

monotonic, there must exist some z such that sπ(y)− sπ(k) ̸= sπ
′
(y)− sπ

′
(k), establishing that

reward differences induced by different policies do not remain consistent under the Bradley-Terry
model, leading to divergences in preference estimation.
This inequality shows sπ ̸= sπ

′
, proving that the optimal BT reward model depends explicitly on

the sampling distribution. This concludes the proof that the two BT-reward models sπ and sπ
′

are
different as well as the corresponding BT-preference models Pπ

BT and Pπ′
BT .

1200

B Bound on Preference Gap for DRDO1201

Lemma 4 (Preference Gap Bound for DRDO). Let πθ be the policy trained using the Direct
Reward Distillation and policy-Optimization (DRDO) algorithm, which minimizes the loss Lkd
(Eq. 25) using an Oracle reward model O providing rewards r∗oracle. Assume the true preference
relation (y1 ≻ y2|x) follows a Bradley-Terry model based on true rewards r∗(x, y), i.e., (y1 ≻
y2|x) = σ(r∗(x, y1) − r∗(x, y2)). Motivated by the potential divergence between reward and
preference optimization under non-deterministic preferences (as illustrated in Section A.2), the
preference gap δ between the true preference-optimal policy π∗ and the learned policy πθ, defined
as δ = V(π∗)− V(πθ), is bounded by:

δ ≤ C
(√

ϵOracle error +
√
ϵr,oracle

)
+ ϵopt (20)

where:

• V(π) = Ex,y∼π,y′∼π[(y ≻ y′|x)] is the true preference value.

• ϵOracle error = E[((r∗1 − r∗2) − (r∗oracle,1 − r∗oracle,2))
2] measures the quality of the Oracle

reward differences relative to the true reward differences.

• ϵr,oracle = E[((r∗oracle,1 − r∗oracle,2)− (r̂1 − r̂2))
2] is the reward distillation error minimized

by the Ldiff component of the DRDO loss. r̂ is the student’s learned reward function.

• ϵopt = V̂ (π̂∗)− V̂ (πθ) is the sub-optimality of πθ with respect to the value function V̂ (π) =
Ex,y∼π,y′∼π[σ(r̂1 − r̂2)] based on the learned reward r̂. This gap is reduced by the Lpref_term

component of the DRDO loss.

• C =
√
Cdist/2 is a constant depending on distribution coverage factors (Cdist).

1202
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Proof. We aim to bound the preference gap δ = V(π∗)− V(πθ).

Step 1: Decompose the Preference Gap Following standard decomposition techniques in
reinforcement learning theory (Kakade and Langford, 2002; Munos et al., 2023), we intro-
duce the value function V̂ (π) based on the learned student reward model r̂, where V̂ (π) =
Ex,y∼π,y′∼π[σ(r̂(x, y)− r̂(x, y′))]. We add and subtract terms:

δ = V(π∗)− V(πθ)

=
(
V(π∗)− V̂ (π∗)

)
+
(
V̂ (π∗)− V̂ (πθ)

)
+
(
V̂ (πθ)− V(πθ)

)
By definition, π∗ maximizes V, so δ ≥ 0. Let π̂∗ = argmaxπ V̂ (π) be the optimal policy for
the learned value function. Then V̂ (π∗) ≤ V̂ (π̂∗). Define the sub-optimality gap of πθ w.r.t. V̂
as ϵopt = V̂ (π̂∗) − V̂ (πθ) ≥ 0. Thus, V̂ (π∗) − V̂ (πθ) ≤ V̂ (π̂∗) − V̂ (πθ) = ϵopt. Applying the
triangle inequality to the decomposition:

δ ≤ |V(π∗)− V̂ (π∗)|+ ϵopt + |V̂ (πθ)− V(πθ)| (21)

Step 2: Bound Model Error Terms using Cauchy-Schwarz Consider a generic model error
term |V(π)− V̂ (π)|:

|V(π)− V̂ (π)| =
∣∣Ex,y∼π,y′∼π[(y ≻ y′|x)− σ(r̂(y)− r̂(y′))]

∣∣
≤
√
Ex,y∼π,y′∼π[((y ≻ y′|x)− σ(r̂(y)− r̂(y′)))2] (by Cauchy-Schwarz)

=
√
Epref(π)

where Epref(π) is the preference calibration error under policy π’s distribution. Assuming this
policy-specific error is bounded by a global calibration error Epref = E(x,y1,y2)[(−σ(r̂))2] via a
distribution mismatch constant Cdist ≥ 1, such that

Epref(π) ≤ Cdist · Epref,

where Cdist plays the role of a concentrability coefficient—analogous to those in recent offline
preference RL literature (Zhan et al., 2023). It captures how much worse the calibration error could
be under π compared to the data distribution used to train the reward model. As such, from step 2
we get:

|V(π)− V̂ (π)| ≤
√

CdistEpref (22)

Applying this to Eq. 21:
δ ≤ 2

√
Cdist

√
Epref + ϵopt (23)

(cont’d. next page)
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Proof. (cont’d.)

Step 3: Relate Calibration Error Epref to Reward Errors Using the Bradley-Terry assumption
(y1 ≻ y2|x) = σ(r∗1 − r∗2) and the Lipschitz continuity of the sigmoid function |σ(a)− σ(b)| ≤
1
4 |a− b|, we have:

Epref = E[(σ(r∗1 − r∗2)− σ(r̂1 − r̂2))
2]

≤ E

[(
1

4
|(r∗1 − r∗2)− (r̂1 − r̂2)|

)2
]

=
1

16
E[((r∗1 − r∗2)− (r̂1 − r̂2))

2]

=
1

16
ϵr

where ϵr = E[((r∗1−r∗2)− (r̂1− r̂2))
2] is the misspecification error of the learned reward r̂ relative

to the true reward r∗. Now, we relate ϵr to the error terms involving the Oracle reward r∗oracle using
the triangle inequality for the L2 norm:

√
ϵr =

√
E[((r∗1 − r∗2)− (r̂1 − r̂2))2]

≤
√
E[((r∗1 − r∗2)− (r∗oracle,1 − r∗oracle,2))

2] +
√
E[((r∗oracle,1 − r∗oracle,2)− (r̂1 − r̂2))2]

=
√
ϵOracle error +

√
ϵr,oracle

Substituting back into the bound for Epref:√
Epref ≤

1

4

√
ϵr ≤

1

4

(√
ϵOracle error +

√
ϵr,oracle

)
(24)

Step 4: Connect Optimization Error ϵopt to DRDO The DRDO algorithm (Section 4) mini-
mizes the combined loss:

Lkd(θ) = E[(r∗oracle,diff − r̂diff)
2]︸ ︷︷ ︸

ϵr,oracle

−αE
[
(1− pw)

γ log

(
πθ(yw | x)

1− πθ(yl | x)

)]
︸ ︷︷ ︸

Policy Preference Term

(25)

Minimizing the first term directly reduces ϵr,oracle. The second term updates the policy πθ to
align with the preferences represented by the Oracle (and implicitly by r̂ through the first term).
Successful minimization of Lkd implies that πθ becomes near-optimal for the learned value V̂ ,
thus ensuring the sub-optimality gap ϵopt = V̂ (π̂∗)− V̂ (πθ) is small. The effectiveness depends
on the optimization process and the capacity of the policy class.

(cont’d. next page)
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Proof. (cont’d.)

Step 5: Final Bound Substitute the bound on
√
Epref from Eq. 24 into the bound on δ from

Eq. eq. 23:

δ ≤ 2
√

Cdist
√
Epref + ϵopt

≤ 2
√
Cdist ·

1

4

(√
ϵOracle error +

√
ϵr,oracle

)
+ ϵopt

=

√
Cdist

2

(√
ϵOracle error +

√
ϵr,oracle

)
+ ϵopt

Letting C =
√
Cdist
2 , we obtain the final bound:

