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Abstract

We propose a global entity disambiguation001
(ED) model based on BERT (Devlin et al.,002
2019). To capture global contextual informa-003
tion for ED, our model treats not only words004
but also entities as input tokens, and solves the005
task by sequentially resolving mentions to their006
referent entities and using resolved entities as007
inputs. We train the model using a large entity-008
annotated corpus obtained from Wikipedia. We009
achieve new state-of-the-art results on five stan-010
dard ED datasets: AIDA-CoNLL, MSNBC,011
AQUAINT, ACE2004, and WNED-WIKI.012

1 Introduction013

Entity disambiguation (ED) refers to the task of014

assigning mentions in a document to correspond-015

ing entities in a knowledge base (KB). This task is016

challenging because of the ambiguity between men-017

tions (e.g., World Cup) and the entities they refer018

to (e.g., FIFA World Cup or Rugby World019

Cup). ED models typically rely on local con-020

textual information based on words that co-occur021

with the mention and global contextual informa-022

tion based on the entity-based coherence of the023

disambiguation decisions. A key to improve the024

performance of ED is to effectively combine both025

local and global contextual information (Ganea and026

Hofmann, 2017; Le and Titov, 2018).027

In this study, we propose a global ED model028

based on BERT (Devlin et al., 2019). Our model029

treats words and entities in the document as in-030

put tokens, and is trained by predicting randomly031

masked entities in a large entity-annotated corpus032

obtained from Wikipedia. This training enables033

the model to learn how to disambiguate masked034

entities based on words and non-masked entities.035

At the inference time, our model disambiguates036

mentions sequentially using local contextual in-037

formation based on words and global contextual038

information based on already resolved entities (see039

Figure 1).040
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Figure 1: The inference procedure of our model with
the input text “Messi played in the World Cup.” Given
mentions (Messi and World Cup), our model sequen-
tially resolves them to their referent entities, and uses
the resolved entities as contexts at each step.

We conduct extensive experiments using six stan- 041

dard ED datasets, i.e., AIDA-CoNLL, MSNBC, 042

AQUAINT, ACE2004, WNED-WIKI, and WNED- 043

CWEB. As a result, the global contextual informa- 044

tion consistently improves the performance. Fur- 045

thermore, we achieve new state of the art on five 046

out of the six datasets. The source code and model 047

checkpoint will be publicized for future research. 048

2 Related Work 049

Transformer-based ED. Several recent stud- 050

ies have proposed ED models based on Trans- 051

former (Vaswani et al., 2017) trained with a large 052

entity-annotated corpus obtained from Wikipedia 053

(Broscheit, 2019; Ling et al., 2020; Févry et al., 054

2020; Cao et al., 2021). Broscheit (2019) trained 055

an ED model based on BERT by classifying each 056

word in the document to the corresponding entity. 057

Similarly, Févry et al. (2020) addressed ED using 058

BERT by classifying mention spans to the corre- 059

sponding entities. Ling et al. (2020) trained BERT 060

by predicting entities using the document-level rep- 061

resentation. Cao et al. (2021) addressed ED by 062

training BART (Lewis et al., 2020) to generate 063

referent entity titles of target mentions in an au- 064

toregressive manner. However, unlike our model, 065

these models addressed the task based only on local 066

contextual information. 067
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Treating entities as inputs of Transformer. Re-068

