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Abstract

Frame semantic parsing is a fundamental001
NLP task, which consists of three subtasks:002
frame identification, argument identification003
and role classification. Most previous stud-004
ies tend to neglect relations between differ-005
ent subtasks and arguments and pay little at-006
tention to ontological frame knowledge de-007
fined in FrameNet. In this paper, we pro-008
pose a Knowledge-guided Incremental seman-009
tic parser with Double-graph (KID). We first010
introduce Frame Knowledge Graph (FKG), a011
heterogeneous graph containing both frames012
and FEs (Frame Elements) built on the frame013
knowledge so that we can derive knowledge-014
enhanced representations for frames and FEs.015
Besides, we propose Frame Semantic Graph016
(FSG) to represent frame semantic structures017
extracted from the text with graph structures.018
In this way, we can transform frame seman-019
tic parsing into an incremental graph con-020
struction problem to strengthen interactions021
between subtasks and relations between argu-022
ments. Our experiments show that KID outper-023
forms the previous state-of-the-art method by024
up to 1.7 F1-score on two FrameNet datasets.025

1 Introduction026

The frame semantic parsing task (Gildea and Juraf-027

sky, 2002; Baker et al., 2007) aims to extract frame028

semantic structures from sentences based on the029

lexical resource FrameNet (Baker et al., 1998). As030

shown in Figure 1, given a target in the sentence,031

frame semantic parsing consists of three subtasks:032

frame identification, argument identification and033

role classification. Frame semantic parsing can034

also contribute to downstream NLP tasks such as035

machine reading comprehension (Guo et al., 2020),036

relation extraction (Zhao et al., 2020) and dialogue037

generation (Gupta et al., 2021).038

FrameNet is a lexical database, which defines039

more than one thousand hierarchically-related040

frames to represent situations, objects or events,041

Figure 1: An example of the frame semantic structure.
Given the target receive in this sentence, the frame
identification is to identify the frame Receiving evoked
by it; the argument identification is to find the argu-
ments (He, the book, ...) of this target; the role classifi-
cation is to assign frame elements (Recipient, Theme,
...) as semantic roles to these arguments.

and nearly 10 thousand FEs (Frame Elements) 042

as frame-specific semantic roles with more than 043

100,000 annotated exemplar sentences. In addition, 044

FrameNet defines ontological frame knowledge for 045

each frame such as frame semantic relations, FE 046

mappings and frame/FE definitions. The frame 047

knowledge plays an important role in frame seman- 048

tic parsing. Most previous approaches (Kshirsagar 049

et al., 2015; Yang and Mitchell, 2017; Peng et al., 050

2018) only use exemplar sentences and ignore the 051

ontological frame knowledge. Recent researches 052

(Jiang and Riloff, 2021; Su et al., 2021) introduce 053

frame semantic relations and frame definitions into 054

the subtask frame identification. Differ from pre- 055

vious work, we construct a heterogeneous graph 056

named Frame Knowledge Graph (FKG) based on 057

frame knowledge to model multiple semantic re- 058

lations between frames and frames, frames and 059

FEs, as well as FEs and FEs. Furthermore, we 060

apply FKG to all subtasks of frame semantic pars- 061

ing, which can fully inject frame knowledge into 062

frame semantic parsing. The knowledge-enhance 063

representations of frames and FEs are learned in a 064

unified vector space and this can also strengthen 065

interactions between frame identification and other 066

subtasks. 067

Most previous systems neglect interactions be- 068

tween subtasks, they either focus on one or two 069

subtasks (Hermann et al., 2014; FitzGerald et al., 070
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Figure 2: An example of how frame knowledge contributes to frame semantic parsing. The frame semantic rela-
tions and FE mappings guide inter-frame reasoning (from left sentence to right); and the FE definitions help with
intra-frame reasoning (Theme to Role and Role to Donor)