δ ≤ C
(√

ϵOracle error +
√
ϵr,oracle

)
+ ϵopt (26)
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Interpretation The bound shows that the per-1206

formance gap δ of a DRDO-trained policy is con-1207

trolled by three components: (i) the inherent quality1208

of the Oracle model (ϵOracle error), (ii) the success1209

of the reward distillation component of DRDO in1210

matching the student reward to the Oracle reward1211

(ϵr,oracle), and (iii) the success of the policy opti-1212

mization component of DRDO in finding a policy1213

near-optimal for the learned reward (ϵopt). DRDO1214

aims to minimize the latter two terms directly via1215

its loss function.1216

Non-Deterministic Human Preferences Fol-1217

lowing Bradley and Terry (1952), Rafailov et al.1218

(2024b) and other preference optimization frame-1219

works posit that the relative preference of one1220

outcome over another is governed by the true re-1221

ward differences, expressed as p∗(y1 ≻ y2) =1222

σ(r1−r2), where p∗ is the true preference distribu-1223

tion. Generally, in the RLHF framework, the true1224

preference distribution is typically inferred from1225

a dataset of human preferences, using a reward1226

model r that subsequently guides the optimal pol-1227

icy learning. More importantly, to estimate the1228

rewards and thereby the optimal policy parame-1229

ters, the critical reward modeling stage involves1230

human annotators choosing between pairs of candi-1231

date answers (y1, y2), indicating their preferences.61232

As such, typical alignment methods assume that1233

p(yw ≻ yl|x) (the human annotations of prefer-1234

ence) is equivalent to p∗(y1 ≻ y2|x) or any rank-1235

ing or choice thereby established with the human1236

decisions. However, prospect theory and empirical1237

studies in rational choice theory suggest that human1238

preferences are often stochastic, intransitive, and1239

can fluctuate across time and contexts (Tversky,1240

1969; von Weizsäcker, 2005; Regenwetter et al.,1241

2011).1242

Existing direct alignment methods, such as DPO-1243

based supervised alignment, assume access to deter-1244

ministic preference labels, disregarding the inher-1245

ent variability in human judgments, even when pop-1246

ular preference datasets are inherently annotated1247

with such variability, noise, or “non-deterministic1248

preferences” given their provenance in human la-1249

beling. More importantly, such implicit trust in1250

the preference data by DPO-like algorithms, with-1251

out explicit instance-level penalization on the loss,1252

can cause policies that are trained to deviate from1253

true intentions of human preference learning (see1254

6This framework can be extended to rank multiple re-
sponses using the Plackett-Luce model.

Lemma 5 and Lemma 6 for details). Addition- 1255

ally, in many datasets, a significant proportion of 1256

preference pair annotations display low human con- 1257

fidence, or receive similar scores from a third-party 1258

reward assignment models (e.g., GPT-4) despite 1259

being textually different, indicating that the two 1260

responses are likely semantically similar or similar 1261

in intent, content or quality. Note that we consider 1262

non-deterministic preference samples to be distinct 1263

from noise present as flipped labels (Chowdhury 1264

et al., 2024; Wang et al., 2024a), which is typically 1265

resolved using label-smoothing based heuristics, 1266

data exclusion or prior knowledge of noise coeffi- 1267

cients in the data in preference learning. 1268

As with preference learning, such discrepancies 1269

in preference signals can similarly derail reward 1270

learning and limit reward models from reaching a 1271

consensus, even with majority voting with reward 1272

ensembles (Wang et al., 2024a). These cases re- 1273

flect the stochastic nature of human choices, and 1274

challenge the assumption of stable, deterministic 1275

preferences in alignment frameworks. 1276

We now formally define such “noisy” or non- 1277

deterministic preference labels in offline finite pref- 1278

erence data regimes and offer some insights into 1279

limitations of current approaches like DPO and e- 1280

DPO. For the sake of analysis, we still consider a 1281

Bradley-Terry-based modeling to represent such 1282

preference signals. All proofs are deferred to the 1283

appendix. 1284

Assumption 1. Let Dpref = {(x(i), y(i)w , y
(i)
l )}Ni=1 1285

be an offline dataset of pairwise preferences with 1286

sufficient coverage, where each x(i) is a prompt, 1287

and y
(i)
w and y

(i)
l are the corresponding preferred 1288

and dispreferred responses, respectively. Let 1289

r∗(x, y) ∈ R be an underlying true reward func- 1290

tion that is deterministic7 and finite everywhere. 1291

Let πθ∗(y | x) be the learned model and πref(y | x) 1292

the reference, with supp(πref) = Y . Assume 1293

supp(ρ) = supp(µ)×Y ×Y , where Y is the space 1294

of all responses, ρ is the data distribution, and µ is 1295

the prompt or context distribution. 1296

Proposition 2 (Non-Deterministic Preferences). 1297

For the subset of non-deterministic preferences de- 1298

fined as Dnd = {(x, y, y′) | P (y ≻ y′ | x) ≈ 1/2} 1299

and assuming antisymmetric preferences (Munos 1300

7Deterministic and non-deterministic preferences are only
defined on the true preference distribution p∗ and should not
be confused with the empirical probabilities or confidence
assigned by the policy. The use of "deterministic" here is
simply to imply that the true reward function r∗(x, y) is finite
and scalar.
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et al., 2023), the Bradley-Terry model implies that1301

the reward difference ∆r = r(x, y)− r(x, y′) ≈ 01302

for all (x, y, y′) ∈ Dnd. Consequently, the ex-1303

pected reward difference over this subset is also1304

E(x,y,y′)∼Dnd [∆r] ≈ 0. See Appendix B.1 for a1305

complete derivation.81306

Lemma 5. Under Proposition 2, a) the DPO1307

implicit reward difference in its objective1308
πθ∗ (y)πref(y

′)
πθ∗ (y′)πref(y)

→ 1, that leads to the policy empiri-1309

cally underfitting the preference distribution. b)1310

For |Dnd| ≪ N where N is finite, if DPO estimates1311

that p∗(y ≻ y′) = 1, then πθ∗ (y)πref(y
′)

πθ∗ (y′)πref(y)
→ ∞.1312

c) For all minimizers πθ∗ of the DPO objective1313

(Eq. 7 in Rafailov et al. (2024b)), it follows that1314

πθ∗(yl) → 0 and πθ∗(C(yl)c) → 1, where C(yl)c1315

denotes the complement of the set of dispreferred1316

responses y(i)l , ∀i ∈ N.1317

Given non-trivial occurrences of non-1318

deterministic preference pairs in typical preference1319

learning datasets, a consequence of Lemma 5 is1320

that DPO’s learned optimal policy can effectively1321

assign non-zero or even very high probabilities1322

to tokens that never appear as preferred in the1323

training data, causing substantial policy degener-1324

acy. Moreover, as noted and shown empirically1325

in previous work (Azar et al., 2023; Pal et al.,1326

2024), DPO effectively underfits the preference1327

distribution because its empirical preference1328

probabilities (RHS of Eq. 29) are only estimates of1329

the true preference probabilities, especially when1330

p∗(y ≻ y′) ∈ {0, 1}. A noteworthy implication1331

of Lemma 5 is that this weak regularization1332

effect of DPO can theoretically assign very high1333

probabilities to the complement set of dispreferred1334

tokens that never appear in the training data at all,1335

especially when |Nnd| ≪ N for finite data regimes.1336

In realistic settings where non-deterministic1337

preferences constitute a non-trivial proportion of1338

data, Lemma 5 additionally implies that DPO1339

leads to unstable updates and inconsistent policy1340

behavior, where the gradient update is effectively1341

cancelled out for these samples since the log1342

probabilities of both the winning and the losing1343

responses are roughly equal (∆r ≈ 0), so the1344

scaled weighting factor (sigmoid of implicit1345

reward differences) does not contribute as much1346

as when p∗(y ≻ y′) ∈ {0, 1}. As stated in Sec. 3s,1347

with DPO, πθ∗ not only sees less of this type of1348

8For clarity, we note that this Proposition 2 is distinct from
Proposition 2 from Munos et al. (2023) that is referenced
above.

preference but also fails to adequately regularize 1349

when it does. 1350

A solution to the above limitations of DPO 1351

within offline settings is to recast its MLE opti- 1352

mization objective into a regression task, where the 1353

choice of regression target can be the preference la- 1354

bels themselves (as in IPO; Azar et al. (2023)) or re- 1355

ward differences (as in e-DPO; Fisch et al. (2024)). 1356

While the former directly utilizes preference labels, 1357

regressing the log-likelihood ratio πratio to the KL- 1358

β parameter as defined in Eq. 7 in (Rafailov et al., 1359

2024b), the latter extends IPO by regressing against 1360

the difference in true rewards r∗(x, y), independent 1361

of explicit preference labels and acting as a strict 1362

generalization of the IPO framework. Notably, both 1363

these methods ensure that the resulting policy in- 1364

duces a valid Bradley-Terry preference distribution 1365

p∗(y1 ≻ y2 | x) > 0, ∀x, y1, y2 ∈ µ× Y × Y . 1366

However, these approaches have inherent lim- 1367

itations. IPO regresses the log-likelihood differ- 1368

ence on a Bernoulli-distributed preference label, 1369

failing to capture nuanced strength in relative pref- 1370

erences. Conversely, e-DPO eliminates preference 1371

label dependence but sacrifices the granular signals 1372

available in preference data, instead over-relying 1373

on the quality of reward ensembles, which may still 1374

lead to over-optimization (Eisenstein et al., 2024).9 1375

Consider the following lemma that derives from 1376

Assumption 1 and Proposition 2: 1377

Lemma 6. Under Proposition 2 and in the spirit 1378

of Fisch et al. (2024)’s argument, using e-DPO 1379

alignment over non-deterministic preference pairs 1380

leads to πθ∗ (y)πref(y
′)

