

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ADAPTIVE MARGIN RLHF VIA PREFERENCE OVER PREFERENCES

Anonymous authors

Paper under double-blind review

ABSTRACT

Margin-based optimization is fundamental to improving generalization and robustness in classification tasks. In the context of reward model learning from preferences within Reinforcement Learning from Human Feedback (RLHF), existing methods typically rely on no margins, fixed margins, or margins that are simplistic functions of preference ratings. However, such formulations often fail to account for the varying strengths of different preferences—i.e., some preferences are associated with larger margins between responses—or they rely on noisy margin information derived from preference ratings. In this work, we argue that modeling the strength of preferences can lead to better generalization and more faithful alignment. Furthermore, many existing methods that use adaptive margins assume access to accurate preference scores, which can be difficult for humans to provide reliably. We propose a novel approach that leverages preferences over preferences—that is, annotations indicating which of two preferences reflects a stronger distinction. We use this ordinal signal to infer adaptive margins on a per-datapoint basis. We introduce an extension to Direct Preference Optimization (DPO), DPO-PoP, that incorporates adaptive margins from preference-over-preference supervision, enabling improved discriminative and generative performance. Empirically, our method improves over vanilla DPO, DPO with fixed margins, and DPO with ground-truth margins on the UltraFeedback dataset. These results suggest that integrating preference-over-preference information, which requires less precision to be provided accurately, can improve discriminative and generative performance without adding significant complexity. Additionally, we show that there is a tradeoff between discriminative and generative performance: improving test classification accuracy, particularly by correctly labeling weaker preferences at the expense of stronger ones, can lead to a decline in generative quality. To navigate this tradeoff, we propose two sampling strategies to gather preference-over-preference labels: one favoring discriminative performance and one favoring generative performance.

1 INTRODUCTION

Margin-based approaches have been pivotal in the design and analysis of classification algorithms. In classical machine learning, the margin, defined as the distance between a decision boundary and data points, acts as a proxy for confidence and plays a critical role in improving generalization. For example, Support Vector Machines (SVMs) explicitly maximize the minimum margin, which has been shown to enhance robustness and reduce overfitting (Cortes & Vapnik, 1995). Ensemble methods like AdaBoost (Freund et al., 1996) also leverage margin-based generalization, as boosting algorithms implicitly seek to increase the margin distribution across training samples (Schapire et al., 1998).

Although fixed-margin strategies have proven effective, they assume fixed and equal margin for all training data points. This has motivated the development of adaptive margin approaches, where the margin varies across examples based on criteria such as sample difficulty, uncertainty, or class imbalance. Adaptive Margin SVMs (Herbrich & Weston, 1999) use different margin values for different training data points and provide bounds on the generalization error, justifying its robustness against outliers. Furthermore, methods such as CurricularFace (Huang et al., 2020), AdaCos (Zhang et al., 2019), and adaptive triplet losses (Ha & Blanz, 2021) have shown that adapting the margin dynamically during training leads to more stable optimization and better generalization, particularly in settings such as face recognition or imbalanced classification.

In Reinforcement Learning from Human Feedback (RLHF), pairwise preference data from humans is used to learn a reward function or policy. The Bradley-Terry (BT) model (Bradley & Terry, 1952) is widely used to model pairwise preference data, where the probability of preferring one output over another is determined by the difference in their reward scores. This preference model is commonly used in the alignment of large language models (LLMs) (Ouyang et al., 2022; Touvron et al., 2023), in which a reward function is learned to rank outputs based on human preferences, and subsequently used to optimize the policy.

Current reward modeling approaches generally fall into two categories. Some methods treat all preferences equally by applying no margin at all (Ouyang et al., 2022). Others incorporate unequal treatment by introducing adaptive margins, which are typically derived in one of two ways: either from scalar scores assigned to preferences by human annotators or language models (Touvron et al., 2023; Wang et al., 2025), or from the outputs of learned reward models (Wang et al., 2024a; Qin et al., 2024; Amini et al., 2024; Wang et al., 2024b). Using constant or no margin information fails to account for the varying strength of different preferences—that is, the degree to which one response is favored over another within a given preference. Obtaining preference strength information from preference scores, allows us to use adaptive margin information, but requires us to collect scalar feedback from LLMs or humans.

Specifying preference strength typically requires a numerical score, which may be difficult for humans to provide accurately. For instance, when using labeling schemes such as Likert ratings, where annotators rate responses individually rather than comparatively, the scores may not be consistently calibrated. That is, even if annotators agree on which response is better in a pair, they may assign inconsistent scores due to differences in how they interpret the scale (Wadhwa et al., 2024). By contrast, preference-over-preference annotation requires less precision to be provided accurately, compared to assigning scores to individual responses. Comparative annotation, particularly Best-to-Worst scaling (BWS), has been shown to produce significantly more reliable results (itchenko & Mohammad, 2017; Burton et al., 2017). Best-to-Worst scaling compares (Thurstone, 2017) which response is preferred over another. Handover preference (PoP) labeling, in which annotators are asked to select the pair for which the contrast is stronger, reflects a stronger preference. Rather than using a rating scale (Wang et al., 2023), in our preference-over-preference annotation scheme, we construct a decision rule that allows us to infer adaptive margin information.

In this work, we propose DPO-PoP, an alignment algorithm that integrates preference-over-preference (PoP) supervision into the Direct Preference Optimization (DPO) framework (Rafailov et al., 2024b), enabling margin-aware alignment of large language models (LLMs) with human preferences using only supervised learning. For each data point, we use PoP supervision to infer an adaptive margin that reflects the relative strength of the underlying preference. A pictorial illustration of the PoP framework is presented in Figure 1. We demonstrate that collecting PoP supervision is a simple and effective way to improve both the discriminative and generative performance of LLMs. Our

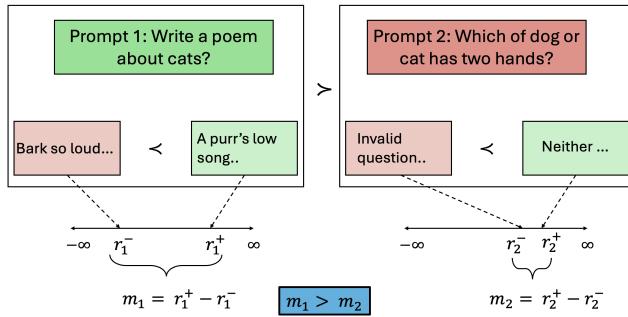


Figure 1: A pictorial illustration of the PoP framework. A preference is stronger than another when the reward difference between its preferred and dispreferred responses is larger. The reward difference of the weaker preference in the pair serves as the margin for the stronger preference.

produce significantly more reliable results than rating scale annotations such as Likert scales (Kiritchenko & Mohammad, 2017; Burton et al., 2019). BWS also demonstrated greater reliability when applied to linguistically complex cases, such as phrases containing negation or modals (Kiritchenko & Mohammad, 2017). Best-to-Worst scaling (BWS) is an extension of Thurstone’s method of paired comparisons (Thurstone, 2017) which is another paired comparison statistical model like Bradley-Terry (Bradley & Terry, 1952; Handley, 2001) We use this as a motivation to propose preference over preference (PoP) labeling, in which annotators compare two preferences and indicate which one reflects a stronger preference. Rather than assigning scores to individual responses (Cui et al., 2024; Wang et al., 2023), in our preference-over-preference setting, annotators compare preference pairs and select the pair for which the contrast between the chosen and rejected responses is more pronounced. More importantly, preference-over-preferences allow us to infer continuous real-valued margins for preferences, compared to rating scale annotations, which only offer discrete numerical options. Using this PoP supervision, we construct a dataset of preference over preference comparisons that enables us to infer adaptive margin information for each datapoint.

108 results show that DPO-PoP variants improve over all baselines in both respects. Moreover, we
 109 highlight a tradeoff between discriminative performance, as measured by test classification accuracy,
 110 and generative performance, as measured by win rate—where improving classification accuracy on
 111 weaker preferences at the expense of stronger ones—can lead to a decline in generative quality. To
 112 navigate this tradeoff, we propose two sampling strategies for generating preference-over-preference
 113 labels: iterative sampling, which favors discriminative performance, and random sampling, which
 114 favors generative performance.

115

116 2 BACKGROUND

117

118 2.1 REWARD MODELING

119

120 In the reward modeling stage of Reinforcement Learning from Human Feedback (RLHF), a reward
 121 model is trained to assign scalar scores to prompt-response pairs, indicating how well a response aligns
 122 with human preferences. This process relies on a preference dataset $\mathcal{D}_{\text{pref}} = (x_i, y_i^+, y_i^-)_{i=1}^N$, where
 123 x_i is a prompt, y_i^+ is the preferred response, and y_i^- is the dispreferred response. The Bradley-Terry
 124 (BT) model (Bradley & Terry, 1952) is commonly used to model preference likelihoods.

125

$$126 P(y^+ \succ y^-) = \frac{e^{r(x, y^+)}}{e^{r(x, y^+)} + e^{r(x, y^-)}} = \sigma(r(x, y^+) - r(x, y^-)) \quad (1)$$

127

128 Here, r denotes the reward assigned to a prompt-response pair, and σ denotes the sigmoid function.
 129 We parameterize the reward function as r_ϕ , and use it to approximate the ground-truth reward function
 130 by maximizing the likelihood of the observed preference data under the Bradley-Terry model. For
 131 more details on the RLHF pipeline, refer to Appendix C

132

$$133 \min_{\phi} -\mathbb{E}_{(x, y^+, y^-) \sim \mathcal{D}_{\text{pref}}} [\log \sigma(r_\phi(x, y^+) - r_\phi(x, y^-))] \quad (2)$$

134

136 2.2 DIRECT PREFERENCE OPTIMIZATION

137

138 Direct Preference Optimization (DPO) (Rafailov et al., 2024b) belongs to a class of algorithms,
 139 called Direct Alignment Algorithms (DAAs) (Rafailov et al., 2024a), which aim to directly align a
 140 policy from preference data via supervised learning, without having to learn a reward model or use
 141 reinforcement learning. DPO utilizes the closed form solution of the optimal KL regularized reward
 142 policy (Peters & Schaal, 2007; Peng et al., 2019), and expresses the rewards in the Bradley-Terry
 143 preference model (Bradley & Terry, 1952), directly in terms of the optimal policy. This allows us to
 144 learn a parameterized optimal policy directly from the preference data, using Equation 3

145

$$146 \mathcal{L}_{\text{DPO}}(\pi_\theta; \pi_{\text{ref}}) = \mathbb{E}_{(x, y^+, y^-) \sim \mathcal{D}_{\text{pref}}} \left[-\log \sigma \left(\beta \log \frac{\pi_\theta(y^+|x)}{\pi_{\text{ref}}(y^+|x)} - \beta \log \frac{\pi_\theta(y^-|x)}{\pi_{\text{ref}}(y^-|x)} \right) \right] \quad (3)$$

147

148 The implicit reward assigned by the DPO model to a response y given a prompt x is $\beta \log \frac{\pi_\theta(y|x)}{\pi_{\text{ref}}(y|x)}$.
 149

150

151 2.3 MARGINS IN REWARD MODELING

152

153 Margins can be incorporated into the reward modeling phase of the RLHF pipeline to enforce not
 154 only that the reward model ranks the preferred response higher than the dispreferred one, but also that
 155 it assigns a sufficiently large difference in reward scores—either through fixed or adaptive margins.

156 The margin-based reward modeling loss can be expressed as:

157

$$158 \min_{\phi} -\mathbb{E}_{(x, y^+, y^-) \sim \mathcal{D}_{\text{pref}}} [\log \sigma(r_\phi(x, y^+) - r_\phi(x, y^-) - m(x, y^+, y^-))] \quad (4)$$

159

160 Here $m(x, y^+, y^-)$ denotes the margin term. In the fixed margin setting this can be a constant. In the
 161 adaptive-margin setting, it can be defined as a function of the preference instance, for example, based
 162 on the degree of discrepancy between the preferred and dispreferred responses.