cent studies (Zhang et al., 2019; Yamada et al.,069

2020; Sun et al., 2020) have proposed Transformer-070

based models that treat entities as input tokens to071

enrich their expressiveness using additional infor-072

mation contained in the entity embeddings. How-073

ever, these models were designed to solve general074

NLP tasks and not tested on ED. We treat entities075

as input tokens to capture the global context that is076

shown to be highly effective for ED.077

ED as sequential decision task. Past studies078

(Yang et al., 2019; Fang et al., 2019) have solved079

ED by casting it as a sequential decision task to080

capture global contextual information. We adopt a081

similar method with an enhanced Transformer ar-082

chitecture, a training task, and an inference method083

to implement the global ED model based on BERT.084

3 Model085

Given a document with N mentions, each of which086

has K entity candidates, our model solves ED by087

selecting a correct referent entity from the entity088

candidates for each mention.089

3.1 Model Architecture090

Our model is based on BERT and takes words and091

entities (Wikipedia entities or the [MASK] entity).092

The input representation of a word or an entity is093

constructed by summing the token, token type, and094

position embeddings (see Figure 2):095

Token embedding is the embedding of the cor-096

responding token. The matrices of the word and097

entity token embeddings are represented as A ∈098

RVw×H and B ∈ RVe×H , respectively, where H is099

the size of the hidden states of BERT, and Vw and100

Ve are the number of items in the word vocabulary101

and that of the entity vocabulary, respectively.102

Token type embedding represents the type of to-103

ken, namely word (Cword) or entity (Centity).104

Position embedding represents the position of the105

token in a word sequence. A word and an entity106

appearing at the i-th position in the sequence are107

represented as Di and Ei, respectively. If an entity108

mention contains multiple words, its position em-109

bedding is computed by averaging the embeddings110

of the corresponding positions (see Figure 2).111

Following Devlin et al. (2019), we tokenize the112

document text using the BERT’s wordpiece tok-113

enizer, and insert [CLS] and [SEP] tokens as the114

first and last words, respectively.115
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A[SEP]
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[SEP]
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Figure 2: The input representation of our model with
the text “Messi played in the World Cup” with mentions
Messi and World Cup. The entity corresponding to the
mention World Cup is replaced by the [MASK] token.

3.2 Training Task 116

Similar to the masked language model (MLM) ob- 117

jective adopted in BERT, our model is trained by 118

predicting randomly masked entities. Specifically, 119

we randomly replace some percentage of the enti- 120

ties with special [MASK] entity tokens and then 121

trains the model to predict masked entities. 122

We adopt a model equivalent to the one used to 123

predict words in MLM. Formally, we predict the 124

original entity corresponding to a masked entity by 125

applying softmax over all entities: 126

ŷ = softmax(Bme + bo) (1) 127

me = layernorm
(
gelu(Wfhe + bf )

)
(2) 128

where he ∈ RH is the output embedding corre- 129

sponding to the masked entity, Wf ∈ RH×H is a 130

matrix, bo ∈ RVe and bf ∈ RH are bias vectors, 131

gelu(·) is the gelu activation function (Hendrycks 132

and Gimpel, 2016), and layernorm(·) is the layer 133

normalization function (Lei Ba et al., 2016). 134

3.3 ED Model 135

Local ED Model. Our local ED model takes 136

words and N [MASK] tokens corresponding to the 137

mentions in the document. The model then com- 138

putes the embedding m′
e ∈ RH for each [MASK] 139

token using Eq.(2) and predicts the entity using 140

softmax over the K entity candidates: 141

ŷED = softmax(B∗m′
e + b∗

o), (3) 142

where B∗ ∈ RK×H and b∗
o ∈ RK consist of the en- 143

tity token embeddings and the bias corresponding 144

to the entity candidates, respectively. Note that B∗ 145

and b∗
o are the subsets of B and bo, respectively. 146

Global ED Model. Our global ED model re- 147

solves mentions sequentially for N steps (see Al- 148

gorithm 1). First, the model initializes the entity of 149

each mention using the [MASK] token. Then, for 150

each step, it predicts an entity for each [MASK] to- 151

ken, selects the prediction with the highest probabil- 152

ity produced by the softmax function in Eq.(3), and 153
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Algorithm 1: Algorithm of our global ED model.
Input: Words and mentions m1, . . .mN .
Initialize: ei ← [MASK], i = 1 . . . N
repeat N times

For all [MASK]s, obtain predictions using Eq.(3)
with words and entities e1, ..., eN as inputs