2015; Marcheggiani and Titov, 2020) of frame se-071

mantic parsing or treat all subtasks independently072

(Das et al., 2014; Peng et al., 2018). Furthermore,073

in argument identification and role classification,074

previous approaches process each argument sepa-075

rately with sequence labeling strategy (Yang and076

Mitchell, 2017; Bastianelli et al., 2020) or span-077

based graphical models (Täckström et al., 2015;078

Peng et al., 2018). In this paper, we propose Frame079

Semantic Graph (FSG) to represent frame semantic080

structures and treat frame semantic parsing as a081

process to construct this graph incrementally. With082

graph structure, historical decisions of parsing can083

guide the current decision of argument identifica-084

tion and role classification, which highlights inter-085

actions between subtasks and arguments.086

Based on two graphs mentioned above, we087

propose our framework KID (Knowledge-guided088

Incremental semantic parser with Double-graph).089

FKG provides a static knowledge background for090

encoding frames and FEs while FSG represents091

dynamic parsing results in frame semantic parsing092

and highlights relations between arguments.093

Overall, our contributions can be summarized as094

follow:095

• We build FKG based on the ontological096

frame knowledge in FrameNet. FKG incorpo-097

rates frame semantic parsing with structured098

frame knowledge, which can get knowledge-099

enhanced representations of frames and FEs.100

• We propose FSG to represent the frame se-101

mantic structures. We treat frame semantic102

parsing as a process to construct the graph in-103

crementally. This graph focuses on the target-104

argument and argument-argument relations.105

We evaluate the performance of KID on two106

FrameNet datasets: FN 1.5 and FN 1.7, the results 107

show that the KID achieves state-of-the-art on these 108

datasets by increasing up to 1.7 points on F1-score. 109

Our extensive experiments also verify the effective- 110

ness of these two graphs. 111

2 Ontological Frame Knowledge 112

Frame semantics relates linguistic semantics to en- 113

cyclopedic knowledge and advocates that one can- 114

not understand the semantic meaning of one word 115

without essential frame knowledge related to the 116

word (Fillmore and Baker, 2001). For a frame, the 117

frame knowledge of it contains frame/FE defini- 118

tions, frame semantic relations and FE mappings. 119

FrameNet defines 8 kinds of frame semantic re- 120

lations such as Inheritance, Perspective_on and 121

Using; for any two related frames, the FrameNet 122

defines FE mappings between their FEs. For exam- 123

ple, the frame Receiving inherits from Getting and 124

the FE Donor of Receiving is mapped to the FE 125

Source of Getting. Each frame or FE has its own 126

definition and may mention other FEs in the same 127

frame. 128

we propose two ways of reasoning about frame 129

semantic parsing: inter-frame reasoning and intra- 130

frame reasoning in Figure 2. Frame knowledge 131

mentioned above can guide both ways of reason- 132

ing. The frame semantic relation and FE mappings 133

between Receiving and Getting allow us to learn 134

experience from the left sentence when parsing the 135

right sentence because similar argument spans of 136

two sentences will have related FEs as their roles. 137

The FE definitions reflect dependencies between 138

arguments. The definition of Role in frame Receiv- 139

ing mentions Theme and Donor, which reflects 140

dependencies between argument the book and ar- 141

gument as a gift. 142
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3 Task Formulation143

