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ABSTRACT

Margin-based optimization is fundamental to improving generalization and ro-
bustness in classification tasks. In the context of reward model learning from
preferences within Reinforcement Learning from Human Feedback (RLHF), ex-
isting methods typically rely on no margins, fixed margins, or margins that are
simplistic functions of preference ratings. However, such formulations often fail
to account for the varying strengths of different preferences—i.e., some prefer-
ences are associated with larger margins between responses—or they rely on noisy
margin information derived from preference ratings. In this work, we argue that
modeling the strength of preferences can lead to better generalization and more
faithful alignment. Furthermore, many existing methods that use adaptive margins
assume access to accurate preference scores, which can be difficult for humans to
provide reliably. We propose a novel approach that leverages preferences over pref-
erences—that is, annotations indicating which of two preferences reflects a stronger
distinction. We use this ordinal signal to infer adaptive margins on a per-datapoint
basis. We introduce an extension to Direct Preference Optimization (DPO), DPO-
PoP, that incorporates adaptive margins from preference-over-preference supervi-
sion, enabling improved discriminative and generative performance. Empirically,
our method outperforms vanilla DPO, DPO with fixed margins, and DPO with
ground-truth margins on the UltraFeedback dataset. These results suggest that
integrating preference-over-preference information, which requires less precision
to be provided accurately, can improve discriminative and generative performance
without adding significant complexity. Additionally, we show that there is a tradeoff
between discriminative and generative performance: improving test classification
accuracy, particularly by correctly labeling weaker preferences at the expense of
stronger ones, can lead to a decline in generative quality. To navigate this tradeoff,
we propose two sampling strategies to gather preference-over-preference labels:
one favoring discriminative performance and one favoring generative performance.

1 INTRODUCTION

Margin-based approaches have been pivotal in the design and analysis of classification algorithms.
In classical machine learning, the margin, defined as the distance between a decision boundary and
data points, acts as a proxy for confidence and plays a critical role in improving generalization.
For example, Support Vector Machines (SVMs) explicitly maximize the minimum margin, which
has been shown to enhance robustness and reduce overfitting (Cortes & Vapnik, 1995). Ensemble
methods like AdaBoost (Freund et al., 1996) also leverage margin-based generalization, as boosting
algorithms implicitly seek to increase the margin distribution across training samples (Schapire et al.,
1998).

Although fixed-margin strategies have proven effective, they assume fixed and equal margin for all
training data points. This has motivated the development of adaptive margin approaches, where
the margin varies across examples based on criteria such as sample difficulty, uncertainty, or class
imbalance. Adaptive Margin SVMs (Herbrich & Weston, 1999) use different margin values for
different training data points and provide bounds on the generalization error, justifying its robustness
against outliers. Furthermore, methods such as CurricularFace (Huang et al., 2020), AdaCos (Zhang
et al., 2019), and adaptive triplet losses (Ha & Blanz, 2021) have shown that adapting the margin
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dynamically during training leads to more stable optimization and better generalization, particularly
in settings such as face recognition or imbalanced classification.

In Reinforcement Learning from Human Feedback (RLHF), pairwise preference data from humans is
used to learn a reward function or policy. The Bradley-Terry (BT) model (Bradley & Terry, 1952) is
widely used to model pairwise preference data, where the probability of preferring one output over
another is determined by the difference in their reward scores. This preference model is commonly
used in the alignment of large language models (LLMs) (Ouyang et al., 2022; Touvron et al., 2023),
in which a reward function is learned to rank outputs based on human preferences, and subsequently
used to optimize the policy.

Current reward modeling approaches generally fall into two categories. Some methods treat all
preferences equally by applying no margin at all (Ouyang et al., 2022). Others incorporate unequal
treatment by introducing adaptive margins, which are typically derived in one of two ways: either
from scalar scores assigned to preferences by human annotators or language models (Touvron et al.,
2023; Wang et al., 2025), or from the outputs of learned reward models (Wang et al., 2024a; Qin
et al., 2024; Amini et al., 2024; Wang et al., 2024b). Using constant or no margin information fails to
account for the varying strength of different preferences—that is, the degree to which one response
is favored over another within a given preference. Obtaining preference strength information from
preference scores, allows us to use adaptive margin information, but requires us to collect scalar
feedback from LLMs or humans.

Figure 1: A pictorial illustration of the PoP framework. A
preference is stronger than another when the reward dif-
ference between its preferred and dispreferred responses is
larger. The reward difference of the weaker preference in the
pair serves as the margin for the stronger preference.

Specifying preference strength typ-
ically requires a numerical score,
which may be difficult for humans
to provide accurately. For instance,
when using labeling schemes such
as Likert ratings, where annotators
rate responses individually rather than
comparatively, the scores may not be
consistently calibrated. That is, even
if annotators agree on which response
is better in a pair, they may assign in-
consistent scores due to differences
in how they interpret the scale (Wad-
hwa et al., 2024). By contrast, pref-
erence over preference annotation re-
quires less precision to be provided ac-
curately, compared to assigning scores
to individual responses. Comparitive
annotation, particularly Best-to-Worst
scaling (BWS), has been to shown to
produce significantly more reliable results than rating scale annotations such as Likert scales (Kir-
itchenko & Mohammad, 2017; Burton et al., 2019). BWS also demonstrated greater reliability when
applied to linguistically complex cases, such as phrases containing negation or modals (Kiritchenko
& Mohammad, 2017). Best-to-Worst scaling (BWS) is an extension of Thurstone’s method of paired
comparisons (Thurstone, 2017) which is another paired comparison statistical model like Bradley-
Terry (Bradley & Terry, 1952; Handley, 2001) We use this as a motivation to propose preference
over preference (PoP) labeling, in which annotators compare two preferences and indicate which one
reflects a stronger preference. Rather than assigning scores to individual responses (Cui et al., 2024;
Wang et al., 2023), in our preference-over-preference setting, annotators compare preference pairs and
select the pair for which the contrast between the chosen and rejected responses is more pronounced.
More importantly, preference-over-preferences allow us to infer continuous real-valued margins for
preferences, compared to rating scale annotations, which only offer discrete numerical options. Using
this PoP supervision, we construct a dataset of preference over preference comparisons that enables
us to infer adaptive margin information for each datapoint.