162 **3 METHOD: ADAPTIVE MARGIN DPO WITH PREFERENCES OVER**
 163 **PREFERENCES**
 164

165 To obtain adaptive margin information, in which each preference datapoint is assigned a different
 166 margin, and stronger preferences are associated with larger margins than weaker ones, we propose
 167 preferences over preferences (PoP) supervision. Given two standard preference comparisons, such
 168 as $A \succ B$ and $C \succ D$, we collect a label indicating which of the two preferences is stronger, from
 169 a labeler. For example, if the supervision indicates that $(A \succ B) \succ (C \succ D)$, this means that the
 170 discrepancy between A and B is greater than that between C and D under the ground-truth reward
 171 function r . Formally, this implies:

172
$$r(A) - r(B) > r(C) - r(D)$$

 173

174 This insight allows us to treat the margin from the weaker preference (e.g., $r(C) - r(D)$) as a lower
 175 bound on the margin for the stronger preference (e.g., $A \succ B$). Rather than regressing to a specific
 176 value, we enforce that the margin for the stronger preference must be at least as large as that of the
 177 weaker one.

178 We assume access to a dataset of preference over preference examples:

179
$$\mathcal{D}_{\text{PoP}} = \{(x_{s_i}, y_{s_i}^+, y_{s_i}^-), (x_{w_i}, y_{w_i}^+, y_{w_i}^-)\}_{i=1}^N$$

 180

181 Here, $(x_{s_i}, y_{s_i}^+, y_{s_i}^-)$ represents the stronger preference in the pair, where x_{s_i} is the prompt, $y_{s_i}^+$ is
 182 the preferred response, and $y_{s_i}^-$ is the dispreferred response. Similarly, $(x_{w_i}, y_{w_i}^+, y_{w_i}^-)$ denotes the
 183 weaker preference, where x_{w_i} is the prompt, $y_{w_i}^+$ is the preferred response, and $y_{w_i}^-$ is the dispreferred
 184 response. Note that, unlike in standard reward modeling datasets, the prompts x_{s_i} and x_{w_i} can differ
 185 within a single PoP example, as PoP supervision compares the strength of entire preference instances,
 186 not individual responses.

187 We can express the adaptive margin reward modelling objective on a dataset of preferences over
 188 preferences as follows

190
$$\begin{aligned} \min_{\phi} \mathbb{E}_{\mathcal{D}_{\text{PoP}}} \bigg[& -\log \sigma(r_{\phi}(x_s, y_s^+) - r_{\phi}(x_s, y_s^-) \\ & - \text{sg}[r_{\phi}(x_w, y_w^+) - r_{\phi}(x_w, y_w^-)] \bigg] \end{aligned} \quad (5)$$

 191
 192
 193
 194

195 Here, $\text{sg}[\cdot]$ denotes the stop-gradient operator. Although the adaptive margin is computed using the
 196 reward model r_{ϕ} , we treat the margin derived from the weaker preference as a *fixed reference* during
 197 optimization. Applying the stop-gradient operator ensures that gradients do not propagate through
 198 this margin term, thereby preventing it from influencing updates to the reward model parameters ϕ .
 199 Without the stop-gradient operator, the objective would incentivize parameters that invert the weaker
 200 preference to minimize the loss.

201 We use the closed-form solution for the optimal policy of a KL regularized reward problem to express
 202 the rewards directly in terms of the optimal policy, as in DPO (Rafailov et al., 2024b). Parameterizing
 203 the optimal policy by θ , we end up with the DPO Preference-over-Preference loss

204
$$\begin{aligned} \min_{\theta} \mathbb{E}_{\mathcal{D}_{\text{PoP}}} \bigg[& -\log \sigma \left(\beta \left(\log \frac{\pi_{\theta}(y_s^+ | x_s)}{\pi_{\text{ref}}(y_s^+ | x_s)} - \log \frac{\pi_{\theta}(y_s^- | x_s)}{\pi_{\text{ref}}(y_s^- | x_s)} \right) \right. \\ & \left. - \text{sg} \left[\beta \left(\log \frac{\pi_{\theta}(y_w^+ | x_w)}{\pi_{\text{ref}}(y_w^+ | x_w)} - \log \frac{\pi_{\theta}(y_w^- | x_w)}{\pi_{\text{ref}}(y_w^- | x_w)} \right) \right] \right) \bigg] \end{aligned} \quad (6)$$

 205
 206
 207
 208
 209
 210

211 The DPO Preference-over-Preference (DPO-PoP) objective enables margin-aware alignment directly
 212 from PoP data using supervised learning, without requiring an explicit reward modeling stage or
 213 reinforcement learning. However, Equation 6 suffers from unstable gradients due to unbounded
 214 margins, resulting in a rapidly fluctuating loss that can explode during training. To mitigate this,
 215 we clip the margin values to lie within a fixed interval $[0, M_{\max}]$, where M_{\max} is a user-specified
 constant. Margin values outside this range are clipped to the nearest endpoint, using a clipping

216 function $\text{clip}_{[0, M_{\max}]}^{\text{ }}$, which improves optimization stability. Additionally, to further stabilize training,
 217 we compute the margins using a slowly-updated target policy $\pi_{\hat{\theta}}$, whose parameters $\hat{\theta}$ track the
 218 policy π via Polyak averaging over the model parameters θ . This prevents the margin estimates from
 219 changing too rapidly across training steps. With these modifications, our final DPO-PoP objective is
 220 given by Equation 7
 221

$$\begin{aligned} 223 \min_{\theta} \mathbb{E}_{\mathcal{D}_{\text{PoP}}} \left[-\log \sigma \left(\beta \left(\log \frac{\pi_{\theta}(y_s^+ | x_s)}{\pi_{\text{ref}}(y_s^+ | x_s)} - \log \frac{\pi_{\theta}(y_s^- | x_s)}{\pi_{\text{ref}}(y_s^- | x_s)} \right) \right. \right. \\ 224 \quad \left. \left. - \text{sg} \left[\text{clip}_{[0, M_{\max}]} \left(\beta \left(\log \frac{\pi_{\hat{\theta}}(y_w^+ | x_w)}{\pi_{\text{ref}}(y_w^+ | x_w)} - \log \frac{\pi_{\hat{\theta}}(y_w^- | x_w)}{\pi_{\text{ref}}(y_w^- | x_w)} \right) \right) \right] \right) \right] \quad (7) \\ 225 \\ 226 \\ 227 \\ 228 \end{aligned}$$

229 4 RESULTS

230 We focus on the following research questions: **[Q1]** Does using DPO-PoP lead to models with
 231 improved discriminative ability? **[Q2]** Does using DPO-PoP lead to models with improved generative
 232 ability? We investigate these questions by evaluating the performance of our models on the test
 233 split of the UltraFeedback dataset (Cui et al., 2024) and external benchmarks such as RewardBench
 234 (Lambert et al., 2024) and AlpacaEval-2 (Dubois et al., 2025). **More importantly, we also investigate**
 235 **[Q3]: Do the same trends observed in Q1 and Q2 hold when PoP annotations are gathered from an**
 236 **LLM annotator? This is important because it sheds light on whether PoP annotation is a practically**
 237 **viable alternative to rating-scale annotations for improving performance.**
 238

239 4.1 SYNTHETIC DATA EXPERIMENTS

240 4.1.1 GENERATING THE PREFERENCE OVER PREFERENCE DATA

241 We use the UltraFeedback (Cui et al., 2024) binarized dataset¹ for our evaluations. The dataset pro-
 242 vides scalar scores for the chosen and rejected responses, aggregated from multiple LLM evalua-
 243 tors. We compute the ground-truth margin for each preference as the score difference between the two
 244 responses, which also enables construction of PoP comparisons. Although a preference dataset of
 245 size $|D_{\text{pref}}|$ can yield up to $\frac{|D_{\text{pref}}|(|D_{\text{pref}}|-1)}{2}$ PoP pairs, we restrict the PoP dataset to $|D_{\text{PoP}}| = k|D_{\text{pref}}|$
 246 to keep it manageable. Appendix E provides justification for using smaller values of k and analyzes
 247 performance as a function of k ; we use $k = 2$ by default. We also exclude pairs whose margin
 248 differences are below one, as they represent nearly indistinguishable preferences.
 249

250 We evaluate two strategies for constructing the PoP dataset: one that represents each preference from
 251 the original dataset equally, and one that represents preferences in proportion to preference strength.
 252 We do this to explore the impact of different sampling strategies used to generate the PoP dataset, on
 253 downstream discriminative and generative performance. In the **iterative sampling** approach, each
 254 preference data point is equally represented by comparing it against k weaker preferences (as judged
 255 by their margins). In practice, without ground-truth margin data, we could choose a preference and
 256 provide comparison preferences, asking the user for a label. We only choose k preference pairs in
 257 which our chosen preference is judged to be stronger than the comparative preference. In contrast, the
 258 **random sampling** approach constructs the PoP dataset by randomly selecting pairs of preferences
 259 and labeling them based on their margins. This results in stronger preferences appearing more
 260 frequently in the PoP dataset than weaker ones. Furthermore, the **random sampling** approach is
 261 straightforward to implement in practice, in comparison to the iterative sampling approach, as this
 262 would only involve randomly sampling pairs of preferences and asking the annotator for a label. After
 263 generating the PoP dataset, we discard the original scalar scores and do not use them at any stage of
 264 model training.
 265

4.1.2 EXPERIMENTAL SETUP

266 We consider two models in our experiments: Llama-3.2-3b and Llama-3.1-8b (Grattafiori et al., 2024).
 267 Following the standard direct alignment pipeline, we align these models using the UltraFeedback
 268 preference dataset (Cui et al., 2024). We begin with a pretrained model and fine-tune it on the
 269

¹HuggingFaceH4/ultrafeedback_binarized

270 supervised fine-tuning (SFT) partition of the UltraFeedback dataset. Next, we align the models using
 271 the preference data from the same dataset. For further experimental details, refer to Appendix B
 272 We evaluate the following variants of Direct Preference Optimization (DPO):
 273

- 274 1. **Vanilla DPO**: No margin is used in the loss function.
- 275 2. **DPO-margin-1**: A fixed margin of 1 is applied to all preferences.
- 276 3. **DPO-margin-gt**: Ground-truth margin values from the UltraFeedback dataset are used.
- 277 4. **DPO-margin-gt-scaled**: This corresponds to the Scaled Bradley-Terry loss from Wang
 278 et al. (2025). The loss incorporates ground-truth margin information outside the log-sigmoid
 279 function rather than inside, effectively placing greater weight on preferences with larger
 280 margins. This can be interpreted as repeatedly sampling stronger preferences. The loss is
 281 defined as:
 282
$$\mathcal{L}_{\text{SBT}} = -m \log \sigma \left(\beta \log \frac{\pi_\theta(y^+|x)}{\pi_{\text{ref}}(y^+|x)} - \beta \log \frac{\pi_\theta(y^-|x)}{\pi_{\text{ref}}(y^-|x)} \right) \quad (8)$$
 283
- 284 5. **DPO-PoP-iter**: Margins are inferred from preference-over-preference (PoP) supervision,
 285 using a PoP dataset constructed via iterative sampling.
- 286 6. **DPO-PoP-random**: Margins are inferred from PoP supervision, using a PoP dataset con-
 287 structed via random sampling. This strategy can be interpreted as a bootstrapped version
 288 of the loss employed in DPO-margin-gt-scaled, along with a margin term (inside the log-
 289 sigmoid) that is inferred from preference-over-preference supervision.

291 We provide the results for Llama-3.2-3b here. Results for Llama-3.1-8b are provided in Appendix D

293 4.1.3 DISCRIMINATIVE ABILITY

294 We evaluate DPO-PoP’s discriminative ability and margin correlation. For each preference $A \succ B$, we
 295 compare the UltraFeedback score difference (ground truth) with the DPO implicit reward difference
 296 (prediction). High correlation indicates better generalization and calibrated preference strength
 297 estimation. We report both Spearman and Pearson correlations. The correlation metrics are only
 298 possible in this setting due to access to UltraFeedback scores and cannot be computed when PoP
 299 labels are annotator-generated; this analysis is provided purely for insight.

