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We propose a set of convex low-rank inducing norms for coupled matrices
and tensors (hereafter referred to as coupled tensors), in which informa-
tion is shared between the matrices and tensors through common modes.
More specifically, we first propose a mixture of the overlapped trace norm
and the latent norms with the matrix trace norm, and then, propose a com-
pletion model regularized using these norms to impute coupled tensors.
A key advantage of the proposed norms is that they are convex and can
be used to find a globally optimal solution, whereas existing methods for
coupled learning are nonconvex. We also analyze the excess risk bounds
of the completion model regularized using our proposed norms and show
that they can exploit the low-rankness of coupled tensors, leading to bet-
ter bounds compared to those obtained using uncoupled norms. Through
synthetic and real-data experiments, we show that the proposed comple-
tion model compares favorably with existing ones.

1 Introduction

Learning from a matrix or a tensor has long been an important problem
in machine learning. In particular, matrix and tensor factorization using
low-rank inducing norms has been studied extensively, and many applica-
tions have been considered, such as missing value imputation (Signoretto,
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2 K. Wimalawarne, M. Yamada, and H. Mamitsuda

Figure 1: Illustration of information sharing between matrix and tensor in cou-
pled tensor, through customers mode.

Dinh, De Lathauwer, & Suykens, 2013; Liu, Musialski, Wonka, & Ye, 2009),
multitask learning (Argyriou, Evgeniou, & Pontil, 2006; Romera-Paredes,
Aung, Bianchi-Berthouze, & Pontil, 2013; Wimalawarne, Sugiyama, &
Tomioka, 2014), subspace clustering (Liu, Lin, & Yu, 2010), and induc-
tive learning (Signoretto et al., 2013; Wimalawarne, Tomioka, & Sugiyama,
2016). Though useful in many applications, factorization based on an indi-
vidual matrix or tensor tends to perform poorly under the cold start setup
condition (Singh & Gordon, 2008), when, for example, it is not possible to
observe click information for new users in collaborative filtering. It there-
fore cannot be used to recommend possible items for new users. Potential
ways to address this issue are matrix or tensor factorization with side in-
formation (Narita, Hayashi, Tomioka, & Kashima, 2011). Both have been
applied to recommendation systems (Singh & Gordon, 2008; Gunasekar,
Yamada, Yin, & Chang, 2015) and personalized medicine (Khan & Kaski,
2014).

Both matrix and tensor factorization with side information can be re-
garded as the joint factorization of coupled matrices and tensors (here-
after referred to as coupled tensors; see Figure 1). Acar, Kolda, and
Dunlavy (2011) introduced a coupled factorization method based on CAN-
DECOMP/PARAFAC (CP) decomposition that simultaneously factorizes
matrices and tensors by sharing the low-rank structures in the matrices and
tensors. The coupled factorization approach has been applied to joint anal-
ysis of fluorescence and proton nuclear magnetic resonance (NMR) mea-
surements (Acar, Nilsson, & Saunders, 2014) and joint NMR and liquid
chromatography-mass spectrometry (LCMS; Acar, Bro, and Smilde, 2015).
More recently, a Bayesian approach proposed by Ermis, Acar, and Cemgil
(2015) was applied to link prediction problems. However, existing coupled
factorization methods are nonconvex and can obtain only a poor local op-
timum. Moreover, the ranks of the coupled tensors need to be determined
beforehand. In practice, it is difficult to specify the true ranks of the tensor
and the matrix without prior knowledge. Furthermore, existing algorithms
are not theoretically guaranteed.
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Convex Coupled Matrix and Tensor Completion 3

We propose in this letter convex norms for coupled tensors that over-
come the nonconvexity problem. The norms are a mixture of tensor norms:
the overlapped trace norm (Tomioka, Suzuki, Hayashi, & Kashima, 2011),
the latent trace norm (Tomioka & Suzuki, 2013), the scaled latent norm
(Wimalawarne et al., 2014), and the matrix trace norm (Argyriou et al.,
2006). A key advantage of the proposed norms is that they are convex and
thus can be used to find a globally optimal solution, whereas existing cou-
pled factorization approaches are nonconvex. Furthermore, we analyze the
excess risk bounds of the completion model regularized using our proposed
norms. Through synthetic and real-data experiments, we show that it com-
pares favorably with existing ones.

In this letter, we:

• Propose a set of convex coupled norms for matrices and tensors that
extend low-rank tensor and matrix norms.

• Propose mixed norms that combine features from both the over-
lapped norm and latent norms.

• Propose a convex completion model regularized using the proposed
coupled norms.

• Analyze the excess risk bounds for the proposed completion model
with respect to the proposed norms and show that it leads to lower
excess risk.

• Show through synthetic and real-data experiments that our norms
lead to performance comparable to that of existing nonconvex
methods.

• Show that our norms are applicable to coupled tensors based on
both the CP rank and the multilinear rank without prior assumptions
about their low-rankness.

• Show that the convexity of the proposed norms leads to global solu-
tions, eliminating the need to deal with local optimal solutions as is
necessary with nonconvex methods.

The remainder of the letter is organized as follows. In section 2, we dis-
cuss related work on coupled tensor completion. In section 3, we present
our proposed method, first introducing a coupled completion model and
then proposing a set of norms called coupled norms. In section 4, we give
optimization methods for solving the coupled completion model. In sec-
tion 5, we theoretically analyze it using excess risk bounds for the proposed
coupled norms. In section 6, we present the results of our evaluation using
synthetic and real-world data experiments. Finally, in section 7, we summa-
rize the key points and suggest future work.

2 Related Work

Most of the models proposed for learning with multiple matrices or tensors
use joint factorization of matrices and tensors. The regularization-based
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4 K. Wimalawarne, M. Yamada, and H. Mamitsuda

model proposed by Acar et al. (2011) for completion of coupled tensors,
which was further studied (Acar, Nilsson et al., 2014; Acar, Papalexakis
et al., 2014; Acar et al., 2015) uses CP decomposition (Carroll & Chang, 1970;
Harshman, 1970; Hitchcock, 1927; Kolda & Bader, 2009) to factorize the ten-
sor and operates under the assumption that the factorized components of
its coupled mode are in common with the factorized components of the
matrix on the same mode. Bayesian models have also been proposed for
imputing missing values with applications in link prediction (Ermis et al.,
2015) and nonnegative factorization (Takeuchi, Tomioka, Ishiguro, Kimura,
& Sawada, 2013), which use similar factorization models. Applications that
have used collective factorization of tensors are multiview factorization
(Khan & Kaski, 2014) and multiway clustering (Banerjee, Basu, & Merugu,
2007). Due to their use of factorization-based learning, all of these models
are nonconvex.

The use of common adjacency graphs has more recently been proposed
for incorporating similarities among heterogeneous tensor data (Li, Zhao,
Li, Cichocki, & Guo, 2015). Though this method does not require assump-
tions about rank for explicit factorization of tensors, it depends on the
modeling of the common adjacency graph and does not incorporate the
low-rankness created by the coupling of tensors.

3 Proposed Method

We investigate a method for coupling a matrix and a tensor that forms
when they share a common mode (Acar et al., 2015; Acar, Nilsson et al.,
2014; Acar, Papalexakis, 2014). An example of the most basic coupling is
shown in Figure 1, where a three-way (third-order) tensor is attached to a
matrix on a specific mode. As depicted, we may have a problem predicting
recommendations for customers on the basis of their preferences of restau-
rants in different locations, and we may also have side information about
the characteristics for each customer. We can utilize this side information
by coupling the customer-characteristic matrix with the sparse customer-
restaurant-location tensor of the customer mode and then impute the miss-
ing values in the tensor.

