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ABSTRACT

Most literature in algorithmic game theory focuses on equilibrium finding, particu-
larly Nash Equilibrium (NE). However, computing NE typically involves repeated
computations of best responses (e.g., policy space response oracle (PSRO)), which
can be computationally intensive. Moreover, NE strategies may not be ideal in
games with more than two players or when facing irrational opponents. Conse-
quently, NE strategies often require further adaptions to effectively address vari-
ous types of opponents, impeding practical deployments. In contrast, In-Context
Learning (ICL), i.e., learning from context examples, plays the core role in the
generalizability of large language models (LLMs) to novel tasks without changing
parameters. While ICL has been applied to decision-making tasks, e.g., algorithm
distillation (AD), existing research primarily focuses on single-agent scenarios,
and the ICL for games is largely unexplored. To facilitate the game solving and the
practical deployment, the research question investigated in this work is: Can we
leverage ICL to learn a model to i) play as any player of the game, ii) exploit any
opponent to maximize the utility, and iii) be used to compute NE, without chang-
ing the parameters? In this work, we propose In-Context Exploiter (ICE) to
address this question: i) ICE generates the diverse opponents with different capa-
bility levels for each player of the game to generate the training datasets, ii) ICE
combines the curriculum learning and the ICL for single-agent scenarios (e.g.,
AD), to train the single model for all players of games, and iii) ICE leverages
the pre-trained single model to play as each player of the game against different
opponents and integrate with the equilibrium finding framework, e.g., PSRO, to
compute NE. Extensive experiments on Kuhn poker, Leduc poker, and Goofspiel
demonstrate that ICE can efficiently exploit different opponents as different play-
ers of the games and can be seamlessly integrated with PSRO to compute NE
without changing the parameters.

1 INTRODUCTION

Multiplayer games provide ideal testbeds of Artificial Intelligence (AI) research (Silver et al., 2018;
Brown & Sandholm, 2019), aptly referred as “Drosophila of AI” (Omidshafiei et al., 2020). Most
literature in algorithmic game theory mainly focuses on equilibrium finding and Nash Equilibrium
(NE) (Nash, 1950) is the canonical solution concept for games, where no player can increase their
utility by unilaterally deviating. There are two main issues impeding the practical deployments
of NE into real-world scenarios. First, computing NE is typically computationally intensive, e.g.,
policy space response oracle (PSRO) (Lanctot et al., 2017) requires repeatedly computing best-
responses, which is resource-demanding even for small-scale games, e.g., Kuhn poker (Kuhn, 1950).
Second, NE is not always an ideal solution, particularly in games with more than two players or
when facing irrational opponents, therefore, further adaptions of these strategies are needed to handle
various opponents, which bring additional complexity and computational burdens to the deployment.

In-Context Learning (ICL), i.e., learning from context examples, is the core mechanism of the gener-
alizability of large language models (LLMs) to novel tasks (Dong et al., 2022). Recent work (Laskin
et al., 2022; Lee et al., 2024) extends ICL to decision making tasks, where a single policy can effi-
ciently adapt to solve novel tasks from in-context examples, i.e., transitions. However, these works
mainly focus on single-agent tasks and the ICL for games is largely unexplored. To facilitate the
game solving and the practical deployment, in this work we provide a systematic investigation to
ICL for games with the following core research question:
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Can we leverage ICL to learn a model to i) play as any player of the game, ii) exploit any oppo-
nent to maximize the utility, and iii) be used to compute NE, without changing the parameters?

The three desiderata proposed in this paper aim to significantly improve the efficiency of equilibrium
finding and enhance the practicability of the model for real-world deployment. However, there
are several challenges to achieving these desiderata. First, we need to sample diverse opponents
with different levels of capabilities against different players to generate the training sets, which
is extremely important for the trained model to exploit the unknown opponents during inference.
Second, the training process needs to be carefully designed, as more capable opponents are more
difficult to exploit and the single model would suffer the catastrophic forgetting issues in exploiting
various opponents. Third, how to integrate the model trained with ICL into the current equilibrium
finding framework is still unclear, including both training and evaluation of the model. Therefore,
novel methods are required to tackle ICL for games.

To address these issues, we propose the In-Context Exploiter (ICE). The main contributions of
ICE include: i) ICE generates the diverse opponents for each player with the equilibrium finding
algorithms, e.g., CFR (Zinkevich et al., 2007), and collects the trajectories of players as the training
set, ii) ICE combines the curriculum learning and the ICL for single-agent scenarios, i.e., Algorithm
Distillation (AD) (Laskin et al., 2022) and Decision-Pretrained Transformer (DPT) (Lee et al., 2024),
to train the model without catastrophic forgetting, and iii) ICE leverages the trained model to play as
each player of the game against any opponent and the trained model can also be used to compute NE
with equilibrium finding algorithms, e.g., PSRO (Lanctot et al., 2017) during inference. Extensive
experiments on Kuhn poker, Leduc poker, and Goofspiel demonstrate that ICE outperforms the NE
strategies and RL methods, e.g., PPO, to efficiently exploit different opponents as different players
of the games and can be used to compute NE without changing the parameters.