Given a target t in the sentence S = w0, . . . , wn−1,144

the frame semantic parsing aims to extract the145

frame semantic structure of t from S. Suppose146

that there are k arguments of t in S: a0, . . . , ak−1,147

all subtasks can be formulated as follow:148

• Frame identification: finding an f ∈ F149

evoked by t, where F denotes the set of all150

frames in the FrameNet.151

• Argument identification: finding the bound-152

aries isτ and ieτ for each argument aτ =153

wisτ , . . . , wieτ .154

• Role classification: assigning an FE rτ ∈ Rf155

to each aτ , where Rf denotes the set of all156

FEs of frame f .157

4 Method158

Overall, KID first encodes all frames and FEs159

to knowledge-enhanced representations via frame160

knowledge graph encoder (section 4.1). For a sen-161

tence with a target, contextual representations of162

tokens are derived from the sentence encoder (sec-163

tion 4.2). The target span will be embedded into164

the vector space of FKG and then a frame will be165

identified with a scoring module (section 4.3). The166

target and frame evoked by it will be combined into167

the initial node of FSG. Frame semantic graph de-168

coder (section 4.4) will expand FSG incrementally169

from the target node to complete FSG. Based on the170

representation of current snapshot of partial FSG,171

KID identifies a new argument with a pointer net-172

work (section 4.4.1) and assigns it an FE (section173

4.4.2).174

4.1 Frame Knowledge Graph Encoder175

FKG is an undirected multi-relational heteroge-176

neous graph, and Figure 3 shows a subgraph of177

FKG. Its nodes contain both frames and FEs and178

there are four kinds of relations in FKG: frame-FE,179

frame-frame, inter-frame FE-FE and intra-frame180

FE-FE relations. The following will show how we181

extract these relations from frame knowledge:182

Frame-FE: we connect a frame with its FEs. With183

this relation, we can learn representations of frames184

and FEs in a unified vector space to strengthen185

interactions between frame identification and other186

subtasks.187

Frame-frame and inter-frame FE-FE: these two188

kinds of relations are frame semantic relations and189

Figure 3: A subgraph of FKG. We only show intra-
frame and inter-frame FE-FE relations in the frame Re-
ceiving. Inside the solid rectangular box are a frame
and its FEs.

FE mappings respectively and here we ignore re- 190

lation types of frame semantic relations. They can 191

both guide inter-frame reasoning. 192

Intra-frame FE-FE: If the definition of an FE 193

mentions another FE in the same frame, they will 194

have intra-frame FE-FE relations with each other. 195

This relation can help with intra-frame reasoning. 196

The frame knowledge graph encoder aims to get 197

knowledge-enhanced representations of nodes in 198

FKG via an RGCN (Schlichtkrull et al., 2018) mod- 199

ule. We use F to represent all frames in FrameNet 200

and Rf to represent all FEs of frame f . In addi- 201

tion, we use R =
⋃
f∈F Rf to represent all FEs 202

in the FrameNet. Let 0, . . . , |F | − 1 denote all 203

frames and |F |, . . . , |F |+ |R| − 1 denote all FEs. 204

Moreover, we introduce a special dummy node into 205

FKG: |F |+ |R|. So the vectors y0, . . . , yM ∈ Rdn 206

denotes the representations of all nodes in FKG, 207

where M = |F |+ |R|. 208

For each node i, we take a randomly initialized 209

embedding y(0)i ∈ Rdn as the input feature of the 210

RGCN module. Then we can get representations 211

of all frames and FEs: 212

y0, . . . , yM = RGCN
(
y
(0)
0 , . . . , y

(0)
M

)
(1) 213

The RGCN module models four kinds of rela- 214

tions: Frame-FE, intra-frame FE-FE, frame-frame 215

and inter-frame FE-FE. We also use name informa- 216

tion to get better representations for FEs. The FEs 217

whose names are the same will have same embed- 218

dings: for i, j ≥ |F |, y(0)i = y
(0)
j if the name of i 219

is the same as j. With this trick, we can fuse both 220

name information and structure information into 221

the representations of FEs. 222
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Figure 4: Based on the representation gτ of partial FSGGτ , frame semantic graph decoder identifies new argument
as a gift with pointer networks, and label it with FE Role. Gτ will be updated to Gτ+1 with (as a gift, Role).