300 Table 1 shows that DPO-PoP-Iter attains the best test classification accuracy, outperforming even
 301 DPO-margin-gt, despite the latter having access to the true margin values.

302 The correlation metrics tell a different story: DPO-PoP-Random achieves the strongest Spearman
 303 and Pearson correlations, with DPO-PoP-Iter performing similarly on Spearman but substantially
 304 worse on Pearson. This suggests that DPO-PoP-Iter captures the correct ranking of preferences but
 305 its predicted margins are nonlinearly related to the true ones.

306 We also see that DPO-PoP-Random exhibits lower accuracy but higher correlations overall. Figure 2
 307 explains this tradeoff: DPO-PoP-Iter correctly classifies more weak-preference examples, boosting
 308 accuracy, whereas DPO-PoP-Random better captures strong preferences and is less influenced by
 309 noisy weak comparisons. As a result, DPO-PoP-Random maintains more faithful linear and ordinal
 310 relationships to the ground-truth margins, yielding superior Pearson and Spearman correlations.

311 We also report performance on RewardBench (Lambert et al., 2024) in Table 2. The DPO-PoP
 312 variants outperform all baselines, including those with access to ground-truth margins. Examining
 313 the Overall score, we observe that DPO-PoP-random achieves the highest performance. Notably,
 314 DPO-PoP-iter heavily outperforms all methods on the Chat split but also strongly underperforms on
 315 the Reasoning split—which comprises a larger portion of the dataset—resulting in a lower Overall
 316 score compared to DPO-PoP-random. In contrast, DPO-PoP-random delivers stable performance
 317 across all categories, securing the highest Overall score.

318 4.1.4 GENERATIVE ABILITY

319 Next, we use UltraRM (Cui et al., 2024) to evaluate the responses of each of the aligned models and
 320 compare the quality of their generations. We use Vanilla-DPO as the reference model against which
 321 the other DPO variants are judged. We calculate the win rate and the median advantage of each model
 322 vs Vanilla DPO, as judged by UltraRM. The advantage of a datapoint is the difference between the
 323 UltraRM rewards of the response generated by the test model and the reference model, for a given
 324 prompt. The median advantage of a model is computed as the median of these per-prompt advantages

324

325

326

327

328

329

330

331

332

333

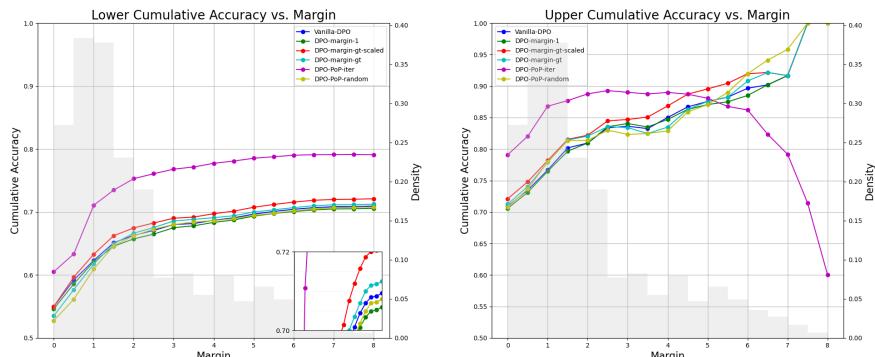
334

335

336

337

338



((a)) Lower Cumulative Accuracy vs Margin ((b)) Upper Cumulative Accuracy vs Margin

Figure 2: Cumulative Accuracy vs Margin for the different DPO variants considered. Lower Cumulative Accuracy at margin m indicates the accuracy of predicting preference labels using only datapoints with ground-truth margin less than or equal to m . Conversely, Upper Cumulative Accuracy reflects prediction accuracy on datapoints with ground-truth margin greater than or equal to m . The dark grey histogram shows the distribution (density) of margin values in the test set. In plot (a), DPO-PoP-Iter achieves higher accuracy on datapoints with lower margins, while in plot (b), its performance drops for higher margin datapoints. **The lower cumulative accuracy plot is zoomed in, to address a reviewers request.**

347

348

Algorithm	Pearson Correlation	Spearman Correlation	Accuracy (%)
Vanilla-DPO	0.2940 ± 0.0036	0.3003 ± 0.0036	71.15 ± 0.178
DPO-margin-1	0.2929 ± 0.0041	0.2984 ± 0.0045	7118 ± 0.28
DPO-margin-gt	0.3427 ± 0.0029	0.3451 ± 0.0028	71.85 ± 0.34
DPO-margin-gt-scaled	0.3381 ± 0.0037	0.3453 ± 0.0033	72.05 ± 0.16
DPO-PoP-iter	0.2449 ± 0.0017	0.3656 ± 0.0008	79.97 ± 0.41
DPO-PoP-random	0.3639 ± 0.0020	0.3685 ± 0.0010	71.09 ± 0.21

355

356

357

358

Table 1: Comparison of DPO variants on classification accuracy and Spearman, Pearson correlation with ground-truth margins for Llama-3.2-3b. **This table was modified to include confidence intervals over 6 seeds (including the earlier result) to address the reviewers’ questions during the rebuttals.**

359

360

361

over the entire test set. The results are displayed in the Table 3. We observe that DPO-PoP-random outperforms all other baselines in terms of win rate and median advantage. DPO-PoP-random which infers margins from PoP supervision, outperforms DPO variants that have access to ground truth margins.

364

365

366

We also report the performance of all the DPO variants on the AlpacaEval 2.0 benchmark (Dubois et al., 2025) in Table 4. DPO-PoP-random outperforms all other baselines both in terms of win-rate and length controlled win-rate.

367

368

369

In both Tables 3 and 4, we observe that DPO-PoP-iter underperforms compared to DPO-PoP-random and DPO-margin-gt. We hypothesize that this is due to correctly classifying weaker preferences at the expense of stronger preferences, as discussed in Section 4.1.3. By potentially overfitting to noisy weaker preferences, DPO-PoP-iter suffers a drop in generative performance.

371

372

4.2 LLM ANNOTATED PREFERENCE OVER PREFERENCE DATA EXPERIMENTS

373

374

375

376

Instead of using the margin information from the UltraFeedback dataset (Cui et al., 2024) to infer Preference-over-Preference (PoP) labels, we directly obtain PoP annotations from an LLM (GPT-4.1-mini). This setup serves as a test bed for evaluating PoP-based methods in realistic settings, where PoP labels would typically come from either LLM or human annotators.

377

To keep annotation cost low, we begin by randomly sampling 5,000 preference examples from UltraFeedback. This subset is used to train all baseline models. To construct the PoP dataset, we then

Algorithm	Chat	Chat Hard	Safety	Reasoning	Overall
Vanilla-DPO	75.65 ± 0.34	64.51 ± 0.51	71.49 ± 0.17	75.85 ± 0.46	75.46 ± 0.21
DPO-margin-1	76.86 ± 0.54	64.14 ± 0.21	71.19 ± 0.86	77.03 ± 0.23	75.78 ± 0.29
DPO-margin-gt	80.35 ± 0.38	63.27 ± 0.21	75.70 ± 0.31	78.05 ± 0.47	77.45 ± 0.25
DPO-margin-gt-scaled	80.87 ± 0.55	64.11 ± 0.53	75.47 ± 0.46	76.33 ± 0.27	77.13 ± 0.29
DPO-PoP-iter	87.71 ± 0.53	59.61 ± 0.50	81.28 ± 0.62	69.83 ± 1.35	76.73 ± 0.24
DPO-PoP-random	82.73 ± 0.80	62.54 ± 0.63	81.94 ± 1.07	76.44 ± 0.69	78.87 ± 0.25

Table 2: Performance of Llama-3.2-3b DPO variants on RewardBench. Higher is better. **This table was modified to include confidence intervals over 6 seeds (including the earlier result) to address the reviewers' questions during the rebuttals.**

Method	Median Advantage	Win Rate (%)
DPO-margin-1	0.2272 ± 0.0202	54.91 ± 0.34
DPO-margin-gt	0.5863 ± 0.0577	61.25 ± 1.15
DPO-margin-gt-scaled	0.1602 ± 0.0284	53.65 ± 0.64
DPO-PoP-iter	0.3887 ± 0.0452	57.76 ± 0.88
DPO-PoP-random	0.6745 ± 0.0506	62.39 ± 1.12

Table 3: Comparison of margin-based DPO variants against Vanilla DPO on median advantage and win rate for Llama-3.2-3b. **This table was modified to include confidence intervals over 6 seeds (including the earlier result) to address the reviewers' questions during the rebuttals.**

Experiment	Length-Controlled Win Rate	Win Rate	Avg Length
Vanilla-DPO	11.74 ± 0.74	11.37 ± 0.69	1800 ± 17
DPO-margin-1	11.74 ± 1.04	11.51 ± 1.04	1823 ± 29
DPO-margin-gt	12.40 ± 0.71	12.17 ± 0.58	1915 ± 42
DPO-margin-gt-scaled	10.99 ± 0.79	10.97 ± 0.71	1836 ± 19
DPO-PoP-iter	12.30 ± 0.70	12.26 ± 0.62	1919 ± 50
DPO-PoP-random	14.24 ± 1.06	13.69 ± 1.02	1846 ± 20

Table 4: Performance of Llama-3.2-3b DPO variants on the AlpacaEval 2.0 benchmark. **This table was modified to include confidence intervals over 6 seeds (including the earlier result) to address the reviewers' questions during the rebuttals.**

sample random pairs of preferences from this subset and ask the LLM to identify which preference in each pair is stronger. The resulting LLM-annotated PoP dataset is used to train DPO-PoP-Random. We focus on the Random variant because PoP annotations are far easier to obtain in this setting than those required for DPO-PoP-Iter. Following the setup in the synthetic data experiments, we use $k = 2$ and use the Llama3.2-3b model for our experiments. Additional experiments showing how performance of DPO-PoP algorithms is impacted by preference-over-preference labeling noise are provided in Appendix F. We also provide the prompt used to gather PoP annotations from an LLM in Appendix K.

4.2.1 DISCRIMINATIVE PERFORMANCE

The results showing the test classification accuracy on the UltraFeedback dataset (Cui et al., 2024) and RewardBench (Lambert et al., 2024) scores are in Tables 5 and 6 respectively.