2 RELATED WORK

In this section, we provide a concise review of the related work of ICL for games. The first line of
related work is opponent modeling, which basically uses the prior knowledge and the observations
to infer the behaviors of an opponent (Nashed & Zilberstein, 2022). However, these methods usually
are based on the explicit model of the opponent and update the belief of the opponents during the
playing (Von Der Osten et al., 2017) or require further adaption, i.e., fine-tuning (Wu et al., 2022;
Foerster et al., 2017), which brings additional complexities of the methods. Conceptually, ICL can
be viewed as an implicit opponent modeling and only adapt the behaviors of the model through
changing the in-contexts, which is much simpler than the current opponent modeling methods. The
second line of related work is the equilibrium finding, which lies in the core research of game the-
ory. CFR (Zinkevich et al., 2007) is a no-regret method, which plays the core role in the success
on poker (Brown & Sandholm, 2019). Policy Space Response Oracle (PSRO) (Lanctot et al., 2017;
Muller et al., 2020) is another popular framework for equilibrium finding, which starts with a re-
stricted games with limited number of policies for players and iteratively adding new best-responses
into consideration. Most equilibrium finding methods require the iterative computation of the best-
or better-responses, which make these methods extremely computationally extensive. In this work,
we intend to apply the ICL to facilitate the equilibrium finding. The third line of related work is in-
context learning, which is the core mechanism of the remarkable generalizability of large language
models (LLMs), e.g., GPT-4 (Achiam et al., 2023). By providing different in-context examples,
LLMs can quickly generalize to novel tasks. Recent work (Laskin et al., 2022; Lee et al., 2024)
successfully develop novel ICL methods to handle the decision making tasks with generalizability
to novel tasks, which motivates us to investigate the ICL for games.

3 PRELIMINARIES

Imperfect-Information Extensive-Form Games. An imperfect-information extensive-form game
(EFG) can be represented by a tuple (N,H,A, P, I, u) (Shoham & Leyton-Brown, 2008). N is the
set of players, i.e., N = {1, ..., n} and H is the set of histories which is the past action sequence. In
particular, when the game starts, the history is an empty sequence ∅, representing the root node of
the game tree. Additionally, every prefix of any sequence within H is also included in H . There is
a set of special histories, called terminal histories, which are sequences that end in the leaf nodes of
the game tree. Z is used to represent the set of terminal histories which is a subset of H , i.e., Z ⊂ H .
A(h) = {a : (h, a) ∈ H} is the set of available actions at any non-terminal history h ∈ H \Z. P is
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the player function that maps each non-terminal history to a player, i.e., P (h) 7→ N ∪{c} in which c
denotes chance player, representing these stochastic events beyond players’ control. The information
set, represented by Ii, forms a partition over the set of histories where i takes action, such that
player i ∈ N cannot distinguish these histories within the same information set Ii. Therefore, each
information set Ii ∈ Ii corresponds to one decision-making point for player i which means that
P (h1) = P (h2) and A(h1) = A(h2) for any h1, h2 ∈ Ii. For convenience, we can employ A(Ii)
and P (Ii) to denote A(h) and P (h) for any history h within Ii. ui represents the utility function of
player i that maps every terminal history to real numbers, i.e., ui : Z 7→ R.

Nash Equilibrium (NE). The behavior strategy for player i, denoted by σi, is a function that maps
every information set Ii to a probability distribution over the available action A(Ii). The set of
strategies for player i is denoted by Σi, i.e., σi ∈ Σi. Given a strategy profile σ = (σ1, σ2, ..., σn),
the expected value to player i is the sum of the expected payoff of these resulting terminal nodes,
i.e, ui(σ) =

∑
z∈Z πσ(z)ui(z). πσ(z) =

∏
i∈N∪{c} π

σ
i (z) is the reaching probability of terminal

history z and πσ
i (z) is the contribution of player i to reach the terminal history z. The common so-

lution concept for the imperfect-information extensive-form game is Nash equilibrium (NE) (Nash,
1950), defined as a strategy profile such that no player can increase their expected utility by unilat-
erally switching to a different strategy. Formally, a strategy profile σ∗ forms an NE if it satisfies
ui(σ

∗) = maxσ′
i∈Σi

ui(σ
′
i, σ

∗
−i),∀i ∈ N , where σ∗

−i refers to all the strategies in σ except for σi.

ICL for Decision Making. AD (Laskin et al., 2022) collects the dataset of learning histories gener-
ated by a source RL algorithm and learns a causal transformer by autoregressively predicting actions
given the cross-episode trajectory as context. The model trained by AD can be deployed to efficiently
complete novel tasks. DPT (Lee et al., 2024) is another ICL method for decision making, where the
context of DPT can be randomly sampled transitions and the prediction of the model is the optimal
action of the query state. Both methods demonstrate the impressive ability of ICL to efficiently
generalize to novel decision-making tasks without changing the parameters, which motivates us to
extend the ICL to games to address the issues illustrated in the motivating example.

Table 1: Rock-Paper-Scissors

R P S

R (0, 0) (-1, 1) (1,-1)

P (1, -1) (0, 0) (-1, 1)

S (-1, 1) (1, -1) (0, 0)

Motivating Example. Given the rock-paper-scissors (RPS)
game, whose payoff table is depicted in Table 1, the only NE
is ( 13 ,

1
3 ,

1
3 ) for both players and the expected utility of each

player is 0. However, suppose that an opponent always plays
rock, the expected utility of playing NE strategy against him is
still 0, while the expected utility of always playing paper is 1.
Therefore, playing the NE strategy would be a safe option but
is not optimal in even two-player zero-sum symmetric games.
Simplex-NeuPL (Liu et al., 2022) also highlights a similar motivation for deviating from NE strate-
gies in certain scenarios. Furthermore, computing NE usually requires the iterative computation
of best-responses where each iteration in PSRO (Lanctot et al., 2017) is using RL methods, e.g.,
PPO, to train the policy from scratch for each player, which is extremely time-consuming even for
small-scale games, e.g., Kuhn poker. The inefficiency of the equilibrium finding algorithms and the
impracticability of the NE strategies for deployment motivates us to investigate the ICL for games
to leverage one pre-trained model to i) play as any player, ii) exploit any opponent, and iii) be used
to compute to the NE without changing the parameters.

4 IN-CONTEXT EXPLOITER (ICE)
In this section, we introduce In-Context Exploiter (ICE), specifically crafted to train a model to
exploit any unknown opponent and increase its utility through in-context learning. Fig. 1 provides an
overview of ICE, which includes three stages: i) collecting interactive histories via any RL algorithm
with diverse opponent strategies, ii) training a model within a curriculum learning framework, and
iii) employing the trained model to play as any player in opponent exploitation and computing
equilibrium in equilibrium finding algorithms. Each of these stages plays a critical role in ensuring
the model’s adaptability and generalizability.