Let us consider a partially observed matrix M̂ ∈ R
n1×m and a partially

observed three-way tensor T̂ ∈ R
n1×n2×n3 with mappings to observed ele-

ments indexed by �M and �T , respectively, and let us assume that they are
coupled on the first mode. Our ultimate goal of this letter is to introduce
convex coupled norms ‖T , M‖cn for use in solving

min
T ,M

1
2
‖�M(M − M̂)‖2

F + 1
2
‖�T (T − T̂ )‖2

F + λ‖T , M‖cn, (3.1)

where λ ≥ 0 is the regularization parameter. We also investigate the theo-
retical properties of problem 3.1.
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Convex Coupled Matrix and Tensor Completion 5

The mode-k unfolding of tensor T ∈ R
n1×···×nK is represented as T(k) ∈

R
nk×

∏K
j �=k n j , which is obtained by concatenating all the

∏K
j �=k n j vectors with

dimension nk obtained by fixing all except the kth index on mode-k along
its columns. We use vec() to indicate the conversion of a matrix or a tensor
into a vector and unvec() to represent the reverse operation. The spectral
norm (operator norm) of a matrix X is the ‖X‖op that is the largest sin-
gular value of X. The Frobenius norm of a tensor T is defined as ‖T ‖F =√〈T , T 〉 = √

vec(T )	vec(T ). We use [M; N] as the concatenation of matri-
ces M ∈ R

m1×m2 and N ∈ R
m1×m3 along their mode 1.

3.1 Existing Matrix and Tensor Norms. Before we introduce our new
norms, we first briefly review the existing low-rank inducing matrix and
tensor norms. Among matrices, the matrix trace norm (Argyriou et al., 2006)
is a commonly used convex relaxation for the minimization of the rank of
a matrix. For a given matrix M ∈ R

n1×m with rank J, we can define its trace
norm as

‖M‖tr =
J∑

j=1

σ j,

where σ j is the jth nonzero singular value of the matrix.
Low-rank inducing norms for tensors have received revived attention in

recent years. One of the earliest low-rank inducing tensor norm is the tensor
nuclear norm (Liu et al., 2009), also known as the overlapped trace norm
(Tomioka & Suzuki, 2013) which can be expressed for a tensor T ∈ R

n1×···×nK

as

‖T ‖overlap =
K∑

k=1

‖T(k)‖tr. (3.2)

Tomioka and Suzuki (2013) proposed the latent trace norm:

‖T ‖latent = inf
T (1)+...+T (K)=T

K∑
k=1

‖T (k)
(k) ‖tr. (3.3)

The scaled latent trace norm was proposed as an extension of the latent
trace norm (Wimalawarne et al., 2014):

‖T ‖scaled = inf
T (1)+...+T (K)=T

K∑
k=1

1√
nk

‖T (k)
(k) ‖tr. (3.4)
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6 K. Wimalawarne, M. Yamada, and H. Mamitsuda

The behaviors of these two tensor norms have been studied on the ba-
sis of multitask learning (Wimalawarne et al., 2014) and inductive learning
(Wimalawarne et al., 2016). The results show that for a tensor T ∈ R

n1×···×nK

with multilinear rank (r1, . . . , rK ), the excess risk is bounded above with
respect to regularization with the overlapped trace norm by O(

∑K
k=1

√
rk),

the latent trace norm by O(mink
√

rk), and the scaled latent trace norm by

O
(

mink

√
rk
nk

)
.

3.2 Coupled Tensor Norms. As with individual matrices and tensors,
having convex and low-rank inducing norms for coupled tensors would be
useful in achieving global solutions for coupled tensor completion with the-
oretical guarantees. To achieve this, we propose a set of norms for coupled
tensors that are coupled on specific modes using existing matrix and tensor
trace norms. We first define a new coupled norm with the format ‖.‖a

(b,c,d),
where the superscript a specifies the mode in which the tensor and matrix
are coupled and the subscripts b, c, d ∈ {O, L, S,−} indicate how the modes
are regularized. The notations for b, c, d are defined as follows:

O: The mode is regularized with the trace norm. The same tensor is reg-
ularized on other modes similar to the overlapped trace norm.

L: The mode is considered to be a latent tensor that is regularized using
the trace norm only with respect to that mode.

S: The mode is regularized as a latent tensor, but it is scaled similar to
the scaled latent trace norm.

−: The mode is not regularized.

Given a matrix M ∈ R
n1×m and a tensor T ∈ R

n1×n2×n3 , we introduce three
norms that are coupled extensions of the overlapped trace norm, the latent
trace norm, and the scaled latent trace norm, respectively.

Coupled overlapped trace norm:

‖T , M‖1
(O,O,O) := ‖[T(1); M]‖tr +

3∑
k=2

‖T(k)‖tr. (3.5)

Coupled latent trace norm:

‖T , M‖1
(L,L,L) = inf

T (1)+T (2)+T (3)=T

(
‖[T (1)

(1) ; M]‖tr +
3∑

k=2

‖T (k)
(k) ‖tr

)
. (3.6)
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Convex Coupled Matrix and Tensor Completion 7

Coupled scaled latent trace norm:

‖T , M‖1
(S,S,S) = inf

T (1)+T (2)+T (3)=T

(
1√
n1

‖[T (1)
(1) ; M]‖tr +

3∑
k=2

1√
nk

‖T (k)
(k) ‖tr

)
.

(3.7)

In addition to these norms, we can also create norms as mixtures of over-
lapped and latent or scaled latent norms. For example, if we want to create
a norm that is regularized using the scaled latent trace norm on the second
mode while the other modes are regularized using the overlapped trace
norm, we can define it as

‖T , M‖1
(O,S,O) = inf

T (1)+T (2)=T

(
‖[T (1)

(1) ; M]‖tr + 1√
n2

‖T (2)
(2) ‖tr + ‖T (1)

(3) ‖tr

)
.

(3.8)

This norm has two latent tensors, T (1) and T (2). Tensor T (1) is regularized
using the overlapped method for modes 1 and 3, while the tensor T (2) is
regularized as a scaled latent tensor on mode 2. Given this use of a mixture
of regularization methods, we call the resulting norm a mixed norm.

In a similar manner, we can create other mixed norms distinguished
by their subscripts: (L, O, O), (O, L, O), (O, O, L), (S, O, O), (O, S, O), and
(O, O, S). The main advantage gained by using these mixed norms is the ad-
ditional freedom to regularize low-rank constraints among coupled tensors.
Other combinations of norms in which two modes are latent tensors, such
as (L, L, O), will make the third mode also a latent tensor since overlapped
regularization requires that more than one mode be regularized of the same
tensor. Though we have considered using the latent trace norm, in practice
it has been shown to be weaker in performance than the scaled latent trace
norm (Wimalawarne et al., 2014, 2016). Therefore, in our experiments, we
considered only mixed norms based on the scaled latent trace norm.

3.2.1 Extensions for Multiple Matrices and Tensors. Our newly defined
norms can be extended to multiple matrices coupled to a tensor on dif-
ferent modes. For instance, we can couple two matrices M1 ∈ R

n1×m1 and
M2 ∈ R

n3×m2 to a three-way tensor T on its first and third modes. If we reg-
ularize the coupled tensor with the overlapped trace norm on modes 1 and
3 and the scaled latent trace norm on mode 2, we obtain a mixed norm:

‖T , M1, M2‖1,3
(O,S,O)

= inf
T (1)+T (2)=T

(
‖[T (1)

(1) ; M1]‖tr + 1√
n2

‖T (2)
(2) ‖tr + ‖[T (1)

(3) ; M2]‖tr

)
.
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8 K. Wimalawarne, M. Yamada, and H. Mamitsuda

Coupled norms for multiple three-mode or higher-dimensional tensors
could also be designed using our proposed method. However, such exten-
sion may require extending coupled norms further. Extensions to coupled
norms for multiple tensors are a promising area for future research.