4.2 Sentence Encoder223

The sentence encoder converts tokens of the sen-224

tence S = w0, . . . , wn−1 to their representations225

h0, . . . , hn−1 ∈ Rdh .226

We use LSTM (Hochreiter and Schmidhuber,227

1997) and GCN (Kipf and Welling, 2016) to model228

both sequential structure and dependency structure:229

α0, . . . , αn−1 = BiLSTM(e0, . . . , en−1) (2)230

β0, . . . , βn−1 = GCNdep (α0, . . . , αn−1) (3)231

ei denotes the embedding of word wi. We get232

contextual representations hi by adding βi to αi.233

The GCN uses the graph structure of the depen-234

dency tree of S. The dependency tree is regarded235

as an undirected graph. We follow previous studies236

(Marcheggiani and Titov, 2020; Bastianelli et al.,237

2020) to use syntax structures here because syntax238

structure is proved beneficial to semantic parsing.239

Furthermore, we use boundary information to240

represent spans like s = wi, . . . , wj based on token241

representations because we need to embed spans242

into the vector space of FKG in frame identification243

and role classification:244

Q(i, j) = FFN ((hj − hi)⊕ (hj + hi)) (4)245

The dimension of Q(i, j) is dn. The ⊕ denotes246

concatenation operation.247

4.3 Frame Identification248

A frame f ∈ F will be identified based on the249

target t, representations of tokens h0, . . . , hn−1250

and representations of frames y0, . . . , y|F |−1 with251

a scoring module. The target t = wist , . . . , wiet will252

be embedded to the vector space of all frames as 253

γt ∈ Rdn . We can calculate dot product scores be- 254

tween γt and all frames Yf = (y0, . . . , y|F |−1) ∈ 255

Rdn×|F | to get the probability distribution of f . 256

Let πt denotes Q(ist , i
e
t ) and FFN denotes Feed 257

Forward Network: 258

γt = tanh (FFN(πt)) (5) 259

P (f |S, t) = softmax
(
Y >f · γt

)
(6) 260

4.4 Frame Semantic Graph Decoder 261

We propose FSG to represent the frame semantic 262

structure of t in the sentence S and we treat the 263

frame semantic parsing as a process to construct 264

FSG incrementally. Intermediate results of FSG are 265

partial FSGs representing all historical decisions. 266

Suppose that there are k arguments of target t: 267

a0, . . . , ak−1 and they have roles r0, . . . , rk−1. For 268

τ -th snapshot of FSG Gτ , it contains τ + 1 nodes: 269

one target node (t, f) and τ argument nodes (if 270

exist) (a0, r0), . . . , (aτ−1, rτ−1). The target node 271

will be connected with all argument nodes. The 272

indices of nodes inGτ depend on the order they are 273

added in the graph, 0 denotes the target node and 274

1, . . . , τ denotes (a0, r0), . . . , (aτ−1, rτ−1). Based 275

on the representation gτ of each snapshot Gτ , KID 276

uses pointer networks to find boundaries isτ , ieτ of 277

aτ and then embeds aτ into the vector space of 278

FEs to find an FE rτ as its semantic role. The Gτ 279

will be updated toGτ+1 with the new node (aτ , rτ ) 280

until the rτ is the special dummy node in FKG. 281

Figure 4 shows how to find a new node and add it 282

into the FSG. 283
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We first need to encode Gτ to its representation284