Select a mention mj and its prediction êj with
the highest probability

ej ← êj
end
return {e1, . . . , eN}

resolves the corresponding mention by assigning154

the predicted entity to it. This model is denoted as155

confidence-order. We also test a model that selects156

mentions according to their order of appearance in157

the document and denote it by natural-order.158

3.4 Modeling Details159

Our model is based on BERTLARGE (Devlin et al.,160

2019). The parameters shared with BERT are ini-161

tialized using BERT, and the other parameters are162

initialized randomly. We treat the hyperlinks in163

Wikipedia as entity annotations and randomly mask164

30% of all entities. We train the model by maximiz-165

ing the log likelihood of entity predictions. Further166

details are described in Appendix A.167

4 Experiments168

Our experimental setup follows Le and Titov169

(2018). In particular, we test the proposed170

ED models using six standard datasets: AIDA-171

CoNLL (CoNLL) (Hoffart et al., 2011), MSNBC,172

AQUAINT, ACE2004, WNED-CWEB (CWEB),173

and WNED-WIKI (WIKI) (Guo and Barbosa,174

2018). We consider only the mentions that re-175

fer to valid entities in Wikipedia. For all datasets,176

we use the KB+YAGO entity candidates and their177

associated p̂(e|m) (Ganea and Hofmann, 2017),178

and use the top 30 candidates based on p̂(e|m).179

For the CoNLL dataset, we also test the perfor-180

mance using PPRforNED entity candidates (Per-181

shina et al., 2015). We report the in-KB accuracy182

for the CoNLL dataset and the micro F1 score (av-183

eraged per mention) for the other datasets. Further184

details of the datasets are provided in Appendix C.185

Furthermore, we optionally fine-tune the model186

by maximizing the log likelihood of the ED pre-187

dictions (ŷED) using the training set of the CoNLL188

dataset with the KB+YAGO candidates. We mask189

90% of the mentions and fix the entity token em-190

beddings (B and B∗) and the bias (bo and b∗
o).191

The model is trained for two epochs using AdamW.192

Name
Accuracy

(KB+YAGO)

Accuracy
(PPRforNED)

Baselines:
Yamada et al. (2016) 91.5 93.1
Ganea and Hofmann (2017) 92.2 -
Yang et al. (2018) 93.0 95.9
Le and Titov (2018) 93.1 -
Fang et al. (2019) 94.3 -
Yang et al. (2019) 94.6
Broscheit (2019) 87.9 -
Ling et al. (2020) - 94.9
Févry et al. (2020) 92.5 96.7
Cao et al. (2021) 93.3 -

Our model w/o fine-tuning:
confidence-order 92.4 94.6
natural-order 91.7 94.0
local 90.8 94.0

Our model w/ fine-tuning:
confidence-order 95.0 97.1
natural-order 94.8 97.0
local 94.5 96.8

Table 1: In-KB accuracy on the CoNLL dataset.

Additional details are provided in Appendix B. 193

4.1 Results 194

Table 1 and Table 2 present our experimental re- 195

sults. We achieve new state of the art on all 196

datasets except the CWEB dataset by outperform- 197

ing strong Transformer-based ED models, i.e, 198

Broscheit (2019), Ling et al. (2020), Févry et al. 199

(2020), and Cao et al. (2021). Furthermore, on 200

the CoNLL dataset, our confidence-order model 201

trained only on our Wikipedia-based corpus out- 202

performs Yamada et al. (2016) and Ganea and Hof- 203

mann (2017) trained on its in-domain training set. 204

Our global models consistently perform better 205

than the local model, demonstrating the effective- 206

ness of using global contextual information even 207

if local contextual information is captured using 208

expressive BERT model. Moreover, the confidence- 209

order model performs better than the natural-order 210

model on most datasets. An analysis investigating 211

why the confidence-order model outperforms the 212

natural-order model is provided in the next section. 213

The fine-tuning on the CoNLL dataset signifi- 214

cantly improves the performance on this dataset 215

(Table 1). However, it generally degrades the per- 216

formance on the other datasets (Table 2). This sug- 217

gests that Wikipedia entity annotations are more 218

suitable than the CoNLL dataset to train general- 219

purpose ED models. 220

Additionally, our models perform worse than 221

Yang et al. (2018) on the CWEB dataset. This is 222

because this dataset is significantly longer on aver- 223
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Name MSNBC AQUAINT ACE2004 CWEB WIKI Average
Baselines:

Ganea and Hofmann (2017) 93.7 88.5 88.5 77.9 77.5 85.2
Yang et al. (2018) 92.6 89.9 88.5 81.8 79.2 86.4
Le and Titov (2018) 93.9 88.3 89.9 77.5 78.0 85.5
Fang et al. (2019) 92.8 87.5 91.2 78.5 82.8 86.6
Yang et al. (2019) 93.8 88.3 90.1 75.6 78.8 85.3
Cao et al. (2021) 94.3 89.9 90.1 77.3 87.4 87.8

Our model w/o fine-tuning:
confidence-order 96.3 93.5 91.9 78.9 89.1 89.9
natural-order 96.1 92.9 91.9 78.4 89.2 89.7
local 96.1 91.9 91.9 78.4 88.8 89.4

Our model w/ fine-tuning:
confidence-order 94.1 91.5 90.7 78.3 87.6 88.4
natural-order 94.1 90.9 90.7 78.3 87.4 88.3
local 94.1 90.8 90.7 78.2 87.2 88.2

Table 2: Micro F1 score on the MSNBC, AQUAINT, ACE2004, CWEB, and WIKI datasets.

#annotations confidence-order natural-order local G&H2017
0 1.0 1.0 1.0 0.8

1–10 95.55 95.55 95.55 91.93
11–50 96.98 96.70 96.43 92.44
≥51 96.64 96.38 95.80 94.21

Table 3: Accuracy on the CoNLL dataset split by the
frequency of entity annotations. Our models were fine-
tuned using the CoNLL dataset. G&H2017: The results
of Ganea and Hofmann (2017).

age than other datasets, i.e., approximately 1,700224

words per document on average, which is more225

than three times longer than the 512-word limit226

that can be handled by BERT-based models includ-227

ing ours. Yang et al. (2018) achieved excellent228

performance on this dataset because their model229

uses various hand-engineered features capturing230

document-level contextual information.231

4.2 Analysis232

To investigate how global contextual information233

helps our model to improve performance, we manu-234

ally analyze the difference between the predictions235

of the local, natural-order, and confidence-order236

models. We use the fine-tuned model using the237

CoNLL dataset with the YAGO+KB candidates.238

Although all models perform well on most men-239

tions, the local model often fails to resolve men-240

tions of common names referring to specific entities241

(e.g., “New York” referring to New York Knicks).242

Global models are generally better to resolve such243

difficult cases because of the presence of strong244

global contextual information (e.g., mentions refer-245

ring to basketball teams).246

Furthermore, we find that the confidence-order247

model works especially well for mentions that re-248

quire a highly detailed context to resolve. For ex-249

ample, a mention of “Matthew Burke” can refer 250

to two different former Australian rugby players. 251

Although the local and natural-order models incor- 252

rectly resolve this mention to the player who has 253

the larger number of occurrences in our Wikipedia- 254

based corpus, the confidence-order model success- 255

fully resolves this by disambiguating its contextual 256

mentions, including his teammates, in advance. We 257

provide detailed inference sequence of the corre- 258

sponding document in Appendix D. 259

4.3 Performance for Rare Entities 260

We examine whether our model learns effective em- 261

beddings for rare entities using the CoNLL dataset. 262

Following Ganea and Hofmann (2017), we use the 263

mentions of which entity candidates contain their 264

gold entities and measure the performance by di- 265

viding the mentions based on the frequency of their 266

entities in the Wikipedia annotations used to train 267

the embeddings. 268

As presented in Table 3, our models achieve en- 269

hanced performance for rare entities. Furthermore, 270

the global models consistently outperform the local 271

model both for rare and frequent entities. 272

5 Conclusion and Future Work 273

We propose a new global ED model based on BERT. 274

Our extensive experiments on a wide range of ED 275

datasets demonstrate its effectiveness. 276

One limitation of our model is that, similar to 277

existing ED models, our model cannot handle en- 278

tities that are not included in the vocabulary. In 279

our future work, we will investigate the method to 280

compute the embeddings of such entities using a 281

post-hoc training with an extended vocabulary (Tai 282

et al., 2020). 283
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Appendix for “Global Entity427