4.1 STAGE I: DATA COLLECTION

Opponent Strategies Generation. Let D denotes the set of opponent strategies. The key is that D
should consist of diverse and representative opponent strategies. To this end, we employ two meth-
ods: random generation and learning-based generation, and the corresponding sets are respectively
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Figure 1: The three stages of ICE

denoted as Dr and Dl. Suppose Dr = {Dr1, · · · ,Drm} which includes m random opponent strate-
gies. Specifically, for each opponent’s possible information set, we randomly generate a probability
distribution over the set of available actions. This randomness ensures that the generated opponent
strategies are highly diverse and include a variety of unpredictable opponent strategies, mimicking
scenarios where opponents may act irrationally. On the other hand, let Dl = {Dl1, · · · ,Dlb} which
consists of b opponent strategies generated via the learning-based method. We take CFR (Zinkevich
et al., 2007) as an example. Specifically, we run CFR for n iterations where at each iteration, the
opponent’s average strategy among all previous strategies is added to the setDl. Intuitively, with the
progress of the CFR process, the generated average strategies will approach the NE strategy. From
the definition of NE,Dl1 andDlb are respectively the easiest and hardest strategies to exploit, which
shows that Dl includes diverse opponent strategies spanning a range of skill levels.

Interactive History Collection. With a slight abuse of notation, we use Dri, 1 ≤ i ≤ m, (resp.,
Dli, 1 ≤ i ≤ b) to denote the in-context dataset corresponding to the opponent’s randomly generated
strategy Dri (resp., learning-based generated strategy Dli) as it is clear from the context. Following
AD (Laskin et al., 2022), we can utilize any RL algorithm to play against the opponent strategy
Dri (resp., Dli) and record the corresponding learning trajectories, each of which consists of the se-
quence of information sets, actions taken, and the resulting utilities: (I0, a0, r0, · · · , IT , aT , rT ). In
our experiments, we employ proximal policy optimization (PPO) (Schulman et al., 2017) to collect
the trajectories. For DPT (Lee et al., 2024), the in-context training dataset consists of three compo-
nents: in-context data (i.e., interactive history data), query states, and optimal actions. Unlike AD,
DPT requires an optimal strategy to give the optimal action for the corresponding query state. For
this purpose, we can leverage the strategy learned via PPO as mentioned previously as the optimal
strategy when collecting in-context datasets for DPT.

4.2 STAGE II: TRAINING

Recall that we aim to train a Transformer model such that it can play as each player of a game against
any opponent and can be used to compute NE with equilibrium finding algorithms during inference.
The most straightforward idea is to directly train the model on the collected datasets D = Dr ∪ Dl,
which could be unstable and inefficient since the model must adapt to a wide range of behaviors and
tactics represented by these datasets. To overcome this issue, we devise a novel curriculum training
framework to stabilize the training process and improve the training efficiency.

Curriculum Generation. As mentioned in the previous section, for the learning-based generated
opponent strategies,Dl1 is the easiest task whileDlb is the most difficult task. For the randomly gen-
erated opponent strategiesDr, while it is possible to sort them based on the gap between these strate-
gies and the NE strategy, computing the gaps would be time-consuming due to the large number of
opponent strategies. Nevertheless, we observe that most of the randomly generated opponent strate-
gies tend to be relatively simple to exploit, i.e., simple tasks. Therefore, we intersperse them into the
learning-based generated opponent strategies to generate an effective curriculumDo, which is shown
in Algorithm 1. Specifically, for every g learning-based generated opponent strategies, we add a ran-
dom opponent strategy into the curriculum, and finally we have Do = [Dl1, · · · ,Dlg,Dr1, · · · ]. For
notation convince, in the following, we use Do = [D1, · · · ,DB ] to denote the generated curriculum
where B = b+m denote the total number of datasets (opponent strategies).

Loss Functions. Before delving into the detailed training process, we first present the loss func-
tions for training the Transformer model Mθ parameterized with θ. For the AD algorithm, for
each dataset Di ∈ Do, it includes K rounds and each round k has Tk steps, i.e, (s

(k)
0 =

4
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(I
(k)
0 , a

(k)
0 , r

(k)
0 ), · · · , s(k)Tk

= (I
(k)
Tk

, a
(k)
Tk

, r
(k)
Tk

)). These data are concatenated into one long his-

tory, i.e., Di = (s
(1)
0 , · · · , s(1)T1

, · · · , s(K)
0 · · · , s(K)

Tk
). For convenience, we renumber this dataset,

Di = (s
(i)
0 , · · · , s(i)T ), where T =

∑K
k=0 Tk. Then the loss function for training the model Mθ with

context length L is given as
LAD(θ) = −Eht,L∼Di

∑L

l=0
logMθ(a

(j)
t+l|I

(j)
t+l, h

(j)
t,l ) (1)

where ht,l = (st, ..., st+l) is the context data. Similarly, in the DPT algorithm, for each dataset
Di ∈ Do, we have Di = {D1 = (s

(i)
0 , · · · , s(i)T ), D2 = {(Iqj , a∗j )}Kj=0}, where D1 is the same as

dataset with AD and (Iqj , a
∗
j ) is the query information set and its corresponding optimal action.

LDPT(θ) = −E(ht,L,Iq,a∗)∼Di

∑L

l=0
logMθ(a

∗|Iq, h(j)
t,l ). (2)

Curriculum Training Process. Given the generated curriculumDo, we sequentially train the Trans-
former Mθ on the datasets using the loss functions defined before, which is depicted in Algorithm 2.
In this training process, a critical problem is catastrophic forgetting which is one of the common
issues when learning on multiple tasks represented by the different datasets. To mitigate this issue,
we propose to periodically retrain the model on the previously visited datasets. Intuitively, this re-
view mechanism could ensure that the model retains its proficiency in the earlier learned tasks while
simultaneously acquiring new capabilities for the new tasks. Let D̄ denote the set of datasets that
have been visited. When |D̄| < N , we apply the review mechanism to determine the dataset in
the current iteration t. With a slight abuse notation, we use Dt to denote the first dataset that has
not been visited in Do. Then, at the current iteration t, we randomly sample a dataset from D̄ with
probability 1 − σ while training on the current dataset Dt with probability σ. After all the datasets
have been visited, i.e., |D̄| = N , we randomly sample a dataset from Do at each training iteration.

