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Abstract

Frame semantic parsing is a fundamental
NLP task, which consists of three subtasks:
frame identification, argument identification
and role classification. Most previous stud-
ies tend to neglect relations between differ-
ent subtasks and arguments and pay little at-
tention to ontological frame knowledge de-
fined in FrameNet. In this paper, we pro-
pose a Knowledge-guided Incremental seman-
tic parser with Double-graph (KID). We first
introduce Frame Knowledge Graph (FKG), a
heterogeneous graph containing both frames
and FEs (Frame Elements) built on the frame
knowledge so that we can derive knowledge-
enhanced representations for frames and FEs.
Besides, we propose Frame Semantic Graph
(FSG) to represent frame semantic structures
extracted from the text with graph structures.
In this way, we can transform frame seman-
tic parsing into an incremental graph con-
struction problem to strengthen interactions
between subtasks and relations between argu-
ments. Our experiments show that KID outper-
forms the previous state-of-the-art method by
up to 1.7 Fl-score on two FrameNet datasets.

1 Introduction

The frame semantic parsing task (Gildea and Juraf-
sky, 2002; Baker et al., 2007) aims to extract frame
semantic structures from sentences based on the
lexical resource FrameNet (Baker et al., 1998). As
shown in Figure 1, given a target in the sentence,
frame semantic parsing consists of three subtasks:
frame identification, argument identification and
role classification. Frame semantic parsing can
also contribute to downstream NLP tasks such as
machine reading comprehension (Guo et al., 2020),
relation extraction (Zhao et al., 2020) and dialogue
generation (Gupta et al., 2021).

FrameNet is a lexical database, which defines
more than one thousand hierarchically-related
frames to represent situations, objects or events,
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Figure 1: An example of the frame semantic structure.
Given the target receive in this sentence, the frame
identification is to identify the frame Receiving evoked
by it; the argument identification is to find the argu-
ments (He, the book, ...) of this target; the role classifi-
cation is to assign frame elements (Recipient, Theme,
...) as semantic roles to these arguments.

and nearly 10 thousand FEs (Frame Elements)
as frame-specific semantic roles with more than
100,000 annotated exemplar sentences. In addition,
FrameNet defines ontological frame knowledge for
each frame such as frame semantic relations, FE
mappings and frame/FE definitions. The frame
knowledge plays an important role in frame seman-
tic parsing. Most previous approaches (Kshirsagar
et al., 2015; Yang and Mitchell, 2017; Peng et al.,
2018) only use exemplar sentences and ignore the
ontological frame knowledge. Recent researches
(Jiang and Riloff, 2021; Su et al., 2021) introduce
frame semantic relations and frame definitions into
the subtask frame identification. Differ from pre-
vious work, we construct a heterogeneous graph
named Frame Knowledge Graph (FKG) based on
frame knowledge to model multiple semantic re-
lations between frames and frames, frames and
FEs, as well as FEs and FEs. Furthermore, we
apply FKG to all subtasks of frame semantic pars-
ing, which can fully inject frame knowledge into
frame semantic parsing. The knowledge-enhance
representations of frames and FEs are learned in a
unified vector space and this can also strengthen
interactions between frame identification and other
subtasks.

Most previous systems neglect interactions be-
tween subtasks, they either focus on one or two
subtasks (Hermann et al., 2014; FitzGerald et al.,
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Figure 2: An example of how frame knowledge contributes to frame semantic parsing. The frame semantic rela-
tions and FE mappings guide inter-frame reasoning (from left sentence to right); and the FE definitions help with
intra-frame reasoning (Theme to Role and Role to Donor)

2015; Marcheggiani and Titov, 2020) of frame se-
mantic parsing or treat all subtasks independently
(Das et al., 2014; Peng et al., 2018). Furthermore,
in argument identification and role classification,
previous approaches process each argument sepa-
rately with sequence labeling strategy (Yang and
Mitchell, 2017; Bastianelli et al., 2020) or span-
based graphical models (Tackstrom et al., 2015;
Peng et al., 2018). In this paper, we propose Frame
Semantic Graph (FSG) to represent frame semantic
structures and treat frame semantic parsing as a
process to construct this graph incrementally. With
graph structure, historical decisions of parsing can
guide the current decision of argument identifica-
tion and role classification, which highlights inter-
actions between subtasks and arguments.

Based on two graphs mentioned above, we
propose our framework KID (Knowledge-guided
Incremental semantic parser with Double-graph).
FKG provides a static knowledge background for
encoding frames and FEs while FSG represents
dynamic parsing results in frame semantic parsing
and highlights relations between arguments.

Overall, our contributions can be summarized as
follow:

* We build FKG based on the ontological
frame knowledge in FrameNet. FKG incorpo-
rates frame semantic parsing with structured
frame knowledge, which can get knowledge-
enhanced representations of frames and FEs.

* We propose FSG to represent the frame se-
mantic structures. We treat frame semantic
parsing as a process to construct the graph in-
crementally. This graph focuses on the target-
argument and argument-argument relations.