3.3 Dual Norms. We now briefly look at dual norms for the coupled
norms. Dual norms are useful in deriving excess risk bounds, as discussed
in section 4. Due to space limitations, we derive dual norms for only two
coupled norms to better understand their nature. To derive them, we first
need to know the Schatten norm (Tomioka & Suzuki, 2013) for the coupled
tensor norms. We first define the Schatten-(p, q) norm for the coupled norm
‖T , M‖1

(O,O,O) with an additional subscript notation Sp/q:

‖T , M‖1
(O,O,O),Sp/q :=

(( r1∑
i

σi
(
[T(1); M]

)p
) q

p

+
( r2∑

j

σ j
(
T(2)

)p
) q

p

+
( r3∑

k

σk
(
T(3)

)p
) q

p
) 1

q

, (3.9)

where p and q are constants; r1, r2, and r3 are the ranks; and σi, σ j, and σk

are the singular values for each unfolding.
The following theorem presents the dual norm of ‖T , M‖1

(O,O,O),Sp/q (see

appendix A for proof).

Theorem 1. Let a matrix M ∈ R
n1×m and a tensor T ∈ R

n1×n2×n3 be coupled on
their first modes. The dual norm of ‖T , M‖1

(O,O,O),Sp/q with 1/p + 1/p∗ = 1 and

1/q + 1/q∗ = 1 is

‖T , M‖1
(O,O,O),Sp∗ /q∗ = inf

T (1)+T (2)+T (3)=T

(( r1∑
i

σi
(
[T (1)

(1) ; M]
)p∗
) q∗

p∗

+
( r2∑

j

σ j
(
T (2)

(2)

)p∗
) q∗

p∗

+
( r3∑

k

σk
(
T (3)

(3)

)p∗
) q∗

p∗
) 1

q∗

,

where r1, r2, and r3 are the ranks for each mode and σi, σ j , and σk are the singular
values for each unfolding of the coupled tensor.

In the special case of p = 1 and q = 1, we see that ‖T , M‖1
(O,O,O),S1/1 =

‖T , M‖1
(O,O,O). Its dual norm is the spectral norm, as shown in the following

corollary:
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Convex Coupled Matrix and Tensor Completion 9

Corollary 1. Let a matrix M ∈ R
n1×m and a tensor T ∈ R

n1×n2×n3 be coupled on
their first mode. The dual norm of ‖T , M‖1

(O,O,O),S1/1 is

‖T , M‖1
(O,O,O),S∞/∞

= inf
T (1)+T (2)+T (3)=T

max
(
‖[T (1)

(1) ; M]‖op, ‖T (2)
(2) ‖op, ‖T (3)

(3) ‖op

)
.

The Schatten-(p, q) norm for the mixed norm ‖ · ‖1
(L,O,O) is defined as

‖T , M‖1
(L,O,O),Sp/q = inf

T (1)+T (2)=T

(( r1∑
i

σi
(
[T (1)

(1) ; M]
)p
) q

p

+
( r2∑

j

σ j
(
T (2)

(2)

)p
) q

p

+
( r3∑

k

σk
(
T (2)

(3)

)p
) q

p

) 1
q

.

Its dual norm is defined by the following theorem (see appendix A for the
proof):

Theorem 2. Let a matrix M ∈ R
n1×m and a tensor T ∈ R

n1×n2×n3 be coupled on
their first mode. The dual norm of the mixed coupled norm ‖T , M‖1

(L,O,O),Sp/q with

1/p + 1/p∗ = 1 and 1/q + 1/q∗ = 1 is

‖T , M‖1
(L,O,O),Sp∗ /q∗ =

(( r1∑
i

σi
(
[T(1); M]

)p∗
) q∗

p∗

+ inf
T̂ (1)+T̂ (2)=T

(( r2∑
j

σ j
(
T̂ (1)

(2)

)p∗
) q∗

p∗

+
( r3∑

k

σk
(
T̂ (2)

(3)

)p∗
) q∗

p∗
)) 1

q∗

,

where r1, r2, and r3 are the ranks of T(1), T̂ (1)
(2) , and T̂ (2)

(3) , respectively, and σi, σ j , and
σk are their singular values.

The dual norms of other mixed norms can be similarly derived.

4 Optimization

In this section, we discuss optimization of the proposed completion model,
3.1. The model can be easily solved for each coupled norm using a state-
of-the-art optimization method such as the alternating direction method
of multipliers (ADMM) method (Boyd, Parikh, Chu, Peleato, & Eckstein,
2011). The optimization steps for the coupled norm ‖T , M‖1

(S,O,O) are de-
rived using the ADMM method. The optimization steps for the other norms
are similarly derived.
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10 K. Wimalawarne, M. Yamada, and H. Mamitsuda

We express equation 3.1 using the ‖T , M‖1
(S,O,O) norm:

min
T (1),T (2),M

1
2
‖�M(M − M̂)‖2

F + 1
2
‖�T (T (1) + T (2) − T̂ )‖2

F

+ λ

(
1√
n1

‖[T (1)
(1) ; M]‖tr + ‖T (2)

(2) ‖tr + ‖T (2)
(3) ‖tr

)
. (4.1)

By introducing auxiliary variables X ∈ R
n1×m and Y ∈ R

n1×n2×n3 , we can
formulate the objective function of ADMM for equation 4.1:

min
T (1),T (2),M

1
2
‖�M(M − M̂)‖2

F + 1
2
‖�T (T (1) + T (2) − T̂ )‖2

F

+ λ

(
1√
n1

‖[Y (1)
(1) ; X]‖tr + ‖Y (2)

(2) ‖tr + ‖Y (2)
(3) ‖tr

)
(4.2)

s.t. X = M, Y (1) = T (1), Y (k) = T (2) k = 2, 3.

We introduce Lagrangian multipliers WM ∈ R
n1×m and WT (k) ∈ R

n1×n2×n3 ,
(k = 1, 2, 3) and formulate the Lagrangian as

min
T (1),T (2),M

1
2
‖�M(M − M̂)‖2

F + 1
2
‖�T (T (1) + T (2) − T̂ )‖2

F

+ λ

(
1√
n1

‖[Y (1)
(1) ; X]‖tr + ‖Y (2)

(2) ‖tr + ‖Y (2)
(3) ‖tr

)
+ 〈

WM, M − X
〉

+ 〈
WT (1)

, T (1) − Y (1)〉+ 3∑
k=2

〈
WT (k)

, T (2) − Y (k)〉+ β

2
‖M − X‖2

F

+ β

2
‖T (1) − Y (1)‖2

F + β

2

3∑
k=2

‖T (2) − Y (k)‖2
F, (4.3)

where β is a proximity parameter. Using this Lagrangian formulation, we
can obtain solutions for unknown variables M, T (1), T (2), WM, WT (k)

(k =
1, 2, 3), X, and Y (k) (k = 1, 2, 3) iteratively. We use superscripts [t] and [t −
1] to represent the variables at iteration steps t and t − 1, respectively.

The solutions for M at each iteration can be obtained by solving the fol-
lowing subproblem:

M[t] = unvec
(
(�	

M�M + βIM)−1vec
(
�M(M̂) − WM[t−1] + βX[t−1])).
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Convex Coupled Matrix and Tensor Completion 11

Solutions for T (1) and T (2) at iteration step t can be obtained from the
following subproblem:

[
�	

T �T + 2βIT IT
IT �	

T �T + 2βIT

][
vec(T (1)[t] )

vec(T (2)[t] )

]

=

⎡
⎢⎢⎢⎣

vec
(

�T̂ (T̂ ) −∑3
k=2 WT (k)[t−1] + β

∑3
k=2 Y (k)[t−1]

)

vec
(

�T̂ (T̂ ) −∑3
k=2 WT (k)[t−1] + β

∑3
k=2 Y (k)[t−1]

)
⎤
⎥⎥⎥⎦ , (4.4)

where IM and IT are unit diagonal matrices with dimensions n1m × n1m and
n1n2n3 × n1n2n3, respectively.

