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ABSTRACT
Knowledge graphs provide a powerful representation of entities
and the relationships between them, but automatically constructing
such graphs from noisy extractions presents numerous challenges.
Knowledge graph identification (KGI) is a technique for knowledge
graph construction that jointly reasons about entities, attributes and
relations in the presence of uncertain inputs and ontological con-
straints. Although knowledge graph identification shows promise
scaling to knowledge graphs built from millions of extractions, in-
creasingly powerful extraction engines may soon require knowl-
edge graphs built from billions of extractions. One tool for scaling
is partitioning extractions to allow reasoning to occur in parallel.
We explore approaches which leverage ontological information and
distributional information in partitioning. We compare these tech-
niques with hash-based approaches, and show that using a richer
partitioning model that incorporates the ontology graph and distri-
bution of extractions provides superior results. Our results demon-
strate that partitioning can result in order-of-magnitude speedups
without reducing model performance.

1. INTRODUCTION
The web is a vast repository of knowledge, and copious research

has sought to extract structured data at web-scale [4, 5, 11] and pop-
ulate knowledge bases using this abundance of data [6, 1]. As these
techniques grow more sophisticated, increasing attention is being
devoted to considering the relationships between these structured
extractions, and representing both the extractions and relationships
as a knowledge graph [13]. In conjunction with the knowledge
graph representation, current research [7, 12] jointly reasons about
millions of web-scale extractions, while leveraging ontological in-
formation, to produce a consistent knowledge graph.

Jointly reasoning about noisy extractions from the web has shown
promise for uncovering the true knowledge graph, but whether such
approaches will successfully scale to billions of extractions remains
an open question. We analyze the scalability of knowledge graph
identification (KGI) [12], a method which operates on uncertain
extractions and performs entity resolution, collective classification,
and link prediction mediated by ontological constraints to produce
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a knowledge graph. While knowledge graph identification is ca-
pable of inferring a complete knowledge graph using millions of
extractions in a few hours, we explore mechanisms for distributing
the computation of the knowledge graph across machines to per-
form KGI in minutes, while preserving high precision and recall.

In this work, we provide an overview of knowledge graph identi-
fication implemented using probabilistic soft logic (PSL). We build
on this framework, exploring methods for partitioning extractions
while retaining the benefits of joint reasoning. In experiments, we
contrast a hash-based approach that partitions the output of an in-
formation extraction system directly to more sophisticated tech-
niques that leverage the ontology and distribution of extractions.
We introduce a novel partitioning mechanism that balances the con-
tribution of different types of ontological information and the fre-
quency of different relations and labels in the data. Our contribu-
tion is an ontology-aware approach to partitioning extractions that
reduces the time necessary for knowledge graph identification dra-
matically with no significant impact on model performance.

2. KNOWLEDGE GRAPH IDENTIFICATION
Our approach to constructing a consistent knowledge base rep-

resents the candidate facts from an information extraction system
as a knowledge graph where entities are nodes, categories are la-
bels associated with each node, and relations are directed edges
between the nodes. Unfortunately, the output from an information
extraction system is often incorrect; the graph constructed from it
has spurious and missing nodes and edges, and missing or inac-
curate node labels. Our approach, knowledge graph identification
(KGI), performs collective classification, link prediction, and en-
tity resolution in the presence of rich ontological information and
multiple sources of uncertain information, ultimately producing a
better knowledge graph.

Unlike earlier work on graph identification [10] we use a very
different probabilistic framework, PSL [3, 9]. PSL allows us to ap-
ply global constraints instead of relying only on local features. PSL
models are expressed using a set of universally-quantified logical
rules that, when combined with data such as the noisy extractions
and ontological information, define a probability distribution over
possible knowledge graphs. In the case of KGI, we introduce rules
to relate uncertain extractions to the true relations and labels in the
knowledge graph, pool these facts across co-referent entities, and
constrain relations and labels with rules that use ontological infor-
mation such as domain and range constraints, mutual exclusion re-
lationships. We explain how these components of KGI map to PSL
rules, motivating these rules with examples of challenges found in
a real-world information extraction system, the Never-Ending Lan-
guage Learner (NELL) [4].