We evaluate the performance of KID on two

FrameNet datasets: FN 1.5 and FN 1.7, the results
show that the KID achieves state-of-the-art on these
datasets by increasing up to 1.7 points on F1-score.
Our extensive experiments also verify the effective-
ness of these two graphs.

2 Ontological Frame Knowledge

Frame semantics relates linguistic semantics to en-
cyclopedic knowledge and advocates that one can-
not understand the semantic meaning of one word
without essential frame knowledge related to the
word (Fillmore and Baker, 2001). For a frame, the
frame knowledge of it contains frame/FE defini-
tions, frame semantic relations and FE mappings.
FrameNet defines 8 kinds of frame semantic re-
lations such as Inheritance, Perspective_on and
Using; for any two related frames, the FrameNet
defines FE mappings between their FEs. For exam-
ple, the frame Receiving inherits from Getting and
the FE Donor of Receiving is mapped to the FE
Source of Getting. Each frame or FE has its own
definition and may mention other FEs in the same
frame.

we propose two ways of reasoning about frame
semantic parsing: inter-frame reasoning and intra-
frame reasoning in Figure 2. Frame knowledge
mentioned above can guide both ways of reason-
ing. The frame semantic relation and FE mappings
between Receiving and Getting allow us to learn
experience from the left sentence when parsing the
right sentence because similar argument spans of
two sentences will have related FEs as their roles.
The FE definitions reflect dependencies between
arguments. The definition of Role in frame Receiv-
ing mentions Theme and Donor, which reflects
dependencies between argument the book and ar-
gument as a gift.



3 Task Formulation

Given a target ¢ in the sentence S = wy, . .
the frame semantic parsing aims to extract the
frame semantic structure of ¢ from .S. Suppose
that there are k arguments of ¢ in S: ay, . .
all subtasks can be formulated as follow:

. an—l,

* 7a’k—17

e Frame identification: finding an f € F
evoked by ¢, where F' denotes the set of all
frames in the FrameNet.

¢ Argument identification: finding the bound-
aries 77 and ¢¢ for each argument a, =
Wis sy - - -, Wie.

* Role classification: assigning an FE 7 € Ry
to each a,, where Ry denotes the set of all
FEs of frame f.

4 Method

Overall, KID first encodes all frames and FEs
to knowledge-enhanced representations via frame
knowledge graph encoder (section 4.1). For a sen-
tence with a target, contextual representations of
tokens are derived from the sentence encoder (sec-
tion 4.2). The target span will be embedded into
the vector space of FKG and then a frame will be
identified with a scoring module (section 4.3). The
target and frame evoked by it will be combined into
the initial node of FSG. Frame semantic graph de-
coder (section 4.4) will expand FSG incrementally
from the target node to complete FSG. Based on the
representation of current snapshot of partial FSG,
KID identifies a new argument with a pointer net-
work (section 4.4.1) and assigns it an FE (section
4.4.2).

4.1 Frame Knowledge Graph Encoder

FKG is an undirected multi-relational heteroge-
neous graph, and Figure 3 shows a subgraph of
FKG. Its nodes contain both frames and FEs and
there are four kinds of relations in FKG: frame-FE,
frame-frame, inter-frame FE-FE and intra-frame
FE-FE relations. The following will show how we
extract these relations from frame knowledge:
Frame-FE: we connect a frame with its FEs. With
this relation, we can learn representations of frames
and FEs in a unified vector space to strengthen
interactions between frame identification and other
subtasks.

Frame-frame and inter-frame FE-FE: these two
kinds of relations are frame semantic relations and
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Figure 3: A subgraph of FKG. We only show intra-
frame and inter-frame FE-FE relations in the frame Re-
ceiving. Inside the solid rectangular box are a frame
and its FEs.

FE mappings respectively and here we ignore re-
lation types of frame semantic relations. They can
both guide inter-frame reasoning.

Intra-frame FE-FE: If the definition of an FE
mentions another FE in the same frame, they will
have intra-frame FE-FE relations with each other.
This relation can help with intra-frame reasoning.

The frame knowledge graph encoder aims to get
knowledge-enhanced representations of nodes in
FKG via an RGCN (Schlichtkrull et al., 2018) mod-
ule. We use F’ to represent all frames in FrameNet
and Ry to represent all FEs of frame f. In addi-
tion, we use R = (J ser Iy to represent all FEs
in the FrameNet. Let 0,...,|F| — 1 denote all
frames and |F|, ..., |F| + |R| — 1 denote all FEs.
Moreover, we introduce a special dummy node into
FKG: |F| + |R|. So the vectors yg, . .., yar € R
denotes the representations of all nodes in FKG,
where M = |F| + |R|.