The updates for X and Y (k), (k = 1, 2, 3) at iteration step t are given as

[Y (1)[t−1]
(1) ; X[t−1]] = prox

λ/(
√

n1β )

([WT (1)[t−1]
(1)

β
; WM[t−1]

β

]
+ [T (1)[t]

(1) ; M[t]]
)

(4.5)

and

Y (k)[t−1]
(k) = prox

λ/β

(WT (t)[t−1]
(k)

β
+ T (2)[t]

(k)

)
, k = 2, 3, (4.6)

where prox
λ
(X) = U(S − λ)+V	 for X = USV	.

The update rules for the dual variables are

WM[t] = WM[t−1] + β(M[t] − X[t] ),

WT (1)[t−1] = WT (1)[t] + β(T (1)[t] − Y (1)[t] ),

WT (k)[t−1] = WT (k)[t] + β(T (k)[t] − Y (k)[t] ), k = 2, 3.

We can modify the above optimization procedures by replacing the vari-
ables in equation 4.1 in accordance with the norm that is used to regularize
the tensor and by adjusting operations in equations 4.2 and 4.4 to 4.6. For
example, for the norm ‖ · ‖1

(O,O,O), there is only a single T , so the subproblem
for equation 4.4 becomes

(
�	

T �T + 3βIT
)
vec(T [t] ) = vec

(
�T̂ (T̂ ) −

3∑
k=1

WT (k)[t−1] + β

3∑
k=1

Y [t−1]
)

,

and that for equation 4.5 becomes
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[Y (1)[t]
(1) ; X[t]] = prox

λ/β

([WT (k)[t−1]
(1)

β
; WM[t−1]

β

]
+ [T [t]

(1); M[t]]
)

and

Y (k)[t−1]
(k) = prox

λ/β

(WT (k)[t−1]
(k)

β
+ T [t]

(k)

)
, k = 1, 2, 3.

Additionally, the dual update rule with T becomes

WT (k)[t−1] = WT (k)[t] + β(T [t] − Y (k)[t] ), k = 1, 2, 3.

The optimization procedures for the other norms can be similarly derived.

5 Theoretical Analysis

In this section, we analyze the excess risk bounds of the completion model
introduced in equation 3.1 for the coupled norms defined in section 3 using
transductive Rademacher complexity (El-Yaniv & Pechyony, 2007; Shamir
& Shalev-Shwartz, 2014). Let us again consider matrix M and tensor T and
use them as a single structure X = T ∪ M with a training sample index set
STrain and a testing sample index set STest with the total set of observed sam-
ples S = STrain ∪ STest. We rewrite equation 3.1 with our new notations as an
equivalent model:

min
W

1
|STrain|

∑
(i1,i2,i3 )∈STrain

l(X i1,i2,i3 ,W i1,i2,i3 ) s.t. ‖W‖cn ≤ B, (5.1)

where l(a, b) = (a − b)2, W = W ∪ WM is the learned coupled structure con-
sisting of components W and WM of the tensor and matrix, respectively; B
is a constant; and ‖ · ‖cn is any norm defined in section 3.2.

Given that l(·, ·) is a �-Lipschitz loss function bounded by
supi1,i2,i3

|l(X i1,i2,i3 ,W i1,i2,i3 )| ≤ bl and assuming that |STrain| = |STest| = |S|/2,
we can obtain the following excess risk bound based on transductive
Rademacher complexity theory (El-Yaniv & Pechyony, 2007; Shamir &
Shalev-Shwartz, 2014) with probability 1 − δ,

1
|STest|

∑
(i1,i2,i3 )∈STest

l(X i1,i2,i3 ,W i1,i2,i3 )

− 1
|STrain|

∑
(i1,i2,i3 )∈STrain

l(X i1,i2,i3 ,W i1,i2,i3 )
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Convex Coupled Matrix and Tensor Completion 13

≤ 4R(W ) + bl

(
11 + 4

√
log 1

δ√|STrain|

)
, (5.2)

where R(W ) is the transductive Rademacher complexity defined as

R(W ) = 1
|S|Eσ

[
sup

‖W‖cn≤B

∑
(i1,i2,i3 )∈S

σi1,i2,i3 l(W i1,i2,i3 , X i1,i2,i3 )
]
, (5.3)

where σi1,i2,i3 ∈ {−1, 1} with probability 0.5 if (i1, i2, i3) ∈ S, or 0 otherwise
(see appendix B for derivation).

Next we give the bounds for equation 5.3 with respect to different cou-
pled norms. We assume that |STrain| = |STest|, as in Shamir and Shalev-
Shwartz (2014) but our theorem can be extended to more general cases.
Detailed proofs of the theorems in this section are given in appendix B.

The following two theorems give the Rademacher complexities for
coupled completion regularized using the coupled norms ‖ · ‖1

(O,O,O) and
‖ · ‖1

(S,S,S).

Theorem 3. Let ‖ · ‖cn = ‖ · ‖1
(O,O,O); then, with probability 1 − δ,

R(W ) ≤ 3�

2|S|
[√

r(1)(BT + BM) +
3∑

k=2

√
rkBT

]

max

{
C2

(
√

n1 +
√∏3

j=2
nj + m

)
, min

k∈2,3
C1

(
√

nk +
√∏3

j �=k
n j

)}
,

where (r1, r2, r3) is the multilinear rank of W , r(1) is the rank of the coupled un-
folding on mode 1, and BM, BT, C1, and C2 are constants.

Theorem 4. Let ‖ · ‖cn = ‖ · ‖1
(S,S,S). Then, with probability 1 − δ,

R(W ) ≤ 3�

2|S|

[√
r(1)

n1
(BM + BT ) + min

k∈2,3

√
rk

nk
BT

]

max

{
C2

(
n1 +

√∏3

i=1
ni + n1m

)
,C1 max

k=2,3

(
nk +

√∏3

i=1
ni

)}
,

where (r1, r2, r3) is the multilinear rank of W , r(1) is the rank of the coupled un-
folding on mode 1, and BM, BT, C1, and C2 are constants.

We can see that in both of these theorems, the Rademacher complexity
of the coupled tensor is divided by the total number of observed samples of
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both the matrix and the tensor. If the tensor or the matrix is completed sepa-
rately, then the Rademacher complexity is divided only by their individual
samples (see theorems 7 to 9 in appendix B and a discussion in Shamir &
Shalev-Shwartz, 2014). This means that coupled tensor learning can lead to
better performance than separate matrix or tensor learning. We can also see
that due to coupling, the excess risks are bounded by the ranks of both the
tensors and the concatenated matrix of the unfolded tensors on the coupled
mode. Additionally, the maximum term on the right takes the combinations
of both the tensor and the concatenated matrix of the unfolded tensors on
the coupled mode.

Finally, we consider the Rademacher complexity of the mixed norm ‖ ·
‖cn = ‖ · ‖1

(S,O,O):

Theorem 5. Let ‖ · ‖cn = ‖ · ‖1
(S,O,O). Then, with probability 1 − δ,

R(W ) ≤ 3�

2|S|

[√
r(1)

n1
(BM + BT ) +

∑
i=2,3

√
riBT

]

max

{
C2

(
n1 +

√∏3

i=1
ni + n1m

)
, min

k=2,3
C1

(
√

nk +
√∏3

i �=k
ni

)}
,

where (r1, r2, r3) is the multilinear rank of W , r(1) is the rank of the coupled un-
folding on mode 1, and BM, BT , C1, and C2 are constants.

We see that for the mixed norm ‖ · ‖cn = ‖ · ‖1
(S,O,O), the excess risk is

bounded by the scaled rank of the coupled unfolding along the first mode.
For this norm, we can see that the terms related to ranks are smaller in the-
orem 3 and that the maximum term could be smaller than in theorem 4.
This means that this norm can perform better than ‖ · ‖1

(O,O,O) and ‖ · ‖1
(S,S,S)

depending on the ranks and mode dimensions of the coupled tensor. The
bounds of the other two mixed norms can also be derived and explained in
a manner similar to theorem 5.

6 Evaluation

We evaluated our proposed method experimentally using synthetic and
real-world data.