Algorithm 1 Curriculum Generation
1: Input: Learning-based generation Dl =

[Dl1, · · · ,Dln], random generation Dr =
[Dr1, · · · ,Drm], g, Do ← ∅

2: for i = 1 to N do
3: if i mod g = 0 then
4: Do ← Do ∪Dr[0], Dr ← Dr \Dr[0];
5: else
6: Do ← Do ∪ Dl[0], Dl ← Dl \ Dl[0];
7: end if
8: if |Dr| = 0 or |Dl| = 0 then
9: Do ← Do ∪ Dl or Do ← Do ∪ Dr;

10: Early Break;
11: end if
12: end for
13: Output: The curriculum Do

Algorithm 2 Curriculum Training Framework
1: Input: Datasets Do = [D1, ...,DN ]
2: Initialize Transformer Mθ, σ and D̄ ← ∅;
3: for iteration t = 1 to T do
4: for train episode p = 1 to M do
5: if |D̄| < N then
6: SampleDt from D̄ with prob. 1−σ

or use Dt in Do with prob. σ;
7: else
8: Sample a dataset Dt from D̄;
9: end if

10: Train Mθ on Dt using Eq. (1) or (2);
11: end for
12: if |D̄| < N then D̄ ← D̄∪{Dt}; end if;
13: end for
14: Output: The Transformer Mθ

4.3 STAGE III: INFERENCE

After the training process, we freeze the Transformer model and then utilize it for exploiting oppo-
nents as any player and computing the NE in equilibrium finding algorithms.

Opponent Exploitation. Given Mθ, a direct application is to use the model to play as any player
p ∈ N and exploit any unknown opponent in an online manner over K episodes of interaction. Let
Cp denote the context of player p, initialized to the empty set Cp ← ∅. For simplicity, let Ej denote
the complete trajectory of j-th episode. Then, in episode k, at each time step t, the context consists
of the trajectories of the previous episodes and the interaction histories of the current episode Cp =
(E1, · · · , Ek−1, I0, a0, r0, · · · , rt−1). Next, an action is sampled according to at ∼ Mθ(·|It, Cp)
for the current information set It. Finally, the interaction tuple (It, at, rt) is added to the context
Cp for predicting the next action in the next information set. After the K episodes, we can use the
final context Cp to denote the “learned” strategy against the given opponent via in-context learning.
For brevity, we use Cp ← OPPEXP(Mθ, C−p,K) to denote the process of opponent exploitation
against the opponent with strategy C−p and return Cp the player p’s strategy.

5
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Equilibrium Finding. We consider two common equilibrium-finding algorithms: self-play and
PSRO. In the self-play framework, the model Mθ is used to play as each player in the game. Self-
play takes turns to update the strategy of each player p ∈ N through the above opponent exploitation
process Cp ← OPPEXP(Mθ, C−p,K) given the strategies of other players C−p. However, the self-
play framework does not guarantee convergence. Instead, a more popular framework is PSRO.
We present the new PSRO framework in Algorithm 3, in which there are two primary differences
compared to the conventional PSRO: i) As the model Mθ is frozen, the policy of each player p ∈ N
is represented by the context Cp, and thus, the (restricted) policy space of the player p is a set
of contexts Πp; ii) Learning the best response policy of each player at each PSRO iteration is an
opponent exploitation process given above.

Algorithm 3 PSRO with Opponent Exploitation
1: Input: Transformer model Mθ

2: Initialize players’ policy spaces Πp = {Cp ← ∅}, ∀p ∈ N ;
3: repeat
4: Update the meta-game payoff matrix UΠ based on policy spaces Π via simulation;
5: Compute players’ meta-strategies δp for UΠ using any meta-solver, ∀p ∈ N ;
6: Expand policy space: Πp ← Πp ∪ {OPPEXP(Mθ, C−p,K)} where C−p ∼ δ−p, ∀p ∈ N ;
7: until convergence
8: Output: The context sets and the meta-strategies of all players, Πp and δp, ∀p ∈ N

5 EXPERIMENTS

To assess the effectiveness of ICE algorithm, we conduct comprehensive experiments on several
popular extensive-form games. We start by outlining our experimental setting, followed by a detailed
analysis of the results, structured around answering several key research questions.

5.1 EXPERIMENTAL SETTING

Experimental Setup. We selected a variety of poker games as test subjects, including both two-
player and three-player versions of Kuhn Poker, Leduc Poker, and Goofspiel (with five cards). These
games serve as diverse platforms to evaluate our algorithm’s performance. i) To rigorously evaluate
the performance of ICE algorithm in exploiting unknown opponents, we constructed three distinct
types of testbeds by randomly sampling different opponents: in-distribution, out-of-distribution, and
NE opponent. For the in-distribution testbed, we selected approximately 30 opponent tasks from
the task dataset utilized during training. For the out-of-distribution testbed, we randomly sampled
20 opponent strategies to create a diverse set of test tasks. Finally, for the NE opponent testbed,
we specifically configured the opponent’s strategy to align with the NE strategy, thereby forming
test tasks that directly reflect NE opponents. ii) To assess the performance of ICE algorithm in
computing the NE strategy, we employ NASHCONV to measure the gap between the learned strategy
and the NE strategy. Here, we focus specifically on two-player games as testbeds, as finding NEs in
multi-player games is notably challenging.