For each node ¢, we take a randomly initialized
embedding yz@ € R% as the input feature of the
RGCN module. Then we can get representations
of all frames and FEs:

The RGCN module models four kinds of rela-
tions: Frame-FE, intra-frame FE-FE, frame-frame
and inter-frame FE-FE. We also use name informa-
tion to get better representations for FEs. The FEs
whose names are the same will have same embed-
dings: fori,j > |F]|, 3/1(0) = y](-O) if the name of ¢
is the same as j. With this trick, we can fuse both
name information and structure information into
the representations of FEs.
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Figure 4: Based on the representation g, of partial FSG G, frame semantic graph decoder identifies new argument
as a gift with pointer networks, and label it with FE Role. G will be updated to G, with (as a gift, Role).

4.2 Sentence Encoder

The sentence encoder converts tokens of the sen-
tence S = wy,...,w,_1 to their representations
ho,...,hp—1 € R~

We use LSTM (Hochreiter and Schmidhuber,
1997) and GCN (Kipf and Welling, 2016) to model
both sequential structure and dependency structure:

. 7en—1) (2)
an-1)  (3)

apy ...y Op—1 = BiLSTM (60, ..
/807 R 7/871—1 = GCNdep <a07 ..

e; denotes the embedding of word w;. We get
contextual representations h; by adding 3; to «;.

The GCN uses the graph structure of the depen-
dency tree of .S. The dependency tree is regarded
as an undirected graph. We follow previous studies
(Marcheggiani and Titov, 2020; Bastianelli et al.,
2020) to use syntax structures here because syntax
structure is proved beneficial to semantic parsing.

Furthermore, we use boundary information to
represent spans like s = wy, . . ., w; based on token
representations because we need to embed spans
into the vector space of FKG in frame identification
and role classification:

Q(i,j) = FEN ((hj — hy) ® (hj + hi))  (4)

The dimension of Q(4, ) is d,,. The @ denotes
concatenation operation.

4.3 Frame Identification

A frame f € F will be identified based on the
target ¢, representations of tokens hq,...,hy—1
and representations of frames yo, . . ., yp|—1 With
a scoring module. The target ¢ = ws, ..., w;e will

be embedded to the vector space of all frames as
v € R% . We can calculate dot product scores be-
tween +y; and all frames Yy = (yo,. . ., y‘F‘,l) €
R4 *IF| to get the probability distribution of f.
Let 7; denotes Q(i7,i) and FFN denotes Feed
Forward Network:

~v¢ = tanh (FFN(7)) ®)
P (f|S,t) = softmax (YfT : %) ©)

4.4 Frame Semantic Graph Decoder

We propose FSG to represent the frame semantic
structure of ¢ in the sentence S and we treat the
frame semantic parsing as a process to construct
FSG incrementally. Intermediate results of FSG are
partial FSGs representing all historical decisions.
Suppose that there are k£ arguments of target ¢:
ag, - . . ,ai—1 and they have roles rg, . .., rx_1. For
7-th snapshot of FSG G, it contains 7 + 1 nodes:
one target node (¢, f) and 7 argument nodes (if
exist) (ag,r9),---,(ar—1,7-—1). The target node
will be connected with all argument nodes. The
indices of nodes in G+ depend on the order they are
added in the graph, O denotes the target node and
1,..., 7 denotes (ag,70), .., (ar—1,7-—1). Based
on the representation g, of each snapshot G, KID
uses pointer networks to find boundaries 77, ¢ of
ar and then embeds a, into the vector space of
FEs to find an FE r; as its semantic role. The G,
will be updated to G 41 with the new node (a-, ;)
until the 7 is the special dummy node in FKG.
Figure 4 shows how to find a new node and add it
into the FSG.



We first need to encode G, to its representation
gr:

- 27) (7)
20,002 = GONTSG (0, 20)  @®)

Z(-O) _ ﬂ-t@yif7 ]:O
J Ta; © Yir s j=1,...,7

gr = Maxpooling (2o, . .

€))

Where iy and iy denotes indices of f and r; in
FKG, and 7,; = Q(if,4%). The GCN module is to
encode partial FSG.

4.4.1 Argument Identification

Based on g,, we need to find an argument a, =
Wis, . . ., wie . We use pointer networks to identify
its boundaries ¢; and ¢¢ separately. Take 72 as
example:

p7 = FFN (g7)
P (i}|S, G;) = softmax <HT : pi)

(10)
1D

Where H = (hg,...,hn_1) € R™*" rep-
resents the output of the sentence encoder, and
pS € R is used to find the start position of argu-
ment span a.

4.4.2 Role Classification

Based on g, and a,, we embed a, into the vec-
tor space of FEs as 7, € R% . Similar to frame
identification, we calculate dot product scores be-
tween y,, and all FEs Yr = (Y|, - - - Y| F|+|R|) €
Ré»*(IEl+1) to get the conditional probability dis-
tribution of r given a, and G.