In this work, we propose DPO-PoP, an alignment algorithm that integrates preference-over-preference
(PoP) supervision into the Direct Preference Optimization (DPO) framework (Rafailov et al., 2024b),
enabling margin-aware alignment of large language models (LLMs) with human preferences using
only supervised learning. For each data point, we use PoP supervision to infer an adaptive margin
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that reflects the relative strength of the underlying preference. A pictorial illustration of the PoP
framework is presented in Figure 1. We demonstrate that collecting PoP supervision is a simple
and effective way to improve both the discriminative and generative performance of LLMs. Our
results show that DPO-PoP variants outperform all baselines in both respects. Moreover, we highlight
a tradeoff between discriminative performance, as measured by test classification accuracy, and
generative performance, as measured by win rate—where improving classification accuracy on
weaker preferences at the expense of stronger ones—can lead to a decline in generative quality. To
navigate this tradeoff, we propose two sampling strategies for generating preference-over-preference
labels: iterative sampling, which favors discriminative performance, and random sampling, which
favors generative performance.

2 BACKGROUND

2.1 REWARD MODELING

In the reward modeling stage of Reinforcement Learning from Human Feedback (RLHF), a reward
model is trained to assign scalar scores to prompt-response pairs, indicating how well a response aligns
with human preferences. This process relies on a preference dataset Dpref = (xi, y

+
i , y

−
i )

N

i=1, where
xi is a prompt, y+i is the preferred response, and y−i is the dispreferred response. The Bradley-Terry
(BT) model (Bradley & Terry, 1952) is commonly used to model preference likelihoods.

P (y+ ≻ y−) =
er(x,y

+)

er(x,y+) + er(x,y−)
= σ(r(x, y+)− r(x, y−)) (1)

Here, r denotes the reward assigned to a prompt-response pair, and σ denotes the sigmoid function.
We parameterize the reward function as rϕ, and use it to approximate the ground-truth reward function
by maximizing the likelihood of the observed preference data under the Bradley-Terry model. For
more details on the RLHF pipeline, refer to Appendix C

min
ϕ

−E(x,y+,y−)∼Dpref [log σ(rϕ(x, y
+)− rϕ(x, y

−))] (2)

2.2 DIRECT PREFERENCE OPTIMIZATION

Direct Preference Optimization (DPO) (Rafailov et al., 2024b) belongs to a class of algorithms,
called Direct Alignment Algorithms (DAAs) (Rafailov et al., 2024a), which aim to directly align a
policy from preference data via supervised learning, without having to learn a reward model or use
reinforcement learning. DPO utilizes the closed form solution of the optimal KL regularized reward
policy (Peters & Schaal, 2007; Peng et al., 2019), and expresses the rewards in the Bradley-Terry
preference model (Bradley & Terry, 1952), directly in terms of the optimal policy. This allows us to
learn a parameterized optimal policy directly from the preference data, using Equation 3

LDPO(πθ;πref ) = E(x,y+,y−)∼Dpref

[
− log σ

(
β log

πθ(y
+|x)

πref(y+|x)
− β log

πθ(y
−|x)

πref(y−|x)

)]
(3)

The implicit reward assigned by the DPO model to a response y given a prompt x is β log πθ(y|x)
πref(y|x) .

2.3 MARGINS IN REWARD MODELING

Margins can be incorporated into the reward modeling phase of the RLHF pipeline to enforce not
only that the reward model ranks the preferred response higher than the dispreferred one, but also that
it assigns a sufficiently large difference in reward scores—either through fixed or adaptive margins.

The margin-based reward modeling loss can be expressed as:

min
ϕ

−E(x,y+,y−)∼Dpref [log σ(rϕ(x, y
+)− rϕ(x, y

−)−m(x, y+, y−)] (4)
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Here m(x, y+, y−) denotes the margin term. In the fixed margin setting this can be a constant. In the
adaptive-margin setting, it can be defined as a function of the preference instance, for example, based
on the degree of discrepancy between the preferred and dispreferred responses.

3 METHOD: ADAPTIVE MARGIN DPO WITH PREFERENCES OVER
PREFERENCES

To obtain adaptive margin information, in which each preference datapoint is assigned a different
margin, and stronger preferences are associated with larger margins than weaker ones, we propose
preferences over preferences (PoP) supervision. Given two standard preference comparisons, such
as A ≻ B and C ≻ D, we collect a label indicating which of the two preferences is stronger, from
a labeler. For example, if the supervision indicates that (A ≻ B) ≻ (C ≻ D), this means that the
discrepancy between A and B is greater than that between C and D under the ground-truth reward
function r. Formally, this implies:

r(A)− r(B) > r(C)− r(D)

This insight allows us to treat the margin from the weaker preference (e.g., r(C)− r(D)) as a lower
bound on the margin for the stronger preference (e.g., A ≻ B). Rather than regressing to a specific
value, we enforce that the margin for the stronger preference must be at least as large as that of the
weaker one.