Baselines. We conduct online testing against different opponents to evaluate the performance of ICE
algorithm in exploiting unknown opponents. In this setting, we first select two widely used strategies
as baselines: the Best Response (BR) strategy and the Nash Equilibrium (NE) strategy. Notably, BR
is theoretically optimal in an online setting, as it is tailored to exploit a known opponent’s strategy,
making it a theoretical upper-bound benchmark. The NE strategy is included as a baseline due to its
robustness against any opponent. Additionally, since this is an online setting, we select the proximal
policy optimization (PPO) algorithm (Schulman et al., 2017) as another baseline for comparison.
Furthermore, we include a multi-task pre-training with the fine-tuning framework as a baseline, as
exploiting different opponents can be framed as a multi-task learning problem. Since BR and NE
strategies are fixed once the opponent is given, we directly simulate these strategies against the
opponent’s strategy to evaluate their performance. For the PPO algorithm, multi-task pre-training
with fine-tuning, and ICE algorithm, we conduct evaluations under a limited number of online
interactions with the opponent. This limitation is deliberate, as our goal is to assess the capability of
these algorithms to quickly and effectively exploit different unknown opponents.

6
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5.2 EXPERIMENTAL RESULTS

To better illustrate our findings, we show them by answering the following research questions (RQs).

RQ1: Can ICE act as any player in the game?

(a) Kuhn poker (2P) (left–P1, right–P2) (b) Kuhn poker (3P) (left–P2, right–P3)

Figure 2: In-distribution results when acting as any player

We claim that ICE algorithm is capable of training a model to perform as any player in the game.
To substantiate this claim, we conduct evaluations by positioning the model trained by the ICE
algorithm in various player roles within the game. Fig. 2 presents the results for both two-player and
three-player Kuhn poker, assessed using the in-distribution testbed. Our experimental results reveal
that ICE outperforms both the NE strategy and the PPO algorithm when acting as any player of
the game, whether in two-player or three-player games. Notably, ICE exhibits the capacity to self-
improve and closely approximate the BR strategy, leveraging its in-context learning ability. These
results show the effectiveness of our method in adjusting to various strategic roles. Consequently,
we only show the results from the perspective of one player, as a representation of our algorithm’s
ability to adapt to and perform in any given role.

RQ2: Can ICE adaptively exploit any opponent?

(a) In-distribution results of three games (play as P2)

(b) Out-of-distribution results of three games (play as P1)

Figure 3: Results (left-Kuhn, middle-Leduc, right-Goofspiel)

(a) Kuhn poker (2P)

(b) Leduc poker (2P)

Figure 4: NE opponent results

To answer this question, we perform experiments on the three distinct testbeds we previously intro-
duced, which simulate different opponents including NE opponents. This diverse range of testing
environments is crucial to comprehensively evaluate the adaptability and effectiveness of ICE al-
gorithm in confronting any type of opponent. Fig. 3 and Fig. 4 display the results of playing three
two-player games against different opponents. We have also carried out experiments for three-player
games, with those results included in the Appendix due to page constraints. From Fig. 3, it is evident
that ICE algorithm effectively demonstrates its in-context learning capability. Within a limited num-
ber of interactions, ICE surpasses both the NE strategy and the PPO algorithm. In simpler cases, the
PPO algorithm may reach performance levels similar to that of ICE algorithm. A key distinction,
however, is that unlike PPO and other RL algorithms which require retraining from scratch for each
new opponent, ICE algorithm achieves this without any parameter updates. It is worth noting that
the out-of-distribution results are worse than the in-distribution results, highlighting a key area for
further improvement in enhancing the model’s generalization capabilities. In Fig. 4, we observe
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that ICE algorithm is capable of achieving results comparable to those of the NE and BR strategies,
which means that ICE can achieve high rewards against the NE opponent.

RQ3: Can ICE be used to compute NE without changing the parameter?

(a) Kuhn poker (b) Goofspiel (3 Card) (c) Leduc poker

Figure 5: Results on computing NE.

To answer this question, we conduct experiments on two-player Kuhn, Leduc, and Goofspiel poker
games. We use the DPT algorithm to train the Transformer model, as its inference process does not
impose sequence requirements on the context, making it convenient for evaluating the gap between
the resulting strategy and the NE strategy, i.e., NASHCOV. Fig. 5 presents results using both the
self-play and PSRO frameworks. From these results, we observe that, compared to the performance
in Kuhn Poker and Leduc Poker, only the results in the Goofspiel game achieve low exploitability,
regardless of whether the self-play or PSRO framework is used. This may be due to the existence
of a pure strategy equilibrium in Goofspiel with 3 cards. Additionally, we observe that using the
self-play framework to compute the NE strategy leads to unstable performance in Kuhn and Leduc
Poker games. When using the PSRO framework, the NASHCONV decreases progressively in the
Kuhn Poker game, indicating improved convergence, whereas it remains unstable in the Leduc Poker
game. It may be the high dynamic in the Leduc Poker game. These findings represent a promising
first step toward leveraging in-context learning for equilibrium computation without parameter up-
dates. Nevertheless, the approach still struggles in games with complex dynamics, highlighting a
clear direction for future work to improve robustness and adaptability in such scenarios.

RQ4: How does ICE perform compared with multi-task pre-training with fine-tuning framework?

(a) In-distribution (b) Out-of-distribution

Figure 6: Leduc poker (2P) (play as P2)

(a) In-distribution (b) Out-of-distribution

Figure 7: Kuhn poker (2P) (play as P2)

Recent work has shown that multi-task pre-training with fine-tuning on new tasks performs equally
or better than meta-learning pre-training with meta adaptation in RL tasks (Mandi et al., 2022).
It indicates that pre-training with fine-tuning can quickly adapt to new tasks. In this paper, we
compare this framework with ICE algorithm. Firstly, we pre-train a model using tasks generated
from opponents’ strategies, the same as those used in the ICE algorithm. Then, we evaluate its
performance by fine-tuning based on the interactions with the opponent. The results for a two-
player Leduc poker game are depicted in Fig. 6. Our findings reveal that ICE outperforms pre-
training with fine-tuning approach in both in-distribution and out-of-distribution testbeds. Notably,
pre-training with fine-tuning performs even underperforms compared to the PPO algorithm in the
out-of-distribution testbed. It might be attributed to the extensive potential opponent strategies,
where pre-training cannot encompass all opponent types, leading to slower adaptation to new tasks.
Additionally, the conflict in training direction for different player roles in zero-sum games could
further hinder the effectiveness of pre-training with fine-tuning.