6.1 Synthetic Data. Our main objectives were to evaluate how the pro-
posed norms perform depending on the ranks and dimensions of the cou-
pled tensors. We used simulation data based on CP rank and Tucker rank
in these experiments.
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Convex Coupled Matrix and Tensor Completion 15

6.1.1 Experiments Using CP Rank. To create coupled tensors with the CP
rank, we first generated a three-mode tensor T ∈ R

n1×n2×n3 with CP rank
r using CP decomposition (Kolda & Bader, 2009) as T = ∑r

i=1 ciui ◦ vi ◦ wi

where ui ∈ R
n1 , vi ∈ R

n2 and wi ∈ R
n3 and ci ∈ R

+. For our experiments,
we used two approaches to create CP-rank-based tensors in which all the
component vectors ui, vi, and wi were nonorthogonal vectors or orthogonal
vectors. We coupled matrix X ∈ R

n1×m with rank r to T on mode 1 by gener-
ating X = USV	 with U(1 : r, :) = [u1, . . . , ur], S ∈ R

r×r, and V ∈ R
m×r is an

orthogonal matrix. We also added noise sampled from a gaussian distribu-
tion with mean zero and variance of 0.01 to the elements of the matrix and
the tensor.

In our experiments using synthetic data, we considered coupled struc-
tures of tensors with dimension 20 × 20 × 20 and matrices with dimension
20 × 30 coupled on their first modes. To simulate completion, we randomly
selected observed samples with percentages of 30, 50, and 70 of the to-
tal number of elements in both the matrix and the tensor; selected a val-
idation set with a percentage of 10; and took the remainder as test sam-
ples. We performed coupled completion using the proposed coupled norms
of ‖ · ‖1

(O,O,O), ‖ · ‖1
(S,S,S), ‖ · ‖1

(S,O,O), ‖ · ‖1
(O,S,O), and ‖ · ‖1

(O,O,S). For all the
learning models with these norms, we cross-validated their regularization
parameters ranging from 0.01 to 5.0 with intervals of 0.05. We ran our exper-
iments with 10 random selections and plotted the mean square error (MSE)
for the test samples.

As benchmark methods, we used the overlapped trace norm (OTN) and
the scaled latent trace norm (SLTN) for individual tensors and the matrix
trace norm (MTN) for individual matrices. For all these norms, we cross-
validated the regularization parameters ranging from 0.01 to 5.0 with in-
tervals of 0.05. We compared our results with those of advanced coupled
matrix-tensor factorization ACMTF (Acar, Papalexakis et al., 2014b), for
which the regularization parameters were selected using cross-validation
in the range 0, 0.0001, 0.001, . . . , 1. To select ranks to use with the ACMTF
method, we first ran experiments using ranks of 1, 3, 5, . . . , 19 and selected
the rank that gave the best performance. Due to the nonconvex nature of
ACMTF, we ran experiments with five random initializations to select the
best local optimal solution.

We first ran experiments on coupled tensor completion based on CP rank
in different settings. In the first experiment, we considered coupled ten-
sors with no shared components. In this experiment, we created a tensor
with CP rank 5 in which the component vectors were nonorthogonal and
generated from a normal distribution. We also created a matrix of rank 5
and without any components in common with the tensor. Figure 2 shows
that the coupled norms did not perform better than individual matrix com-
pletion using the matrix trace norm. However, for tensor completion, the
coupled norm ‖ · ‖1

(O,O,O) had performance comparable to that of the over-
lapped trace norm.
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16 K. Wimalawarne, M. Yamada, and H. Mamitsuda

Figure 2: Completion performance of a matrix with dimension 20 × 30 and
rank 5 with no sharing and of a tensor with dimension 20 × 20 × 20 and CP
rank 5 with nonorthogonal component vectors.

Figure 3: Completion performance of a matrix with dimension 20 × 30 and
rank 5 with all components shared and of a tensor with dimension 20 × 20 × 20
and CP rank 5 with orthogonal component vectors.

We next ran experiments on coupled tensors with some components in
common and with both orthogonal and nonorthogonal component vectors.
We created coupled tensors with CP rank of 5 and both the tensor and ma-
trix shared all components along mode 1. We generated the tensor with
orthogonal component vectors. As shown in Figure 3, the coupled norm
‖ · ‖1

(O,O,O) had good performance for both the matrix and tensor.
Figure 4 shows the performance of coupled tensors with the same rank as

in the previous experiment with tensors created from nonorthogonal com-
ponent vectors. Again, the coupled norm ‖ · ‖1

(O,O,O) had better performance
than individual matrix and tensor completions.

In our final experiment, we created tensors with CP rank 5 and coupled
them with a matrix of rank 10 sharing all five component vectors along
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Figure 4: Completion performance of a matrix with dimension 20 × 30 and
rank 5 with all component vectors shared and of a tensor with dimension
20 × 20 × 20 and CP rank 5 and nonorthogonal component vectors.

Figure 5: Completion performance of a matrix with dimension 20 × 30 and
rank 5 and of a tensor with dimension 20 × 20 × 20 with CP rank 10 and
nonorthogonal component vectors that shared five components.

mode 1. Figures 5 and 6 show the results for tensors created with orthogo-
nal and nonorthogonal component vectors, respectively. In both cases, the
coupled norms ‖ · ‖1

(O,O,O), ‖ · ‖1
(S,S,S), and ‖ · ‖1

(S,O,O) had better matrix com-
pletion performance than individual completion by the matrix trace norm.
Similarly, as in the previous experiments, both the overlapped trace norm
and the coupled norm ‖ · ‖1

(O,O,O) had comparable performances.

6.1.2 Simulations Using Tucker Rank. To create coupled tensors with
the Tucker rank, we first generated a tensor T ∈ R

n1×n2×n3 using Tucker
decomposition (Kolda & Bader, 2009) as T = C ×1 U1 ×2 U2 ×3 U3, where
C ∈ R

r1×r2×r3 was the core tensor generated from a normal distribution
specifying multilinear rank (r1, r2, r3) and component matrices U1 ∈ R

r1×p1 ,
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Figure 6: Completion performance of a matrix with dimension 20 × 30 and
rank 5 and of a tensor with dimension 20 × 20 × 20 and CP rank 10 and or-
thogonal component vectors that shared five components.

U2 ∈ R
r2×p2 , and U3 ∈ R

r3×p3 were orthogonal matrices. Next, we generated
a matrix that was coupled with mode 1 of the tensor using singular value
decomposition X = USV	, where we specified its rank r using diagonal
matrix S and generated matrices U and V as orthogonal matrices. For shar-
ing between the matrix and the tensor, we computed T(1) = UnSnV	

n and
replaced the first s singular values of S with the first s singular values of
Sn, replaced the first basis vectors s of U with the first s basis vectors of Un,
and computed X = USV	 such that the coupled structure shared s common
components. We also added noise sampled from a gaussian distribution
with mean zero and variance 0.01 to the elements of the coupled tensor.

As in the synthetic experiments using the CP rank, we considered cou-
pled structures with tensors with dimension 20 × 20 × 20 and matrices with
dimension 20 × 30 coupled on their mode 1. We considered different mul-
tilinear ranks of tensors, ranks of matrices, and degrees of sharing among
them. We used the same percentages in selecting the training, testing, and
validation sets as we did in the CP rank experiments. We again compared
our results with those of ACMTF.

We also used an additional nonconvex coupled learning model to in-
corporate multilinear ranks of the coupled tensor by considering Tucker
decomposition under the assumption that the components of the coupled
mode were shared between both the matrix and tensor. We used the Ten-
sorlab framework (Vervliet, Debals, Sorber, Van Barel, & De Lathauwer,
2016) to implement this model. We regularized the factorized components
of the tensor (including the core tensor) and the matrix using the Frobe-
nius norm. We used a regularization parameter selected from the range
0.01 to 50 in logarithmic linear scale with five divisions (in Matlab syn-
tax exp(linspace(log(0.01), log(50), 5))). We refer to this benchmark
method as NC-Tucker. Due to the nonconvex nature of the model, we ran
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Figure 7: Completion performance of a matrix with dimension 20 × 30 and
rank 5 and of a tensor with dimension 20 × 20 × 20 and multilinear rank (5, 5, 5)
with no sharing.