gτ :285

gτ = Maxpooling (z0, . . . , zτ ) (7)286

z0, . . . , zτ = GCNFSG
(
z
(0)
0 , . . . , z(0)τ

)
(8)287

z
(0)
j =

{
πt ⊕ yif , j = 0

πaj ⊕ yirj , j = 1, . . . , τ
(9)288

Where if and irj denotes indices of f and rj in289

FKG, and πaj = Q(isj , i
e
j). The GCN module is to290

encode partial FSG.291

4.4.1 Argument Identification292

Based on gτ , we need to find an argument aτ =293

wisτ , . . . , wieτ . We use pointer networks to identify294

its boundaries isτ and ieτ separately. Take isτ as295

example:296

ρsτ = FFN (gτ ) (10)297

P (isτ |S,Gτ ) = softmax
(
H> · ρsτ

)
(11)298

Where H = (h0, . . . , hn−1) ∈ Rdh×n rep-299

resents the output of the sentence encoder, and300

ρsτ ∈ Rdh is used to find the start position of argu-301

ment span aτ .302

4.4.2 Role Classification303

Based on gτ and aτ , we embed aτ into the vec-304

tor space of FEs as γaτ ∈ Rdn . Similar to frame305

identification, we calculate dot product scores be-306

tween γaτ and all FEs YR = (y|F |, . . . , y|F |+|R|) ∈307

Rdn×(|R|+1) to get the conditional probability dis-308

tribution of r given aτ and Gτ .309

γaτ = FFN(πaτ ⊕ gτ ) (12)310

P (rτ |S,Gτ , aτ ) = softmax
(
Y >R · γaτ

)
(13)311

5 Training and Inference312

5.1 Training313

We train our model with all subtasks jointly. As the314

results of other subtasks are highly dependent on315

frame identification, we use the target with its gold316

frame as the initial node of FSG, G0 = (t, fgold).317

The frame semantic graph decoder is autoregres-318

sive, so the decoder expands FSG with node pre-319

dicted by itself instead of using gold node.320

#exemplar #train #dev #test

FN 1.5 153952 17143 2333 4458
FN 1.7 192461 19875 2309 6722

Table 1: Number of instances in two datasets.

Lf = − logP (f = fgold|S, t) (14) 321

Las/e = −
k−1∑
τ=0

logP (is/eτ = Is/eτ |S,Gτ ) (15) 322

Lr = −
k∑
τ=0

logP (rτ = rgoldτ |S,Gτ , aτ ) (16) 323

L = λ1Lf + λ2(Las + Lae) + λ3Lr (17) 324

Where fgold, Isτ , I
e
τ , r

gold
τ are gold labels, and 325

Gτ+1 = Gτ + (âτ , r̂τ ). r
gold
k is “Dummy”, indi- 326

cating the end of the parsing. 327

5.2 Inference 328

KID predicts frame and all arguments with their 329

roles in a sequential way. We use probabilities 330

above with some constraints: 1. We use lexicon fil- 331

tering strategy: for a target t, we can use the lemma 332

lt of it to find a subset of frames Flt ⊂ F so that 333

we can reduce the searching space; 2. Similarly, we 334

take Rf̂ instead of R as the set of candidate FEs; 3. 335

In argument identification, we will mask spans that 336

are already selected as arguments, and ieτ should be 337

no less than isτ . 338

6 Experiment 339

6.1 Datasets 340

We evaluate KID on two FrameNet datasets: FN 1.5 341

and FN 1.7.1 FN 1.7 is an extension version of FN 342

1.5, including more fine-grained frames and more 343

instances. FN 1.5 defines 1019 frames and 9634 344

FEs while FN 1.7 defines 1221 frames and 11428 345

FEs. We use the same splits of datasets as Peng 346

et al. (2018), and we also follow Kshirsagar et al. 347

(2015) to use exemplar instances to pretrain our 348

model because these exemplar sentences extremely 349

enrich the corpus. Table 1 shows the numbers of 350

instances in two datasets. 351

6.2 Models 352

We compare KID with following baselines: 353

1https://FN.icsi.berkeley.edu/
fndrupal/about
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Model Full structure Arg only (with gold frame)
Precision Recall F1-score Precision Recall F1-score

SEMAFOR (2014) - - - 65.6 53.8 59.1
SEMAFOR (HI) (2015) - - - 67.2 54.8 60.4
Hermann et al. (2014) 74.3 66.0 69.9 - - -
Täckström et al. (2015) 75.4 65.8 70.3 - - -
FitzGerald et al. (2015) 74.8 65.5 69.9 - - -
open-SESAME (2017) 71.0 67.8 69.4 69.4 60.5 64.6
KID (GloVe) 73.8 76.8 75.3 64.6 68.2 66.4

SEMAFOR (HI + exemplar) (2015) - - - 66.0 60.4 63.1
Swayamdipta et al. (2018) - - - 67.8 66.2 67.0
Marcheggiani and Titov (2020) - - - 69.8 68.8 69.3
Peng et al. (2018) 79.2 71.7 75.3 - - -
Chen et al. (2021) 75.1 76.9 76.0 - - -
Yang and Mitchell (2017) 77.3 71.2 74.1 70.2 60.2 65.5
KID (GloVe + exemplar) 75.5 80.1 77.7 66.8 73.7 70.1