πθ∗ (y′)πref(y)
→ ∞ for (y, y′) ∈ Dnd 1381

where y = y
(i)
w and y′ = y

(i)
l , ∀i ∈ N. Then, 1382

for all minimizers πθ∗ of the e-DPO objective: 1383

Ldistill(r∗, πθ; ρ) = Eρ(x,y1,y2)

[
(27) 1384(

r∗(x, y1)− r∗(x, y2)− 1385

β log
πθ(y1 | x)πref(y2 | x)
πθ(y2 | x)πref(y1 | x)

)2]
, 1386

it follows that πθ∗(C(yl)c) → 1 with 0 < 1387

πθ∗(y
(i)
w ) ≤ 1, ∀i ∈ N, where C(yl)c denotes the 1388

complement of the set of dispreferred responses 1389

y
(i)
l , ∀i ∈ N. 1390

Our core insight in proposing DRDO is that mod- 1391

eling relative preference strengths during the policy 1392

9Furthermore, the use of reward ensembles in e-DPO intro-
duces significant computational overhead, potentially limiting
its broader applicability due to increased resource require-
ments.
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learning stage, particularly at the extrema of the1393

preference distribution, is only problematic if one1394

uses a DPO-like MLE loss formulation that max-1395

imizes implicit reward differences. On the other1396

hand, the MLE formulation for the reward model-1397

ing stage does not suffer from this limitation pre-1398

cisely because estimated rewards are scalar quanti-1399

ties with no likelihood terms within the log-sigmoid1400

term (as in standard RLHF reward model loss), pro-1401

vided there is enough coverage in the preference1402

data. Since both stages rely on a finite preference1403

dataset with various levels of preference strengths1404

(that mirrors human preferences), one can com-1405

bine the two stages by explicitly distilling rewards1406

into the policy learning stage. Assuming access1407

to the true reward function r∗(x, y) or an Oracle,1408

one can resolve the above limitation by distilling1409

the estimated rewards into the policy model. This1410

intuitively avoids DPO’s underfitting to extremal1411

preference strengths: since the same preference1412

data is used for reward distillation and policy learn-1413

ing, this offline distillation ensures that the policy1414

stays within the data distribution during alignment.1415

B.1 Proof of Non-Deterministic Preference1416

Relations with Reward Differences1417

Proof. From (Munos et al., 2023), we assume pref-1418

erences are antisymmetric: P (y1 ≻ y2 | x) =1419

1 − P (y2 ≻ y1 | x). As such, for (x, yw, yl) ∈1420

Dnd ⊂ Dpref, non-determinism implies:1421

P (yw ≻ yl | x) ≈
1

2
.1422

Under the Bradley Terry model model (Bradley and1423

Terry, 1952),1424

P (yw ≻ yl | x) = σ(∆r),1425

where ∆r := r(x, yw)− r(x, yl) and σ is the sig-1426

moid function. Since σ(∆r) ≈ 1/2, it follows that1427

∆r ≈ 0 (as σ(z) = 1/2 iff z = 0). Hence, for all1428

samples in Dnd,1429

r(x, yw)− r(x, yl) ≈ 0.1430

Taking expectation over Dnd gives:1431

E(x,yw,yl)∼Dnd [r(x, yw)− r(x, yl)] ≈ 0.1432

This holds even under underspecification of the BT1433

reward scale, since it concerns the difference in1434

rewards. As such, it does not impose restrictions1435

on the reward function form, provided it satisfies1436

equivalence relations, i.e., rewards are defined up to 1437

a prompt-dependent shift (Definition 1 in Rafailov 1438

et al. (2024b)). Consequently, the expected reward 1439

differences adhere to Proposition 2 without neces- 1440

sarily having BT-motivated DPO’s implicit reward 1441

formulation. 1442

B.2 Proof of Lemma 5a and 5b 1443

Proof. Let us rewrite the Bradley-Terry preference 1444

probability equation in terms of the DPO implicit 1445

rewards. The BT model specifies this probability 1446

of preferring yw over yl as: 1447

P (yw ≻ yl | x) = σ(r∗(x, yw)− r∗(x, yl)) (28) 1448

where the rewards can be rewritten in term of the 1449

DPO implicit rewards r̂w and r̂l in Eq. 29. 1450

Eq. 29 holds for all ∀(x, y, y′) ∈ Dpref, since 1451

DPO does not distinguish between the nature of 1452

the true preference relations in estimating the true 1453

preference probabilities, assuming (y, y′) appear as 1454

preferred and dispreferred responses respectively 1455

for any context x. Since this RHS of Eq. 31 is sim- 1456

ply the sigmoided difference of implicit rewards as- 1457

signed by DPO to estimate the true preference prob- 1458

abilities, it is straightforward to see from Proposi- 1459

tion 2 that the RHS i.e., πθ∗ (y)πref(y
′)

πθ∗ (y′)πref(y)
→ 1 and 1460

P (yw ≻ yl | x) ∼ 1
2 , as per our definition of 1461

non-deterministic preferences. Since the reference 1462

model πref is assumed to have full support over the 1463

output space (supp(πref) = Y) and is not updated 1464

and can be set to a uniform prior (πref ∼ U(Y)) (Xu 1465

et al., 2024), without losing any generality, this im- 1466

plies that πθ∗ (y)
πθ∗ (y′)

must remain close to 1 to satisfy 1467

this constraint (πθ∗ (y)πref(y
′)

πθ∗ (y′)πref(y)
→ 1). In this case, 1468

the policy tends to underfit the preference distri- 1469

bution since the preference signals are weak and 1470

policy cannot distinguish between the preferred 1471

and the dispreferred response. 1472

Similar to Azar et al. (2023)’s argument, we 1473

can argue here that in this case when true prefer- 1474

ence probabilities are ∼ 1
2 , i.e., non-deterministic, 1475

DPO’s empirical reward difference estimates actu- 1476

ally tend toward 1 which leads to underfitting of 1477

the optimal policy πθ∗ during alignment. Indeed, 1478

in this case, the β parameter does not provide any 1479

additional regularization effect to prevent policy 1480

underfitting especially under finite data. This com- 1481

pletes the proof of Lemma 5a. 1482

We can similarly prove Lemma 5b in the case 1483

when |Dnd| ≪ N where N is assumed to be 1484
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P (yw ≻ yl | x) = σ

β log
πθ∗(yw | x)
πref(yw | x)︸ ︷︷ ︸

(r̂w)

−β log
πθ∗(yl | x)
πref(yl | x)︸ ︷︷ ︸

(r̂l)

 (29)

= σ

(
β log

(
πθ∗(yw | x)πref(yl | x)
πθ∗(yl | x)πref(yw | x)

))
(30)

= σ

(
β log

(
πθ∗(y | x)πref(y

′ | x)
πθ∗(y′ | x)πref(y | x)

))
, ∀(x, y, y′) ∈ Dnd ⊂ Dpref (31)

finite. In this case, in a similar vein as Azar1485

et al. (2023), there is more likelihood that DPO1486

sigmoided reward difference estimates are 1, i.e.,1487

r∗(x, yw)− r∗(x, yl)→∞.1488

As such, from Eq. 28, it is straightforward to see1489

that the DPO’s implicit reward difference tends to1490

infinity, regardless of the strength of the β parame-1491

ter, as shown below:1492

log

(
πθ∗(y | x)πref(y

′ | x)
πθ∗(y′ | x)πref(y | x)

)
→∞1493

in Eq. 31. This implies that1494

πθ∗(y | x)πref(y
′ | x)

πθ∗(y′ | x)πref(y | x)
→∞.1495

B.3 Proof of Lemma 5c1496

Proof. Our proof follows the argumentation1497

in Fisch et al. (2024). Assume for now that all1498

preference samples (y, y′) ∈ Dpref, including non-1499

deterministic preference pairs, are mutually ex-1500

clusive. Then, for the DPO objective (Eq. 71501

in Rafailov et al. (2024b)) to be minimized, each1502

θy must correspond uniquely to y, where θy are1503

the optimal parameters that minimize the DPO ob-1504

jective in each such disjoint preference pair. This1505

implies that DPO objective over Dpref is convex in1506

the set Λ = {λ1, . . . , λn}, where1507

λi = β log

(
πθ(y

(i)
w )πref(y

(i)
l )

πθ(y
(i)
l )πref(y

(i)
w )

)
, ∀i ∈ N

(32)1508

Now, consider the non-deterministic preference1509

samples indexed by j, which belong to the set1510

Dnd ⊂ Dpref. Let j ∈ {k + 1, . . . , N} with the1511

assumption k ≫ (N −k). Under the mutual exclu-1512

sivity assumption, Eq. 32 must also hold true for1513

the non-deterministic preference samples. Conse-1514

quently, we can rewrite Eq. 32 as:1515

λj = β log

(
πθ(y

(j)
w | x)πref(y

(j)
l | x)