RQ5: Can our curriculum learning (CL) framework enhance the performance?

ICE algorithm incorporates a curriculum learning (CL) framework for training the Transformer
model. To explore the significance of CL, we conducted a comparative analysis by training the
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Transformer model under different setups, including without the CL framework, which is trained
on a randomly ordered sequence of tasks, training first on random opponents, followed by learning-
based opponents (“Random First”), and training first on learning-based opponents, followed by
random opponents (“Learned First”). The results are presented in Fig. 7. Interestingly, ICE, Ran-
dom First, and Learned First achieve similar overall performance, which may be attributed to the
inherent curriculum-like nature of learning-based opponents. However, we observe that Learned
First performs better in in-distribution cases, likely due to the stronger initial focus on structured
strategies and Random First performs better in out-of-distribution cases, benefiting from early ex-
posure to diverse random strategies. Our ICE method demonstrates more stable performance across
both in-distribution and out-of-distribution settings. This differential in performance underscores
the significant contribution of the CL framework in boosting the effectiveness of ICE algorithm.

RQ6: Does the context length influence the performance of ICE?

(a) Kuhn poker (2P) (play as P2) (b) Goofspiel (3P) (play as P2)

Figure 8: Results of different context lengths

To investigate how the pre-defined context length affects performance, we conducted experiments
with various context lengths in our game scenarios. The results for two-player Kuhn poker and
three-player Goofspiel are shown in Fig. 8. For Kuhn poker, we observe that context length has
minimal impact on performance. This could be attributed to the simplicity of the game, where
even a short context is sufficient for effective in-context learning. Additionally, we note that, in the
early stages, a larger context length may initially underperform compared to a shorter one, possibly
because more interactions are required to fully leverage the extended context. Conversely, for the
Goofspiel game, the results indicate that a larger context length improves performance. It implies
that in more complex games, a large context, which includes more interaction history information,
can significantly enhance the decision-making process. The extended context length provides a
broader historical perspective, which is particularly beneficial in complex strategic environments
where previous interactions greatly influence future decisions.

6 CONCLUSION

In this paper, we investigate an important research question: Can we leverage ICL to learn a model
to i) play as any player of the game, ii) exploit any opponent to maximize the utility, and iii) be used
to compute NE, without changing the parameters? To this end, we propose In-Context Exploiter
(ICE), which aims to train a single model that can satisfy all the desiderata presented in the previous
question. ICE delivers three main contributions: i) it generates diverse opponents via the equilib-
rium finding algorithms, e.g., CFR and PSRO, and collects the trajectories of players using PPO as
the training dataset; ii) it combines the curriculum learning and ICL for single-agent scenarios (AD
and DPT) to train the model and employs a revisiting mechanism to preventing catastrophic forget-
ting when training the model on multiple datasets; iii) it leverages the trained model to play as each
player in opponent exploitation and integrates the trained model into equilibrium finding algorithms,
e.g., PSRO, to compute NE of the game. Extensive experimental results demonstrate that ICE can
efficiently exploit different opponents and can be used to compute NE without updating parameters.

Limitations and Future Work. There are several limitations to this work. First, we only focus
on the games which are relatively small-scale. The ICL for large-scale games would require large
models with longer in-context lengths and training time. Second, for the equilibrium finding with the
trained model, we only focus on NE. Other solution concepts such as (coarse) correlated equilibrium
(CCE) will be considered for multiplayer games. Third, the theoretical analysis of the ICL for games
is largely unexplored, which will be investigated in future work. More detailed discussions on the
limitations and future directions can be found in Appendix A.4.
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A DISCUSSION

A.1 ICE VS. OPPONENT MODELING

ICE can be viewed as a method with implicit opponent modeling (He et al., 2016; Albrecht &
Stone, 2018), where the modeling of the opponent is implicitly encoded into the parameters of the
model. There are several advantages of ICE over opponent modeling: i) ICE does not need an
explicit model for the opponents, where the explicit model in the opponent modeling may restrict
the generalizability of the methods, ii) ICE can exploit different opponents without changing the
parameters, where the opponent modeling may need to fit the parameters of the opponent model
during game play and then make the decision in response to the opponent. To summarize, ICE is
simpler, more efficient, and more generalizable. ICE also has the disadvantage, i.e., the ability to
model the opponents is largely determined by the length of the in-context. With longer in-context,
ICE can model more opponents, while the model will also be larger and the training cost will be
increased. We will discuss the methods to reduce the length of the in-context in the next section. On
the other hand, we can also introduce an explicit model for opponents into ICE, where the parameters
of the opponent model can be fitted through in-context learning. The explicit opponent model can
help us to understand the internal mechanism of ICE.

A.2 ICE VS. EQUILIBRIUM FINDING

Game

Opponents

π

NE

Equilibrium

finding
M

Model

ICE

t t

Figure 9: Comparison between equilibrium finding and our method

The ICE approach and traditional equilibrium finding share the goal of developing strategies for
extensive-form games but diverge significantly in their methodology and capabilities. Equilibrium
finding methods focus on computing an NE strategy profile π that performs robustly against any
potential opponent. This is illustrated in Fig. 9 (left), where the NE strategy remains stable over time,
providing consistent performance across a wide range of opponents. In contrast, the ICE framework
is designed to exploit any opponent effectively by adapting its strategy through in-context learning.
As shown in Fig. 9 (right), ICE leverages the trained model M to exploit different opponents only
through in-context learning, leading to performance that improves dynamically over time as more
interactions are observed. This adaptability allows ICE to achieve better performance against other
irrational opponents compared to the fixed NE strategy.

