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ABSTRACT

Collaborative Concept Drift Detection (C2D2) combines Fast Correlated Based
Filtering (FCBF) and Singular Value Decomposition (SVD) to detect concept
drifts in 5 synthetic datasets. We compare our results against 6 diveregence tests
and introduce Performance Gain Update Cost Ratio (PGUCR). Post-hoc Tukey
HSD test confirmed that C2D2 outperformed the other tests in terms of PGUCR.
Much of C2D2’s improvement is based on its conservative signals for updates.

1 CONCEPT DRIFT

Machine learning models train on data with the expectation that the concept or relationship dis-
cerned between the predictors and target variable are consistent with post training data (e.g. online
data streams). Data streams, however, are unstationary and can result in concept drifts, where said
relationship no longer holds (Widmer & Kubat (1996); Huyen (2022)). Consequently, concept drifts
can result in model performance degradation despite the fact that the model itself is unchanged (Lu
et al. (2019)). Additionally, models incur an update cost when they are retrained upon detection
of drift. Although there are many types of drift detectors, data distribution or divergence tests can
provide more explainability than performance based detectors. (Lu et al. (2018)). This paper ex-
tends a method originally used for feature selection in order to detect concept drift. We compare
our findings to divergence tests and formulate a metric that relates the F1 obtained with the cost of
retraining.

2 COLLABORATIVE CONCEPT DRIFT DETECTION

Collaborative Concept Drift Detection (C2D2) applies a window based Fast Correlated Based
Filtering (FCBF) ( Yu & Liu (2003); Nguyen et al. (2012)), a multivariate feature selection method
that considers both the class relevance and the dependency between each feature pair through the
Symmetrical Uncertainty (SU)[3] computed from entropy.

Rather than remove the redundant features directly, the calculated SU are fed as a matrix, A for
Singular Value Decomposition (SVD) [1] where V T relates to batches and U corresponds to the
features. Taking only the top four V T and U components noted by S, we calculate sum of the
stepwise difference of V T for every batch. The resulting argmax and values within 1 standard
deviation of the max are signalled as batches with drift.

A = USV T (1)

3 EXPERIMENT

C2D2 was tested on 4 artificial data sets generated by the MOA framework (Massive On-line Anal-
ysis) (Bifet et al. (2010; 2013)). Concept drift was modeled on MOA by joining data streams as
a weighted combination of distributions whose probability of an instance stemming from the new
concept is defined by a sigmoid function. Each dataset contained 10K instances and were injected
with concept drifts of widths from 0.5K to 4K instances. The midpoints of drift ranged from 1.5k
to 7.5K. 10 tests were generated from each dataset by modifying the instantiation of streams via a
random seed.
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C2D2 was evaluated against 6 divergence tests: Cramer Von Mises (CMV), Energy Distance test
(ED), Kolmogorov-Smirnov test (KS), Mann-Whitney U-test (MW), T test, and Wasserstein Dis-
tance (WD). The 6 tests were implemented in a fixed sliding window fashion, which split the data
into 10 batches and compared the ith batch with the ith−1 batch as its respective current and ref-
erence windows. Batches that were deemed significantly different were signalled for retraining.
Hoeffding tree (HFT) was used as the base classifier and was prompted to retrain on the most recent
batch according to the signals generated by the detectors. In addition to these test was an ablation
test, where the HFT made predictions without any retraining.

3.1 PERFORMANCE GAIN TO UPDATE COST RATIO

An overly cautious and ineffective method would arbitrarily signal for an update at every batch. To
take in consideration the computational and temporal debt of retraining with respect to the perfor-
mance gained, we introduce the Performance Gain to Update Cost Ratio (PGUCR) 2. Ratios of
0 are ineffective detectors and 1 are effective detectors. F1new is the F1 score of the base classifier
that was retrained according to the signals, while F1ablation is the score without any retraining.
Nupdate is the number of batches signalled (i.e. max is 9 as the first batch is used for training).
Costupdate which can be seen as a penalty for updating is an adjustable parameter whose value is
related to the importance of improving the F1 score. Our experiments set Costupdate to 0.1.

PGUCR =
1

2

(
1 +

F1new − F1ablation

F1ablation

)
/ (1 +Nupdate × Costupdate) (2)

4 RESULTS AND CONCLUSION

ANOVA indicated that there is a difference in mean values of PGUCR amongst the tests. Post-hoc
Tukey HSD test confirmed that C2D2 provided significant improvement. Much of C2D2’s improve-
ment is based on the fact that it signalled for updates conservatively in comparison to the other
tests[2], thereby decreasing its false positive rate. In contrast to the other tests, which monitored
whether a feature’s distribution had changed in comparison to itself, C2D2 was able to hint at the re-
lationship of how the features have drifted collectively [A]. Future work should identify whether the
collective nature of C2D2 can be applied to bringing explainability towards formerly independent
models with overlapping feature spaces.