We assume access to a dataset of preference over preference examples:

DPoP =
{(

(xsi , y
+
si , y

−
si), (xwi

, y+wi
, y−wi

)
)}N

i=1

Here, (xsi , y
+
si , y

−
si) represents the stronger preference in the pair, where xsi is the prompt, y+si is

the preferred response, and y−si is the dispreferred response. Similarly, (xwi
, y+wi

, y−wi
) denotes the

weaker preference, where xwi
is the prompt, y+wi

is the preferred response, and y−wi
is the dispreferred

response. Note that, unlike in standard reward modeling datasets, the prompts xsi and xwi
can differ

within a single PoP example, as PoP supervision compares the strength of entire preference instances,
not individual responses.

We can express the adaptive margin reward modelling objective on a dataset of preferences over
preferences as follows

min
ϕ

EDPoP

[
− log σ

(
rϕ(xs, y

+
s )− rϕ(xs, y

−
s )

− sg
[
rϕ(xw, y

+
w )− rϕ(xw, y

−
w )
] )]

(5)

Here, sg[·] denotes the stop-gradient operator. Although the adaptive margin is computed using the
reward model rϕ, we treat the margin derived from the weaker preference as a fixed reference during
optimization. Applying the stop-gradient operator ensures that gradients do not propagate through
this margin term, thereby preventing it from influencing updates to the reward model parameters ϕ.
Without the stop-gradient operator, the objective would incentivize parameters that invert the weaker
preference to minimize the loss.

We use the closed-form solution for the optimal policy of a KL regularized reward problem to express
the rewards directly in terms of the optimal policy, as in DPO (Rafailov et al., 2024b). Parameterizing
the optimal policy by θ, we end up with the DPO Preference-over-Preference loss

min
θ

EDPoP

[
− log σ

(
β

(
log

πθ(y
+
s | xs)

πref(y
+
s | xs)

− log
πθ(y

−
s | xs)

πref(y
−
s | xs)

)

− sg
[
β

(
log

πθ(y
+
w | xw)

πref(y
+
w | xw)

− log
πθ(y

−
w | xw)

πref(y
−
w | xw)

)])]
(6)
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The DPO Preference-over-Preference (DPO-PoP) objective enables margin-aware alignment directly
from PoP data using supervised learning, without requiring an explicit reward modeling stage or
reinforcement learning. However, Equation 6 suffers from unstable gradients due to unbounded
margins, resulting in a rapidly fluctuating loss that can explode during training. To mitigate this,
we clip the margin values to lie within a fixed interval [0,Mmax], where Mmax is a user-specified
constant. Margin values outside this range are clipped to the nearest endpoint, using a clipping
function clip[0,Mmax]

, which improves optimization stability. Additionally, to further stabilize training,
we compute the margins using a slowly-updated target policy πθ̂, whose parameters θ̂ track the
policy π via Polyak averaging over the model parameters θ. This prevents the margin estimates from
changing too rapidly across training steps. With these modifications, our final DPO-PoP objective is
given by Equation 7

min
θ

EDPoP

[
− log σ

(
β

(
log

πθ(y
+
s | xs)

πref(y
+
s | xs)

− log
πθ(y

−
s | xs)

πref(y
−
s | xs)

)

− sg
[

clip[0,Mmax]

(
β

(
log

πθ̂(y
+
w | xw)

πref(y
+
w | xw)

− log
πθ̂(y

−
w | xw)

πref(y
−
w | xw)

))])]
(7)

4 RESULTS

We focus on the following research questions: [Q1] Does using DPO-PoP lead to models with
improved discriminative ability? [Q2] Does using DPO-PoP lead to models with improved generative
ability? We investigate these questions by evaluating the performance of our models on the test
split of the UltraFeedback dataset (Cui et al., 2024) and external benchmarks such as RewardBench
(Lambert et al., 2024) and AlpacaEval-2 (Dubois et al., 2025).

4.1 GENERATING THE PREFERENCE OVER PREFERENCE DATA

We use the UltraFeedback (Cui et al., 2024) binarized dataset 1 to evaluate our research questions.
This dataset provides scalar scores for each of the chosen and rejected responses in the dataset. These
scores are computed by aggregating the scores from the feedback of multiple LLMs across different
evaluation axes. We compute the ground-truth margin for each preference datapoint as the difference
between the scores of the chosen and rejected responses. These margins can also be used to construct
our preference over preference dataset. Ideally, we would want to use human feedback for generating
preferences over preferences. But, gathering annotator labels for an entire dataset is an expensive
task. Hence, we use the scores for the responses in the UltraFeedback dataset to simulate annotator
preferences, and generate our synthetic PoP dataset.

Given a preference dataset of size |Dpref|, we can create a PoP dataset of size up to |DPoP| =
|Dpref|(|Dpref|−1)

2 , which is significantly larger than the size of the original preference dataset itself.
Instead, we choose a size of the PoP dataset that is a small multiple of the size of the preference
dataset i.e |DPoP| = k|Dpref|, so that the size of the PoP dataset does not become too large. Addi-
tional experiments showing how performance varies with k are provided in Appendix E. To avoid
constructing nearly indistinguishable preference pairs, we ensure that the margin difference between
the stronger and weaker preferences in the preference pair in the PoP dataset is at least one. This is
consistent with annotation practices, where preference judgments are typically withheld when the
comparative strength is marginal.