4.2.2 GENERATIVE PERFORMANCE

The results displaying the win rate of the model responses as judged by UltraRM (Cui et al., 2024) and AlpacaEval 2.0 win rates (Dubois et al., 2025) are in Tables 7 and 8 respectively. The results demonstrate that DPO-PoP-Random outperforms all other baselines with respect to generative quality

Algorithm	Pearson Correlation	Spearman Correlation	Accuracy
Vanilla DPO	0.1180	0.1427	0.63
DPO-margin-1	0.1037	0.1276	0.61
DPO-margin-gt	0.1040	0.1237	0.61
DPO-margin-gt-scaled	0.1486	0.1712	0.64
DPO-PoP-random	0.1406	0.1649	0.63

Table 5: Comparison of DPO variants on classification accuracy and Spearman, Pearson correlation with ground-truth margins for Llama-3.2-3b. The PoP labels for DPO-PoP-Random are obtained from a GPT-4.1-mini annotated Preference-over-Preference dataset. **This table was newly added to address the reviewers' questions during the rebuttals.**

Model	Chat	Chat Hard	Safety	Reasoning	Overall
Vanilla-DPO	64.80	63.16	65.00	81.57	73.87
DPO-margin-1	61.45	62.72	63.92	82.89	73.20
DPO-margin-gt	60.89	62.72	64.32	83.43	73.47
DPO-margin-gt-scaled	68.16	61.62	64.32	81.06	73.53
DPO-PoP-random	59.50	62.94	62.43	85.01	73.47

Table 6: Performance of Llama-3.2-3b DPO variants on RewardBench. Higher is better. The PoP labels for DPO-PoP-Random are obtained from a GPT-4.1-mini annotated Preference-over-Preference dataset. All approaches achieve similar Overall performance on Reward Bench. DPO-PoP-Random outperforms all other baselines on the Reasoning split and DPO-margin-gt-scaled outperforms all other approaches significantly on the Chat split. **This table was newly added to address the reviewers' questions during the rebuttals.**

Method	Median Advantage	Win Rate (%)
DPO-margin-1	0.1719	54%
DPO-margin-gt	0.3750	58%
DPO-margin-gt-scaled	0.0938	53%
DPO-PoP-Random	0.9375	65%

Table 7: Comparison of margin-based DPO variants on median advantage and win rate for Llama-3.2-3B. The PoP labels for DPO-PoP-Random are obtained from a GPT-4.1-mini annotated Preference-over-Preference dataset. **This table was newly added to address the reviewers' questions during the rebuttals.**

Experiment	Length-Controlled Win Rate	Win Rate	Avg Length
Vanilla-DPO	8.85	7.33	1507
DPO-margin-1	9.47	7.95	1508
DPO-margin-gt	11.78	9.94	1573
DPO-margin-gt-scaled	8.25	6.83	1506
DPO-PoP-random	12.40	10.93	1630

Table 8: Performance of Llama-3.2-3b DPO variants on the AlpacaEval 2.0 benchmark. The PoP labels for DPO-PoP-Random are obtained from a GPT-4.1-mini annotated Preference-over-Preference dataset. **This table was newly added to address the reviewers' questions during the rebuttals.**

4.3 DISCRIMINATION VS GENERATION

We observe a trade-off between discriminative and generative performance. To improve generative performance, models should avoid overfitting to weaker preferences in the preference dataset. DPO-PoP-iter offers good discriminative performance on test data that is in-distribution with respect to the

486 training data, while it performs worse in terms of generative quality. DPO-PoP-random achieves good
 487 generative performance and is also robust in terms of discriminative performance, as supported by
 488 the RewardBench results in Table 2. These results enable informed choices: practitioners should use
 489 DPO-PoP-iter when the target is discriminative evaluation in a fixed domain and DPO-PoP-random
 490 when generative quality and robustness are priority. [We provide a discussion of this discriminative-
 491 generative tradeoff in Appendix I with corresponding theory in Appendix H](#). Furthermore, preference
 492 over preference annotations lead to significant generative performance gains when the size of the
 493 preference dataset is small, as seen in Appendix *E*

494 5 RELATED WORK

495 Techniques that employ margins have largely been employed in the reward modeling phase of the
 496 RLHF pipeline. Touvron et al. (2023) used margins derived from preference ratings given by human
 497 annotators, in order to train reward models, and showed that the margin term can help the helpfulness
 498 reward model accuracy, especially when the two responses are more separable. Wang et al. (2025)
 499 propose Scaled Bradley-Terry loss, a margin based reward modeling objective that uses the margins
 500 derived from preference ratings in order to scale the loss for each datapoint. This can be seen as
 501 upsampling preferences for which the margin is higher. They show that the scaled loss variant leads to
 502 better performance than the margin loss variant proposed in Touvron et al. (2023). Wang et al. (2024b)
 503 propose Reward Difference Optimization, that also uses a scaled loss, but uses margins computed
 504 from a learned reward model to scale each data point. DPO-PoP-random can be interpreted as a
 505 bootstrapped variant of the Scaled Bradley-Terry loss(Wang et al., 2025; 2024b). Other approaches
 506 compute margins in different ways. Qin et al. (2024) define the margin as the average difference
 507 between the rewards of the chosen and rejected responses within each training batch. Wang et al.
 508 (2024a) use an ensemble of reward models and calculate the margin as the average reward difference
 509 across the ensemble for each preference.

510 In the case of Direct Alignment Algorithms (Rafailov et al., 2024a), IPO (Azar et al., 2023) and SLiC
 511 (Zhao et al., 2023) can also be interpreted in terms of margin, wherein IPO regresses the difference of
 512 implicit rewards to a fixed margin, whereas SLiC uses hinge loss with a fixed margin. Amini et al.
 513 (2024), propose ODPO, which is a variant of DPO with an offset. They use a reward model to label
 514 the preference data and also to provide the margin values to be used in the ODPO loss. Another
 515 approach, α -DPO (Wu et al., 2024a), redefines the reference policy $\hat{\pi}_{\text{ref}}$, to blend between the policy
 516 π and the reference policy π_{ref} , to achieve personalized reward margins. Wu et al. (2024b) observe
 517 that the optimal β value for the DPO loss depends on the informativeness of the pairwise preference
 518 data, and they propose β -DPO, which dynamically calibrates β at the batch level based on data
 519 quality. Our approach, DPO-PoP, on the other hand, gathers preference over preference information
 520 from an annotator to infer the margin values.

521 6 CONCLUSION

522 We introduced DPO-PoP, a framework that integrates adaptive margins into the DPO loss using
 523 preference-over-preference (PoP) supervision. Unlike prior approaches that derive margins from
 524 scalar preference ratings—whether provided by annotators or estimated via reward models—DPO-
 525 PoP infers margins directly from ordinal comparisons between preferences. We explored two PoP
 526 data sampling strategies: random and iterative. Our results show that improving discriminative
 527 performance by better modeling weaker preferences, as in DPO-PoP-iter, can come at the expense
 528 of generative quality. Furthermore, we show that DPO-PoP-random achieves better generative
 529 performance than DPO baselines using fixed or score-derived margins, while maintaining robust
 530 discriminative accuracy, as demonstrated on RewardBench.

531 These findings offer a practical takeaway for RLHF applications: DPO-PoP provides a way to
 532 perform margin-aware alignment using preference-over-preference annotation that is fine-grained in
 533 terms of resolution, compared to providing numerical scores. Practitioners can choose the sampling
 534 strategy based on their goals—favoring iterative sampling when discriminative performance is critical
 535 in-domain, and random sampling when prioritizing general-purpose generation and robustness

536 REFERENCES

537 Afra Amini, Tim Vieira, and Ryan Cotterell. Direct preference optimization with an offset. *arXiv*
 538 *preprint arXiv:2402.10571*, 2024.

540 Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal
 541 Valko, and Rémi Munos. A general theoretical paradigm to understand learning from human
 542 preferences, 2023. URL <https://arxiv.org/abs/2310.12036>.

543

544 Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to statistical learning theory.
 545 In *Advanced Lectures on Machine Learning*, 2004. URL <https://api.semanticscholar.org/CorpusID:669378>.

546

547 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
 548 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

549

550 Nichola Burton, Michael Burton, Dan Rigby, Clare AM Sutherland, and Gillian Rhodes. Best-
 551 worst scaling improves measurement of first impressions. *Cognitive research: principles and*
 552 *implications*, 4(1):36, 2019.

553

554 Yaswanth Chittepu, Blossom Metevier, Will Schwarzer, Austin Hoag, Scott Niekum, and Philip S.
 555 Thomas. Reinforcement learning from human feedback with high-confidence safety constraints,
 556 2025. URL <https://arxiv.org/abs/2506.08266>.

557

558 Corinna Cortes and Vladimir Vapnik. Support-vector networks. *Machine learning*, 20:273–297,
 559 1995.

560

561 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie,
 562 Ruobing Xie, Yankai Lin, Zhiyuan Liu, and Maosong Sun. Ultrafeedback: Boosting language
 563 models with scaled ai feedback, 2024. URL <https://arxiv.org/abs/2310.01377>.

564

565 Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and Yaodong
 566 Yang. Safe rlhf: Safe reinforcement learning from human feedback, 2023. URL <https://arxiv.org/abs/2310.12773>.

567

568 Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B. Hashimoto. Length-controlled
 569 alpacaeval: A simple way to debias automatic evaluators, 2025. URL <https://arxiv.org/abs/2404.04475>.

570

571 Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting algorithm. In *icml*,
 572 volume 96, pp. 148–156. Citeseer, 1996.

573

574 Aaron Grattafiori et al. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

575

576 Mai Lan Ha and Volker Blanz. Deep ranking with adaptive margin triplet loss. *arXiv preprint*
 577 *arXiv:2107.06187*, 2021.

578

579 John C Handley. Comparative analysis of bradley-terry and thurstone-mosteller paired comparison
 580 models for image quality assessment. In *PICS*, volume 1, pp. 108–112, 2001.

581

582 R. Herbrich and J. Weston. Adaptive margin support vector machines for classification. In *1999*
 583 *Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ. No. 470)*,
 584 volume 2, pp. 880–885 vol.2, 1999. doi: 10.1049/cp:19991223.

585

586 Yuge Huang, Yuhang Wang, Ying Tai, Xiaoming Liu, Pengcheng Shen, Shaoxin Li, Jilin Li, and Feiyue
 587 Huang. Curricularface: adaptive curriculum learning loss for deep face recognition. In *proceedings*
 588 *of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 5901–5910, 2020.

589

590 Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Ágata Lapedriza, Noah J.
 591 Jones, Shixiang Shane Gu, and Rosalind W. Picard. Way off-policy batch deep reinforcement
 592 learning of implicit human preferences in dialog. *ArXiv*, abs/1907.00456, 2019. URL <https://api.semanticscholar.org/CorpusID:195766797>.

593

Svetlana Kiritchenko and Saif M Mohammad. Best-worst scaling more reliable than rating scales: A
 594 case study on sentiment intensity annotation. *arXiv preprint arXiv:1712.01765*, 2017.

594 Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
 595 Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh Hajishirzi.
 596 Rewardbench: Evaluating reward models for language modeling, 2024. URL <https://arxiv.org/abs/2403.13787>.

598 Michel Ledoux and Michel Talagrand. Probability in banach spaces: Isoperimetry and processes.
 599 1991. URL <https://api.semanticscholar.org/CorpusID:118526268>.

600 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 601 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 602 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 603 27744, 2022.

604 Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
 605 Simple and scalable off-policy reinforcement learning, 2019. URL <https://arxiv.org/abs/1910.00177>.

606 Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
 607 space control. In *Proceedings of the 24th international conference on Machine learning*, pp.
 608 745–750, 2007.

609 Bowen Qin, Duanyu Feng, and Xi Yang. Towards understanding the influence of reward margin on
 610 preference model performance, 2024. URL <https://arxiv.org/abs/2404.04932>.

611 Rafael Rafailov, Yaswanth Chittepu, Ryan Park, Harshit Sikchi, Joey Hejna, Bradley Knox, Chelsea
 612 Finn, and Scott Niekum. Scaling laws for reward model overoptimization in direct alignment
 613 algorithms, 2024a. URL <https://arxiv.org/abs/2406.02900>.

614 Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
 615 Finn. Direct preference optimization: Your language model is secretly a reward model, 2024b.
 616 URL <https://arxiv.org/abs/2305.18290>.

617 Robert E Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: A new
 618 explanation for the effectiveness of voting methods. *The annals of statistics*, pp. 1651–1686, 1998.

619 Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to
 620 algorithms*. Cambridge university press, 2014.

621 Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
 622 Dario Amodei, and Paul Christiano. Learning to summarize from human feedback, 2022. URL
 623 <https://arxiv.org/abs/2009.01325>.

624 Louis L Thurstone. A law of comparative judgment. In *Scaling*, pp. 81–92. Routledge, 2017.

625 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 626 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 627 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

628 Manya Wadhwa, Jifan Chen, Junyi Jessy Li, and Greg Durrett. Using natural language explanations
 629 to rescale human judgments, 2024. URL <https://arxiv.org/abs/2305.14770>.

630 Binghai Wang, Rui Zheng, Lu Chen, Yan Liu, Shihan Dou, Caishuang Huang, Wei Shen, Senjie Jin,
 631 Enyu Zhou, Chenyu Shi, Songyang Gao, Nuo Xu, Yuhao Zhou, Xiaoran Fan, Zhiheng Xi, Jun
 632 Zhao, Xiao Wang, Tao Ji, Hang Yan, Lixing Shen, Zhan Chen, Tao Gui, Qi Zhang, Xipeng Qiu,
 633 Xuanjing Huang, Zuxuan Wu, and Yu-Gang Jiang. Secrets of rlhf in large language models part ii:
 634 Reward modeling, 2024a. URL <https://arxiv.org/abs/2401.06080>.