Disambiguation with BERT”428

A Details of Proposed Model429

As the input corpus for training our model, we use430

the December 2018 version of Wikipedia, compris-431

ing approximately 3.5 billion words and 11 million432

entity annotations. We generate input sequences by433

splitting the content of each page into sequences434

comprising ≤ 512 words and their entity annota-435

tions (i.e., hyperlinks). The input text is tokenized436

using BERT’s tokenizer with its vocabulary con-437

sisting of Vw = 30, 000 words. Similar to Ganea438

and Hofmann (2017), we create an entity vocabu-439

lary consisting of Ve = 128, 040 entities, which are440

contained in the entity candidates in the datasets441

used in our experiments.442

Our model consists of approximately 440 mil-443

lion parameters. To reduce the training time, the444

parameters that are shared with BERT are initial-445

ized using BERT. The other parameters are initial-446

ized randomly. The model is trained via iterations447

over Wikipedia pages in a random order for seven448

epochs. To stabilize the training, we update only449

those parameters that are randomly initialized (i.e.,450

fixed the parameters initialized using BERT) at451

the first epoch, and update all parameters in the452

remaining six epochs. We implement the model453

using PyTorch (Paszke et al., 2019) and Hugging454

Face Transformers (Wolf et al., 2020), and the train-455

ing takes approximately ten days using eight Tesla456

V100 GPUs. We optimize the model using AdamW.457

The hyper-parameters used in the training are de-458

tailed in Table 4.459

B Details of Fine-tuning on CoNLL460

Dataset461

The hyper-parameters used in the fine-tuning on462

the CoNLL dataset are detailed in Table 5. We se-463

lect these hyper-parameters from the search space464

described in Devlin et al. (2019) based on the accu-465

racy on the development set of the CoNLL dataset.466

A document is split if it is longer than 512 words,467

which is the maximum word length of the BERT468

model.469

C Details of ED Datasets470

The statistics of the ED datasets used in our experi-471

ments are provided in Table 6.472

Name Value
number of hidden layers 24
hidden size 1024
attention heads 16
attention head size 64
activation function gelu
maximum word length 512
batch size 2048
learning rate (1st epoch) 5e-4
learning rate decay (1st epoch) none
warmup steps (1st epoch) 1000
learning rate 5e-5
learning rate decay linear
warmup steps 1000
dropout 0.1
weight decay 0.01
gradient clipping 1.0
adam β1 0.9
adam β2 0.999
adam ϵ 1e-6

Table 4: Hyper-parameters used for training on
Wikipedia entity annotations.

Name Value
maximum word length 512
number of epochs 2
batch size 16
learning rate 2e-5
learning rate decay linear
warmup proportion 0.1
dropout 0.1
weight decay 0.01
gradient clipping 1.0
adam β1 0.9
adam β2 0.999
adam ϵ 1e-6

Table 5: Hyper-parameters during fine-tuning on the
CoNLL dataset.