"YQT = FFN(T‘-QT @ gT)
P (r:|S,Gr,a;) = softmax (YI%r -'yaT) (13)

(12)

S Training and Inference

5.1 Training

We train our model with all subtasks jointly. As the
results of other subtasks are highly dependent on
frame identification, we use the target with its gold
frame as the initial node of FSG, G = (¢, f9°!9).
The frame semantic graph decoder is autoregres-
sive, so the decoder expands FSG with node pre-
dicted by itself instead of using gold node.

#exemplar  #train  #dev  #test
FN 1.5 153952 17143 2333 4458
FN 1.7 192461 19875 2309 6722

Table 1: Number of instances in two datasets.

L5 = —log P(f = f&18,1) (14)

k—1
Ce=— log P(id/* = I}/°|S,G,)  (15)
7=0

k
L =— Zlog P(r; = r848,G;,a,)  (16)
7=0

L=ML + X(L2+ LY+ X3L"  (17)

Where ngId,Ij,Iﬁ,r§°ld are gold labels, and

Gri1 = Gy + (ar,77). r%OId is “Dummy”, indi-
cating the end of the parsing.

5.2 Inference

KID predicts frame and all arguments with their
roles in a sequential way. We use probabilities
above with some constraints: 1. We use lexicon fil-
tering strategy: for a target ¢, we can use the lemma
l; of it to find a subset of frames Fj, C F' so that
we can reduce the searching space; 2. Similarly, we
take R 7 instead of R as the set of candidate FEs; 3.
In argument identification, we will mask spans that
are already selected as arguments, and ¢ should be
no less than 7.

6 Experiment

6.1 Datasets

We evaluate KID on two FrameNet datasets: FN 1.5
and FN 1.7." FN 1.7 is an extension version of FN
1.5, including more fine-grained frames and more
instances. FN 1.5 defines 1019 frames and 9634
FEs while FN 1.7 defines 1221 frames and 11428
FEs. We use the same splits of datasets as Peng
et al. (2018), and we also follow Kshirsagar et al.
(2015) to use exemplar instances to pretrain our
model because these exemplar sentences extremely
enrich the corpus. Table 1 shows the numbers of
instances in two datasets.

6.2 Models
We compare KID with following baselines:

"https://FN.icsi.berkeley.edu/
fndrupal/about
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Full structure

Model

Arg only (with gold frame)

Precision Recall Fl-score Precision Recall Fl-score
SEMAFOR (2014) - - - 65.6 53.8 59.1
SEMAFOR (HI) (2015) - - - 67.2 54.8 60.4
Hermann et al. (2014) 74.3 66.0 69.9 - - -
Téckstrom et al. (2015) 75.4 65.8 70.3 - - -
FitzGerald et al. (2015) 74.8 65.5 69.9 - - -
open-SESAME (2017) 71.0 67.8 69.4 69.4 60.5 64.6
KID (GloVe) 73.8 76.8 75.3 64.6 68.2 66.4
SEMAFOR (HI + exemplar) (2015) - - - 66.0 60.4 63.1
Swayamdipta et al. (2018) - - - 67.8 66.2 67.0
Marcheggiani and Titov (2020) - - - 69.8 68.8 69.3
Peng et al. (2018) 79.2 71.7 75.3 - - -
Chen et al. (2021) 75.1 76.9 76.0 - - -
Yang and Mitchell (2017) 77.3 71.2 74.1 70.2 60.2 65.5
KID (GloVe + exemplar) 75.5 80.1 71.7 66.8 73.7 70.1
Bastianelli et al. (2020) (JL) - - - 74.6 74.4 74.5
Chen et al. (2021) (BERT) 78.2 82.4 80.2 - - -
KiD (BERT) 79.3 84.2 81.7 71.7 79.0 75.2

Table 2: Empirical results on FN 1.5. All models are single-task, non-ensemble. The upper block lists models
trained without exemplar instances, the lower block lists models with pretrained language models. KID outper-
forms other models under all conditions. KID gets much higher recall because of the incremental strategy to

identify arguments.

SEMAFOR: a widely-used open-resource statisti-
cal model proposed by Das et al. (2010, 2014).
SEMAFOR (HI): an improved version of SE-
MAFOR using exemplar instances and hierarchy
features (FE mappings) proposed by Kshirsagar
et al. (2015)

Hermann et al. (2014): a neural network-
based model learning representations of words and
frames.

Téackstrom et al. (2015): identifying arguments
with a global graphical model.

FitzGerald et al. (2015): an extension of Tick-
strom et al. (2015) learning neural representations
of frames and FEs.

open-SESAME: a syntax-free open-resource se-
mantic parser proposed by Swayamdipta et al.
(2017).

Swayamdipta et al. (2018): an extension version
of open-SESAME with multi-task and exemplar
instances.

Yang and Mitchell (2017): a joint model integrat-
ing both sequential and relational models.

Peng et al. (2018): a joint model using latent struc-
ture variables.

Chen et al. (2021): a joint encoder-decoder model
predicting arguments and roles sequentially.
Marcheggiani and Titov (2020): a GCN-based
model over constituency trees.