635 Shiqi Wang, Zhengze Zhang, Rui Zhao, Fei Tan, and Cam Tu Nguyen. Reward difference optimiza-
 636 tion for sample reweighting in offline rlhf, 2024b. URL <https://arxiv.org/abs/2408.09385>.

637 Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams, Makesh Narasimhan Sreedhar, Daniel Egert,
 638 Olivier Delalleau, Jane Polak Scowcroft, Neel Kant, Aidan Swope, and Oleksii Kuchaiev. Helpsteer:
 639 Multi-attribute helpfulness dataset for steerlm, 2023. URL <https://arxiv.org/abs/2311.09528>.

648 Zhilin Wang, Alexander Bukharin, Olivier Delalleau, Daniel Egert, Gerald Shen, Jiaqi Zeng, Oleksii
 649 Kuchaeiv, and Yi Dong. Helpsteer2-preference: Complementing ratings with preferences, 2025.
 650 URL <https://arxiv.org/abs/2410.01257>.

651
 652 Junkang Wu, Xue Wang, Zhengyi Yang, Jiancan Wu, Jinyang Gao, Bolin Ding, Xiang Wang, and
 653 Xiangnan He. α -dpo: Adaptive reward margin is what direct preference optimization needs, 2024a.
 654 URL <https://arxiv.org/abs/2410.10148>.

655 Junkang Wu, Yuexiang Xie, Zhengyi Yang, Jiancan Wu, Jinyang Gao, Bolin Ding, Xiang Wang,
 656 and Xiangnan He. β -dpo: Direct preference optimization with dynamic β , 2024b. URL <https://arxiv.org/abs/2407.08639>.

657
 658 Xiao Zhang, Rui Zhao, Yu Qiao, Xiaogang Wang, and Hongsheng Li. Adacos: Adaptively scaling
 659 cosine logits for effectively learning deep face representations, 2019. URL <https://arxiv.org/abs/1905.00292>.

660
 661 Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf:
 662 Sequence likelihood calibration with human feedback. *arXiv preprint arXiv:2305.10425*, 2023.

663
 664

665 A LARGE LANGUAGE MODEL USAGE

666 Large Language Models (LLMs) were used solely for grammatical editing and improving writing
 667 flow. The research methodology, experimental design, data analysis, and all scientific conclusions are
 668 entirely the work of the human authors.

670 B EXPERIMENT DETAILS

671 The hyperparameters used in our experiments for SFT and DPO are provided in Table 9 and Table
 672 10 respectively. For DPO-PoP, we used the same hyperparameters used for DPO. For the DPO-PoP
 673 specific hyperparameters we set the clipping threshold $M_{\max} = 10$ and the size of the PoP dataset
 674 to 120,000 (twice the size of the preference dataset in UltraFeedback, i.e $k = 2$). All models were
 675 trained using 4 Nvidia A100 80G GPUs. The code is available at [removed for review](https://github.com/removedforreview)

678 Hyperparameter	679 Value
680 Epochs	681 1
681 Max Sequence Length	682 2048
682 Per-device Train Batch Size	683 2
683 Per-device Eval Batch Size	684 2
684 Gradient Accumulation Steps	685 8
685 Gradient Checkpointing	686 True
686 Num GPUs	687 4
687 Learning Rate	688 2e-5
688 Learning Rate Scheduler	Cosine
Weight Decay	0

689
 690 Table 9: Training hyperparameters used for SFT

691 C REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

692 Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022) is the predominant
 693 paradigm for aligning language models with human intent. The RLHF pipeline typically begins with
 694 a pre-trained language model trained on an internet-scale corpus and proceeds through three stages.
 695 We briefly describe each stage below:

696 **Supervised Fine Tuning** In the SFT stage, the model is fine-tuned to follow instructions by autore-
 697 gressively predicting the next token in a sequence using Maximum Likelihood Estimation (MLE).
 698 This stage uses a dataset \mathcal{D}_{SFT} consisting of prompt-response pairs (x, y) , where x is a prompt and
 699 y is a high-quality response. These responses are either human-annotated or generated by large
 700 language models.

702	Hyperparameter	Value
703	Epochs	1
704	Max Sequence Length	2048
705	Per-device Train Batch Size	2
706	Per-device Eval Batch Size	2
707	Gradient Accumulation Steps	8
708	Gradient Checkpointing	True
709	Num GPUs	4
710	Learning Rate	1e-6
711	Learning Rate Scheduler	Cosine
712	Learning Rate Warmup Ratio	0.03
713	Weight Decay	0.05
714	Beta	0.1

715
716 Table 10: Training hyperparameters used for DPO
717
718

719 **Reward Modeling** In the reward modeling stage, a reward model is trained to assign scalar scores to
 720 prompt-response pairs, indicating how well a response aligns with human preferences. This process
 721 relies on a preference dataset $\mathcal{D}_{\text{pref}} = (x_i, y_i^+, y_i^-)_{i=1}^N$, where x_i is a prompt, y_i^+ is the preferred
 722 response, and y_i^- is the dispreferred response. Preference labels are typically provided by human
 723 annotators or large language models. The Bradley-Terry (BT) model (Bradley & Terry, 1952) is
 724 commonly used to model the likelihood of observed preferences.

$$725 \\ 726 P(y^+ \succ y^-) = \frac{e^{r(x, y^+)}}{e^{r(x, y^+)} + e^{r(x, y^-)}} = \sigma(r(x, y^+) - r(x, y^-)) \quad (9) \\ 727 \\ 728$$

729 Here, r denotes the reward assigned to a prompt-response pair, and σ denotes the logistic (sigmoid)
 730 function. We parameterize the reward function as r_ϕ , where ϕ represents the model parameters, and
 731 use it to approximate the ground-truth reward function. The reward model is trained by maximizing
 732 the likelihood of the observed preference data under the Bradley-Terry model.

$$733 \\ 734 \min_{\phi} -\mathbb{E}_{(x, y^+, y^-) \sim \mathcal{D}_{\text{pref}}} [\log \sigma(r_\phi(x, y^+) - r_\phi(x, y^-))] \quad (10) \\ 735$$

736 **Reinforcement Learning** In the reinforcement learning stage, the language model is optimized to
 737 generate responses that maximize the reward assigned by the learned reward model r_ϕ . However,
 738 directly optimizing for this reward can degrade response quality, as the policy may overfit to imper-
 739 fections in the learned reward function and begin producing unnatural outputs (Jaques et al., 2019;
 740 Stiennon et al., 2022).

741 To mitigate this, a KL divergence constraint is added to ensure that the updated policy does not
 742 deviate too far from a reference policy, usually taken to be the supervised fine-tuning (SFT) policy.
 743 The resulting RL objective, with a KL penalty coefficient β , is given by:

$$744 \\ 745 \max_{\theta} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(\cdot | x)} [r_\phi(x, y)] - \beta \mathbb{D}_{KL}[\pi_{\theta}(y|x) || \pi_{ref}(y|x)] \quad (11) \\ 746 \\ 747$$

748 Additionally, some approaches (Chittipedu et al., 2025; Dai et al., 2023) enforce safety and harmlessness
 749 by augmenting the objective in Equation 11 with an explicit cost constraint.

750 751 D RESULTS FOR LLAMA-3.1-8B

752 D.1 DISCRIMINATIVE PERFORMANCE

753 The results showing the test classification accuracy on the UltraFeedback dataset (Cui et al., 2024)
 754 and RewardBench (Lambert et al., 2024) scores are in Tables 11 and 12 respectively.

Algorithm	Pearson Correlation	Spearman Correlation	Accuracy
Vanilla DPO	0.3151	0.3244	0.69
DPO-margin-1	0.3161	0.3243	0.69
DPO-margin-gt	0.3791	0.3715	0.70
DPO-margin-gt-scaled	0.3633	0.3669	0.71
DPO-PoP-iter	0.2183	0.3868	0.82
DPO-PoP-random	0.3962	0.3871	0.71

Table 11: Comparison of DPO variants on classification accuracy and Spearman, Pearson correlation with ground-truth margins for Llama-3.1-8b.

Model	Chat	Chat Hard	Safety	Reasoning	Overall
Vanilla-DPO	73.46	63.60	57.03	76.69	71.59
DPO-margin-1	71.23	62.94	57.16	77.07	71.39
DPO-margin-gt	79.05	65.79	60.95	76.84	73.67
DPO-margin-gt-scaled	76.26	62.28	62.43	76.11	72.96
DPO-PoP-iter	86.59	61.84	72.03	72.05	75.41
DPO-PoP-random	81.56	66.89	68.51	76.95	76.25

Table 12: Performance of Llama-3.1-8b DPO variants on RewardBench. Higher is better.

D.2 GENERATIVE PERFORMANCE

The results displaying the win rate of the model responses as judged by UltraRM (Cui et al., 2024) and AlpacaEval 2.0 win rates (Dubois et al., 2025) are in Tables 13 and 14 respectively.

Method	Median Advantage	Win Rate %
DPO-margin-1	0.2813	55%
DPO-margin-gt	0.5000	59%
DPO-margin-gt-scaled	0.0938	52%
DPO-PoP-iter	0.3496	56%
DPO-PoP-random	0.7500	63%

Table 13: Comparison of margin-based DPO variants against Vanilla DPO on median advantage and win rate for Llama-3.1-8b.

Experiment	Length-Controlled Win Rate	Win Rate	Avg Length
Vanilla-DPO	10.38	10.56	1869
DPO-margin-1	11.07	11.06	1864
DPO-margin-gt	11.23	11.30	1825
DPO-margin-gt-scaled	10.95	11.43	1881
DPO-PoP-iter	12.89	13.42	2004
DPO-PoP-random	14.62	14.78	1909

Table 14: Performance of Llama-3.1-8b DPO variants on the AlpacaEval 2.0 benchmark.

E EFFECT OF POP DATA SCALE ON PERFORMANCE

In order to study the effect of the PoP data scale on model performance, we consider the Llama-3.2-3B model and begin with an initial subset of preferences of size $|\mathcal{D}_{\text{pref}}| = 7500$. We then generate a Preference-over-Preference (PoP) dataset of size $k \cdot |\mathcal{D}_{\text{pref}}|$, where $k \in \{1, 2, 4, 8, 16\}$. This procedure is carried out using both iterative and random sampling strategies for generating the PoP data. The

810 baseline DPO variants are all trained on the same subset of 7500 preferences used to construct the
 811 PoP dataset.
 812

813 **E.1 DISCRIMINATIVE PERFORMANCE**
 814

Algorithm	Pearson Correlation	Spearman's Correlation	Accuracy
Vanilla-DPO	0.1450	0.1708	0.64
DPO-margin-1	0.1374	0.1609	0.64
DPO-margin-gt	0.1855	0.2091	0.65
DPO-margin-gt-scaled	0.1441	0.1656	0.64

821 Table 15: Comparison of baseline DPO variants trained on a subset of preferences ($|\mathcal{D}_{\text{pref}}| = 7500$),
 822 evaluated on classification accuracy and correlation with ground-truth margins for Llama-3.2-3b.
 823

Data Size Multiplier k	Pearson Correlation	Spearman's Correlation	Accuracy
1	0.2229	0.2463	0.67
2	0.2193	0.2429	0.67
4	0.2127	0.2325	0.65
8	0.2183	0.2268	0.64
16	0.2223	0.2236	0.63

824 Table 16: Performance of DPO-PoP-iter for varying values of k , evaluated on classification accuracy
 825 and correlation with ground-truth margins for Llama-3.2-3b.
 826

Data Size Multiplier k	Pearson Correlation	Spearman's Correlation	Accuracy
1	0.2386	0.2614	0.67
2	0.2403	0.2638	0.66
4	0.2362	0.2556	0.66
8	0.2322	0.2454	0.65
16	0.2265	0.2354	0.66

832 Table 17: Performance of DPO-PoP-random for varying values of k , evaluated on classification
 833 accuracy and correlation with ground-truth margins for Llama-3.2-3b.
 834