5 to 10 simulations with different random initializations and selected the
best local optimal solution. Specifying the multilinear rank a priori for this
model would be challenging in real applications, but since we knew the
rank in our simulations, we could specify the multilinear ranks to be used
to create the tensors.

In our first simulations, we considered a coupled tensor with a matrix
rank of 5 and a tensor multilinear rank (5, 5, 5) with no shared components.
Figure 7 shows that with this setting, individual matrix and tensor comple-
tion had better performance than that of the coupled norms. The nonconvex
NC-Tucker benchmark method had the best performance for the tensor but
performed poorly in matrix completion compared to the coupled norms.

In our next simulation, we considered coupling of tensors and matrices
with some degree of sharing among them. We created a matrix of rank 5 and
a tensor of multilinear rank (5, 5, 5) and let them share all five singular com-
ponents along mode 1. Figure 8 shows that the coupled norm ‖ · ‖1

(O,O,O) had
the best performance among the coupled norms for both matrix and tensor
completion. Individual tensor completion with the overlapped trace norm
had the same performance as ‖ · ‖1

(O,O,O). The NC-Tucker method performed
better than the coupled norms for tensor and matrix completion.

In our next simulation, we considered a matrix of rank 5 and a tensor
of multilinear rank (5, 15, 5) that shared all five singular components along
mode 1. Figure 9 shows that with this setting, although the coupled norm
‖ · ‖1

(O,O,S) had the best performance among the coupled norms and indi-
vidual tensor completion, it was outperformed by the NC-Tucker method.
However, the NC-Tucker method performed poorly in matrix completion
compared to the coupled norms. For the matrix completion, individual ma-
trix completion by the matrix trace norm had the best performance, while
coupled norms ‖ · ‖1

(O,O,S) and ‖ · ‖1
(S,O,O) had the next best performance.
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Figure 8: Completion performances of completion of a matrix with dimension
20 × 30 and rank 5 and of a tensor with dimension 20 × 20 × 20 and multilinear
rank (5, 5, 5) that shared five components.

Figure 9: Completion performance of a matrix with dimension 20 × 30 and
rank 5 and of a tensor with dimension 20 × 20 × 20 and multilinear rank
(5, 15, 5) that shared five components.

For our final simulation, we created a coupled matrix with rank 5 and a
tensor with multilinear rank (15, 5, 5), all sharing five singular components
along mode 1. Figure 10 shows that the mixed coupled norms ‖ · ‖1

(O,S,O) and
‖ · ‖1

(O,O,S) performed equally and had better performance for tensor com-
pletion than the individual tensor completion. The NC-Tucker method had
better performance than the coupled norms for tensor completion, while
the performance was comparable for matrix completion. For matrix com-
pletion when the percentage of training samples was small, coupled norms
‖ · ‖1

(O,O,O) and ‖ · ‖1
(S,O,O) had better performance. As the percentage of

training samples was increased, the performance of individual matrix
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Figure 10: Completion performance of completion of a matrix with dimension
20 × 30 and rank 5 and of a tensor with dimension 20 × 20 × 20 and multilinear
rank (15, 5, 5) that shared five components.

completion improved, while those of ‖ · ‖1
(O,S,O) and ‖ · ‖1

(O,O,S) were close
but second best.

The results of these simulations show that the ACMTF performed poorly
compared to our proposed methods.

6.2 Real-World Data. As a real-world data experiment, we applied
our proposed method to the UCLAF data set (Zheng, Cao, Zheng, Xie, &
Yang, 2010), which consists of GPS data for 164 users in 168 locations per-
forming five activities, resulting in a sparse user-location-activity tensor
T ∈ R

164×168×5. This data set also has a user-location matrix X ∈ R
164×168,

which we used as side information coupled to the user mode of T . Us-
ing similar observed element percentages as in the synthetic data simula-
tions, we performed completion experiments on T . We considered all the
elements of the user-location matrix as observed elements and used them
as training data. We repeated the evaluation for 10 random sample selec-
tions. We cross-validated the regularization parameters from 0.01 to 500 di-
vided into 50 in logarithmic linear scale. As a baseline method, we again
used the ACMTF method (Acar, Papalexakis et al., 2014) with CP rank 5.
Additionally, we used the coupled (Tucker) method (Ermis et al., 2015) and
the NC-Tucker method with multilinear rank (3, 3, 3), where we selected
the best performances among 5 random initializations. Figure 11 shows the
completion performances for the coupled tensor.

We can see that the best performance among coupled norms was that
of mixed coupled norm ‖ · ‖1

(S,O,O), indicating that learning with side in-
formation as a coupled structure improves tensor completion performance
compared to completion using only tensor norms. This also indicates that
mode 1 may have a lower rank than the other modes and that modes 2 and
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Figure 11: Completion performance for UCLAF data.

3 may have ranks closer to each other. The nonconvex coupled (Tucker)
method and the NC-Tucker method had better performance than ‖ · ‖1

(S,O,O)
when the number of observed samples was less than 70 percent of the total
elements.

7 Conclusion and Future Work

We have proposed a new set of convex norms for the completion problem
of coupled tensors. We restricted our study to coupling a three-way ten-
sor with a matrix and defined low-rank inducing norms by extending trace
norms such as the overlapped trace norm and scaled latent trace norm of
tensors and the matrix trace norm. We also introduced the concept of mixed
norms, which combines the features of both overlapped and latent trace
norms. We looked at the theoretical properties of our convex completion
model and evaluated it using synthetic and real-world data. We found that
the proposed coupled norms perform comparably to existing nonconvex
ones. However, our norms lead to global optimal solutions and eliminate
the need for specifying the ranks of the coupled tensors beforehand. While
there are still many aspects to be studied, we believe that our work is the
first step in modeling convex norms for coupled tensors.

Although coupling can occur among many tensors with different dimen-
sions and multiple matrices on different modes, this study focused on a
three-mode tensor and a single matrix. The methodology used to create cou-
pled norms can be extended to any of those settings, but mere extensions
may not lead to the optimal design of norms for those settings. Particularly,
the square tensor norm (Mn, Huang, Wright, & Goldfarb, 2014) has shown
to be better suited to tensors beyond three modes and thus can also be used
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to model novel coupled norms in the future. Furthermore, theoretical anal-
ysis using methods such as the gaussian width (Amelunxen, Lotz, McCoy,
& Tropp, 2014) may provide a deeper understanding of coupled tensors,
which should enable the design of better norms. Such studies could be in-
teresting directions for future research.

Appendix A: Proofs of Dual Norms

We first provide the proofs of the dual norms of theorems 1 and 2.

Proof of Theorem 1. We use lemma 3 of Tomioka and Suzuki (2013)
to prove the duality. Consider a linear operator � such that �(T , M) =
[vec(M); vec(T(1) ); vec(T(2) ); vec(T(3) )] ∈ R

d1+3d2 , where d1 = n1m and d2 =
n1n2n3. We define

‖z‖∗ =
(

‖[Z(1)
(1); X]‖q

Sp
+

3∑
k=2

‖Z(k)
(k)‖

q
Sp

)1/q

, (A.1)

where Z (k) is the inverse vectorization of elements z(d1+(k−1)d2+1):(d1+kd2 ) and
X is the inverse vectorization of z1:d1 . The dual of the above norm is ex-
pressed as

‖z‖∗∗ =
(

‖[Z(1)
(1); X]‖q∗

Sp∗
+

3∑
k=2

‖Z(k)
(k)‖

q∗

Sp∗

)1/q∗

.

Let

�	(z) = {T , M} =
{

3∑
k=1

Z (k), X

}
.