Bastianelli et al. (2020) (JL) : a GCN-based
model encoding syntactic constituency path. JL

denotes joint learning on all subtasks of frame se-
mantic parsing.

Kalyanpur et al. (2020): a T5-based model
treating frame semantic parsing as a sequence-to-
sequence generation task.

6.3 Empirical Results

We compare KID with models mentioned above
on FN 1.5 and FN 1.7. We focus on two metrics:
full structure F1 and arg F1.> Full structure F1
shows the performance of models on extracting
full frame semantic structures from text and arg F1
evaluates the results of argument identification and
role classification with gold frames.

Table 2 shows results on FN 1.5 and Table 3,
4 shows results on FN 1.7. For a fair compari-
son, we divide models into three parts: the first
part of models do not use exemplar instances as
training data; the second part of models use ex-
emplar instances without any pretrained language
models; the third part of models use both exemplar
instances and pretrained language models. KID
(GloVe) uses GloVe (Pennington et al., 2014) as
word embeddings and KiD (BERT) uses pretrained
language models BERT (Devlin et al., 2019) and
fine-tunes BERT to encode word representations.
KiID achieves state-of-the-art of two metrics on
both datasets under all circumstances.

https://www.cs.cmu.edu/~ark/SEMAFOR/
eval/
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Model Precision Recall Fl-score
Peng et al. (2018) 78.0 72.1 75.0
KiD (GloVe) 77.0 79.8 78.4
Kip (BERT) 81.1 83.3 82.2

Table 3: Full structure F1 on FN 1.7.

Model Precision Recall Fl-score
open-SESAME (2017) 62 55 58
KiD (GloVe) 69.2 73.3 71.2
Kalyanpur et al. (2020) 71 73 72
KiD (BERT) 74.1 77.3 75.6

Table 4: Arg F1 on FN 1.7. Results of other models are
obtained from Kalyanpur et al. (2020).

It is worth noting that KID achieves much higher
recall than other models. We attribute this to the
incremental strategy of building FSG. By construct-
ing FSG incrementally, KID can capture relations
between arguments and identify arguments that are
hard to find in other models.

6.4 Ablation Study

To prove the effectiveness of double-graph archi-
tecture, we conduct further experiments with KiD
on FN 1.5. Table 5 shows ablation study on double-
graph architecture. w/o FSG uses LSTM instead
of our frame semantic graph decoder. It takes a
sequence of arguments and their roles that have al-
ready been identified as input to predict the next ar-
gument. FSG performs better than LSTM because
it captures target-argument and argument-argument
relations and can model long-distance dependen-
cies. w/o FKG directly uses input vectors of frame
knowledge graph encoder, and results also show
that knowledge-enhanced representations are better
than randomly initialized embeddings.

FKG is a multi-relational heterogeneous graph.
The ablation study on structures of FKG is shown
in Table 6. In addition, we evaluate the perfor-
mance of FI w/o FKG, which identifies frames
with a simple linear classification layer instead of
FKG, and the results prove that FKG strengthens
interactions between frame identification and role
classification.

6.5 Transfer learning ability of FKG

As we have discussed in Figure 2, if frame B is
related to frame A, a sentence with frame A can
contribute to paring another sentence with frame B
by inter-frame reasoning. Frame-frame and inter-

Model Full structure F1 ~ Arg F1
KID (GloVe) 75.28 66.35
w/o FSG 74.43 64.99
w/o FKG 74.60 64.96
w/o double-graph 73.34 63.41
Ki1p (BERT) 79.44 71.59
w/o double-graph 77.77 68.77

Table 5: Ablation study on double-graph architecture.
w/o denotes “without”. w/o FSG uses LSTM as its
decoder and w/o FKG does not use RGCN to encode
frames and FEs. We also test the influence of double-
graph architecture for KiD (BERT).

Model Full structure F1 ~ Arg F1
KiD (GloVe) 75.28 66.35

w/o frame-FE 74.84 65.70
w/o frame-frame 74.97 66.06
w/o intra-frame FE-FE 75.10 66.60
w/o inter-frame FE-FE 75.13 65.87
FI w/o FKG 75.00 65.61

w/o FKG 74.60 64.96

Table 6: Ablation study on structures of FKG. We re-
move each kind of relations of FKG and all get a drop
of full structure F1. FI w/o FKG denotes not using
FKG in frame identification (FI). w/o FKG uses input
vectors of frame knowledge encoder directly.

frame FE-FE relations of FKG can guide KID to
learn experience from other frames.

To confirm that FKG has ability of transfer learn-
ing, we design zero (few)-shot learning experi-
ments on FN 1.7. Target word get can evoke multi-
ple frames in FrameNet, and we choose instances
including target get with three frames (Arriving,
Getting and Transition_to_state) as test instances.
We only add few (or zero) instances including other
targets with these frames in train and development
sets and compare performance of KiD with KID
w/o FKG. If FKG has ability of transfer learning,
KiD with FKG can learn experience from other
related frames like Receiving and its performance
will not be influenced so much by the sparsity of
labels.