835 Comparing Table 15 with Tables 16 and 17, we observe that the DPO-PoP variants consistently
 836 outperform the DPO baselines in terms of discriminative performance, including those baselines that
 837 have access to ground-truth margins. Furthermore, increasing the data size multiplier k results in a
 838 decline in classification accuracy and correlation metrics with respect to the ground-truth margins for
 839 both DPO-PoP variants. Notably, this performance degradation is more pronounced in DPO-PoP-iter
 840 than in DPO-PoP-random. These findings suggest that, when prioritizing discriminative performance,
 841 using smaller values of k (e.g., $k = 1$ or $k = 2$) is advisable.
 842

843 **E.2 GENERATIVE PERFORMANCE**
 844

Method	Median Advantage	Win Rate
DPO-margin-1	0.2500	0.56
DPO-margin-gt	0.4844	0.60
DPO-margin-gt-scaled	0.0313	0.51

861 Table 18: Median advantage and win rate of various DPO baseline variants over Vanilla-DPO, for
 862 Llama-3.2-3b. All models are trained on a subset of preferences with $|\mathcal{D}_{\text{pref}}| = 7500$.
 863

	Data Size Multiplier k	Median Advantage	Win Rate
864	1	0.2813	0.55
865	2	1.1250	0.68
866	4	1.7813	0.77
867	8	1.7188	0.75
868	16	1.4629	0.69
869			
870			

871
872 Table 19: Median advantage and win rate of DPO-PoP-iter over Vanilla-DPO for different values of
873 k , for Llama-3.2-3b.
874

	Data Size Multiplier k	Median Advantage	Win Rate
876	1	0.4688	0.57
877	2	1.2500	0.71
878	4	1.7969	0.77
879	8	1.8711	0.77
880	16	1.5547	0.72

881
882 Table 20: Median advantage and win rate of DPO-PoP-random over Vanilla-DPO for different values
883 of k , for Llama-3.2-3b.
884

885 Looking at Tables 19 and 20, we observe that the win rate initially increases with the data size
886 multiplier k , before eventually declining. Additionally, DPO-PoP-random appears to be more robust
887 to the choice of k than DPO-PoP-iter when considering win rate. When prioritizing generative
888 ability, a moderately larger value of k (e.g., $k = 4$ or $k = 8$) is preferable. More importantly, when
889 comparing with Table 18, we find that in a small-data regime, DPO-PoP variants achieve substantially
890 higher win rates than the DPO baselines—including those with access to ground-truth margins.

F EFFECT OF POP LABELING NOISE ON PERFORMANCE

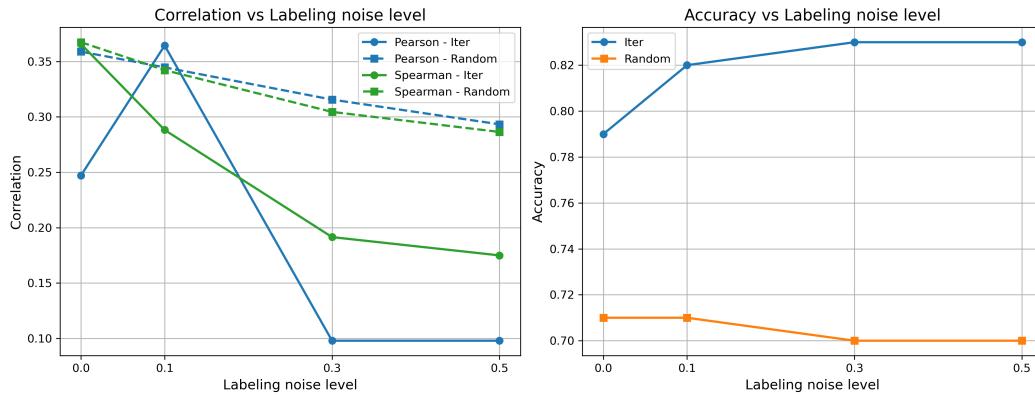
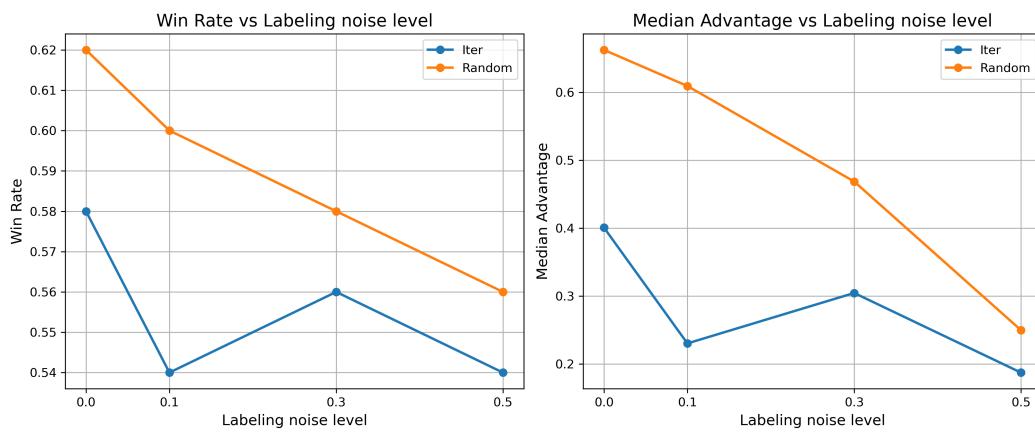
893 We investigate the sensitivity of our DPO-PoP approaches to noise in PoP labels collected from
894 annotators. Given our PoP dataset $|\mathcal{D}_{\text{PoP}}|$, we introduce label noise by randomly flipping PoP labels
895 with probability ϵ . We use the Llama-3.2-3b model and experiment with three different noise levels:
896 $\epsilon \in \{0.1, 0.3, 0.5\}$. We evaluate both the discriminative and generative performance of models
897 trained on these perturbed datasets.

F.1 DISCRIMINATIVE PERFORMANCE

900 We observe from Figure 3 that both the Spearman and Pearson correlations for DPO-PoP-iter and
901 DPO-PoP-random decrease as the noise level increases. Notably, this decline in correlation is
902 more pronounced for DPO-PoP-iter compared to DPO-PoP-random. From the accuracy plot, we
903 surprisingly find that the test classification accuracy of DPO-PoP-iter slightly increases with added
904 noise, while it marginally decreases for DPO-PoP-random. We hypothesize that label noise induces a
905 regularizing effect in DPO-PoP-iter, which helps mitigate its tendency to overfit to weaker preferences.

F.2 GENERATIVE PERFORMANCE

908 We observe from Figure 4 that both the win rate and median advantage for DPO-PoP-random decrease
909 as the noise level increases. The win rate and median advantage for DPO-PoP-Iter also display a
910 declining trend as noise increases.

918
919
920
921
922
923937
938
Figure 3: Spearman and Pearson correlations (left), and test classification accuracy (right) of DPO-
PoP models trained with varying levels of label noise.939
940
941
942
943
944
945
946
947
948
949950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
Figure 4: Win rates (left) and median advantage (right) of DPO-PoP models trained with varying
levels of label noise.967
968
969
970
971

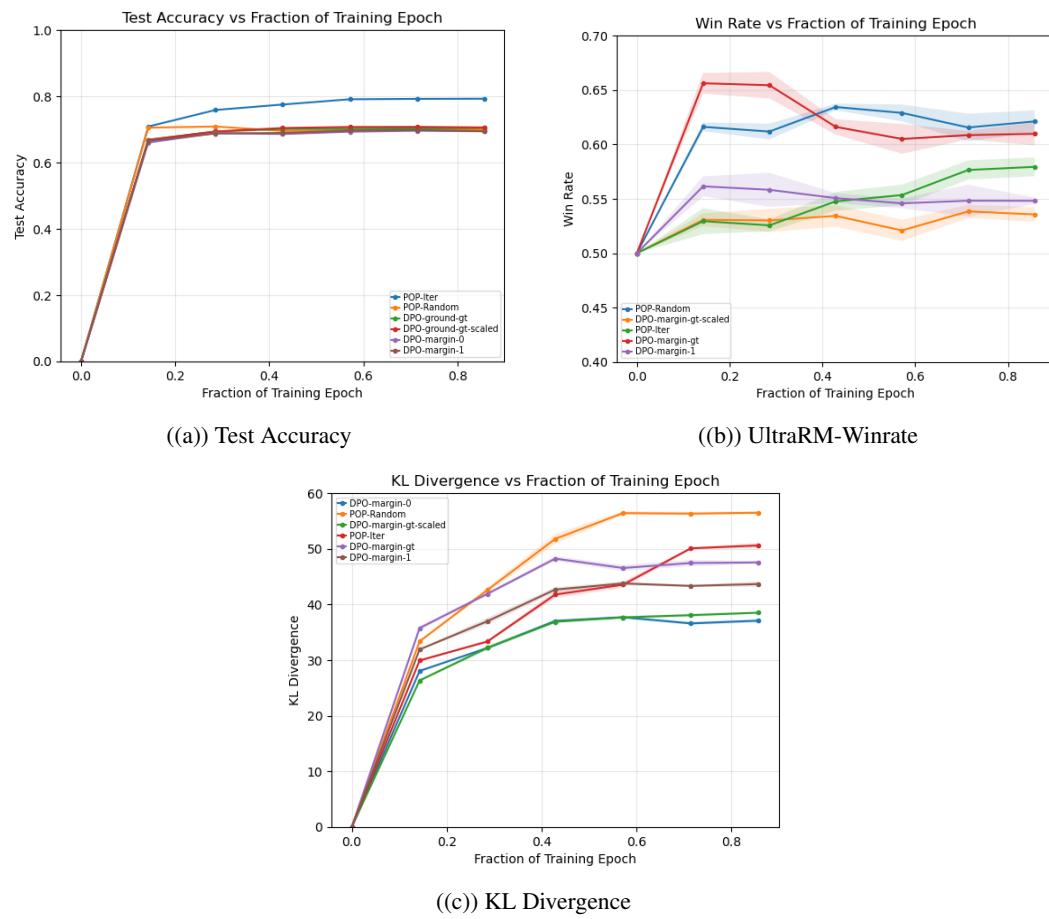


Figure 5: Training curves for test classification accuracy, UltraRM-winrate, and KL with respect to the reference policy.

G EVOLUTION OF METRICS OVER TRAINING

In this section, we present the evolution of test classification accuracy, the KL divergence with respect to the reference policy, and the Ultra-RM win rate over the course of training, in Figure 5. Note that for the POP methods, because we use $k = 2$, the effective training budget is doubled; this is due to the training dataset being twice the size of the original preference dataset. The plots are averaged over 5 seeds. We point that for the KL and test classification accuracy plots, the confidence intervals are very small, which is why they are not visible in the plots.

H BOUNDS ON THE GENERALIZATION PERFORMANCE OF ADAPTIVE MARGIN CLASSIFIERS

Here, we analyze the generalization performance of adaptive margin classifiers from a theoretical perspective. We restrict ourselves to reward model inference from preferences. Furthermore, we assume linear reward functions. The reward difference between chosen and rejected responses in a preference pair (x, y^+, y^-) can be expressed as $g_w(\psi) = r(x, y^+) - r(x, y^-) = w^T \psi(x, y^+, y^-)$.