2.1 Representation of Uncertain Extractions
NELL produces candidate extractions from a web corpus which

often contains noise. Candidate extractions from the NELL cor-
pus include labels such as bird(kyrgyzstan) and country-
(kyrghyzstan) as well as relations such as locatedIn
(kyrghyzstan, Russia), locatedIn(kyrgz republic, -
Asia), locatedIn(kyrghyzstan, US), and locatedIn(kyrgyzstan,
Kazakhstan). These extractions can contain mistakes that in-
clude variations in spelling and inconsistencies in relationships, and
NELL assigns confidence values to each extraction.

In PSL, we represent these candidate extractions with predicates
CANDLBL and CANDREL , e.g. CANDLBL(kyrgyzstan, bird)
and CANDREL(kyrgz republic, Asia, locatedIn). NELL
has multiple extractors that generate candidates, and we can use dif-
ferent predicates for each extractor to capture the confidence of that
extractor. For a given extractor T, we introduce predicates CAN-
DRELT and CANDLBLT to represent the candidates extracted by
T. We relate these candidates to the facts that we wish to infer, LBL
and REL, using the following rules:

CANDRELT (E1, E2, R)
wCR−T⇒ REL(E1, E2, R)

CANDLBLT (E,L)
wCL−T⇒ LBL(E,L)

PSL uses soft logic, so we can represent noisy extractions by trans-
lating confidences into real-valued truth assignments in the [0, 1]
range. For example, if NELL extracts the relation locatedIn-
(kyrgz republic,Asia) and assigns it a confidence value of
0.9, we would assign the atom CANDREL(kyrgyzstan,Asia,-
locatedIn) a soft-truth value of 0.9. Similarly, our output values
for unknown facts are in the [0, 1] range allow us to trade-off preci-
sion and recall by using a truth threshold. By learning the weights
of these rules, wCLT and wCRT , our model combines multiple
sources of information to label nodes and predict links.

2.2 Reasoning About Co-Referent Entities
While the previous PSL rules provide the building blocks of

predicting links and labels using uncertain information, KGI em-
ploys entity resolution to pool information across co-referent en-
tities. In the example above, many different forms for the country
Kyrgystan appear: kyrgyzstan , kyrghyzstan , and kyrgz
republic. A key component of KGI is identifying possibly co-
referent entities and determining the similarity of these entities. We
use the SAMEENT predicate to capture the similarity of two en-
tities. While any similarity metric can be used, we compute the
similarity of entities using a process of mapping each entity to the
YAGO knowledge base [14], extracting a set of Wikipedia arti-
cles for each entity and then computing the Jaccard index of possi-
bly co-referent entities. We incorporate this information about co-
referent entities by constraining the labels and relations of these
entities through PSL rules:

SAMEENT(E1, E2) ∧ LBL(E1, L)
wEL⇒ LBL(E2, L)

SAMEENT(E1, E2) ∧ REL(E1, E,R)
wER⇒ REL(E2, E,R)

SAMEENT(E1, E2) ∧ REL(E,E1, R)
wER⇒ REL(E,E2, R)

These rules define an equivalence class of entities, such that all
entities related by the SAMEENT predicate must have the same
labels and relations. The soft-truth value of the SAMEENT, derived
from our similarity function, mediates the strength of these rules.
When two entities are very similar, they will have a high truth value
for SAMEENT, so any label assigned to the first entity will also be
assigned to the second entity. On the other hand, if the similarity
score for two entities is low, the truth values of their respective
labels and relations will not be strongly constrained.
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Figure 1: An illustration of the example showing how knowl-
edge graph identification can resolve conflicting information
in a knowledge graph. Entities are shown in rectangles, dotted
lines represent uncertain information, solid lines show ontolog-
ical constraints and double lines represent co-referent entities
found with entity resolution.

2.3 Incorporating Ontological Information
Although entity resolution allows us to relate extractions that re-

fer to the same entity, knowledge graphs can employ ontological in-
formation to specify rich relationships between many facts. Our on-
tological constraints are based on the logical formulation proposed
in [7]. Each type of ontological relation is represented as a pred-
icate, and these predicates represent ontological knowledge of the
relationships between labels and relations. For example, the con-
straints DOM(hasCapital, country) and RNG(hasCapital,
city) specify that the relation hasCapital is a mapping from
entities with label country to entities with label city. The con-
straint MUT(country, bird) specifies that the labels country
and bird are mutually exclusive, so that an entity cannot have
both the labels country and bird. We similarly use constraints
for subsumption of labels (SUB) and inversely-related functions
(INV). To use this ontological knowledge, we introduce rules re-
lating each ontological relation to the predicates representing our
knowledge graph. We specify seven types of ontological constraints
in our experiments:

DOM(R,L) ∧ REL(E1, E2, R)
wO⇒ LBL(E1, L)

RNG(R,L) ∧ REL(E1, E2, R)
wO⇒ LBL(E2, L)

INV(R,S) ∧ REL(E1, E2, R)
wO⇒ REL(E2, E1, S)

SUB(L,P ) ∧ LBL(E,L)
wO⇒ LBL(E,P )

RSUB(R,S) ∧ REL(E1, E2, R)
wO⇒ REL(E1, E2, S)

MUT(L1, L2) ∧ LBL(E,L1)
wO⇒ ¬LBL(E,L2)

RMUT(R,S) ∧ REL(E1, E2, R)
wO⇒ ¬REL(E1, E2, S)

2.4 Putting It All Together
Inferring a knowledge graph becomes challenging as we con-

sider the many interactions between the uncertain extractions that
we encounter in KGI (Figure 1). For example, NELL’s ontology in-
cludes the constraint that the attributes bird and country are
mutually exclusive. While extractor confidences may not be able
to resolve which of these two labels is more likely to apply to
kyrgyzstan, reasoning collectively using entity resolution and
ontological constraints can provide a solution. For example, NELL
is highly confident that kyrgz republic has a capital city,
Bishkek. The NELL ontology specifies that the domain of the
relation hasCapital has label country. Entity resolution al-
lows us to infer that kyrgz republic refers to the same en-
tity as kyrgyzstan. Deciding whether Kyrgyzstan is a bird or a
country now involves a prediction where we include the confidence
values of the corresponding bird and country facts from co-
referent entities, as well as collective features from ontological con-
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Figure 2: A small subset of the ontology graph. Generating
clusters in the ontology graph allows us to partition the extrac-
tions effectively.

straints of these co-referent entities, such as the confidence values
of the hasCapital relations.

To accomplish this collective reasoning, we use PSL to define a
joint probability distribution over knowledge graphs. The universally-
quantified rules described are a PSL model and provide the basis
for defining this probability distribution. In a PSL program, Π, this
model is grounded by substituting values from NELL’s noisy ex-
tractions into the rule template. For example, the rule:

DOM(R,L) ∧ REL(E1, E2, R)
wO⇒ LBL(E1, L)

can be grounded by substituting atoms from NELL, DOM(hasCapital,
country), REL(kyrgyzstan, Bishkek, hasCapital), and
LBL(kyrgyzstan, country), into the rule template. We refer
to the collection of ground rules in the program as R.

Unlike Boolean logic where each grounding would have a binary
truth value, our choice of soft logic requires a different definition of
truth value. We refer to an assignment of soft-truth values to atoms
as an interpretation, which, in this case, corresponds to a possible
knowledge graph, and use the Lukasiewicz t-norm and co-norm to
determine the truth values of logical formulas under an interpre-
tation. This t-norm defines a relaxation of logical connectives as
follows:

p ∧ q = max(0, p+ q − 1)
p ∨ q = min(1, p+ q)

¬p = 1− p
With this definition, for each possible knowledge graph, G, we

can assign a truth value Tr(G) to every grounding r ∈ R and define
a distance to satisfaction, φr(G) = 1−Tr(G) for each grounding.
The probability distribution over knowledge graphs, PΠ(G) can
now be defined using a weighted combination of the distance to
satisfaction of ground rules in the PSL program:

PΠ(G) =
1

Z
exp

[
−

∑
r∈R

wrφr(G)p
]

where p ∈ 1, 2 specifies a linear or quadratic combination and Z is
a normalization constant.

Most probable explanation (MPE) inference corresponds to iden-
tifying a graph that maximizes PΠ(G), which can then be mapped
to a set of labels and relations that comprises the true knowledge
graph. In our work, we choose a soft-truth threshold and determine
the true entities, labels and relations by using those atoms whose
truth value exceeds the threshold. MPE inference can be formu-
lated as convex optimization in PSL, and using the alternating di-
rection method of multipliers (ADMM), which scales linearly with
the number of ground rules in the PSL program[2].