Table 7 shows the results of our experi-
ments. K=0 indicates zero-shot learning while
K={4,16,32} indicates few-shot learning. KID
without FKG performs much worse in zero-shot
learning. As the number of instances that can be
seen in training grows up, the performance of KiD
with FKG gets a steady increase while the per-
formance of KID without FKG increases rapidly.
Results verify our assumption that even with few



Model K

0 4 16 32 full
KiID (GloVe) 5626 6328 6532 6595 70.32
w/o FKG 0.00 50.70 5640 5759 63.94
A 56.26 12.58 8.92 8.36 6.38

Table 7: Experiments on confirming transfer learning
ability of FKG. K denotes the number of instances of
each frame in training set. Full means adding all in-
stances of these frames except those including target
get in train and development sets. Lack of labeled in-
stances has much less impact on Arg F1 performance
of KID with FKG, which confirms our assumption.

train instances FKG can guide inter-frame reason-
ing with its structure and allow models to learn
experience from other seen frames.

7 Related Work

Frame semantic parsing has catched wide atten-
tion since it was released on SemEval 2007 (Baker
et al., 2007). The task is to extract frame structures
defined in FrameNet (Baker et al., 1998) from text.
From then on, a large amount of systems are ap-
plied on this task, ranging from traditional machine
learning classifiers (Johansson and Nugues, 2007;
Das et al., 2010) to fancy neural models like re-
current neural networks (Yang and Mitchell, 2017;
Swayamdipta et al., 2017) and graph neural net-
works (Marcheggiani and Titov, 2020; Bastianelli
et al., 2020).

A lot of previous systems neglect interactions
between subtasks and relations between arguments.
They either focus on one or two subtasks (Hermann
et al., 2014; FitzGerald et al., 2015; Marcheggiani
and Titov, 2020) of frame semantic parsing or treat
all subtasks independently (Das et al., 2014; Peng
et al., 2018). Tackstrom et al. (2015) propose an ef-
ficient global graphical model, so they can enumer-
ate all possible argument spans and treat the assign-
ment as the Integer Linear Programming problem.
Later systems like FitzGerald et al. (2015); Peng
et al. (2018) follow this method. Swayamdipta
et al. (2017); Bastianelli et al. (2020) use sequence-
labeling strategy, and Yang and Mitchell (2017) in-
tegrate these two methods with a joint model. Only
few approaches like Chen et al. (2021) model inter-
actions between subtasks, which use the encoder-
decoder architecture to predict arguments and roles
sequentially. However, the sequence modeling of
Chen et al. (2021) does not consider structure infor-

mation and is not good at capturing long-distance
dependencies. We use graph modeling to enhance
structure information and strengthen interactions
between target and argument, argument and argu-
ment.

Only a few systems utilize linguistic knowledge
in FrameNet. Kshirsagar et al. (2015) use FE map-
pings to share information in FEs. In frame identi-
fication, Jiang and Riloff (2021) encode definitions
of frames and Su et al. (2021) use frame identi-
fication and frame semantic relations. However,
they do not utilize ontological frame knowledge
in all subtasks while we construct a heterogeneous
graph containing both frames and FEs. Besides,
our model does not need extra encoders to encode
definitions, which reduces parameters of the model.

Some systems also treat constituency parsing or
other semantic parsing tasks like AMR as a graph
construction problem. Yang and Deng (2020) use
GCN to encode intermediate constituency tree to
generate a new action on the tree. Cai and Lam
(2019, 2020) construct AMR graphs with the Trans-
former (Vaswani et al., 2017) architecture.

8 Conclusion

In this paper, we incorporate knowledge into frame
semantic parsing by constructing Frame Knowl-
edge Graph. FKG provides knowledge-enhanced
representations of frames and FEs and can guide
intra-frame and inter-frame reasoning. We also
propose frame semantic graph to represent frame
semantic structures. We regard frame semantic
parsing as an incremental graph construction prob-
lem. The process to construct FSG is structure-
aware and can utilize relations between arguments.
Our framework Knowledge-guided Incremental se-
mantic parser with Double-graph (KID) achieves
state-of-the-art on FrameNet benchmarks. How-
ever, how to utilize linguistic knowledge better is
still to be resolved. Future work can focus on better
modeling of ontological frame knowledge, which
will be useful for frame semantic parsing and trans-
fer learning in frame semantic parsing.

References

Collin Baker, Michael Ellsworth, and Katrin Erk.
2007. SemEval-2007 task 19: Frame semantic
structure extraction. In Proceedings of the Fourth
International Workshop on Semantic Evaluations
(SemEval-2007), pages 99-104, Prague, Czech Re-
public. Association for Computational Linguistics.



https://aclanthology.org/S07-1018
https://aclanthology.org/S07-1018
https://aclanthology.org/S07-1018

Collin F. Baker, Charles J. Fillmore, and John B.
Lowe. 1998. The Berkeley FrameNet project.
In 36th Annual Meeting of the Association for
Computational Linguistics and 17th International
Conference on Computational Linguistics, Volume
1, pages 86-90, Montreal, Quebec, Canada. Associ-
ation for Computational Linguistics.