πθ(y
(j)
l | x)πref(y

(j)
w | x)

)
, (33) 1516

∀j ∈ Dnd 1517

More specifically, for every j, the following 1518

holds at the limit for the DPO objective to con- 1519

verge: 1520

lim
λj→∞

− log (σ (λj)) = 0, (34) 1521

which implies that Λ∗ = {∞}N induces a set 1522

of global minimizers of the DPO objective that 1523

includes θ∗ that are optimal for the set of non- 1524

deterministic preference samples, while inducing a 1525

parallel set of θ∗ at convergence for deterministic 1526

samples. 1527

Consequently, all global minimizers θ∗ including 1528

those optimal on the non-deterministic samples 1529

must satisfy 1530

log
πθ(y

(j)
w )πref(y

(j)
l )

πθ(y
(j)
l )πref(y

(j)
w )

=∞. (35) 1531

Since 0 < πref(y) < 1 for all y, θ∗ must satisfy 1532

πθ∗(y
(j)
w )

πθ∗(y
(j)
l )

=∞, (36) 1533

implying πθ∗(y
(j)
l ) = 0 and πθ∗(y

(j)
w ) > 0 for all 1534

i ∈ N , given that πθ∗(y
(j)
w ) ≤ 1 for any y

(j)
w . Al- 1535

ternatively, let us define the complement of the 1536

aggregated representation of all the dispreferred 1537

responses y
(j)
l i.e., ϕ(yl)c, where ϕ(yl) is the ag- 1538

gregation function. We thereby have: 1539

ϕ(yl) = {y : ∃j ∈ N such that y(j)l = y}, (37) 1540

23



Under these conditions, it is clear that πθ∗ must1541

assign the entire remaining probability mass to1542

ϕ(yl) as given below,1543

πθ∗(C(yl)) =
∑

y∈ϕ(yl)

πθ∗(y) = 0 (38)1544

=⇒ πθ∗(ϕ(yl)
c) = 1. (39)1545

This completes the proof of Lemma 5c and thus1546

Lemma 5.1547

1548

B.4 Proof of Lemma 61549

Proof. Let us first rewrite the e-DPO’s distillation1550

objective (Fisch et al., 2024) over the preference1551

dataset Dpref and examine how the optimal policy1552

πθ behaves upon convergence of this objective. For1553

simplicity of analysis, we only consider the point-1554

wise reward based distillation loss in the e-DPO for-1555

mulation without10 considering reward ensembles.1556

Note that the e-DPO objective does not require1557

preference labels and can apply to any response1558

pair.1559

10Note that in our empirical experiments we use the full
e-DPO objective with a set of three reward models.
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Ldistill(r∗, πθ) = E(x,y1,y2)∼Dpref

[(
r∗(x, y1)− r∗(x, y2)− β log

πθ(y1 | x)πref(y2 | x)
πθ(y2 | x)πref(y1 | x)

)2
]

(40)

= E(x,y1,y2)∼ρ

[(
r∗(x, y1)− r∗(x, y2)− β log

πθ(y1 | x)
πθ(y2 | x)

+ β log
πref(y1 | x)
πref(y2 | x)

)2
]
.

(41)
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As πθ converges to the optimal policy πθ∗ ,1560

the distillation objective Ldistill should ideally ap-1561

proach zero and can be expressed as,1562

lim
πθ→πθ∗

Ldistill(r∗, πθ) = 01563

With some slight algebraic rearrangement and1564

substituting the optimal policy πθ∗ for πθ at con-1565

vergence, we get:1566

r∗(x, y1)− r∗(x, y2) = β log
πθ∗(y1 | x)
πθ∗(y2 | x)

(42)1567

− β log
πref(y1 | x)
πref(y2 | x)

.1568

Since (y1, y2) represents any response pair with-1569

out a preference label, we can substitute them with1570

(y, y′) ∈ Dnd ⊂ Dpref, where y = yw and y′ = yl.1571

Without losing any generality, we can now rewrite1572

the above equation as,1573

r∗(x, y)− r∗(x, y′) (43)1574

= β log
πθ∗(y | x)
πθ∗(y′ | x)

− β log
πref(y | x)
πref(y′ | x)

1575

= β log

(
πθ∗(y | x)πref(y

′ | x)
πθ∗(y′ | x)πref(y | x)

)
(44)1576

Now, recall from our proof of Lemma 5b where1577

we show that the RHS term of the above equation1578

log
(
πθ∗ (y|x)πref(y

′|x)
πθ∗ (y′|x)πref(y|x)

)
→ ∞, which implies that1579

πθ∗ (y|x)πref(y
′|x)

πθ∗ (y′|x)πref(y|x) → ∞. Indeed, when |Dnd| ≪ N1580

where N is finite, unregularized scalar reward es-1581

timates of the true preference probabilities can in1582

fact grow exceedingly large in the absence of any1583

other regularization parameters, since β by its own1584

does not provide enough regularization as shown1585

in our proof of Lemma 5a. Interestingly, simi-1586

lar arguments have also been made in previous1587

works (Azar et al., 2023). The rest of this proof1588

follows the same argumentation starting Eq. 351589

assuming 0 < πref(y) < 1.1590

This completes the proof of Lemma 6.1591

B.5 Gradient Derivation of the Focal-Softened1592

Log-Odds Unlikelihood Loss1593

In this section, we derive and analyze DRDO1594

loss gradient and offer insights into how to com-1595

pared supervised alignment objectives such as1596

DPO (Rafailov et al., 2024b). Note that we do1597

not analyze the reward distillation component here1598

since it does not directly interact with the focal- 1599

softened contrastive log-"unlikelihood" term in 1600

training and since it is naturally convex consid- 1601

ering its a squared term. Let us first rewrite our full 1602

DRDO loss, as: 1603

Lkd(r∗, πθ) = E(x,y1,y2)∼Dpref (45) 1604[
(r∗(x, y1)− r∗(x, y2)− (r̂1 − r̂2))

2︸ ︷︷ ︸
Reward Difference

1605

− α(1− pw)
γ log

(
πθ(yw | x)

1− πθ(yl | x)

)
︸ ︷︷ ︸

Contrastive Log-"unlikelihood"

]
, 1606

where pw = σ(zw−zl) = 1
1+e−(zw−zl)

and quan- 1607

tifies the student policy’s confidence in correctly 1608

assigning the preference from zw = log πθ(yw | x) 1609

and zl = log πθ(yl | x), or the log-probabilities of 1610

the winning and losing responses, respectively. 1611

Without the expectation, consider only the focal- 1612

softened log-odds unlikelihood loss given by: 1613

−α · (1− pw)
γ · log

(
πθ(yw | x)

1− πθ(yl | x)

)
, (46) 1614

Taking the gradient of this term with respect 1615

to the model parameters θ and using σ′(x) = 1616

σ(x) (1− σ(x)), we derive: 1617

∇θLkd = αγ(1− pw)
γ−1pw(1− pw)(∇θzw −∇θzl)·

(47)

1618

log

(
πθ(yw | x)

1− πθ(yl | x)

)
− 1619

α(1− pw)
γ

(
∇θπθ(yw | x)
πθ(yw | x)

+
∇θπθ(yl | x)
1− πθ(yl | x)

)
. 1620

∇θLkd = αγ(1− pw)
γpw(∇θzw −∇θzl)·

(48)

1621

log

(
πθ(yw | x)

1− πθ(yl | x)

)
− 1622

α(1− pw)
γ

∇θπθ(yw | x)
πθ(yw | x)︸ ︷︷ ︸

increase πθ(yw|x)

+
∇θπθ(yl | x)
1− πθ(yl | x)︸ ︷︷ ︸
decrease πθ(yl|x)

 . 1623
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While this above equation might appear rather1624

cumbersome, notice that in preference learning in1625

language models, the output token space Y is ex-1626

ponentially large. Additionally, in typical bandit1627

settings, we consider the entire response itself as1628

the action (summation of log probabilities). Since1629

the modulating term 0 ≤ (1− pw)
γ ≤ 1 and α is1630

typically small ∼ 0.1 (Lin et al., 2018; Yi et al.,1631

2020) compared to gradients appearing in likeli-1632

hood terms appearing above, we can conveniently1633

ignore the first term for the gradient analysis.1634

Simplifying the above equation, we get1635

−α(1−pw)γ

∇θπθ(yw | x)
πθ(yw | x)︸ ︷︷ ︸

increase πθ(yw|x)

+
∇θπθ(yl | x)
1− πθ(yl | x)︸ ︷︷ ︸
decrease πθ(yl|x)

 .