3. PARTITIONING EXTRACTIONS FOR KGI
Our current approach for knowledge graph identification easily

scale to millions of extractions. Yet the combination of more pow-
erful extraction techniques and the vast information available on the
Internet suggest that the true scale of KGI is billions of extractions
or more. Horizontal partitioning, or splitting data into multiple sets
which are processed independently, is non-trivial for joint inference
problems such as KGI. Here we consider preliminary approaches
for horizontally partitioning the extractions used for KGI and intro-
duce ontology-aware partitioning that maintains the performance of
KGI while drastically reducing the running time.

Many appealing strategies for partitioning extractions involve
partitioning the extractions directly. For example, generating a min-
cut of the graph of noisy extractions would provide a straightfor-
ward approach to partitioning KGI. However, a number of issues
make such approaches intractable. First, such a partitioning requires
partitioning a graph with billions of edges, which presents a sub-
stantial scalability challenge. Second, partitioning extractions di-
rectly does not preserve the ontological relationships that form a
key ingredient for generating a consistent knowledge base.

Instead of partitioning the extractions, our approach partitions
the labels and relations in the ontology. The ontology is many or-
ders of magnitude smaller than the extractions and, as demonstrated
in the PSL model for KGI, provides many important constraints for
joint reasoning. We partition the ontology by representing ontolog-
ical information as a graph, with labels and relations as vertices
and the ontological constraints between them as edges. For exam-
ple, the ontological relation DOM(cityCapitalOfCountry,
country) would be converted to an edge of type DOM between
the relation vertex cityCapitalOfCountry and the label ver-
tex country. We show a small subset of the ontological graph for
NELL in Figure 2.

Given an ontology graph, many graph clustering techniques, such
as edge min-cut, can be used to partition the relations and labels
present in the ontology. Using these clusters of relations and la-
bels, we can create a corresponding partition of the extractions of
specific instances of these relations and labels. One potential prob-
lem is that some relations and labels occur more frequently in the
data than others. For example, the extractor may have far more ex-
tractions about the label city than the label bird, resulting in
partitions that are unbalanced. Unbalanced partitions pose a prob-
lem when inference is run in parallel across partitions, as the time
of inference will be proportional to the size of the largest partition.
By balancing partitions, we can produce the quickest overall infer-
ence. We address unbalanced partitions by considering an approach
that weights each vertex, corresponding to a relation or label, by its
frequency in the extractions and then constraining the graph cut to
produce clusters that have equal vertex weights.

Another possible problem with simply partitioning the ontology
graph is that ontological information is unbalanced. For example,
in NELL’s ontology there are nearly 50K RMUT constraints and
only 418 DOM constraints. Many of the mutually-exclusive rela-
tions are not present in the extractions for the same pair of entities,
while domain constraints are relevant for every extracted relation.
We consider an approach that weights the edges, which correspond
to ontological constraints, by choosing weights that are inversely
proportional to the number of ontological constraints of that type.
By using this weighting scheme, each type of ontological informa-
tion will have the same weight in our edge-cut, effectively giving
DOM and RMUT constraints the same aggregate weight.

While the choice of partitioning technique can influence running
time, the number of partitions used in inference can also impact the
computational performance of KGI. Joint inference without par-
titioning preserves all dependencies between extractions, but has
a correspondingly complex model and cannot benefit from paral-



Table 1: Comparing different partitioning techniques, we find
that partitioning extractions with an ontology-based approach
that weights vertices with the frequency of respective labels and
relations in the data preserves model quality and reduces infer-
ence speed

Technique AUC Time (min.)

baseline 0.780 31
Onto-EqEdg-NoVtx 0.788 42
Onto-EqEdg-WtVtx 0.791 31
Onto-WtEdg-WtVtx 0.790 31
No-Partitioning 0.793 97

lelism. Using a large number of partitions increases parallelism and
improves the speed of inference, but necessarily involves losing de-
pendencies which may reduce the quality of the inference results.
We explore the speed-quality tradeoff between the number of par-
titions and the quality of the inference results.

4. EXPERIMENTAL RESULTS
We evaluate different partitioning strategies for our KGI model

with data from iteration 165 of the NELL system, which contains
nearly 80K ontological relationships, 1.7M candidate facts, and
440K previously promoted facts which we represent as a separate,
noisy source. We assess the quality of our inference results using a
manually-labeled evaluation set [7] and measuring the running time
on a 16-core Xeon X5550 CPU at 2.67GHz with 78GB of RAM. To
partition the ontology, we use the METIS graph partitioning pack-
age[8]. In all cases, the time for partitioning the ontology graph
was less than a minute. Our experiments consider two aspects of
partitioning extractions for KGI: the partitioning technique and the
number of partitions.