We evaluate two strategies for constructing the PoP dataset: one that represents each preference from
the original dataset equally, and one that represents preferences in proportion to preference strength.
We do this to explore the impact of different sampling strategies used to generate the PoP dataset, on
downstream discriminative and generative performance. In the iterative sampling approach, each
preference data point is equally represented by comparing it against k weaker preferences (as judged
by their margins). In practice, without ground-truth margin data, we could choose a preference and
provide comparison preferences, asking the user for a label. We only choose k preference pairs in

1HuggingFaceH4/ultrafeedback binarized
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which our chosen preference is judged to be stronger than the comparative preference. In contrast, the
random sampling approach constructs the PoP dataset by randomly selecting pairs of preferences
and labeling them based on their margins. This results in stronger preferences appearing more
frequently in the PoP dataset than weaker ones. Furthermore, the random sampling approach is
straightforward to implement in practice, in comparison to the iterative sampling approach, as this
would only involve randomly sampling pairs of preferences and asking the annotator for a label.
After generating the PoP dataset, we discard the original scalar scores and do not use them at any
stage of model training. Additional experiments showing how performance of DPO-PoP algorithms
is impacted by preference-over-preference labeling noise are provided in Appendix F

4.2 EXPERIMENTAL SETUP

We consider two models in our experiments: LLama3.2-3B and LLama3.1-8B (Grattafiori et al., 2024).
Following the standard direct alignment pipeline, we align these models using the UltraFeedback
preference dataset (Cui et al., 2024). We begin with a pretrained model and fine-tune it on the
supervised fine-tuning (SFT) partition of the UltraFeedback dataset. Next, we align the models using
the preference data from the same dataset. For further experimental details, refer to Appendix B

We evaluate the following variants of Direct Preference Optimization (DPO):

1. Vanilla DPO: No margin is used in the loss function.
2. DPO-margin-1: A fixed margin of 1 is applied to all preferences.
3. DPO-margin-gt: Ground-truth margin values from the UltraFeedback dataset are used.
4. DPO-margin-gt-scaled: This corresponds to the Scaled Bradley-Terry loss from Wang

et al. (2025). The loss incorporates ground-truth margin information outside the log-sigmoid
function rather than inside, effectively placing greater weight on preferences with larger
margins. This can be interpreted as repeatedly sampling stronger preferences. The loss is
defined as:

LSBT = −m log σ

(
β log

πθ(y
+|x)

πref(y+|x)
− β log

πθ(y
−|x)

πref(y−|x)

)
(8)

5. DPO-PoP-iter: Margins are inferred from preference-over-preference (PoP) supervision,
using a PoP dataset constructed via iterative sampling.

6. DPO-PoP-random: Margins are inferred from PoP supervision, using a PoP dataset con-
structed via random sampling. This strategy can be interpreted as a bootstrapped version
of the loss employed in DPO-margin-gt-scaled, along with a margin term (inside the log-
sigmoid) that is inferred from preference-over-preference supervision.

We provide the results for LLama3.2-3b here. Results for LLama3.1-8b are provided in Appendix D

4.3 DISCRIMINATIVE ABILITY

First, we evaluate whether DPO-PoP improves the discriminative (i.e., classification) capabilities of
the LLM. In addition to accuracy, we assess how well the model captures the strength of preferences
by comparing the predicted and ground truth margins. For example, given a preference A ≻ B,
the ground truth margin is defined as the score difference between the preferred and dispreferred
responses in the UltraFeedback dataset. The predicted margin is computed as the difference between
the implicit rewards assigned to the two responses by the trained DPO model. A strong correlation
between true and predicted margins indicates that the model generalizes well to unseen samples and
is well-calibrated in its estimation of preference strength. We report both Spearman and Pearson
correlation between predicted and ground truth margins. It should be noted that we would be unable
to calculate the correlation metrics when PoP labels are collected from annotators. However, in this
experimental setting, since we are using ground-truth preference scores from the UltraFeedback
dataset, we are able to compute these metrics. This analysis is conducted solely to facilitate a better
understanding of the algorithms.

We see from Table 1, that DPO-PoP-iter outperforms all other variants in test classification accuracy.
Interestingly, even though DPO-margin-gt has access to the actual ground-truth margin values, it
performs worse in terms of test classification accuracy. Looking at the correlation results, we observe

6
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(a) Lower Cumulative Accuracy vs Margin (b) Upper Cumulative Accuracy vs Margin

Figure 2: Cumulative Accuracy vs Margin for the different DPO variants considered. Lower
Cumulative Accuracy at margin m indicates the accuracy of predicting preference labels using only
datapoints with ground-truth margin less than or equal to m. Conversely, Upper Cumulative Accuracy
reflects prediction accuracy on datapoints with ground-truth margin greater than or equal to m. The
dark grey histogram shows the distribution (density) of margin values in the test set. In plot (a),
DPO-PoP-Iter achieves higher accuracy on datapoints with lower margins, while in plot (b), its
performance drops for higher margin datapoints.

an interesting pattern: DPO-PoP-random achieves the highest Spearman and Pearson correlations,
with DPO-PoP-iter closely matching it in terms of Spearman correlation. Notably, DPO-PoP-iter
exhibits the lowest Pearson correlation, suggesting that while it captures the ordinal structure of the
ground-truth margins well (reflected in high Spearman), its predicted margins vary non-linearly with
the true margins, resulting in low Pearson correlation.