(49)1636

We can now draw some insights and direct com-1637

parisons of our approach with Direct Preference1638

Optimization (DPO) (Rafailov et al., 2024b). As1639

in most contrastive preference learning gradient1640

terms (Rafailov et al., 2024b; Hong et al., 2024; Xu1641

et al., 2024; Meng et al., 2024; Ethayarajh et al.,1642

2024), the term ∇θπθ(yw|x)
πθ(yw|x) in Eq. 49 amplifies the1643

gradient when πθ(yw | x) is low, driving up the1644

likelihood of the preferred response yw. Similarly,1645
∇θπθ(yl|x)
1−πθ(yl|x) penalizes overconfidence in incorrect1646

completions yl when pw is low, encouraging the1647

model to hike preferred response likelihood while1648

discouraging dispreferred ones.1649

The key insight here is that the modulating term,1650

(1 − pw)
γ , strategically amplifies corrections for1651

difficult examples where the probability pw of the1652

correct (winning) response is low. Intuitively, un-1653

like DPO’s fixed β that is applied across the whole1654

training dataset, this modulating term amplifies1655

gradient updates when preference signals are weak1656

(pw ≈ 0.5) and tempering updates when they are1657

strong (pw ≈ 1), thus ensuring robust learning1658

across varying preference scenarios. Intuitively,1659

when (pw ≈ 1), the model is already confident1660

of its decision since pw remains high, indicating1661

increased model confidence for deterministic pref-1662

erences. In contrast, when pw is small, (1 − pw)1663

remains near 1, and the term (1− pw)
γ retains sig-1664

nificant magnitude, especially for larger values of1665

γ. This allows πθ in DRDO to learn from both1666

deterministic and non-deterministic preferences,1667

effectively blending reward alignment with prefer-1668

ence signals to guide optimization.1669

For a deeper intuition, consider the case where1670

Figure 4: Illustration of the DRDO preference loss as a func-
tion of the log-unlikelihood ratio across various values of γ,
the focal modulation parameter.

the true preference probabilities from p∗(x, y) ∼ 1
2 . 1671

In this case, since non-deterministic preference 1672

samples are typically low, from Proposition 2, DPO 1673

would assign zero difference in its implicit re- 1674

wards, especially for finite preference data. Then 1675

as Lemma 5(a) suggests, DPO gradients would 1676

effectively be nullified, regardless of β since the 1677

its reward difference range ∈ (−∞,+∞). In this 1678

case as πθ cannot distinguish between the prefer- 1679

ence pair and, in turn, effectively misses out on the 1680

preference information for such samples. 1681

On the other hand, for |Dnd| ≪ N , if πθ in DPO 1682

estimates the true preference close to 1 where p̂ = 1683

1, as Lemma 5(b) suggests, the empirical policy 1684

would assign very high probabilities to tokens that 1685

do not even appear in the data. This leads to a 1686

surprising combination of both underfitting and 1687

overfitting, except the overfitting here results in 1688

DPO policy generating tokens that are irrelevant to 1689

the context. 1690

However, as Lemma 6 suggests, e-DPO does not 1691

directly face this limitation during training, but the 1692

degeneracy manifests upon convergence. Under the 1693

same conditions, the DRDO loss still operates at a 1694

sample level because if the DRDO estimate of p∗ 1695

(via pw) is close to its true value of ∼ 1
2 , the mod- 1696

ulating factor ensures that gradients do not vanish. 1697

This allows DRDO to continue learning from such 1698

samples until convergence when winning and los- 1699

ing probabilities are pushed further apart (Fig. 4). 1700

Intuitively, the log
(

πθ(yw|x)
1−πθ(yl|x)

)
term is minimized 1701

precisely under this condition where the modulat- 1702

ing term is also close to zero. 1703

Finally, Table 3 provides pseudocode for the 1704

DRDO algorithm. 1705
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DRDO Algorithm
Input: Preference dataset Dpref = {(x(i), y(i)w , y

(i)
l )}Ni=1, initialized policy model with reward head

πθ,θ′ ← SFT(θ)⊕ rθ′ .
Output: Optimized model parameters θ in policy πθ.

1. Train Oracle rϕ with loss LO(rϕ,Dpref) (see Eq. 5).
2. For t = 1, . . . , T :

(a) For each (x(i), y
(i)
w , y

(i)
l ) in Dpref:

i. Compute r∗1 = rϕ(x
(i), y

(i)
w ) and r∗2 = rϕ(x

(i), y
(i)
l ).

ii. Compute r̂1 = rθ′(x
(i), y

(i)
w ) and r̂2 = rθ′(x

(i), y
(i)
l ).

iii. Compute knowledge distillation loss:

Lkd(r
∗, πθ) = E

(x(i),y
(i)
w ,y

(i)
l

)∼Dpref

[ (
r
∗
1 − r

∗
2 − (r̂1 − r̂2)

)2︸ ︷︷ ︸
Reward Difference

−α(1 − pw)
γ
log

(
πθ(y

(i)
w | x(i))

1 − πθ(y
(i)
l | x(i))

)
︸ ︷︷ ︸

Contrastive Log-"unlikelihood"

]
.

iv. Update πθ,θ′ using Lkd.
3. Return: Aligned policy πθ.

Table 3: DRDO Algorithm steps. We start off with the preference dataset and an SFT-trained policy initialized with an additional
linear head parameterized by θ′. Once our oracle is trained, we compute both estimated rewards for each response (y) from the
initial policy (r̂) as well as from the oracle (r∗). We then use Lkd to update both θ and θ′ in πθ resulting in our DRDO aligned
policies.

C Further Notes on Experimental Setup1706

We provide the following additional explanatory1707

notes regarding the experimental setup:1708

• For non-deterministic and nuanced pref-1709

erences, note that although we fine-tune1710

all approaches (including DRDO) on1711

https://huggingface.co/datasets/1712

CarperAI/openai_summarize_tldr, every1713

baseline we use is policy-aligned with only1714

the training data within Dall, Dhc,he and1715

Dℓc,ℓe for a direct comparison.1716

• Pal et al. (2024) assume non-determinism of1717

preferences to be correlated to edit-distances1718

between pairwise-samples, but we do not1719

make sure assumptions and consider both the1720

true (oracle) rewards and edit-distances be-1721

tween pairs to verify the robustness of our1722

method. Pal et al. (2024)’s theoretical frame-1723

work brings insights on DPO’s suboptimality1724

assumes small edit distance between pairwise1725

samples and they empirically show this pri-1726

marily for math and reasoning based tasks. In1727

contrast, our evaluation framework is more1728

general in the sense that we consider both the1729

oracle reward difference as well as edit dis-1730

tance in addressing DPO’s limitations in learn-1731

ing from non-deterministic preferences and1732

we evaluate on a more diverse set of prompts1733

apart from math and reasoning tasks. 1734

• For reward distillation w.r.t to 1735

model size, the version of Ultra- 1736

feedback we used can be found at 1737

https://huggingface.co/datasets/ 1738

argilla/ultrafeedback-binarized- 1739

preferences. 1740

• For SFT on both experiments, use 1741

the TRL library implementation 1742

(https://huggingface.co/docs/trl/ 1743

en/sft_trainer) for SFT training on all 1744

initial policies for all baselines. 1745

C.1 DRDO and e-DPO Specifics 1746

Although DRDO requires an explicit reward Oracle 1747

O, we fix only one model (based on parameter size 1748

and model family) for each experiment. We use Phi- 1749

3-Mini-4K-Instruct and OPT 1.3B causal models 1750

initialized with a separate linear reward head while 1751

retaining the language modeling head weights.11 1752

Fixing the size ofO allows us to evaluate the extent 1753

of preference alignment to smaller models, as in 1754

classic knowledge distillation (Gou et al., 2021). To 1755

reproduce the e-DPO (Fisch et al., 2024) baseline, 1756

we train three reward models using standard RLHF 1757

11Similar to Yang et al. (2024), we found better generaliza-
tion in reward learning when our Oracle reward learning loss
is regularized with the SFT component (second term in Eq. 1)
with an α of 0.01.
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with the mentioned base models but with different1758