Figure 1: Mean PGUCR values with penalty of 0.1.
Each dataset contained the following number of features:
Agrawal (9), LED (24), RandTree 55 (55), RandTree 105
(105), Sea (4).

Figure 2: Post-hoc Tukey HSD
test at 99% confidence interval in-
dicates that C2D2 is significantly
better than T, MW, CVM, KS, ED,
and WD. C2D2 has a mean of 0.43.
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A APPENDIX

Symmetrical Uncertainty: Calculates the mutual dependencies of random variables X and Y such
that values closer to 0 indicate independence while values closer to 1 indicate dependence, where
knowledge of one can predict the outcome of its pair. IG is the information gain of X given Y and
H(X), H(Y ) are entropies of X,Y.

SU(X,Y ) =
2× IG(X|Y )

H(X) +H(Y )
(3)
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Figure 3: SU scores per feature per batch on
one of the Agrawal dataset. Drift occurs from
instances 2K to 3K (i.e. batch 2). Feat 2 de-
creases while Feat 3 increases at a crossover
point between batch 2 and 3.

Figure 4: SU scores per feature per batch on
one of the LED dataset. Drift occurs from
instances 2K to 3K (i.e. batch 2). Feat 0, 1,
and 2 decrease while Feat 7, 8 and 9 increase
at a crossover point at batch 2.

Table 1: Average number of signals for updates on synthetic datasets. Ablation excluded as the
count will always be zero. Counts can range from 0 to 9.

TEST AGRAWAL LED RANDTREE 55 RANDTREE 105 SEA
CVM 4.3 ± 0.9 8.1 ± 0.9 9.0 ± 0.9 9.0 ± 0.0 2.2 ± 0.8
ED 9.0 ± 0.0 2.0 ± 0.7 2.4 ± 0.5 2.0 ± 1.1 4.3 ± 1.1
C2D2 3.1 ± 1.4 3.6 ± 1.3 2.6 ± 1.1 1.8 ± 0.6 1.7 ± 0.5
KS 3.5 ± 1.8 3.6 ± 1.7 9.0 ± 0.0 9.0 ± 0.0 2.0 ± 1.0
MW 5.4 ± 0.5 7.7 ± 2.1 9.0 ± 0.0 9.0 ± 0.0 2.2 ± 1.0
T 6.0 ± 0.7 8.3 ± 0.7 9.0 ± 0.0 9.0 ± 0.0 2.2 ± 1.0
WD 3.0 ± 0.7 4.7 ± 0.9 8.5 ± 0.7 8.0 ± 0.8 0.2 ± 0.4

Table 2: Average F1 score on the datasets with 10 samples. The F1 scores of the tests, ablation
(ABL), and number of signals are used to calculate PGUCR.

TEST AGRAWAL LED RANDTREE 55 RANDTREE 105 SEA
CVM 1.00 ± 0.00 0.66 ± 0.04 0.76 ± 0.01 0.67 ± 0.03 0.84 ± 0.02
ED 1.00 ± 0.00 0.64 ± 0.05 0.65 ± 0.03 0.63 ± 0.05 0.84 ± 0.01
C2D2 1.00 ± 0.00 0.65 ± 0.05 0.64 ± 0.04 0.63 ± 0.03 0.84 ± 0.01
KS 1.00 ± 0.00 0.65 ± 0.04 0.76 ± 0.01 0.67 ± 0.03 0.84 ± 0.02
MW 1.00 ± 0.00 0.66 ± 0.04 0.76 ± 0.01 0.67 ± 0.03 0.83 ± 0.02
T 1.00 ± 0.00 0.66 ± 0.04 0.76 ± 0.01 0.67 ± 0.03 0.83 ± 0.02
WD 1.00 ± 0.00 0.66 ± 0.04 0.76 ± 0.01 0.66 ± 0.04 0.83 ± 0.02
ABL 1.00 ± 0.00 0.58 ± 0.10 0.58 ± 0.07 0.61 ± 0.05 0.83 ± 0.02
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Figure 5: SU scores per feature per batch on
one of the RandTree 55 dataset. Drift occurs
from instances 1.5 K to 2.5K (i.e. batches 1
and 2)

Figure 6: SU scores per feature per batch on
one of the RandTree 100 dataset. Drift in-
jected from instances 1 K to 2K (i.e. batch 1

Figure 7: SU scores per feature per batch on
one of the Sea dataset. Drift injected from
instances 2 K to 3K (i.e. batches 2)
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