D Example of Inference by 473

Confidence-order Model 474

Figure 3 shows an example of the inference per- 475

formed by our confidence-order model fine-tuned 476

on the CoNLL dataset. The document is obtained 477

from the test set of the CoNLL dataset. As shown 478

in the figure, the model starts with unambiguous 479

player names to recognize the topic of the docu- 480

ment, and subsequently resolves the mentions that 481

are challenging to resolve. 482

Notably, the model correctly resolves the men- 483

tion “Nigel Walker” to the corresponding former 484

rugby player instead of a football player, and the 485

mention “Matthew Burke” to the correct former 486

7



Document: 
"Campo has a massive following in this country and has had the public with him ever since he first played here 
in 1984," said Andrew, also likely to be making his final 20: Twickenham appearance. On 
tour, 17: Australia have won all four tests against 46: Italy, 47: Scotland, 48: Ireland and 45: Wales, and 
scored 414 points at an average of almost 35 points a game. League duties restricted the 28: Barbarians' 
selectorial options but they still boast 13 internationals including 44: England full-back 16: Tim Stimpson and 
recalled wing 22: Tony Underwood, plus 12: All Black forwards 25: Ian Jones and 14: Norm Hewitt. 
Teams: 27: Barbarians - 15 - 7: Tim Stimpson (31: England); 14 - 50: Nigel Walker (36: Wales), 13 - 1: Allan 
Bateman (32: Wales), 12 - 10: Gregor Townsend (39: Scotland), 11 - 4: Tony Underwood (34: England); 10 -
 17: Rob Andrew (33: England), 9 - 2: Rob Howley (35: Wales); 8 - 15: Scott Quinnell (37: Wales), 7 - 8: Neil 
Back (38: England), 6 - 19: Dale McIntosh (41: Pontypridd), 5 - 24: Ian Jones (51: New Zealand), 4 - 11: Craig 
Quinnell (40: Wales), 3 - 5: Darren Garforth (42: Leicester), 2 - 18: Norm Hewitt (52: New Zealand), 1 - 3: Nick 
Popplewell (49: Ireland). 43: Australia - 15 - 53: Matthew Burke; 14 - 9: Joe Roff, 13 - 26: Daniel Herbert, 12 -
 20: Tim Horan (captain), 11 - 23: David Campese; 10 - 29: Pat Howard, 9 - Sam Payne; 8 - Michael Brial, 7 -
 30: David Wilson, 6 - 13: Owen Finegan, 5 - 21: David Giffin, 4 - Tim Gavin, 3 - Andrew Blades, 2 - Marco 
Caputo, 1 - 6: Dan Crowley. 

Order of Inference by Confidence-order Model: 
Allan Bateman ! Rob Howley ! Nick Popplewell ! Tony Underwood ! Darren Garforth ! Dan Crowley ! 
Tim Stimpson ! Neil Back ! Joe Roff ! Gregor Townsend ! Craig Quinnell ! All Black ! Owen Finegan ! 
Norm Hewitt ! Scott Quinnell ! Tim Stimpson ! Australia ! Norm Hewitt ! Dale McIntosh ! Tim Horan ! 
David Giffin ! Tony Underwood ! David Campese ! Ian Jones ! Ian Jones ! Daniel Herbert ! Barbarians ! 
Barbarians ! Pat Howard ! David Wilson ! England ! Wales ! England ! England ! Wales ! Wales ! 
Wales ! England ! Scotland ! Wales ! Pontypridd ! Leicester ! Australia ! England ! Wales ! Italy ! 
Scotland ! Ireland ! Ireland ! Nigel Walker ! New Zealand ! New Zealand ! Matthew Burke

Figure 3: An illustrative example showing the inference performed by our fine-tuned confidence-order model on a
document in the CoNLL dataset. Mentions are shown as underlined. Numbers in boldface represent the selection
order of the confidence-order model.

Name #mentions #documents
CoNLL (training) 18,448 946
CoNLL (development) 4,791 216
CoNLL (test) 4,485 231
MSNBC 656 20
AQUAINT 727 50
ACE2004 257 36
CWEB 11,154 320
WIKI 6,821 320

Table 6: Statistics of ED datasets.

Australian rugby player born in 1973 instead of487

the former Australian rugby player born in 1964.488

This is accomplished by resolving other contextual489

mentions, including their colleague players, in ad-490

vance. These two mentions are denoted in red in491

the figure. Note that our local model fails to resolve492

both mentions, and our natural-order model fails to493

resolve “Matthew Burke.”494
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