We also find that DPO-PoP-random has lower accuracy than DPO-PoP-iter, but higher correlations
overall. On closer inspection, as shown in Figure 2, we find that DPO-PoP-iter tends to correctly
classify more of the weaker preferences, which improves overall accuracy, though it sacrifices
some accuracy on stronger preferences. In contrast, DPO-PoP-random more accurately captures
stronger preferences at the expense of weaker ones, leading to lower classification accuracy. We
hypothesize that by avoiding overfitting to potentially noisier weaker preferences, DPO-PoP-random
better preserves the linear and ordinal relationships between the predicted and ground-truth margins,
resulting in higher Pearson and Spearman correlations compared to the other methods.

We also report performance on RewardBench (Lambert et al., 2024) in Table 2. The DPO-PoP
variants outperform all baselines, including those with access to ground-truth margins. Examining
the Overall score, we observe that DPO-PoP-random achieves the highest performance. Notably,
DPO-PoP-iter outperforms all methods on the Chat and Safety splits but underperforms on the
Reasoning split—which comprises a larger portion of the dataset—resulting in a lower Overall score
compared to DPO-PoP-random. In contrast, DPO-PoP-random delivers stable performance across all
categories, securing the highest Overall score.

Algorithm Pearson Correlation Spearman Correlation Accuracy
Vanilla DPO 0.3018 0.3082 0.71
DPO-margin-1 0.3019 0.3079 0.71
DPO-margin-gt 0.3489 0.3512 0.71
DPO-margin-gt-scaled 0.3463 0.3525 0.72
DPO-PoP-iter 0.2471 0.3644 0.79
DPO-PoP-random 0.3598 0.3674 0.71

Table 1: Comparison of DPO variants on classification accuracy and Spearman, Pearson correlation
with ground-truth margins for LLaMA3.2-3b.
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Model Chat Chat Hard Safety Reasoning Overall
Vanilla-DPO 75.14 64.69 71.22 76.25 75.51
DPO-margin-1 77.65 64.25 72.57 76.83 76.18
DPO-margin-gt 80.17 63.60 75.54 77.38 77.12
DPO-margin-gt-scaled 80.45 63.60 75.54 76.07 76.85
DPO-PoP-iter 87.99 59.21 80.14 72.08 77.09
DPO-PoP-random 81.01 62.72 79.59 77.75 78.66

Table 2: Performance of LLaMA3.2-3b DPO variants on RewardBench. Higher is better.

4.4 GENERATIVE ABILITY

Next, we use UltraRM (Cui et al., 2024) to evaluate the responses of each of the aligned models and
compare the quality of their generations. We use Vanilla-DPO as the reference model against which
the other DPO variants are judged. We calculate the win rate and the median advantage of each model
vs Vanilla DPO, as judged by UltraRM. The advantage of a datapoint is the difference between the
UltraRM rewards of the response generated by the test model and the reference model, for a given
prompt. The median advantage of a model is computed as the median of these per-prompt advantages
over the entire test set. The results are displayed in the Table 3. We observe that DPO-PoP-random
outperforms all other baselines in terms of win rate and median advantage. DPO-PoP-random which
infers margins from PoP supervision, outperforms DPO variants that have access to ground truth
margins.

Method Median Advantage Win Rate %
DPO-margin-1 0.1992 55%
DPO-margin-gt 0.6875 63%
DPO-margin-gt-scaled 0.1875 54%
DPO-PoP-iter 0.3281 57%
DPO-PoP-random 0.7344 64%

Table 3: Comparison of margin-based DPO variants against Vanilla DPO on median advantage and
win rate for LLaMA3.2-3b.

We also report the performance of all the DPO variants on the AlpacaEval 2.0 benchmark (Dubois
et al., 2025) in Table 4. DPO-PoP-random outperforms all other baselines both in terms of win-rate
and length controlled win-rate.

Experiment Length-Controlled Win Rate Win Rate Avg Length
Vanilla-DPO 12.68 12.05 1828
DPO-margin-1 12.07 11.80 1844
DPO-margin-gt 11.86 11.80 1876
DPO-margin-gt-scaled 11.42 11.43 1857
DPO-PoP-iter 11.03 11.18 1917
DPO-PoP-random 14.68 14.41 1858

Table 4: Performance of LLaMA3.2-3b DPO variants on the AlpacaEval 2.0 benchmark.

In both Tables 3 and 4, we observe that DPO-PoP-iter underperforms compared to DPO-PoP-random
and DPO-margin-gt. We hypothesize that this is due to correctly classifying weaker preferences at
the expense of stronger preferences, as discussed in Section 4.3. By potentially overfitting to noisy
weaker preferences, DPO-PoP-iter suffers a drop in generative performance.