4.1 Partitioning Techniques
We compare four techniques for partitioning knowledge graphs

with inference on the full set of extractions. The first, a baseline,
randomly assigns each extraction to a partition. While such an ap-
proach balances partitions, it does not actively try to maintain the
dependencies between extractions that KGI uses. The second ap-
proach Onto-EqEdg-NoVtx formulates an ontology graph where
each edge (corresponding to an ontological constraint) has equal
weight. The ontology graph is partitioned using a p-way balanced
min-cut, where the objective function minimizes the communica-
tion cost defined by the sum of adjacent edge weights. The third
approach, Onto-EqEdg-WtVtx equally weights each edge but
assigns weights to each vertex (relation or label) based on the fre-
quency of that relation or label in the extraction data. The ontology
graph is partitioned using a minimum edge cut with a constraint
that each cluster has the same aggregate vertex weight. The fourth
approach, Onto-WtEdg-WtVtx weights vertices by frequency,
and also assigns a weight to each edge. The edge weights are set
to be inversely proportional to the frequency of the respective type
of ontological information. This formulation was chosen to give
each type of ontological information an equal representation in the
ontology graph.

For each partitioning algorithm, we generate 6 disjoint clusters
of labels and relations. We use these 6 clusters of labels and re-
lations to produce 6 corresponding partitions from the extraction
data, where each partition is limited to the relations and labels in
the corresponding cluster. For each of the 6 partitions generated we
perform inference on each partition independently and combine the

Table 2: Increasing the number of partitions used in inference
can dramatically reduce the time for inference with relatively
modest loss in quality, as measured by AUC

Partitions AUC Time (min.)

48 0.788 12
24 0.790 20
12 0.791 26
6 0.791 31
3 0.794 44
2 0.794 57
1 0.794 97

results of this distributed inference, averaging truth values when the
same fact appears in the output of multiple partitions. We compute
the area under the precision-recall curve (AUC) for each technique,
and report the running time of the slowest partition.

As shown in Table 1, inference over the full knowledge graph
No-Partitioning takes 97 minutes. The baseline strategy
of randomly partitioning extractions dramatically reduces inference
time, but produces a considerable drop in the AUC. By using an
ontology-aware partitioning method Onto-EqEdg-NoVtx, we
improve the AUC over the baseline, achieving parity with the full
joint inference problem, but the running time increases significantly
relative to the baseline. Using vertex weights that reflect the data
distribution, Onto-EqEdg-WtVtx reduces the inference time and
improves AUC. However including weights based on the ontolog-
ical frequency, Onto-WtEdg-WtVtx, does not improve our re-
sults.

4.2 Number of Partitions
The number of partitions used for joint inference can have an

impact on the speed and quality of the inference task in KGI. We
consider the best-performing partitioning technique from our ex-
periments in the previous subsection, Onto-EqEdg-WtVtx, and
evaluate performance for 1, 2, 3, 6, 12, 24, and 48 partitions. Table
2 shows the trade-off between inference speed and quality for the
NELL dataset. Our results show that partitioning can dramatically
reduce inference time from 99 minutes with a single partition to 12
minutes with 48 partitions. Surprisingly, there is little degradation
in inference quality as measured by AUC, which ranges from .794
with a single partition to .788 with 48 partitions. The quality for 48
partitions remains higher than the baseline strategy from the previ-
ous section, which had an AUC of .780 from randomly partitioning
the data into 6 partitions.

5. CONCLUSION
Knowledge graphs present a growing scalability challenge: rea-

soning collectively about potentially billions of interrelated facts.
We consider new methods for scaling knowledge graph identifi-
cation, jointly inferring a knowledge graph from the noisy output
of an information extraction system through a combined process
of determining co-referent entities, predicting relational links, col-
lectively classifying entity labels, and enforcing ontological con-
straints. Our work demonstrates that appropriately leveraging the
ontology to partition extractions can retain many of the benefits of
joint approaches to knowledge graph construction while improv-
ing running time considerably. In future work, we look forward to
investigating increasingly sophisticated approaches to partitioning
extractions for knowledge graph identification.
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