Bastianelli et al. (2020) (JL) - - - 74.6 74.4 74.5
Chen et al. (2021) (BERT) 78.2 82.4 80.2 - - -
KID (BERT) 79.3 84.2 81.7 71.7 79.0 75.2

Table 2: Empirical results on FN 1.5. All models are single-task, non-ensemble. The upper block lists models
trained without exemplar instances, the lower block lists models with pretrained language models. KID outper-
forms other models under all conditions. KID gets much higher recall because of the incremental strategy to
identify arguments.

SEMAFOR: a widely-used open-resource statisti-354

cal model proposed by Das et al. (2010, 2014).355

SEMAFOR (HI): an improved version of SE-356

MAFOR using exemplar instances and hierarchy357

features (FE mappings) proposed by Kshirsagar358

et al. (2015)359

Hermann et al. (2014): a neural network-360

based model learning representations of words and361

frames.362

Täckström et al. (2015): identifying arguments363

with a global graphical model.364

FitzGerald et al. (2015): an extension of Täck-365

ström et al. (2015) learning neural representations366

of frames and FEs.367

open-SESAME: a syntax-free open-resource se-368

mantic parser proposed by Swayamdipta et al.369

(2017).370

Swayamdipta et al. (2018): an extension version371

of open-SESAME with multi-task and exemplar372

instances.373

Yang and Mitchell (2017): a joint model integrat-374

ing both sequential and relational models.375

Peng et al. (2018): a joint model using latent struc-376

ture variables.377

Chen et al. (2021): a joint encoder-decoder model378

predicting arguments and roles sequentially.379

Marcheggiani and Titov (2020): a GCN-based380

model over constituency trees.381

Bastianelli et al. (2020) (JL) : a GCN-based382

model encoding syntactic constituency path. JL383

denotes joint learning on all subtasks of frame se- 384

mantic parsing. 385

Kalyanpur et al. (2020): a T5-based model 386

treating frame semantic parsing as a sequence-to- 387

sequence generation task. 388

6.3 Empirical Results 389

We compare KID with models mentioned above 390

on FN 1.5 and FN 1.7. We focus on two metrics: 391

full structure F1 and arg F1.2 Full structure F1 392

shows the performance of models on extracting 393

full frame semantic structures from text and arg F1 394

evaluates the results of argument identification and 395

role classification with gold frames. 396

Table 2 shows results on FN 1.5 and Table 3, 397

4 shows results on FN 1.7. For a fair compari- 398

son, we divide models into three parts: the first 399

part of models do not use exemplar instances as 400

training data; the second part of models use ex- 401

emplar instances without any pretrained language 402

models; the third part of models use both exemplar 403

instances and pretrained language models. KID 404

(GloVe) uses GloVe (Pennington et al., 2014) as 405

word embeddings and KID (BERT) uses pretrained 406

language models BERT (Devlin et al., 2019) and 407

fine-tunes BERT to encode word representations. 408

KID achieves state-of-the-art of two metrics on 409

both datasets under all circumstances. 410

2https://www.cs.cmu.edu/~ark/SEMAFOR/
eval/
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Model Precision Recall F1-score

Peng et al. (2018) 78.0 72.1 75.0
KID (GloVe) 77.0 79.8 78.4

KID (BERT) 81.1 83.3 82.2

Table 3: Full structure F1 on FN 1.7.

Model Precision Recall F1-score

open-SESAME (2017) 62 55 58
KID (GloVe) 69.2 73.3 71.2

Kalyanpur et al. (2020) 71 73 72
KID (BERT) 74.1 77.3 75.6

Table 4: Arg F1 on FN 1.7. Results of other models are
obtained from Kalyanpur et al. (2020).