4.5 DISCRIMINATION VS GENERATION

We observe a trade-off between discriminative and generative performance. To improve generative
performance, models should avoid overfitting to weaker preferences in the preference dataset. DPO-
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PoP-iter offers good discriminative performance on test data that is in-distribution with respect to
the training data, while it performs worse in terms of generative quality. DPO-PoP-random achieves
good generative performance and is also robust in terms of discriminative performance, as supported
by the RewardBench results in Table 2. These results enable informed choices: practitioners should
use DPO-PoP-iter when the target is discriminative evaluation in a fixed domain and DPO-PoP-
random when generative quality and robustness are priority. Furthermore, preference over preference
annotations lead to significant generative performance gains when the size of the preference dataset
is small, as seen in Appendix E

5 RELATED WORK

Techniques that employ margins have largely been employed in the reward modeling phase of the
RLHF pipeline. Touvron et al. (2023) used margins derived from preference ratings given by human
annotators, in order to train reward models, and showed that the margin term can help the helpfulness
reward model accuracy, especially when the two responses are more separable. Wang et al. (2025)
propose Scaled Bradley-Terry loss, a margin based reward modeling objective that uses the margins
derived from preference ratings in order to scale the loss for each datapoint. This can be seen as
upsampling preferences for which the margin is higher. They show that the scaled loss variant leads to
better performance that the margin loss variant proposed in Touvron et al. (2023). Wang et al. (2024b)
propose Reward Difference Optimization, that also uses a scaled loss, but uses margins computed
from a learned reward model to scale each data point. DPO-PoP-random can be interpreted as a
bootstrapped variant of the Scaled Bradley-Terry loss(Wang et al., 2025; 2024b). Other approaches
compute margins in different ways. Qin et al. (2024) define the margin as the average difference
between the rewards of the chosen and rejected responses within each training batch. Wang et al.
(2024a) use an ensemble of reward models and calculate the margin as the average reward difference
across the ensemble for each preference.

In the case of Direct Alignment Algorithms (Rafailov et al., 2024a), IPO (Azar et al., 2023) and SLiC
(Zhao et al., 2023) can also be interpreted in terms of margin, wherein IPO regresses the difference of
implicit rewards to a fixed margin, whereas SLiC uses hinge loss with a fixed margin. Amini et al.
(2024), propose ODPO, which is a variant of DPO with an offset. They use a reward model to label
the preference data and also to provide the margin values to be used in the ODPO loss. Another
approach, α-DPO (Wu et al., 2024a), redefines the reference policy π̂ref , to blend between the policy
π and the reference policy πref, to achieve personalized reward margins. Wu et al. (2024b) observe
that the optimal β value for the DPO loss depends on the informativeness of the pairwise preference
data, and they propose β-DPO, which dynamically calibrates β at the batch level based on data
quality. Our approach, DPO-PoP, on the other hand, gathers preference over preference information
from an annotator to infer the margin values.

6 CONCLUSION

We introduced DPO-PoP, a framework that integrates adaptive margins into the DPO loss using
preference-over-preference (PoP) supervision. Unlike prior approaches that derive margins from
scalar preference ratings—whether provided by annotators or estimated via reward models—DPO-
PoP infers margins directly from ordinal comparisons between preferences. We explored two PoP
data sampling strategies: random and iterative. Our results show that improving discriminative
performance by better modeling weaker preferences, as in DPO-PoP-iter, can come at the expense
of generative quality. Furthermore, we show that DPO-PoP-random achieves stronger generative
performance than DPO baselines using fixed or score-derived margins, while maintaining robust
discriminative accuracy, as demonstrated on RewardBench.

These findings offer a practical takeaway for RLHF applications: DPO-PoP provides a way to
perform margin-aware alignment using preference-over-preference annotation that is fine-grained in
terms of resolution, compared to providing numerical scores. Practitioners can choose the sampling
strategy based on their goals—favoring iterative sampling when discriminative performance is critical
in-domain, and random sampling when prioritizing general-purpose generation and robustness

9
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A LARGE LANGUAGE MODEL USAGE

Large Language Models (LLMs) were used solely for grammatical editing and improving writing
flow. The research methodology, experimental design, data analysis, and all scientific conclusions are
entirely the work of the human authors.

B EXPERIMENT DETAILS

The hyperparameters used in our experiments for SFT and DPO are provided in Table 5 and Table
6 respectively. For DPO-PoP, we used the same hyperparameters used for DPO. For the DPO-PoP
specific hyperparameters we set the clipping threshold Mmax = 10 and the size of the PoP dataset
to 120, 000 (twice the size of the preference dataset in UltraFeedback, i.e k = 2). All models were
trained using 4 Nvidia A100 80G GPUs. The code is available at removed for review

Hyperparameter Value
Epochs 1
Max Sequence Length 2048
Per-device Train Batch Size 2
Per-device Eval Batch Size 2
Gradient Accumulation Steps 8
Gradient Checkpointing True
Num GPUs 4
Learning Rate 2e-5
Learning Rate Scheduler Cosine
Weight Decay 0

Table 5: Training hyperparameters used for SFT

C REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022) is the predominant
paradigm for aligning language models with human intent. The RLHF pipeline typically begins with
a pre-trained language model trained on an internet-scale corpus and proceeds through three stages.
We briefly describe each stage below:

Supervised Fine Tuning In the SFT stage, the model is fine-tuned to follow instructions by autore-
gressively predicting the next token in a sequence using Maximum Likelihood Estimation (MLE).
This stage uses a dataset DSFT consisting of prompt-response pairs (x, y), where x is a prompt and
y is a high-quality response. These responses are either human-annotated or generated by large
language models.
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Hyperparameter Value
Epochs 1
Max Sequence Length 2048
Per-device Train Batch Size 2
Per-device Eval Batch Size 2
Gradient Accumulation Steps 8
Gradient Checkpointing True
Num GPUs 4
Learning Rate 1e-6
Learning Rate Scheduler Cosine
Learning Rate Warmup Ratio 0.03
Weight Decay 0.05
Beta 0.1

Table 6: Training hyperparameters used for DPO

Reward Modeling In the reward modeling stage, a reward model is trained to assign scalar scores to
prompt-response pairs, indicating how well a response aligns with human preferences. This process
relies on a preference dataset Dpref = (xi, y

+
i , y

−
i )

N

i=1, where xi is a prompt, y+i is the preferred
response, and y−i is the dispreferred response. Preference labels are typically provided by human
annotators or large language models. The Bradley-Terry (BT) model (Bradley & Terry, 1952) is
commonly used to model the likelihood of observed preferences.