Emanuele Bastianelli, Andrea Vanzo, and Oliver
Lemon. 2020. Encoding syntactic con-
stituency paths for frame-semantic parsing with
graph convolutional networks. arXiv_preprint
arXiv:2011.13210.

Deng Cai and Wai Lam. 2019. Core seman-
tic firstt A top-down approach for AMR pars-
ing. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 3799-3809, Hong Kong, China. Association
for Computational Linguistics.

Deng Cai and Wai Lam. 2020. AMR parsing via
graph-sequence iterative inference. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1290-1301, On-
line. Association for Computational Linguistics.

Xudong Chen, Ce Zheng, and Baobao Chang. 2021.
Joint multi-decoder framework with hierarchical
pointer network for frame semantic parsing. In
Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 2570-2578,
Online. Association for Computational Linguistics.

Dipanjan Das, Desai Chen, André F. T. Martins,
Nathan Schneider, and Noah A. Smith. 2014. Frame-
semantic parsing. Computational Linguistics,
40(1):9-56.

Dipanjan Das, Nathan Schneider, Desai Chen, and
Noah A. Smith. 2010. Probabilistic frame-semantic
parsing. In Human Language Technologies: The
2010 Annual Conference of the North American
Chapter of the Association for Computational
Linguistics, pages 948-956, Los Angeles, Califor-
nia. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Charles J Fillmore and Collin F Baker. 2001. Frame
semantics for text understanding. In Proceedings
of WordNet and Other Lexical Resources Workshop,
NAACL, volume 6.

Nicholas FitzGerald, Oscar Téickstrom, Kuzman
Gancheyv, and Dipanjan Das. 2015. Semantic role la-
beling with neural network factors. In Proceedings
of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 960-970, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-
beling of semantic roles. Computational linguistics,
28(3):245-288.

Shaoru Guo, Ru Li, Hongye Tan, Xiaoli Li, Yong
Guan, Hongyan Zhao, and Yueping Zhang. 2020.
A frame-based sentence representation for ma-
chine reading comprehension. In Proceedings of
the 58th Annual Meeting of the Association for
Computational Linguistics, pages 891-896, Online.
Association for Computational Linguistics.

Prakhar Gupta, Jeffrey Bigham, Yulia Tsvetkov, and
Amy Pavel. 2021. Controlling dialogue generation
with semantic exemplars. In Proceedings of the
2021 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, pages 3018-3029,
Online. Association for Computational Linguistics.

Karl Moritz Hermann, Dipanjan Das, Jason Weston,
and Kuzman Ganchev. 2014. Semantic frame iden-
tification with distributed word representations. In
Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1448-1458, Baltimore,
Maryland. Association for Computational Linguis-
tics.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Tianyu Jiang and Ellen Riloff. 2021. Exploiting defi-
nitions for frame identification. In Proceedings of
the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main
Volume, pages 2429-2434, Online. Association for
Computational Linguistics.

Richard Johansson and Pierre Nugues. 2007. LTH:
Semantic structure extraction using nonprojective
dependency trees. In Proceedings of the Fourth
International Workshop on Semantic Evaluations
(SemEval-2007), pages 227-230, Prague, Czech Re-
public. Association for Computational Linguistics.

Aditya Kalyanpur, Or Biran, Tom Breloff, Jennifer
Chu-Carroll, Ariel Diertani, Owen Rambow, and
Mark Sammons. 2020. Open-domain frame se-
mantic parsing using transformers. arXiv preprint
arXiv:2010.10998.

Thomas N Kipf and Max Welling. 2016.  Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.



https://doi.org/10.3115/980845.980860
https://doi.org/10.18653/v1/D19-1393
https://doi.org/10.18653/v1/D19-1393
https://doi.org/10.18653/v1/D19-1393
https://doi.org/10.18653/v1/D19-1393
https://doi.org/10.18653/v1/D19-1393
https://doi.org/10.18653/v1/2020.acl-main.119
https://doi.org/10.18653/v1/2020.acl-main.119
https://doi.org/10.18653/v1/2020.acl-main.119
https://doi.org/10.18653/v1/2021.findings-acl.227
https://doi.org/10.18653/v1/2021.findings-acl.227
https://doi.org/10.18653/v1/2021.findings-acl.227
https://doi.org/10.1162/COLI_a_00163
https://doi.org/10.1162/COLI_a_00163
https://doi.org/10.1162/COLI_a_00163
https://aclanthology.org/N10-1138
https://aclanthology.org/N10-1138
https://aclanthology.org/N10-1138
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/D15-1112
https://doi.org/10.18653/v1/D15-1112
https://doi.org/10.18653/v1/D15-1112
https://doi.org/10.18653/v1/2020.acl-main.83
https://doi.org/10.18653/v1/2020.acl-main.83
https://doi.org/10.18653/v1/2020.acl-main.83
https://doi.org/10.18653/v1/2021.naacl-main.240
https://doi.org/10.18653/v1/2021.naacl-main.240
https://doi.org/10.18653/v1/2021.naacl-main.240
https://doi.org/10.3115/v1/P14-1136
https://doi.org/10.3115/v1/P14-1136
https://doi.org/10.3115/v1/P14-1136
https://aclanthology.org/2021.eacl-main.206
https://aclanthology.org/2021.eacl-main.206
https://aclanthology.org/2021.eacl-main.206
https://aclanthology.org/S07-1048
https://aclanthology.org/S07-1048
https://aclanthology.org/S07-1048
https://aclanthology.org/S07-1048
https://aclanthology.org/S07-1048