It is worth noting that KID achieves much higher411

recall than other models. We attribute this to the412

incremental strategy of building FSG. By construct-413

ing FSG incrementally, KID can capture relations414

between arguments and identify arguments that are415

hard to find in other models.416

6.4 Ablation Study417

To prove the effectiveness of double-graph archi-418

tecture, we conduct further experiments with KID419

on FN 1.5. Table 5 shows ablation study on double-420

graph architecture. w/o FSG uses LSTM instead421

of our frame semantic graph decoder. It takes a422

sequence of arguments and their roles that have al-423

ready been identified as input to predict the next ar-424

gument. FSG performs better than LSTM because425

it captures target-argument and argument-argument426

relations and can model long-distance dependen-427

cies. w/o FKG directly uses input vectors of frame428

knowledge graph encoder, and results also show429

that knowledge-enhanced representations are better430

than randomly initialized embeddings.431

FKG is a multi-relational heterogeneous graph.432

The ablation study on structures of FKG is shown433

in Table 6. In addition, we evaluate the perfor-434

mance of FI w/o FKG, which identifies frames435

with a simple linear classification layer instead of436

FKG, and the results prove that FKG strengthens437

interactions between frame identification and role438

classification.439

6.5 Transfer learning ability of FKG440

As we have discussed in Figure 2, if frame B is441

related to frame A, a sentence with frame A can442

contribute to paring another sentence with frame B443

by inter-frame reasoning. Frame-frame and inter-444

Model Full structure F1 Arg F1

KID (GloVe) 75.28 66.35
w/o FSG 74.43 64.99
w/o FKG 74.60 64.96
w/o double-graph 73.34 63.41

KID (BERT) 79.44 71.59
w/o double-graph 77.77 68.77

Table 5: Ablation study on double-graph architecture.
w/o denotes “without”. w/o FSG uses LSTM as its
decoder and w/o FKG does not use RGCN to encode
frames and FEs. We also test the influence of double-
graph architecture for KID (BERT).

Model Full structure F1 Arg F1

KID (GloVe) 75.28 66.35
w/o frame-FE 74.84 65.70
w/o frame-frame 74.97 66.06
w/o intra-frame FE-FE 75.10 66.60
w/o inter-frame FE-FE 75.13 65.87

FI w/o FKG 75.00 65.61
w/o FKG 74.60 64.96

Table 6: Ablation study on structures of FKG. We re-
move each kind of relations of FKG and all get a drop
of full structure F1. FI w/o FKG denotes not using
FKG in frame identification (FI). w/o FKG uses input
vectors of frame knowledge encoder directly.

frame FE-FE relations of FKG can guide KID to 445

learn experience from other frames. 446

To confirm that FKG has ability of transfer learn- 447

ing, we design zero (few)-shot learning experi- 448

ments on FN 1.7. Target word get can evoke multi- 449

ple frames in FrameNet, and we choose instances 450

including target get with three frames (Arriving, 451

Getting and Transition_to_state) as test instances. 452

We only add few (or zero) instances including other 453

targets with these frames in train and development 454

sets and compare performance of KID with KID 455

w/o FKG. If FKG has ability of transfer learning, 456

KID with FKG can learn experience from other 457

related frames like Receiving and its performance 458

will not be influenced so much by the sparsity of 459

labels. 460

Table 7 shows the results of our experi- 461

ments. K=0 indicates zero-shot learning while 462

K={4,16,32} indicates few-shot learning. KID 463

without FKG performs much worse in zero-shot 464

learning. As the number of instances that can be 465

seen in training grows up, the performance of KID 466

with FKG gets a steady increase while the per- 467

formance of KID without FKG increases rapidly. 468

Results verify our assumption that even with few 469
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Model K

0 4 16 32 full

KID (GloVe) 56.26 63.28 65.32 65.95 70.32
w/o FKG 0.00 50.70 56.40 57.59 63.94

∆ 56.26 12.58 8.92 8.36 6.38

Table 7: Experiments on confirming transfer learning
ability of FKG. K denotes the number of instances of
each frame in training set. Full means adding all in-
stances of these frames except those including target
get in train and development sets. Lack of labeled in-
stances has much less impact on Arg F1 performance
of KID with FKG, which confirms our assumption.