Then following lemma 3 of Tomioka and Suzuki (2013), we write

|||[T , M]|||∗(�) = inf ‖z‖ s.t �	(z) = {T , M}.

Given that

|||[T , M]|||∗(�) := ‖[T , M]‖1
(O,O,O),Sp/q,

and following lemma 3 in Tomioka and Suzuki (2013) we obtain the dual of
‖[T , M]‖1

(O,O,O),Sp/q as ‖[T , M]‖1
(L,L,L),Sp∗ /q∗ . �
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Proof of Theorem 2. We can apply theorem 1 to latent tensors T (1) and
T (2), as well as the dual of the overlapping norm to T . First, consider the
dual with respect to T (1) and T (2). By applying theorem 1, we obtain

‖T , M‖1
(L,O,O),Sp∗ /q∗ =

((
r1∑
i

σi
(
[T(1); M]

)p∗
) q∗

p∗

+ ‖T ‖(−,O,O),S∗
p

) 1
q∗

.

Next, by applying lemma 1 of Tomioka and Suzuki (2013) to ‖T ‖(−,O,O), we
obtain

‖T , M‖1
(L,O,O),Sp∗ /q∗ =

((
r1∑
i

σi
(
[T(1); M]

)p∗
) q∗

p∗

+ inf
T̂ (1)+T̂ (2)=T

((
r2∑
j

σ j
(
T̂ (1)

(2)

)p∗
) q∗

p∗

+
( r3∑

k

σk
(
T̂ (2)

(3)

)p∗
) q∗

p∗ )) 1
q∗

.

�

Appendix B: Proofs of Excess Risk Bounds

Here we derive the excess risk bounds for the coupled completion problem.
From previous work (El-Yaniv & Pechyony, 2007; Shamir & Shalev-

Shwartz, 2014), we know that for a loss function l(·, ·) that is, a �-Lipschitz
loss function and bounded as supi1,i2,i3

|l(X i1,i2,i3 ,W i1,i2,i3 )| ≤ bl and with the
assumption that |STrain| = |STest| = |S|/2, we have the following bound for
equation 5.1 based on transductive Rademacher complexity theory (El-
Yaniv and Pechyony, 2007; Shamir & Shalev-Shwartz, 2014) with probability
1 − δ,

1
|STest|

∑
(i1,i2,i3 )∈STest

l(X i1,i2,i3 ,W i1,i2,i3 ) − 1
|STrain|

∑
(i1,i2,i3 )∈STrain

l(X i1,i2,i3 ,W i1,i2,i3 )

≤ 4R(W ) + bl

(
11 + 4

√
log 1

δ√|STrain|

)
,

where R(W ) is transductive Rademacher complexity defined as

R(W ) = 1
|S|Eσ

[
sup

‖W‖cn≤B

∑
(i1,i2,i3 )∈S

σi1,i2,i3 l(W i1,i2,i3 , X i1,i2,i3 )

]
, (B.1)

where σi1,i2,i3 ∈ {−1, 1} with probability 0.5 if (i1, i2, i3) ∈ S, or 0 otherwise.
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We can rewrite equation B.1 as

R(W ) = 1
|S|Eσ

[
sup

‖W‖cn≤BM+BT

∑
(i1,i2,i3 )∈S

σi1,i2,i3 l(W i1,i2,i3 , X i1,i2,i3 )

]

≤ �

|S|Eσ sup
‖W‖cn≤BM+BT

∑
(i1,i2,i3 )∈S

σi1,i2,i3W i1,i2,i3

(Rademacher contraction),

≤ �

|S|Eσ sup
‖W‖cn≤BM+BT

‖W‖cn‖	‖cn∗ (Holder′s inequality),

where we have used that ‖W‖F ≤ BT and ‖WM‖F ≤ BM, and 	 is of di-
mensions of the coupled tensor consisting Rademacher variables (	i1,i2,i3 =
σi1,i2,i3 if (i1, i2, i3) ∈ S, else 	i1,i2,i3 = 0).

Proof of Theorem 3. Let W = W ∪ WM, where W and WM are the com-
pleted tensors of T and M, and let 	 = 	T ∪ 	M, where 	T and 	M consist
of the corresponding Rademacher variables (σi1,i2,i3 ) for T and M. Since we
use an overlapping norm, we have ‖W‖cn = ‖W,WM‖1

(O,O,O) from which we
obtain

‖W,WM‖1
(O,O,O) = ‖[W(1);WM]‖tr +

3∑
k=2

‖W(k)‖tr

≤ √
r(1)(BT + BM) +

3∑
k=2

√
rkBT ,

where (r1, r2, r3) is the multilinear rank of W and r(1) is the rank of the
concatenated matrix of unfolding tensors on mode 1. To obtain the above
inequality, we used the fact that for any matrix U with rank r, we have
‖U‖tr ≤ √

r‖U‖F (Tomioka & Suzuki, 2013).
Using Latała’s theorem (Latała, 2005; Shamir & Shalev-Shwartz, 2014)

for the mode k unfolding, we can bound ‖	T (k)‖op

E‖	T (k)‖op ≤ C1

(
√

nk +
√∏3

j �=k
n j + 4

√|	T (k)|
)

,

and since 4
√|	T (k)| ≤ 4

√∏3
i=1 ni ≤ 1

2

(
√

nk +
√∏3

j �=k n j

)
, we have
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E‖	T (k)‖op ≤ 3C1

2

(
√

nk +
√∏3

j �=k
n j

)
.

Similarly, using Latała’s theorem, we obtain

E‖[	T (1);	M]‖op ≤ 3C2

2

(
√

n1 +
√∏3

j=2
nj + m

)
.

To bound E‖	T , 	M‖1
(O,O,O)∗ , we use the duality relationship from theorem

1 and corollary 1:

‖	T , 	M‖1
(O,O,O)∗ =

inf
	

(1)
T +	

(2)
T +	

(3)
T =	T

max
{
‖[	(1)

T (1);	M]‖op, ‖	(2)
T (2)‖op, ‖	(3)

T (3)‖op

}
.

Since we can take any 	
(k)
T to be equal to 	T , the above norm can be upper-

bounded:

‖	T , 	M‖1
(O,O,O)
 ≤ max

{
‖[	T (1);	M]‖op, min

{‖	T (2)‖op, ‖	T (3)‖op
}}

.

Taking the expectation leads to

E‖	T , 	M‖1
(O,O,O)∗

≤ Emax
{
‖[	T (1);	M]‖op, min

{‖	T (2)‖op, ‖	T (3)‖op
}}

≤ max
{
E‖[	T (1);	M]‖op, min

{
E‖	T (2)‖op,E‖	T (3)‖op

}}
.

Finally, we have

R(W ) ≤ 3�

2|S|

[√
r(1)(BT + BM) +

3∑
k=2

√
rkBT

]

max

{
C2

(
√

n1 +
√∏3

j=2
nj + m

)
, min

k∈2,3
C1

(
√

nk +
√∏3

j �=k
n j

)}
.

�

Before we give the excess risk bound for the ‖ · ‖1
(S,S,S), in the following

theorem, we give the excess risk of coupled completion with the ‖ · ‖1
(L,L,L).
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Theorem 6. Let ‖ · ‖cn = ‖ · ‖1
(L,L,L). Then, with probability 1 − δ,

R(W ) ≤ 3�

2|S|

[√
r(1)BM + min

(√
r(1), min

k=2,3

√
rk

)
BT

]

max

{
C2

(
√

n1 +
√∏3

j=2
nj + m

)
, max

k=2,3

{
C2

(
√

nk +
√∏3

j �=k
n j

)}}
,

where (r1, r2, r3) is the multilinear rank of W , r(1) is the rank of the coupled un-
folding on mode 1, and BM, BT , C1, and C2 are constants.