random initialization on the reward heads.1759

C.2 Choice of Evaluation Datasets1760

As mentioned in Sec. 5, our experiments were1761

designed to balance robustness and thoroughness1762

with research budget constraints, and to account for1763

properties of the task being evaluated relative to the1764

data. The rationale for evaluating DRDO’s robust-1765

ness to non-deterministic or ambiguous preferences1766

is straightforward: the TL;DR dataset is annotated1767

with human confidence labels, which enables the1768

creation of the Dhc,he and Dℓc,ℓe splits requires to1769

test the different non-determinism settings.1770

Testing the effect of model size on reward dis-1771

tillation does not require human confidence labels,1772

and as the TL;DR training data size is 1.3M rows,1773

testing distillation across 5 models became com-1774

putationally intractable given available resources.1775

Thus we turned to Ultrafeedback, which at a train1776

size of 61.1k rows made this experiment much1777

more feasible. Additionally, Ultrafeedback is rather1778

better suited to the preference distillation problem1779

because Ultrafeedback was specifically annotated1780

and cleaned (Cui et al., 2024), for the purposes1781

of evaluating open source models for distillation.1782

Ultrafeedback also provides a high quality dataset1783

with GPT-4 or scores on both straighforward sum-1784

marization instruction following and multiple pref-1785

erence dimensions such as honesty, truthfulness,1786

and helpfulness. Previous work like Zephyr (Tun-1787

stall et al., 2023) utilize this dataset for evaluating1788

preference distillation. However, their method is1789

more of a data-augmentation method and does not1790

provide any novel distillation algorithms for prefer-1791

ences since they use the DPO loss but with cleaner1792

and diverse feedback data. They only test student1793

models of ∼7B parameters, which are still rela-1794

tively large models that require additional compute1795

for training without including some form of PEFT.1796

As such, Ultrafeedback is best suited to evaluate1797

distillation-based methods and our novel contri-1798

bution in this area included evaluation of smaller1799

distilled models.1800

C.3 TL;DR Summarization Dataset Splits1801

Table 4 shows the mean confidence and normal-1802

ized edit distance statistics in the TL;DR dataset1803

which we used to compute the deterministic and1804

non-determinisitic splits. Dall represents the full1805

data (Stiennon et al., 2020). Dhc,he and Dℓc,ℓe1806

represent subsets created by splitting at the 50th1807

percentile of human labeler confidence and edit 1808

distance values. The range of labeler confidence 1809

values for the full training data range is [1, 9]. Ad- 1810

ditionally, segmenting the training data based on 1811

the combination of confidence and edit distance 1812

thresholds do not make the splits roughly half of 1813

the full training data. This is because there are 1814

many samples that do not simultaneously satisfy 1815

the 50th percentile threshold for each metric. In 1816

reality, this choice is intentional to more robustly 1817

evaluate DRDO under more difficult preference 1818

data settings. Additionally, previous theoretical as 1819

well as empirical work (Pal et al., 2024) has shown 1820

that supervised methods like DPO fail to learn op- 1821

timal policies when the token-level similarity is 1822

high in the preference pairs, especially in the be- 1823

ginning of the response. Therefore, we apply this 1824

combined thresholding for all our experiments on 1825

TL;DR summarization dataset. 1826

D Preference Likelihood Analysis 1827

Fig. 5 shows preference optimization method per- 1828

formance vs. training steps, according to Bradley- 1829

Terry (BT) implicit reward accuracies (Fig. 5a), 1830

Oracle reward advantage (Fig. 5b), preferred 1831

log-probabilities (Fig. 5c) and dispreferred log- 1832

probabilities (Fig. 5d). Although all baselines show 1833

roughly equal performance in increasing the likeli- 1834

hood of preferred responses (yw), DRDO is partic- 1835

ularly efficient in penalizing dispreferred responses 1836

(yl) as Fig. 5d suggests. 1837

E Hyperparameters 1838

We only use full-parameter training for all our pol- 1839

icy models. We train all our student policies for 1840

1k steps with an effective batch size of 64, af- 1841

ter applying an gradient accumulation step of 4. 1842

Specifically, both OPT series and Phi-3-Mini-4K- 1843

Instruct model were optimized using DeepSpeed 1844

ZeRO 2 (Rasley et al., 2020) for faster training. All 1845

models were trained on 2 NVIDIA A100 GPUs, 1846

except for certain runs that were conducted on 1847

an additional L40 GPU. For the optimizer, we 1848

used AdamW (Loshchilov et al., 2017) and paged 1849

AdamW (Dettmers et al., 2024) optimizers with 1850

learning rates that were linearly warmed up with 1851

a cosine-scheduled decay. For both datasets, we 1852

filter for prompt and response pairs that are < 1853

1024 tokens after tokenization. This allows the 1854

policies enough context for coherent generation. 1855

Apart from keeping compute requirement reason- 1856
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Table 4: Mean confidence and normalized edit distance statistics our TL;DR preference generalization experiment.

Split Conf (Mean) Edit Dist (Mean) Train Validation

Dall 5.01 0.12 44,709 86,086
Dhc,he 7.31 0.15 10,136 1,127
Dℓc,ℓe 2.67 0.09 10,000 1,112

Table 5: Model Configuration and Full set of hyperparameter
used for DRDO Training

Parameter Default Value

learning_rate 5e-6
lr_scheduler_type cosine
weight_decay 0.05
optimizer_type paged_adamw_32bit
loss_type DRDO
per_device_train_batch_size 12
per_device_eval_batch_size 12
gradient_accumulation_steps 4
gradient_checkpointing True
gradient_checkpointing_use_reentrant False
max_prompt_length 512
max_length 1024
max_new_tokens 256
max_steps 20
logging_steps 5
save_steps 200
save_strategy no
eval_steps 5
log_freq 1
α 0.1
γ 2

able, this avoids degeneration during inference1857

since we force the model to only generate upto1858

256 new tokens not including the prompt length in1859

the maximum token length.1860

DRDO training For our DRDO approach, we1861

sweep over α ∈ {.1, 1} and γ ∈ {0, 1, 2, 5} but1862

found the most optimal combination to be α = 0.11863

and γ = 2, since a higher γ tends to destabilize train-1864

ing due to the larger penalties induced on DRDO1865

loss. This is consistent with optimal γ values found1866

in the literature, albeit for different tasks (Yi et al.,1867

2020; Lin et al., 2018). For Oracle trained for1868

DRDO, we use the same batch size as for policy1869

training with a slightly larger learning rate of 1e-1870

5 and train for epoch. For consistency, we use a1871

maximum length of 1024 tokens after filtering for1872

pairs with prompt and responses < 1024 tokens.1873

For all SFT training, we use the TRL library12 with1874

a learning rate of 1e-5 with a cosine scheduler and1875

12https://huggingface.co/docs/trl/en/sft_
trainer

100 warmup steps. Table 5 provides a full list of 1876

model configurations and hyperparameters used 1877

during training of DRDO models. 1878

DPO and e-DPO For the DPO baselines, we 1879

found the implementation in DPO Trainer13 For 1880

optimal parameter selection, we sweep over β ∈ 1881

{.1, 0.5, 1, 10} but we found the default value of β 1882

= 0.1 to be most optimal based on the validation 1883

sets during training. Also, we found the default 1884

learning rate of 5e-6 to be optimal after validation 1885

runs. For e-DPO, we restrict the number of reward 1886

ensembles to 3 but use the same Oracle training 1887

hyperparameters mentioned above. 1888

PPO baseline For PPO, we train a Phi-3 Instruct 1889

reward model (RM) using our Oracle reward mod- 1890

eling loss (Eq.1) and the policy based on the im- 1891

plementation.14 Due to PPO’s extensive compute 1892

demands, we could only run evaluate this base- 1893

line on one experiment—training on Ultrafeed- 1894

back and evaluating on the Alpaca Eval 2.0 bench- 1895

mark. As such, we trained this baseline with LoRA 1896

(Low-Rank Adaptation of Large Language Mod- 1897

els), where LoRA α = 16, LoRA dropout = 0.05 1898

and a LoRA R of 8 was used in training with the 1899

PEFT15 and bitsandbytes16 library to load our 1900

models in 4-bit quantization for more cost-efficient 1901

training. In particular, we train the PPO policy on 1902

Oracle-assigned rewards for 4,000 batches over 2 1903

epochs using a mini-batch size of 4, gradient ac- 1904

cumulation of 2, and an effective batch size of 8. 1905

Responses are sampled using top-p = 1.0 and con- 1906

strained to 256–512 tokens via a LengthSampler; 1907

queries are truncated to 1,024 tokens. Learning 1908

rates is 3e−6. 1909

13We found https://huggingface.co/docs/trl/main/
en/dpo_trainer to be the most stable and build off most of
our DRDO training pipline and configuration files based on
their trainer.

14https://github.com/huggingface/trl/blob/main/
examples/scripts/ppo/ppo.py

15https://huggingface.co/docs/peft/index
16https://huggingface.co/docs/transformers/

main/en/quantization/bitsandbytes
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(a)

(b)

(c)

(d)

Figure 5: Top: DRDO performance evolution during OPT
1.3B training compared to DPO and e-DPO on the evaluation
set of Ultrafeedback (Cui et al., 2024), and randomly sampled
generations to compute the reward advantage against the pre-
ferred reference generations.