A.3 ICE VS. ONLINE LEARNING, MULTITASK LEARNING, AND META LEARNING

ICE, as well as other in-context learning methods (Laskin et al., 2022; Lee et al., 2024), is similar
to online learning methods, e.g., no-regret learning (Shalev-Shwartz et al., 2012). However, ICE
does not change the parameters of the model during the game play with the opponents, which differs
from online learning. We believe that online learning, especially no-regret learning, can be used
to analyze the behaviors of ICE and in-context learning methods, which will be explored in future
works. We also consider online learning methods as our baselines. We note that PPO is an online
learning and on-policy method and PPO is scalable and widely used. Therefore, we include PPO as
the baseline in our experiments.

The training of ICE is also similar to multitask learning (Mandi et al., 2022) and meta-learning (Finn
et al., 2017), where multi-task learning learns a policy for different tasks, and meta-learning enables
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the fast adaption of the learned policy on specific tasks. ICE also learns a policy for different tasks,
where the model parameters are not changed, but the behaviors are changed during game play. In the
experiment section, we choose the PPO method initialized with a pre-trained policy to benchmark
multi-task and meta-learning methods, as shown in Figure 6.

A.4 LIMITATIONS AND FUTURE WORKS

In this section, we provide a mode detailed discussion about the limitations of this work.

Scalability of ICE. We only focus on relatively small-scale games in this work, including Kuhn
poker and Leduc poker. However, the large-scale games will have more relevance for real-world
deployment, such as Texas Hold’em poker (Brown & Sandholm, 2019) and sport games, e.g., foot-
ball game (Wang et al., 2024). We will consider to scale up the current ICE methods to tackle
large-scale games, which may require larger models with longer in-context lengths and longer train-
ing time. We would also consider to train the foundation model of ICL for games, i.e., one model
trained to generalize to different games to further improve the generalizability of ICL.

Other Solution Concepts. We only focus on exploiting the opponents and computing NE in this
work. However, there are many other solution concepts such as (coarse) correlated equilibrium
(CCE) and quantal response equilibrium (QRE) (McKelvey & Palfrey, 1995), which are also impor-
tant concepts in game theory. ICE has the potential to compute other solution concepts with one
single pre-trained model, which will be tacked in future work.

Theoretical Analysis. The ICL for games is a new research area and the theoretical analysis is
required for further investigations, including the optimality of the converged solutions and the con-
vergence of the equilibrium finding with the ICL models. In the future, we will conduct a systematic
theoretical analysis of the ICL for games, similar to the analysis for DPT (Lee et al., 2024).
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B IMPLEMENTATION DETAILS

In this section, we provide the experimental details of ICE algorithm from its three main stages.

Opponent Generation. In this paper, we employ two methods, as introduced in the main paper, to
generate a diverse range of opponent strategies. To implement the random generation method, we
traverse through all the information sets of an opponent and assign a randomly generated strategy
to each information set. This approach allows us to generate various opponents exhibiting random
behaviors. To implement the learning-based generation method, we utilize a well-known algorithm,
Counterfactual Regret Minimization (CFR) (Zinkevich et al., 2007), as the equilibrium-finding al-
gorithm. By applying CFR to solve the game, we record the average strategy for each player at
each iteration. This process generates a series of opponent strategies that evolve from random to
increasingly robust over time. These two methods collectively ensure that our dataset includes a
wide spectrum of opponent strategies, ranging from entirely unpredictable to highly strategic. Such
a comprehensive dataset is instrumental in training our model to adapt and respond effectively to
various levels of opponent sophistication and strategy.

Interactive History Collection. It’s important to recognize that when an opponent’s strategy is
known, the task of exploiting that opponent to maximize utility effectively becomes a reinforcement
learning (RL) problem. Consequently, each distinct opponent strategy corresponds to a unique RL
task. For the AD algorithm, to collect interactive history data from our diverse opponent strategies
for training purposes, we adopt the Proximal Policy Optimization (PPO) algorithm (Schulman et al.,
2017) to address each of these RL tasks. During this process, we systematically record the learning
history of the PPO algorithm, specifically capturing the contents of the reply buffer used by PPO.

For the DPT algorithm, the training dataset consists of three components: in-context data (i.e.,
interactive history data), query states, and optimal actions. To generate the in-context data, we use
a random strategy to play against various opponents and record the resulting interactive history.
The optimal strategies used against different opponents are derived from the PPO policies that were
trained earlier. Subsequently, we randomly sample query states and utilize the optimal strategy to
obtain the corresponding optimal actions.

Curriclum Learning. The curriculum learning framework is crucial for effectively training the
Transformer model, with the curriculum’s design being its core component. While the main paper
provides a comprehensive explanation of the curriculum generation process and the overall learning
framework structure, this section will not revisit those specifics. However, it is important to high-
light that the thoughtful design of the curriculum is key to the success of the model’s training. By
gradually increasing task complexity and progressing through structured stages, the model is able to
incrementally build its understanding and capabilities without being overwhelmed. This approach
aligns well with the principles of in-context learning, allowing the Transformer to adapt and respond
efficiently to a broad spectrum of strategic scenarios.

Inference. In the main paper, we introduce how our trained model is used to exploit opponents
and compute equilibrium strategy. Here, we provide a detailed description of the inference process.
We first focus on how to use our model to exploit opponents, as outlined in Algorithm 4. For a
given opponent, the model Mθ is inferred based on the current context to make decisions, while
simultaneously updating the context with the previous interactive history data.

Next, we introduce two frameworks for computing equilibrium strategies, detailed. The first frame-
work is self-play, where the model essentially plays against itself by taking on the roles of all players
in the game. As described in Algorithm 5, the model plays each player in turn to exploit the oppos-
ing strategies. It is important to note that the context C is sufficient for recording strategies, as the
strategy for any state s can be queried through Mθ(·|s, C). Therefore, only the most recent context
needs to be stored. The second framework is PSRO, a widely-used algorithm for solving imperfect-
information extensive-form games. In this framework, we substitute the best response oracle with
the opponent-exploiting inference process. The context is recorded to represent the learned best
response strategy effectively.