train instances FKG can guide inter-frame reason-470

ing with its structure and allow models to learn471

experience from other seen frames.472

7 Related Work473

Frame semantic parsing has catched wide atten-474

tion since it was released on SemEval 2007 (Baker475

et al., 2007). The task is to extract frame structures476

defined in FrameNet (Baker et al., 1998) from text.477

From then on, a large amount of systems are ap-478

plied on this task, ranging from traditional machine479

learning classifiers (Johansson and Nugues, 2007;480

Das et al., 2010) to fancy neural models like re-481

current neural networks (Yang and Mitchell, 2017;482

Swayamdipta et al., 2017) and graph neural net-483

works (Marcheggiani and Titov, 2020; Bastianelli484

et al., 2020).485

A lot of previous systems neglect interactions486

between subtasks and relations between arguments.487

They either focus on one or two subtasks (Hermann488

et al., 2014; FitzGerald et al., 2015; Marcheggiani489

and Titov, 2020) of frame semantic parsing or treat490

all subtasks independently (Das et al., 2014; Peng491

et al., 2018). Täckström et al. (2015) propose an ef-492

ficient global graphical model, so they can enumer-493

ate all possible argument spans and treat the assign-494

ment as the Integer Linear Programming problem.495

Later systems like FitzGerald et al. (2015); Peng496

et al. (2018) follow this method. Swayamdipta497

et al. (2017); Bastianelli et al. (2020) use sequence-498

labeling strategy, and Yang and Mitchell (2017) in-499

tegrate these two methods with a joint model. Only500

few approaches like Chen et al. (2021) model inter-501

actions between subtasks, which use the encoder-502

decoder architecture to predict arguments and roles503

sequentially. However, the sequence modeling of504

Chen et al. (2021) does not consider structure infor-505

mation and is not good at capturing long-distance 506

dependencies. We use graph modeling to enhance 507

structure information and strengthen interactions 508

between target and argument, argument and argu- 509

ment. 510

Only a few systems utilize linguistic knowledge 511

in FrameNet. Kshirsagar et al. (2015) use FE map- 512

pings to share information in FEs. In frame identi- 513

fication, Jiang and Riloff (2021) encode definitions 514

of frames and Su et al. (2021) use frame identi- 515

fication and frame semantic relations. However, 516

they do not utilize ontological frame knowledge 517

in all subtasks while we construct a heterogeneous 518

graph containing both frames and FEs. Besides, 519

our model does not need extra encoders to encode 520

definitions, which reduces parameters of the model. 521

Some systems also treat constituency parsing or 522

other semantic parsing tasks like AMR as a graph 523

construction problem. Yang and Deng (2020) use 524

GCN to encode intermediate constituency tree to 525

generate a new action on the tree. Cai and Lam 526

(2019, 2020) construct AMR graphs with the Trans- 527

former (Vaswani et al., 2017) architecture. 528

8 Conclusion 529

In this paper, we incorporate knowledge into frame 530

semantic parsing by constructing Frame Knowl- 531

edge Graph. FKG provides knowledge-enhanced 532

representations of frames and FEs and can guide 533

intra-frame and inter-frame reasoning. We also 534

propose frame semantic graph to represent frame 535

semantic structures. We regard frame semantic 536

parsing as an incremental graph construction prob- 537

lem. The process to construct FSG is structure- 538

aware and can utilize relations between arguments. 539

Our framework Knowledge-guided Incremental se- 540

mantic parser with Double-graph (KID) achieves 541

state-of-the-art on FrameNet benchmarks. How- 542

ever, how to utilize linguistic knowledge better is 543

still to be resolved. Future work can focus on better 544

modeling of ontological frame knowledge, which 545

will be useful for frame semantic parsing and trans- 546

fer learning in frame semantic parsing. 547
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