Meghana Kshirsagar, Sam Thomson, Nathan Schnei-
der, Jaime Carbonell, Noah A. Smith, and Chris
Dyer. 2015. Frame-semantic role labeling with
heterogeneous annotations.  In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 2: Short Papers), pages 218-224, Beijing,
China. Association for Computational Linguistics.

Diego Marcheggiani and Ivan Titov. 2020. Graph
convolutions over constituent trees for syntax-aware
semantic role labeling. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 3915-3928,
Online. Association for Computational Linguistics.

Hao Peng, Sam Thomson, Swabha Swayamdipta, and
Noah A. Smith. 2018. Learning joint semantic
parsers from disjoint data. In Proceedings of the
2018 Conference of the North American Chapter
of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long
Papers), pages 1492-1502, New Orleans, Louisiana.
Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christo-
pher Manning. 2014. GloVe: Global vectors
for word representation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 15321543,
Doha, Qatar. Association for Computational Lin-
guistics.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph con-
volutional networks. In European semantic web
conference, pages 593—-607. Springer.

Xuefeng Su, Ru Li, Xiaoli Li, Jeff Z. Pan, Hu Zhang,
Qinghua Chai, and Xiaoqi Han. 2021. A knowledge-
guided framework for frame identification. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers),
pages 5230-5240, Online. Association for Compu-
tational Linguistics.

Swabha Swayamdipta, Sam Thomson, Chris Dyer, and
Noah A. Smith. 2017. Frame-semantic parsing with
softmax-margin segmental rnns and a syntactic scaf-
fold. ArXiv, abs/1706.09528.

Swabha Swayamdipta, Sam Thomson, Kenton Lee,
Luke Zettlemoyer, Chris Dyer, and Noah A. Smith.
2018. Syntactic scaffolds for semantic structures. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
3772-3782, Brussels, Belgium. Association for
Computational Linguistics.

Oscar Téckstrom, Kuzman Ganchev, and Dipanjan Das.
2015. Efficient inference and structured learning

10

for semantic role labeling. Transactions of the
Association for Computational Linguistics, 3:29-
41.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in neural information
processing systems, pages 5998—-6008.

Bishan Yang and Tom Mitchell. 2017. A joint sequen-
tial and relational model for frame-semantic pars-
ing. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1247-1256, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Kaiyu Yang and Jia Deng. 2020. Strongly incremen-
tal constituency parsing with graph neural networks.
arXiv preprint arXiv:2010.14568.

Hongyan Zhao, Ru Li, Xiaoli Li, and Hongye Tan.
2020. Cfsre: Context-aware based on frame-
semantics for distantly supervised relation extrac-
tion. Knowledge-Based Systems, 210:106480.



https://doi.org/10.3115/v1/P15-2036
https://doi.org/10.3115/v1/P15-2036
https://doi.org/10.3115/v1/P15-2036
https://doi.org/10.18653/v1/2020.emnlp-main.322
https://doi.org/10.18653/v1/2020.emnlp-main.322
https://doi.org/10.18653/v1/2020.emnlp-main.322
https://doi.org/10.18653/v1/2020.emnlp-main.322
https://doi.org/10.18653/v1/2020.emnlp-main.322
https://doi.org/10.18653/v1/N18-1135
https://doi.org/10.18653/v1/N18-1135
https://doi.org/10.18653/v1/N18-1135
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/2021.acl-long.407
https://doi.org/10.18653/v1/2021.acl-long.407
https://doi.org/10.18653/v1/2021.acl-long.407
https://doi.org/10.18653/v1/D18-1412
https://doi.org/10.1162/tacl_a_00120
https://doi.org/10.1162/tacl_a_00120
https://doi.org/10.1162/tacl_a_00120
https://doi.org/10.18653/v1/D17-1128
https://doi.org/10.18653/v1/D17-1128
https://doi.org/10.18653/v1/D17-1128
https://doi.org/10.18653/v1/D17-1128
https://doi.org/10.18653/v1/D17-1128