H.1 SETTING

Let (Ψ, M) be a random pair with distribution \mathcal{D} , where

$$\Psi \in \mathbb{R}^d, \quad M \in (0, \infty).$$

1026 Here Ψ and M are random variables corresponding to feature differences and margins respectively.
 1027 We observe an i.i.d. sample

$$1028 \quad S = \{(\psi_i, m_i)\}_{i=1}^n \sim \mathcal{D}^n.$$

1029 Assume

$$1031 \quad \|\psi_i\|_2 \leq R \quad \text{for all } i = 1, \dots, n, \quad (12)$$

1032 for some $R > 0$. We consider linear predictors $w \in \mathbb{R}^d$ with

$$1034 \quad \|w\|_2 \leq \Lambda, \quad (13)$$

1035 for some $\Lambda > 0$. For w and a data point (ψ, m) we define the score

$$1037 \quad g_w(\psi) := w^\top \psi.$$

1039 The *test misclassification error* of w (with no access to M at test time) is

$$1040 \quad L(w) := \Pr_{(\Psi, M) \sim \mathcal{D}}(g_w(\Psi) \leq 0). \quad (14)$$

1042 For each training point i , define

$$1044 \quad g_i(w) := g_w(\psi_i) = w^\top \psi_i.$$

1046 **Adaptive-margin logistic loss.** Given a per-example margin $m_i > 0$, define the *shifted logistic loss*

$$1048 \quad \ell_i(w) := \log(1 + \exp(-(g_i(w) - m_i))). \quad (15)$$

1049 The empirical adaptive-margin logistic loss is

$$1051 \quad \hat{L}_{\log}(w) := \frac{1}{n} \sum_{i=1}^n \ell_i(w) = \frac{1}{n} \sum_{i=1}^n \log(1 + \exp(-(w^\top \psi_i - m_i))). \quad (16)$$

1054 **Ramp loss with per-example margin.** For $m > 0$ define the (margin- m) ramp loss

$$1056 \quad \Phi_m(u) := \begin{cases} 1, & u \leq 0, \\ 1 - \frac{u}{m}, & 0 < u < m, \\ 0, & u \geq m. \end{cases} \quad (17)$$

1061 Note that $0 \leq \Phi_m(u) \leq 1$ for all u and m , and that

$$1062 \quad \mathbf{1}\{u \leq 0\} \leq \Phi_m(u) \quad \text{for all } u \in \mathbb{R}, m > 0. \quad (18)$$

1064 H.2 MAIN THEOREM

1066 We now state the desired generalization bound, in which the empirical term is exactly (up to a
 1067 universal constant factor) the empirical adaptive-margin logistic loss equation 16.

1069 **Theorem 1** (Adaptive-margin logistic generalization bound). *Assume equation 12 and equation 13,
 1070 and let $\delta \in (0, 1)$. Then with probability at least $1 - \delta$ over the sample $S \sim \mathcal{D}^n$, we have
 1071 simultaneously for all w with $\|w\|_2 \leq \Lambda$,*

$$1073 \quad \Pr_{(\Psi, M) \sim \mathcal{D}}(w^\top \Psi \leq 0) \leq \frac{1}{\log 2} \hat{L}_{\log}(w) + \frac{2\Lambda R}{n} \sqrt{\sum_{i=1}^n \frac{1}{m_i^2}} + \sqrt{\frac{2 \log(2/\delta)}{n}}. \quad (19)$$

1076 *In particular, the left-hand side depends only on the test score $w^\top \Psi$ and does not require access to M
 1077 at test time; the adaptive margins m_i appear only in the empirical loss and in the margin-distribution
 1078 complexity term.*

1079 The rest of this note is devoted to the proof.

1080 H.3 FROM 0-1 LOSS TO RAMP LOSS
1081

1082 We first express the test error equation 14 in terms of the ramp loss equation 17.

1083 **Lemma 1.** For any $w \in \mathbb{R}^d$,

1085
$$L(w) = \mathbb{E}_{(\Psi, M) \sim \mathcal{D}} [\mathbf{1}\{w^\top \Psi \leq 0\}] \leq \mathbb{E}_{(\Psi, M) \sim \mathcal{D}} [\Phi_M(w^\top \Psi)]. \quad (20)$$

1086

1087 *Proof.* For any fixed (ψ, m) and w we have equation 18:

1089
$$\mathbf{1}\{w^\top \psi \leq 0\} \leq \Phi_m(w^\top \psi).$$

1090

1091 Taking expectation over $(\Psi, M) \sim \mathcal{D}$ yields

1093
$$\mathbb{E}[\mathbf{1}\{w^\top \Psi \leq 0\}] \leq \mathbb{E}[\Phi_M(w^\top \Psi)].$$

1094

1095 The left-hand side is $L(w)$ by equation 14, giving equation 20. \square

1096 Thus it suffices to obtain a uniform upper bound on

1099
$$\mathbb{E}[\Phi_M(w^\top \Psi)]$$

1100

1100 in terms of the empirical ramp loss

1102
$$\frac{1}{n} \sum_{i=1}^n \Phi_{m_i}(g_i(w))$$

1103

1104 and a complexity term.

1106 H.4 UNIFORM BOUND FOR THE RAMP LOSS

1108 Define the function class

1110
$$\mathcal{H} := \{h_w : (\psi, m) \mapsto \Phi_m(w^\top \psi) \mid \|w\|_2 \leq \Lambda\}.$$

1111

1112 Each h_w maps into $[0, 1]$. We use the standard Rademacher-complexity generalization bound for
1113 bounded losses.1114 **Lemma 2** (Uniform deviation for bounded losses). *Let $\mathcal{H} \subseteq [0, 1]^\mathcal{Z}$, and let Z_1, \dots, Z_n be i.i.d.
1115 from some distribution on \mathcal{Z} . Let*

1116
$$\widehat{\mathfrak{R}}_n(\mathcal{H}) := \mathbb{E}_\sigma \left[\sup_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \sigma_i h(Z_i) \right],$$

1117

1118 where σ_i are i.i.d. Rademacher random variables ($\Pr(\sigma_i = 1) = \Pr(\sigma_i = -1) = 1/2$). Then for
1119 any $\delta \in (0, 1)$, with probability at least $1 - \delta$ over the draw of (Z_1, \dots, Z_n) ,

1120
$$\forall h \in \mathcal{H} : \mathbb{E}[h(Z)] \leq \frac{1}{n} \sum_{i=1}^n h(Z_i) + 2\widehat{\mathfrak{R}}_n(\mathcal{H}) + \sqrt{\frac{2 \log(2/\delta)}{n}}. \quad (21)$$

1121

1122 For proof, refer to Theorem 6 in Bousquet et al. (2004).

1123 We apply Lemma 2 to \mathcal{H} with $Z_i = (\psi_i, m_i)$ and $h_w(Z) = \Phi_m(w^\top \psi)$. Then with probability at
1124 least $1 - \delta$ over $S \sim \mathcal{D}^n$, we have simultaneously for all $\|w\| \leq \Lambda$,

1125
$$\mathbb{E}_{(\Psi, M) \sim \mathcal{D}} [\Phi_M(w^\top \Psi)] \leq \frac{1}{n} \sum_{i=1}^n \Phi_{m_i}(g_i(w)) + 2\widehat{\mathfrak{R}}_n(\mathcal{H}) + \sqrt{\frac{2 \log(2/\delta)}{n}}. \quad (22)$$

1126

1127 It remains to bound $\widehat{\mathfrak{R}}_n(\mathcal{H})$ using the Lipschitz properties of Φ_m .

1134 H.5 LIPSCHITZ CONTRACTION WITH PER-EXAMPLE CONSTANTS
11351136 For each $m > 0$, the function $u \mapsto \Phi_m(u)$ is $1/m$ -Lipschitz:

1137
$$\forall u, v \in \mathbb{R} : |\Phi_m(u) - \Phi_m(v)| \leq \frac{1}{m} |u - v|. \quad (23)$$

1138

1139 We use a per-example contraction inequality (a variant of the Ledoux–Talagrand contraction principle).
11401141 **Lemma 3** (Per-example contraction). *Let $f_i : \mathbb{R} \rightarrow \mathbb{R}$ satisfy $f_i(0) = 0$ and be L_i -Lipschitz for
1142 $i = 1, \dots, n$. Let $a_i : \mathcal{W} \rightarrow \mathbb{R}$ be arbitrary functions, and let σ_i be i.i.d. Rademacher random
1143 variables. Then*

1144
$$\mathbb{E}_\sigma \left[\sup_{w \in \mathcal{W}} \sum_{i=1}^n \sigma_i f_i(a_i(w)) \right] \leq \mathbb{E}_\sigma \left[\sup_{w \in \mathcal{W}} \sum_{i=1}^n L_i \sigma_i a_i(w) \right]. \quad (24)$$

1145

1146 For proof of the Contraction lemma, refer to the chapter on Rademacher complexity in Shalev-Shwartz
1147 & Ben-David (2014), or the Contraction principle in Ledoux & Talagrand (1991).
11481149 We now bound $\widehat{\mathfrak{R}}_n(\mathcal{H})$. By definition,

1150
$$\begin{aligned} \widehat{\mathfrak{R}}_n(\mathcal{H}) &= \mathbb{E}_\sigma \left[\sup_{\|w\| \leq \Lambda} \frac{1}{n} \sum_{i=1}^n \sigma_i \Phi_{m_i}(w^\top \psi_i) \right] \\ &= \mathbb{E}_\sigma \left[\sup_{\|w\| \leq \Lambda} \frac{1}{n} \sum_{i=1}^n \sigma_i (\Phi_{m_i}(w^\top \psi_i) - \Phi_{m_i}(0)) \right], \end{aligned} \quad (25)$$

1151

1152 since $\sum_{i=1}^n \sigma_i \Phi_{m_i}(0)$ does not depend on w and has mean zero over σ . Define
1153

1154
$$f_i(u) := \Phi_{m_i}(u) - \Phi_{m_i}(0), \quad a_i(w) := w^\top \psi_i.$$

1155

1156 Then $f_i(0) = 0$, and by equation 23, f_i is L_i -Lipschitz with $L_i = 1/m_i$.
11571158 Applying Lemma 3 to equation 25, we obtain
1159

1160
$$\begin{aligned} \widehat{\mathfrak{R}}_n(\mathcal{H}) &\leq \mathbb{E}_\sigma \left[\sup_{\|w\| \leq \Lambda} \frac{1}{n} \sum_{i=1}^n \frac{\sigma_i}{m_i} w^\top \psi_i \right] \\ &= \frac{1}{n} \mathbb{E}_\sigma \left[\sup_{\|w\| \leq \Lambda} w^\top \left(\sum_{i=1}^n \frac{\sigma_i}{m_i} \psi_i \right) \right]. \end{aligned} \quad (26)$$

1161

1162 By Cauchy–Schwarz and the constraint $\|w\| \leq \Lambda$,
1163

1164
$$\sup_{\|w\| \leq \Lambda} w^\top v = \Lambda \|v\|_2,$$

1165

1166 so
1167

1168
$$\widehat{\mathfrak{R}}_n(\mathcal{H}) \leq \frac{\Lambda}{n} \mathbb{E}_\sigma \left[\left\| \sum_{i=1}^n \frac{\sigma_i}{m_i} \psi_i \right\|_2 \right]. \quad (27)$$

1169

1170 By Jensen's inequality,
1171

1172
$$\mathbb{E}_\sigma \left[\left\| \sum_{i=1}^n \frac{\sigma_i}{m_i} \psi_i \right\|_2 \right] \leq \sqrt{\mathbb{E}_\sigma \left[\left\| \sum_{i=1}^n \frac{\sigma_i}{m_i} \psi_i \right\|_2^2 \right]}.$$

1173

1174 Expanding the square and using $\mathbb{E}_\sigma[\sigma_i \sigma_j] = 0$ for $i \neq j$, $\mathbb{E}_\sigma[\sigma_i^2] = 1$, we get
1175

1176
$$\mathbb{E}_\sigma \left[\left\| \sum_{i=1}^n \frac{\sigma_i}{m_i} \psi_i \right\|_2^2 \right] = \sum_{i=1}^n \frac{1}{m_i^2} \|\psi_i\|_2^2 \leq R^2 \sum_{i=1}^n \frac{1}{m_i^2},$$

1177

1178 using equation 12. Plugging this into equation 27 yields
1179

1180
$$\widehat{\mathfrak{R}}_n(\mathcal{H}) \leq \frac{\Lambda}{n} R \sqrt{\sum_{i=1}^n \frac{1}{m_i^2}}. \quad (28)$$

1181

Combining equation 22, Lemma 1, and equation 28, we obtain that with probability at least $1 - \delta$ over S ,

$$L(w) \leq \frac{1}{n} \sum_{i=1}^n \Phi_{m_i}(g_i(w)) + \frac{2\Lambda R}{n} \sqrt{\sum_{i=1}^n \frac{1}{m_i^2}} + \sqrt{\frac{2\log(2/\delta)}{n}}, \quad (29)$$

simultaneously for all w with $\|w\| \leq \Lambda$. This is the ramp-loss generalization bound, analogous in structure to margin-distribution bounds for SVM-type classifiers (Shalev-Shwartz & Ben-David, 2014; Bousquet et al., 2004).