F Ablation Studies/Additional 1910

Experiments 1911

F.1 Additional results on Alpaca Eval 2.0 per 1912

Dataset 1913

Distributional Analysis Across Evaluation 1914

Datasets. Table 6 shows distribution of win-rates 1915

of all baselines including PPO across five evalua- 1916

tion subsets in AlpacaEval 2.0—SELFINSTRUCT, 1917

HELPFUL_BASE, VICUNA, KOALA, and OASST— 1918

which vary in prompt diversity, linguistic complex- 1919

ity, and alignment challenges. DRDO achieves the 1920

highest win rate on SELFINSTRUCT at 20.24%, sub- 1921

stantially outperforming PPO (14.17%) and DPO 1922

(13.36%). On VICUNA, DRDO reaches 18.42%, 1923

followed by e-DPO at 15.79% and PPO at 13.16%, 1924

showing DRDO’s strength in handling conver- 1925

sational prompts sourced from user interactions. 1926

The performance on KOALA further reflects this 1927

trend, where DRDO achieves 17.31%, surpassing 1928

PPO (14.74%) and e-DPO (13.46%). While PPO 1929

slightly outperforms DRDO on OASST (14.75% 1930

vs. 13.11%), DRDO still ranks among the top 1931

performers across all five datasets. In contrast, su- 1932

pervised fine-tuning (SFT) trails behind on most 1933

datasets, particularly on OASST (6.01%) and VI- 1934

CUNA (6.58%). 1935

More importantly, despite variations in win rates 1936

across individual datasets, DRDO emerges as the 1937

most consistently strong method. Its superior per- 1938

formance on open-ended benchmarks like SELF- 1939

INSTRUCT and VICUNA suggests that it is particu- 1940

larly well suited to learning from both deterministic 1941

and noisy preference signals. This generalization 1942

ability is especially valuable for real-world align- 1943

ment tasks, where preferences may be uncertain 1944

or under-specified. For example, unlike TL:DR or 1945

Ultrafeedback where confidence labels or a high- 1946

capacity judge-based assigned rewards are acces- 1947

sible during training, real world data in carefully 1948

curated benchmarks like AlpacaEval may not con- 1949

tain indicators to get non-determinsitic labels for 1950

training. However, DRDO objective operates dy- 1951

namically (with the contrastive “preference” com- 1952

ponent) and is agnostic to underlying preference 1953

“labels”17 as its improved results over multiple data- 1954

distributions on AlpacaEval show. Similarly, while 1955

e-DPO shows a spike on VICUNA, likely due to 1956

more consistent oracle reward in the confidence set 1957

of 3, DRDO maintains strong performance across 1958

17By labels, we mean datasets created explicitly to reflect
non-deterministic preference samples like Dℓc,ℓe
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all settings. These results suggest that DRDO ef-1959

fectively balances robustness to all types of pref-1960

erences, whether clearly determinsitic or noisy or1961

non-deterministic in preference modeling, outper-1962

forming both distillation-based offline techniques1963

like e-DPO, direct approaches like DPO and on-1964

policy RL baselines like PPO in diverse evaluation1965

settings.1966

More importantly, although PPO is competitive1967

especially on OASST, these results suggest that1968

DRDO more effectively leverages the oracle re-1969

ward model while being fully offline in contrast1970

to PPO that requires online (on-policy) sampling1971

which drastically increases compute required. This1972

makes DRDO more compute-efficient in that it1973

learns human-preferences completely offline and1974

still performs well on a wide range of data distribu-1975

tions in Alpaca Eval 2.0.1976

F.2 Ablations on reward distillation and1977

contrastive log-unlikelihood1978

For a more robust evaluation using a much more1979

high-capacity oracle (GPT-4o), we randomly sam-1980

pled 40 prompts from the CNN/Daily Mail test set1981

and compute win-rates and reward margins of sam-1982

ples generated with a top-p of 0.8 and T = 0.71983

for all baselines vs. DRDO policies trained on1984

Reddit TL;DR. We use the Phi-3-Mini-4K-Instruct1985

model for this experiment. We include the IPO1986

baseline (Azar et al., 2024) with β = 0.1 (or τ in1987

their paper), the baselines without the distillation1988

(shown as DRDO (-R)), and without the contrastive1989

component (shown as DRDO (-C)). Additionally,1990

we include the baseline where reward distillation1991

term in DRDO is replaced by the DPO loss but1992

keep the contrastive log-unlikelihood component1993

(shown as DPO (+C)). Table 7 shows results of this1994

experiment. Note that due to compute constraints,1995

we only train these policies from the SFT check-1996

point for 500 steps with an effective batch size of1997

128. For the reward estimates using GPT-4o, we1998

only add one additional condition to the prompt1999

shown in Fig. 5 to get scalar rewards (between 02000

and 1). Fig. 9 provides the prompt format used for2001

this experiment.2002

We see that in all cases, full DRDO is the clear2003

winner in terms of win rate. We also see that in2004

this sample the reward distillation component con-2005

tributes slightly more to the overall performance2006

than the contrastive log-unlikelihood loss, but given2007

the small sample size this is not a significant dif-2008

ference; DRDO’s performance can be attributed2009

to a combination of both. This is reinforced by 2010

DRDO’s 80-20 performance against contrastive 2011

log-unlikelihood combined with DPO loss instead 2012

of DRDO reward distillation. 2013

F.3 Extent of Out-of-distribution data 2014

In order to comprehensively evaluate DRDO’s 2015

performance against baseline methods under in- 2016

creasing out-of-distribution (OOD) conditions, 2017

we randomly sample 1,000 prompts from the 2018

CNN/DailyMail dataset and segment these prompts 2019

into bins of 50 tokens based on prompt-token 2020

counts, spanning the full range of token lengths. 2021

Since the CNN/DailyMail dataset represents a pre- 2022

viously unseen input distribution, this evaluation 2023

effectively measures the OOD generalization ca- 2024

pabilities of the policies as prompt lengths (and 2025

corresponding news article lengths) increase. For 2026

this automatic evaluation, we use GPT-4o as a high- 2027

capacity judge, consistent with Sec. 5 (prompt used 2028

is shown in Fig. 7). For response sampling, we 2029

use top-p of 0.8 and temperature of 0.7 for DRDO 2030

and all baselines. The trends in Fig. 6 suggest that 2031

as OOD composition (with prompt-token lengths 2032

as proxy) increases, on average DRDO policies 2033

tend to have relatively larger win-rates compared 2034

to shorter prompts over baselines like DPO and 2035

e-DPO. In contrast, we find that DPO and e-DPO 2036

win-rates tend to decrease with increase in prompt- 2037

lengths. 2038

G Win-Rate Evaluation Prompt Formats 2039

Fig. 7 and Fig. 8 show the prompt format used for 2040

GPT-4o evaluation of policy generations compared 2041

to human summaries provided in the evaluation 2042

data of Reddit TL;DR (CNN Daily Articles). Fig. 7 2043

specifically provides the human-written summaries 2044

as reference in GPT’s evaluation of the baselines. 2045

In contrast, Fig. 8 shows the prompt that was used 2046

to evaluate policy generated summaries in direct 2047

comparison to human-written summaries. Note 2048

that in both prompts, we swap order of provided 2049

summaries to avoid any positional bias in GPT-4o’s 2050

automatic evaluation. 2051

H Computational Efficiency 2052

e-DPO requires training reward ensembles to form 2053

a confidence set for training the policy. In our ex- 2054

periments, we use 3 reward models to construct 2055

this set which makes it roughly thrice as expensive 2056

as DRDO training. Like DPO, e-DPO requires a 2057
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SELFINSTRUCT HELPFUL_BASE VICUNA KOALA OASST

SFT 12.55±2.11 7.81±2.38 6.58±2.86 10.90±2.50 6.01±1.76
DPO 13.36±2.17 12.50±2.93 7.89±3.11 8.33±2.22 10.38±2.26
E-DPO 11.74±2.05 9.38±2.59 15.79±4.21 13.46±2.74 12.02±2.41
PPO 14.17±2.22 13.28±3.01 13.16±3.90 14.74±2.85 14.75±2.63
DRDO 20.24±2.56 10.94±2.77 18.42±4.48 17.31±3.04 13.11±2.50

Table 6: Dataset-wise win rates on AlpacaEval 2.0 for baselines trained on Ultrafeedback. DRDO performs consistently well,
especially on SELFINSTRUCT (20.24%) and VICUNA (18.42%). Note that although PPO is competitive especially on OASST, these
results suggest that DRDO more effectively leverages the oracle reward model while being fully offline in contrast to PPO that
requires online (on-policy) sampling which drastically increases compute required. This makes DRDO more compute-efficient
learns human-preferences completely offline and still performs well on a wide range of data distributions in Alpaca Eval 2.0