Proof. Let W = W ∪ WM, where W and WM are the completed tensors of T
and M and 	 = 	T ∪ 	M, where 	T and 	M consist of the corresponding
Rademacher variables. We can see that

‖W‖1
(L,L,L) = inf

W (1)+W (2)+W (3)=W

(
‖[W (1)

(1) ;WM]‖tr +
3∑

k=2

‖W (k)
(k) ‖tr

)
,

which can be bounded as

‖W‖1
(L,L,L) ≤ √

r(1)(BM + BT ) + min
k=2,3

√
rkBT ,

where the last term is derived by considering the infimum with respect to
W (2) and W (3).

Using the duality result given in theorem 1 (corollary 1) and Latała’s the-
orem, we obtain

‖	T , 	M‖1
(L,L,L)∗ ≤ max

{
E‖[	T (1);	M]‖op,E‖	T (2)‖op,E‖	T (3)‖op

}

≤ 3
2

max

{
C2

(
√

n1 +
√∏3

j=2
nj + m

)
,

max
k=2,3

{
C1

(
√

nk +
√∏3

j �=k
n j

)}}
.

Finally, we have

R(W ) ≤ 3�

2|S|

[√
r(1)(BM + BT ) + min

k=2,3

√
rkBT

]

max

{
C2

(
√

n1 +
√∏3

j=2
nj + m

)
, max

k=2,3

{
C1

(
√

nk +
√∏3

j �=k
n j

)}}
.

�
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Proof of Theorem 4. By definition, we have

‖W‖1
(S,S,S) = inf

W (1)+W (2)+W (3)=W

(
1√
n1

‖[W (1)
(1) ,WM]‖tr +

∑
k=2,3

1√
nk

‖W (k)
(k) ‖tr

)
,

which results in

‖W‖1
(S,S,S) ≤

√
r(1)

n1
(BM + BT ) + min

k∈2,3

√
rk

nk
BT .

Using the duality result given in theorem 1 and Latała’s theorem, we
obtain

E‖	T , 	M‖1
(S,S,S)∗

= Emax

{
√

n1‖[	T (1);	M]‖op,
√

n2‖	T (2)‖op,
√

n3‖	T (3)‖op

}

≤ 3
2

max

{
C2

(
n1 +

√∏3

i=1
ni + n1m

)
,C1 max

k=2,3

(
nk +

√∏3

i �=k
ni

)}
.

Finally, we have

R(W ) ≤ 3�

2|S|

[√
r(1)

n1
(BM + BT ) + min

k∈2,3

√
rk

nk
BT

]

max

{
C2

(
n1 +

√∏3

i=1
ni + n1m

)
,C1 max

k=2,3

(
nk +

√∏3

i=1
ni

)}
.

�
Proof of Theorem 5. First, let us look at ‖W‖1

(S,O,O), which is expressed as

‖W‖1
(S,O,O) = inf

W (1)+W (2)=W

(
1√
n1

‖[W (1)
(1) ;WM]‖tr + ‖W (2)

(2) ‖tr + ‖W (2)
(3) ‖tr

)
.

This norm can be upper-bounded:

‖W‖1
(S,O,O) ≤

√
r(1)

n1
(BM + BT ) +

∑
i=2,3

√
riBT .
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Now we are left with bounding ‖	T , 	M‖1
(S,O,O)∗ . Using theorem 2, we

obtain

‖	T , 	M‖1
(S,O,O)∗

≤ max
(√

n1‖[	T (1);	M]‖op, min
(‖	T (2)‖op, ‖	T (3)‖op

))
.

We then have

E‖	T , 	M‖1
(S,O,O)∗

≤ 3
2

max

{
C2

(
n1 +

√∏3

i=1
ni + n1m

)
, min

k=2,3
C1

(
√

nk +
√∏3

i �=k
ni

)}
.

The final resulting bound is

R(W ) ≤ 3�

2|S|

[√
r(1)

n1
(BM + BT ) +

∑
i=2,3

√
riBT

]

max

{
C2

(
n1 +

√∏3

i=1
ni + n1m

)
, min

k=2,3
C1

(
√

nk +
√∏3

i �=k
ni

)}
.

�

In addition to the above transductive bounds for completion with cou-
pled norms, we also provide the bounds for individual tensor completion
with tensor norms such as the overlapped trace norm, the latent trace norm,
and the scaled latent trace norm. We can consider equation 5.1 only for a ma-
trix or a tensor without coupling and with low-rank regularization. There-
fore, we may have the transductive bounds for a matrix M ∈ R

n1×m (Shamir
& Shalev-Shwartz, 2014) as

R(WM) ≤ c
BM�

|SM|
√

r̂

(
√

n1 + √
m

)
, (B.2)

where SM is the index set of observed samples of matrix M, r̂ is the rank
induced by matrix trace norm regularization, and c is a constant.

Next we can consider the transductive bounds for tensor T ∈ R
n1×n2×n3

with regularization using norms such as the overlapped trace norm
(Tomioka & Suzuki, 2013), the latent trace norm (Tomioka & Suzuki, 2013),
and the scaled latent trace norm (Wimalawarne et al., 2014) in the following
three theorems. We denote the index set of observed sample of T by ST .

Theorem 7. Using the overlapped trace norm regularization given as ‖W‖overlap
= ‖W‖(O,O,O), we obtain
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R(W ) ≤ c1
BT �

|ST |

(
3∑

k=1

√
r̂k

)
min

k

(
√

nk +
√∏3

j �=k
n j

)
,

for some constant c1; (r̂1, r̂2, r̂3) is the multilinear rank of W .

Proof. Using the same procedure as for theorem 3, we obtain

E‖	T ‖overlap∗ ≤ Emin
k

‖	T (k)‖op ≤ min
k

E‖	T (k)‖op

≤ 3c1

2
min

k

(
√

nk +
√∏3

j �=k
n j

)
.

Since ‖W‖overlap ≤
(∑3

k=1
√

r̂k

)
BT , where ‖W‖F ≤ BT (Tomioka &

Suzuki, 2013), we have

R(W ) ≤ c1
BT �

|ST |

(
3∑

k=1

√
r̂k

)
min

k

(
√

nk +
√∏3

j �=k
n j

)
.

�
Theorem 8. Using the latent trace norm regularization given by ‖W‖latent =
‖W‖(L,L,L), we obtain

R(W ) ≤ c2�BT
mink

√
r̂k

|ST | max
k

(
√

nk +
√∏3

j �=k
n j

)
,

for some constant c2; (r̂1, r̂2, r̂3) is the multilinear rank of W .

Proof. Using the duality result from Wimalawarne et al. (2014), we have

‖	T ‖latent∗ = max
k

‖	T (k)‖op.

Using Latała’s theorem, we obtain

E‖	T ‖latent∗ ≤ 3c2

2
max

k

(
√

nk +
√∏3

j �=k
n j

)
.

Finally, using the known bound ‖W‖latent ≤ mini
√

r̂iBT (Wimalawarne
et al., 2014), where ‖W‖F ≤ BT , we obtain the excess risk:

R(W ) ≤ 3c2�BT mini
√

r̂i

2|ST | max
k

(
√

nk +
√∏3

j �=k
n j

)
.

�
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Theorem 9. Using the scaled latent trace norm regularization given by
‖W‖scaled = ‖W‖(S,S,S), we obtain

R(W ) ≤ 3c3�BT
2|ST | min

i

(√
r̂i

ni

)
max

k

(
nk +

√∏3

j=1
nj

)
.

for some constant c3; (r̂1, r̂2, r̂3) is the multilinear rank of W .

Proof. From previous work (Wimalawarne et al., 2014), we can derive

‖	T ‖scaled∗ = max
k

√
nk‖	T (k)‖op.

Using an approach similar to that for theorem 8 with the additional scaling
of

√
nk and using Latała’s theorem, we arrive at the following bound:

R(W ) ≤ 3c3�BT
2|ST | min

i

(√
r̂i

ni

)
max

k

(
nk +

√∏3

j=1
nj

)
.

�
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