P (y+ ≻ y−) =
er(x,y

+)

er(x,y+) + er(x,y−)
= σ(r(x, y+)− r(x, y−)) (9)

Here, r denotes the reward assigned to a prompt-response pair, and σ denotes the logistic (sigmoid)
function. We parameterize the reward function as rϕ, where ϕ represents the model parameters, and
use it to approximate the ground-truth reward function. The reward model is trained by maximizing
the likelihood of the observed preference data under the Bradley-Terry model.

min
ϕ

−E(x,y+,y−)∼Dpref [log σ(rϕ(x, y
+)− rϕ(x, y

−))] (10)

Reinforcement Learning In the reinforcement learning stage, the language model is optimized to
generate responses that maximize the reward assigned by the learned reward model rϕ. However,
directly optimizing for this reward can degrade response quality, as the policy may overfit to imper-
fections in the learned reward function and begin producing unnatural outputs (Jaques et al., 2019;
Stiennon et al., 2022).

To mitigate this, a KL divergence constraint is added to ensure that the updated policy does not
deviate too far from a reference policy, usually taken to be the supervised fine-tuning (SFT) policy.
The resulting RL objective, with a KL penalty coefficient β, is given by:

max
θ

Ex∼D,y∼πθ(.|x)[rϕ(x, y)]− βDKL[πθ(y|x)||πref (y|x)] (11)

Additionally, some approaches (Chittepu et al., 2025; Dai et al., 2023) enforce safety and harmlessness
by augmenting the objective in Equation 11 with an explicit cost constraint.

D RESULTS FOR LLAMA3.1-8B

D.1 DISCRIMINATIVE PERFORMANCE

The results showing the test classification accuracy on the UltraFeedback dataset (Cui et al., 2024)
and RewardBench (Lambert et al., 2024) scores are in Tables 7 and 8 respectively.
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Algorithm Pearson Correlation Spearman Correlation Accuracy
Vanilla DPO 0.3151 0.3244 0.69
DPO-margin-1 0.3161 0.3243 0.69
DPO-margin-gt 0.3791 0.3715 0.70
DPO-margin-gt-scaled 0.3633 0.3669 0.71
DPO-PoP-iter 0.2183 0.3868 0.82
DPO-PoP-random 0.3962 0.3871 0.71

Table 7: Comparison of DPO variants on classification accuracy and Spearman, Pearson correlation
with ground-truth margins for LLaMA3.1-8b.

Model Chat Chat Hard Safety Reasoning Overall
Vanilla-DPO 73.46 63.60 57.03 76.69 71.59
DPO-margin-1 71.23 62.94 57.16 77.07 71.39
DPO-margin-gt 79.05 65.79 60.95 76.84 73.67
DPO-margin-gt-scaled 76.26 62.28 62.43 76.11 72.96
DPO-PoP-iter 86.59 61.84 72.03 72.05 75.41
DPO-PoP-random 81.56 66.89 68.51 76.95 76.25

Table 8: Performance of LLaMA3.1-8b DPO variants on RewardBench. Higher is better.

D.2 GENERATIVE PERFORMANCE

The results displaying the win rate of the model responses as judged by UltraRM (Cui et al., 2024)
and AlpacaEval 2.0 win rates (Dubois et al., 2025) are in Tables 9 and 10 respectively.

Method Median Advantage Win Rate %
DPO-margin-1 0.2813 55%
DPO-margin-gt 0.5000 59%
DPO-margin-gt-scaled 0.0938 52%
DPO-PoP-iter 0.3496 56%
DPO-PoP-random 0.7500 63%

Table 9: Comparison of margin-based DPO variants against Vanilla DPO on median advantage and
win rate for LLaMA3.1-8b.

Experiment Length-Controlled Win Rate Win Rate Avg Length
Vanilla-DPO 10.38 10.56 1869
DPO-margin-1 11.07 11.06 1864
DPO-margin-gt 11.23 11.30 1825
DPO-margin-gt-scaled 10.95 11.43 1881
DPO-PoP-iter 12.89 13.42 2004
DPO-PoP-random 14.62 14.78 1909

Table 10: Performance of LLaMA3.1-8b DPO variants on the AlpacaEval 2.0 benchmark.

E EFFECT OF POP DATA SCALE ON PERFORMANCE

In order to study the effect of the PoP data scale on model performance, we consider the LLaMA3.2-
3B model and begin with an initial subset of preferences of size |Dpref| = 7500. We then generate a
Preference-over-Preference (PoP) dataset of size k · |Dpref|, where k ∈ {1, 2, 4, 8, 16}. This procedure
is carried out using both iterative and random sampling strategies for generating the PoP data. The
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baseline DPO variants are all trained on the same subset of 7500 preferences used to construct the
PoP dataset.