Comparison WR A (%) WR B (%) Reward A Reward B Margin A Margin B

DRDO vs. DRDO (-R) 85.0 15.0 0.24±0.26 0.07±0.08 0.22±0.22 0.09±0.04

DRDO vs. DRDO (-C) 90.0 10.0 0.25±0.23 0.05±0.07 0.23±0.22 0.06±0.03

DRDO vs. IPO 65.0 35.0 0.21±0.17 0.21±0.24 0.09±0.08 0.16±0.16

DRDO vs. DPO (+C) 80.0 20.0 0.18±0.16 0.14±0.15 0.11±0.08 0.22±0.21

Table 7: Full DRDO policies (denoted “A”) compared against various baselines (denoted “B”), including DRDO without
reward distillation and DRDO without contrastive log-unlikelihood loss. Win-rates (WR) are computed using average of reward
comparison for each sample and then averaged. Margins are computed using the difference of rewards.

separate reference model to be kept in memory, fur-2058

ther increasing compute requirements. DRDO, on2059

the other hand, only requires a trained oracle for2060

distillation. The expected oracle rewards can be2061

precomputed once and a separate reference model2062

does not need to be kept in memory (as shown in2063

Eq. 2). During training, DRDO does require one2064

additional linear head on top of the base LM to2065

predict the reward estimates. This adds a negligible2066

0.003% more trainable parameters (relative to the2067

language modeling head of base LM Phi-3-Mini-2068

4K-Instruct). During inference, DRDO trained poli-2069

cies do not require this head.2070

I DRDO vs. Pluralistic Preferences2071

In certain circumstances, non-deterministic pref-2072

erences, as reflected in low labeler confidence or2073

equal rewards, could be a consequence of innate2074

pluralistic tendencies of human preferences. How-2075

ever, DRDO is not motivated directly by pluralis-2076

tic preferences, where there are multiple annota-2077

tions (or preferences) for a single (x, y1, y2), but by2078

the diversity of preference strength for paired sam-2079

ples. Typically, pluralistic approaches require mul-2080

tiple reward models, such as reward soups (Ramé2081

et al., 2023), e-DPO (Fisch et al., 2024), MaxMin-2082

RLHF (Chakraborty et al.), or conditioned pol-2083

icy (Wang et al., 2024b) to model such preferences.2084

This is computationally expensive and assumes re-2085

wards over multiple dimensions can be linearly2086

interpolated. We do not make any such assump-2087

tions. Our main argument as stated in Sec. 3 is2088

that non-deterministic preferences likely constitute 2089

a non-trivial amount of paired samples in popular 2090

preference datasets and as such, DRDO provides 2091

an efficient alignment method under such condi- 2092

tions. Our only strong assumption in the modeling 2093

is that the Oracle reward model, given sufficient 2094

data, should reasonably approximate human pref- 2095

erences using any standard reward-modeling ap- 2096

proach. Furthermore, given such an Oracle, we 2097

directly regress on the rewards and, unlike e-DPO, 2098

do not need to find additional optimal parameters 2099

like β in the regression or confidence set in policies 2100

or reward model ensembles. Thus, our DRDO ap- 2101

proach does not need to learn a variety of models 2102

each unique to specific viewpoints expressed in the 2103

data, and thus our results that best the competitor 2104

baselines reflect that we are able to fit better to non- 2105

deterministic preferences while still maintaining 2106

an ability to fit to deterministic preferences and the 2107

data distribution at large. 2108

J Sensitivity of DRDO’s γ vs. DPO’s β 2109

w.r.t. KL-divergence from SFT model 2110

We ran an additional experiment to compare 2111

the sensitivity of model-specific hyperparameters 2112

(DRDO’s γ vs. DPO’s β). Keeping α as 0.1 for 2113

all DRDO policies, we compute the KL-divergence 2114

during training on sampled generations on 40 ran- 2115

domly sampled evaluation prompts in the held-out 2116

set of Ultrafeedback with top-p of 0.8 and tem- 2117

perature of 0.7 with various γ values in DRDO 2118

(α = 0.1) and with different KL-β values in 2119
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Figure 6: Comparison of win-rates as a function of the extent
of out-of-distribution (OOD) data on the CNN daily article
dataset. Win-rates (y-axis) of DRDO vs DPO and e-DPO
(top) and competitor win-rates (bottom) are plotted against
the increasing prompt lengths (number of tokens) over 1000
randomly sampled prompts for evaluation. DRDO is more
robust to OOD settings, on average, compared to baselines
like DPO and e-DPO as seen in the upward trend in win-rates
over prompt-tokens.

Figure 7: Prompt format for Reddit TL;DR (CNN/Daily Mail)

Figure 8: Prompt format for Reddit TL;DR (CNN/Daily Mail)

DPO using the SFT-trained Phi-3-Mini-4K-Instruct2120

model. Table 8 shows expected KL-divergence2121

(averaged over tokens) over the 40 completions2122

at every 100 steps of training. The expected re-2123

ward accuracies (win-rates) over the SFT model2124

completions with the same hyperparameters over 2125

these samples (after 400 training steps) are shown 2126

in Table 9 below. 2127

These results suggest that while DRDO does 2128

not explicitly regularize its policy w.r.t. reference- 2129

model based KL-regularization, it still outperforms 2130

DPO in oracle-assigned expected reward accura- 2131

cies (win-rates) on sampled generations as long as 2132

the γ parameter is carefully chosen. In particular, 2133

as previously observed in Meng et al. (2024) and 2134

Rafailov et al. (2024b), smaller β in DPO tends to 2135

increase KL-divergence with respect to the base- 2136

line SFT model. However, a relatively larger KL 2137

divergence in DRDO on average does not necessar- 2138

ily impede preference learning but larger γ values 2139

tend to degrade expected rewards. 2140

As for the exponential parameter γ, γ = 2 ap- 2141

pears to be a reasonable choice, as previously found 2142

in in Lin et al. (2018); Yi et al. (2020) in the fo- 2143

cal loss literature. A larger γ can harshly penalize 2144

the loss when the policy is uncertain (pw << 1 ) 2145

while a smaller γ = 0 may not adequately penalize 2146

and impact its adaptive nature. In our experiments 2147

including the above experiment, we find that the 2148

optimal reward is achieved for γ = 2 while too low 2149

or too high a γ can affect performance as seen in 2150

Tab. 9 . Note that, although we find γ = 2 to be 2151

optimal across datasets, a reasonable way to find 2152

the right γ would vary case by case—-if the base- 2153

line policy at the start of alignment training has 2154

not undergone or in off-policy settings, a lower γ 2155

could be ideal since a higher γ might apply harsher 2156

penalties in this case. However, if the policy is 2157

initialized with SFT model (as in DRDO) or in 2158

on-policy (where pw is likely to be higher already) 2159

alignment settings, a higher γ could be optimal. In 2160

practice though, empirical validation on a held-out 2161

set can be an efficient alternative, similar to how 2162

an optimal β can be determined in algorithms like 2163

DPO. 2164
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Step DRDO (γ = 5) DRDO (γ = 2) DRDO (γ = 1) DPO (β = 0.01) DPO (β = 0.1)

100 0.63 0.44 0.82 0.64 0.38
200 0.35 1.51 1.67 0.81 0.39
300 0.59 1.67 1.82 1.17 0.42
400 0.64 1.63 1.71 1.35 0.44

Table 8: KL-divergence during training on sampled generations on 40 randomly sampled evaluation prompts in the held-out set
of Ultrafeedback with top-p of 0.8 and temperature of 0.7 with various γ values in DRDO (α = 0.1) and with different KL-β
values in DPO using the Phi-3-Mini-4K-Instruct model.

Model Expected Oracle Reward

DPO (β = 0.1) 0.775 (± 0.42)
DPO (β = 0.01) 0.675 (± 0.47)
DRDO (γ = 1) 0.750 (± 0.44)
DRDO (γ = 2) 0.825 (± 0.38)
DRDO (γ = 5) 0.600 (± 0.50)

Table 9: DRDO vs. DPO expected reward accuracies (win-
rates) over the SFT-model completions computed using the
OPT 1.3B oracle model.

Summarization GPT-4o win rate prompt
(C).

Which of the following summaries do a bet-
ter job of summarizing the most important
points in the given forum post, without includ-
ing unimportant or irrelevant details? Make
your decision while referring to the reference
(human-written) summary. A good summary
is both precise and concise.

Post:
<post>

Reference Summary:
<golden summary>

Summary A:
<Summary A>
Summary B:
<Summary B>

FIRST, provide a one-sentence comparison
of the two summaries, explaining which you
prefer and why.
SECOND, on a new line, state only "A" or
"B" to indicate your choice.
THIRD, on a new line, provide your ratings
(a real reward score between 0 to 1 where 1
is highest and 0 is lowest in quality) for the
summaries.
Your response should use the format:
Comparison: <one-sentence comparison
and explanation>
Preferred: <"A" or "B">
Score for Summary A: <score>
Score for Summary B: <score>

Figure 9: Prompt format for Reddit TL;DR.
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