Parameter Setting. Here, we list the parameters used in the ICE algorithm for all games in Tab.2.
In this table, the previous rate σ is used to control the blend of new and prior tasks to prevent
catastrophic forgetting and the number of trains per task refers to the number of training for each
selected task (i.e., M in Algorithm 2).
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Algorithm 4 Opponent Exploiting (OPPEXP(Mθ, C−p,K))
1: Input: Transformer model Mθ, player id p
2: Initialize the context C = ∅;
3: for t = 1 to K do
4: s is initialized as game’s initial state and spre, apre =None, None;
5: while TRUE do
6: if s is the Pi’s turn then
7: if spre is not None then
8: ADD (spre, apre, r(s), d(s)) to C;
9: end if

10: a = Mθ(·|C, s);
11: spre = s, apre = a;
12: else
13: # get the opponent action
14: a = Mθ(·|C−p, s);
15: end if
16: # get the next game state based on transition function
17: s′ = T (s, a);
18: if s′ is the end state then
19: ADD (spre, apre, r(s), d(s)) to C;
20: Break;
21: end if
22: end while
23: end for
24: Output: Context C

Algorithm 5 Self-Play Framework
1: Input: Transformer model Mθ, Iteration number K
2: for i = 1 to T do
3: for p in {1, ..., n} do
4: Cp = OPPEXP(Mθ, C−p,K);
5: end for
6: end for

Table 2: Parameter for ICE(AD)
Games Kuhn Leduc Goofspiel Kuhn Leduc Goofspiel

Number of Player 2 2 2 3 3 3

Previous Rate σ 0.1 0.3 0.3 0.1 0.3 0.3

Number of Train per Task M 10 10 10 10 30 30

Context Length 1000 1000 1000 1000 1000 1000
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C ADDITIONAL EXPERIMENTAL RESULTS.

In this section, we present further experimental results to substantiate the effectiveness of ICE al-
gorithm in opponent exploiting. While the main paper provided the performance of ICE in three
two-player game scenarios evaluated across three distinct testbeds, here we extend our analysis to
include results from experiments conducted on three different three-player games.

(a) 3-player Kuhn poker (left–player 1, middle–player 2, right–player 3)

(b) 3-player Leduc poker (left–player 1, middle–player 2, right–player 3)

(c) 3-player Goofspiel (left–player 1, middle–player 2, right–player 3)

Figure 10: In-distribution results of three-player games

Firstly, we present the results from the in-distribution testbed in Fig.10. In these three three-player
games, it is evident that the model trained using the ICE algorithm successfully functions as any
player in the game, demonstrating in-context learning ability with increasing iterations. The Best
Response (BR) strategy, while theoretically the optimal approach since it is tailored against a known
opponent’s strategy, isn’t practical in real-world scenarios where an opponent’s strategy isn’t known
in advance. In our results, the BR strategy’s performance is included merely as a theoretical bench-
mark. Notably, while the ICE-trained model doesn’t achieve the theoretical optimal values of the
BR strategy, it consistently surpasses both the NE strategy and the PPO algorithm. This observation
is significant as it indicates that the ICE-trained model can exploit the opponents more effectively
than the NE strategy, which is generally considered the most conservative approach. The ability of
ICE to outperform in these multi-player game scenarios demonstrates its potential as a powerful
tool for strategic decision-making in complex, real-world situations.

Next, Fig.11 shows the results from the out-of-distribution testbed, where we observe trends sim-
ilar to those in the in-distribution testbed. The key distinction here is that the opponents in the
out-of-distribution testbed are randomly generated, which often results in simpler strategic scenar-
ios. In contrast, the in-distribution testbed encompasses a mix of randomly generated and learning-
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(a) 3-player Kuhn poker (left–player 1, middle–player 2, right–player 3)

(b) 3-player Leduc poker (left–player 1, middle–player 2, right–player 3)

(c) 3-player Goofspiel (left–player 1, middle–player 2, right–player 3)

Figure 11: Out-of-distribution results of three-player games

generated opponents, leading to potentially more complex and challenging interactions. An interest-
ing observation in the three-player Goofspiel game is that, after 500 interactions, the PPO algorithm
begins to match the performance of ICE. This trend could be attributed to the simpler nature of
the randomly generated opponents in the out-of-distribution testbed, which might be easier for PPO
to adapt to and exploit over time. Despite this, ICE demonstrates a faster convergence to high-
performance levels compared to the PPO algorithm and consistently outperforms the NE strategy.
It indicates that ICE is not only capable of quickly adapting to new opponents but also effectively
maximizing performance in diverse opponent settings, including both simple and complex strategic
environments.

Lastly, we discuss the results against NE opponents, as shown in Fig.12. Our findings reveal that
the ICE algorithm achieves better or comparable performance to the NE strategy only in the three-
player Kuhn poker game. However, in other game scenarios, while ICE does not outperform the NE
strategy, it still maintains a higher level of performance than the PPO algorithm. The less optimal
performance of ICE in these cases can be attributed to the highly dynamic game environment and
stability of the NE opponents. In three-player games, the player faces two opponents simultaneously,
and if both adopt the conservative NE strategy, exploiting them concurrently becomes significantly
challenging. This observation highlights an area for future development. Improving the ICE algo-
rithm to more effectively handle situations where multiple opponents employ highly conservative
strategies, such as the NE, will be a focus of our future research.
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(a) 3-player Kuhn poker (left–player 1, middle–player 2, right–player 3)

(b) 3-player Leduc poker (left–player 1, middle–player 2, right–player 3)

(c) 3-player Goofspiel (left–player 1, middle–player 2, right–player 3)

Figure 12: Results of three-player games against NE opponent
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