E.1 DISCRIMINATIVE PERFORMANCE

Algorithm Pearson Correlation Spearman’s Correlation Accuracy
Vanilla-DPO 0.1450 0.1708 0.64
DPO-margin-1 0.1374 0.1609 0.64
DPO-margin-gt 0.1855 0.2091 0.65
DPO-margin-gt-scaled 0.1441 0.1656 0.64

Table 11: Comparison of baseline DPO variants trained on a subset of preferences (|Dpref| = 7500),
evaluated on classification accuracy and correlation with ground-truth margins for LLaMA3.2-3b.

Data Size Multiplier k Pearson Correlation Spearman’s Correlation Accuracy
1 0.2229 0.2463 0.67
2 0.2193 0.2429 0.67
4 0.2127 0.2325 0.65
8 0.2183 0.2268 0.64
16 0.2223 0.2236 0.63

Table 12: Performance of DPO-PoP-iter for varying values of k, evaluated on classification accuracy
and correlation with ground-truth margins for LLaMA3.2-3b.

Data Size Multiplier k Pearson Correlation Spearman’s Correlation Accuracy
1 0.2386 0.2614 0.67
2 0.2403 0.2638 0.66
4 0.2362 0.2556 0.66
8 0.2322 0.2454 0.65
16 0.2265 0.2354 0.66

Table 13: Performance of DPO-PoP-random for varying values of k, evaluated on classification
accuracy and correlation with ground-truth margins for LLaMA3.2-3b.

Comparing Table 11 with Tables 12 and 13, we observe that the DPO-PoP variants consistently
outperform the DPO baselines in terms of discriminative performance, including those baselines that
have access to ground-truth margins. Furthermore, increasing the data size multiplier k results in a
decline in classification accuracy and correlation metrics with respect to the ground-truth margins for
both DPO-PoP variants. Notably, this performance degradation is more pronounced in DPO-PoP-iter
than in DPO-PoP-random. These findings suggest that, when prioritizing discriminative performance,
using smaller values of k (e.g., k = 1 or k = 2) is advisable.

E.2 GENERATIVE PERFORMANCE

Method Median Advantage Win Rate
DPO-margin-1 0.2500 0.56
DPO-margin-gt 0.4844 0.60
DPO-margin-gt-scaled 0.0313 0.51

Table 14: Median advantage and win rate of various DPO baseline variants over Vanilla-DPO, for
LLaMA3.2-3b. All models are trained on a subset of preferences with |Dpref| = 7500.
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Data Size Multiplier k Median Advantage Win Rate
1 0.2813 0.55
2 1.1250 0.68
4 1.7813 0.77
8 1.7188 0.75
16 1.4629 0.69

Table 15: Median advantage and win rate of DPO-PoP-iter over Vanilla-DPO for different values of
k, for LLaMA3.2-3b.

Data Size Multiplier k Median Advantage Win Rate
1 0.4688 0.57
2 1.2500 0.71
4 1.7969 0.77
8 1.8711 0.77
16 1.5547 0.72

Table 16: Median advantage and win rate of DPO-PoP-random over Vanilla-DPO for different values
of k, for LLaMA3.2-3b.

Looking at Tables 15 and 16, we observe that the win rate initially increases with the data size
multiplier k, before eventually declining. Additionally, DPO-PoP-random appears to be more robust
to the choice of k than DPO-PoP-iter when considering win rate. When prioritizing generative
ability, a moderately larger value of k (e.g., k = 4 or k = 8) is preferable. More importantly, when
comparing with Table 14, we find that in a small-data regime, DPO-PoP variants achieve substantially
higher win rates than the DPO baselines—including those with access to ground-truth margins.

F EFFECT OF POP LABELING NOISE ON PERFORMANCE

We investigate the sensitivity of our DPO-PoP approaches to noise in PoP labels collected from
annotators. Given our PoP dataset |DPoP|, we introduce label noise by randomly flipping PoP labels
with probability ϵ. We use the LLama3.2-3b model and experiment with three different noise levels:
ϵ ∈ {0.1, 0.3, 0.5}. We evaluate both the discriminative and generative performance of models
trained on these perturbed datasets.

F.1 DISCRIMINATIVE PERFORMANCE

We observe from Figure 3 that both the Spearman and Pearson correlations for DPO-PoP-iter and
DPO-PoP-random decrease as the noise level increases. Notably, this decline in correlation is
more pronounced for DPO-PoP-iter compared to DPO-PoP-random. From the accuracy plot, we
surprisingly find that the test classification accuracy of DPO-PoP-iter slightly increases with added
noise, while it marginally decreases for DPO-PoP-random. We hypothesize that label noise induces a
regularizing effect in DPO-PoP-iter, which helps mitigate its tendency to overfit to weaker preferences.

F.2 GENERATIVE PERFORMANCE

We observe from Figure 4 that both the win rate and median advantage for DPO-PoP-random decrease
as the noise level increases. Similar to the trend observed in the discriminative setting, we find that
the win rate and median advantage for DPO-PoP-iter initially increase before declining, suggesting
that a moderate amount of label noise may have a regularizing effect, helping DPO-PoP-iter avoid
overfitting to weaker preferences.
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Figure 3: Spearman and Pearson correlations (left), and test classification accuracy (right) of DPO-
PoP models trained with varying levels of label noise.

Figure 4: Win rates (left) and median advantage (right) of DPO-PoP models trained with varying
levels of label noise.
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