H.6 FROM RAMP LOSS TO ADAPTIVE-MARGIN LOGISTIC LOSS

We now show that the ramp loss is pointwise bounded by a constant multiple of the shifted logistic loss.

Lemma 4 (Ramp vs. logistic). *For all $m > 0$ and $u \in \mathbb{R}$,*

$$\Phi_m(u) \leq \frac{1}{\log 2} \log(1 + e^{-(u-m)}). \quad (30)$$

Proof. Fix $m > 0$ and consider three cases.

Case 1: $u \geq m$. Then $\Phi_m(u) = 0$ by definition, while the logistic loss is nonnegative:

$$\log(1 + e^{-(u-m)}) \geq 0.$$

Hence

$$\Phi_m(u) = 0 \leq \frac{1}{\log 2} \log(1 + e^{-(u-m)}).$$

Case 2: $0 < u < m$. Then $m - u > 0$, so

$$\log(1 + e^{-(u-m)}) = \log(1 + e^{m-u}) \geq \log(1 + 1) = \log 2.$$

Therefore

$$\frac{1}{\log 2} \log(1 + e^{-(u-m)}) \geq \frac{1}{\log 2} \log 2 = 1.$$

On the other hand, for $0 < u < m$ we have

$$\Phi_m(u) = 1 - \frac{u}{m} < 1,$$

so

$$\Phi_m(u) \leq 1 \leq \frac{1}{\log 2} \log(1 + e^{-(u-m)}).$$

Case 3: $u \leq 0$. Then $u < m$ and

$$\log(1 + e^{-(u-m)}) = \log(1 + e^{m-u}) \geq \log(1 + 1) = \log 2.$$

Thus

$$\frac{1}{\log 2} \log(1 + e^{-(u-m)}) \geq 1.$$

But for $u \leq 0$,

$$\Phi_m(u) = 1,$$

so

$$\Phi_m(u) \leq \frac{1}{\log 2} \log(1 + e^{-(u-m)}).$$

In all three cases equation 30 holds. \square

Applying Lemma 4 to each training point i with $u = g_i(w)$ and $m = m_i$ gives

$$\Phi_{m_i}(g_i(w)) \leq \frac{1}{\log 2} \log(1 + e^{-(g_i(w)-m_i)}) = \frac{1}{\log 2} \ell_i(w). \quad (31)$$

Averaging over $i = 1, \dots, n$ yields

$$\frac{1}{n} \sum_{i=1}^n \Phi_{m_i}(g_i(w)) \leq \frac{1}{\log 2} \frac{1}{n} \sum_{i=1}^n \ell_i(w) = \frac{1}{\log 2} \hat{L}_{\log}(w). \quad (32)$$

1242 **H.7 PROOF OF THEOREM 1**
12431244 Combining Lemma 1 with the ramp bound equation 29, we already have that with probability at least
1245 $1 - \delta$, for all $\|w\| \leq \Lambda$,
1246

1247
$$L(w) \leq \frac{1}{n} \sum_{i=1}^n \Phi_{m_i}(g_i(w)) + \frac{2\Lambda R}{n} \sqrt{\sum_{i=1}^n \frac{1}{m_i^2}} + \sqrt{\frac{2\log(2/\delta)}{n}}.$$

1248
1249

1250 Using equation 32, we can upper bound the empirical ramp term by the empirical adaptive-margin
1251 logistic loss:
1252

1253
$$\frac{1}{n} \sum_{i=1}^n \Phi_{m_i}(g_i(w)) \leq \frac{1}{\log 2} \hat{L}_{\log}(w).$$

1254

1255 Thus
1256

1257
$$L(w) \leq \frac{1}{\log 2} \hat{L}_{\log}(w) + \frac{2\Lambda R}{n} \sqrt{\sum_{i=1}^n \frac{1}{m_i^2}} + \sqrt{\frac{2\log(2/\delta)}{n}},$$

1258
1259

1260 which is precisely equation 19. This completes the proof of Theorem 1. \square
12611262 This analysis can be extended beyond linear reward functions to non-linear function approximators
1263 such as Neural Networks. The only change would be to replace Λ with the analogous complexity
1264 measure for the class of Neural Networks.
12651266 **I DISCUSSION ON THE DISCRIMINATIVE–GENERATIVE TRADEOFF**
12671268 In this section, we provide theoretical justification for why DPO-PoP-Random appears more robust
1269 and generalizes better than DPO-PoP-Iter. We begin by presenting a generalization bound for
1270 adaptive-margin classifiers with a linear reward function. The full proof and additional details can be
1271 found in Appendix H.
1272

1273
$$\Pr_{(\Psi, M) \sim \mathcal{D}}(w^\top \Psi \leq 0) \leq \frac{1}{\log 2} \hat{L}_{\log}(w) + \frac{2\Lambda R}{n} \sqrt{\sum_{i=1}^n \frac{1}{m_i^2}} + \sqrt{\frac{2\log(2/\delta)}{n}}. \quad (33)$$

1274
1275

1276 The first term is the empirical loss, and the second term corresponds to the Rademacher complexity of
1277 the adaptive-margin function class. To highlight the key intuition behind our empirical observations,
1278 define
1279

1280
$$\widetilde{M} := \sqrt{\sum_{i=1}^n \frac{1}{m_i^2}}.$$

1281
1282

1283 In DPO-PoP-Random, we randomly sample preference pairs and obtain a single annotation per
1284 sampled pair. This results in stronger preferences appearing more frequently than weaker ones in the
1285 dataset. In contrast, DPO-PoP-Iter ensures that each preference is equally represented by comparing
1286 it against k weaker preferences, resulting in a larger proportion of weaker preferences in the dataset.
12871288 Since weak preferences correspond to smaller m_i , they contribute more heavily to \widetilde{M} . Consequently,
1289 $\widetilde{M}_{\text{random}} < \widetilde{M}_{\text{iter}}$, which leads to a tighter generalization bound for DPO-PoP-Random.
12901291 This theoretical prediction matches our empirical findings: DPO-PoP-Random outperforms DPO-
1292 PoP-Iter on RewardBench (Table 2), AlpacaEval2 (Tables 4 and 8), and in head-to-head win rates
1293 against Vanilla DPO (Tables 3 and 7). On the UltraFeedback test set, however, DPO-PoP-Iter
1294 achieves higher classification accuracy (Table 1). This is because the UltraFeedback test set is close
1295 to the training distribution, whereas RewardBench, aligned model generations, and AlpacaEval2
1296 differ more substantially. As a result, the effect captured by the generalization bound (through \widetilde{M})
1297 is more pronounced on RewardBench, aligned model generations, and AlpacaEval2 than on the
1298 UltraFeedback test set.
1299

1296 J GENERATION CASE STUDY

1297
 1298 In this section, we provide a generation case study comparing all approaches with respect to their
 1299 outputs on the UltraFeedback test set. We illustrate this for a set of three prompts, showcasing the
 1300 generations produced by each method. From the results, we observe that DPO-PoP-Random appears
 1301 to be slightly more coherent and informative than the other approaches.

1302 J.1 CASE-1

1303
 1304 Prompt: Question: Title: Extremely Frustrating! Product
 1305 review: This book looks very easy at first glance, but the many
 1306 inaccuracies make it maddening. I am in the midst of the first
 1307 project (furry cardigan for a child) and so far it took 4 tries
 1308 to get the right gauge (she says size 13, I ended up on a 10.5
 1309 even though on all other projects I've done my gauge is accurate),
 1310 and she specifically states that the pattern done with Furz won't
 1311 curl, which it definitely is doing. Aargh!!!! I'm ready to throw
 1312 it out the window. Would you say this review depicts the product
 1313 in a flattering or unflattering light? Answer:

1314 J.1.1 DPO-POP-RANDOM

1315 UltraRM reward of 5.0625.

1316
 1317 This review depicts the product in an unflattering light. The
 1318 reviewer expresses extreme frustration with the inaccurate
 1319 measurements and design elements within the book's instructions,
 1320 leading them to struggle significantly during their current
 1321 knitting project. They mention feeling as if they want to abandon
 1322 the entire endeavor due to these issues. Overall, the tone
 1323 conveys dissatisfaction and lack of confidence in utilizing the
 1324 provided patterns.

1325 J.1.2 DPO-POP-ITER

1326 UltraRM reward of -0.6016.

1327
 1328 Unflattering Lightreview depicted the product in an unfavorable
 1329 manner, expressing frustration due to numerous errors within
 1330 the instructions. These inconsistencies affected not only one
 1331 specific aspect of the garment construction but also raised
 1332 doubts about its intended performance as stated earlier - i.e.,
 1333 resistance towards curling when using "Furz." As such, readers
 1334 might be deterred from attempting similar tasks using this
 1335 particular guidebook.

1336 Confidence: 95%

1337 J.1.3 DPO-MARGIN-GT

1338 UltraRM reward of -0.4023.

1339
 1340 Unflattering Lightprovided review highlights several issues with
 1341 the book's accuracy, making it frustrating for the reader while
 1342 working on a project. The inconsistencies mentioned include
 1343 inaccurate sizing recommendations, incorrect yarn behavior as
 1344 predicted by the pattern, and previous reliability in gauge
 1345 measurements. These problems lead the reviewer to feel frustrated
 1346 during their crafting experience.

1347 Confidence: 90%

1348 J.1.4 DPO-MARGIN-GT-SCALED

1349 UltraRM reward of -2.2813.

1350 This review depicts the product in an unflattering light.
1351 Confidence: 95%

1352

1353

1354

1355 J.1.5 DPO-MARGIN-1

1356

1357

1358 UltraRM reward of -0.1367.

1359

1360 Unflattering Light review depicts the product in an unfavorable
1361 manner as the customer expresses extreme frustration due to
1362 numerous inaccuracies within the instructions. The confusion
1363 regarding gauge measurements and unexpected curling behavior
1364 have led the user to feel exasperated about working through the
1365 project.

1366 Confidence: 95%

1367

1368

1369

1370 J.1.6 DPO-MARGIN-0

1371

1372

1373 UltraRM reward of -2.7969.

1374

1375 Unflattering Light Confidence: 85%

1376 The reviewer's experience with the product has been negative due to
1377 numerous inaccuracies in the instructions. Despite following the
1378 guidelines provided by the author, they were unable to achieve
1379 the desired results consistently across different sizes. The
1380 inconsistent measurements indicated by various body sizes also
1381 demonstrate an unreliable guide for users.

1382 In addition, as mentioned during their knitting process, some
1383 aspects suggested not to curl while others did curl upon
1384 use of the garment material "Fur." As such, overall accuracy
1385 plays a significant role when considering using the given
1386 work on its intended purpose. In conclusion, since issues
1387 persisted despite proper execution according to guidance from
1388 authors' recommendations, evaluating this content under unfavorable
1389 conditions may best capture user experiences present within these
1390 scenarios.

1391

1392

1393 J.2 CASE-2

1394

1395 Prompt: What are some popular street food vendors in Austin,
1396 Texas? Answer:

1397

1398

1399

1400 J.2.1 DPO-POP-RANDOM

1401

1402

1403 UltraRM reward of 5.6875.

1404 Austin is known for its vibrant and diverse culinary scene, with
 1405 numerous delicious street food options. Here's a list of popular
 1406 street food vendors to explore:
 1407 1. Torchy's Tacos - Known for their creative tacos featuring
 1408 unique flavors such as the Trailer Park (with green chile, cheese,
 1409 bacon, sour cream) and the Taco Loco (chipotle ranch avocado
 1410 crema).
 1411 2. Veracruz All Natural - This family-owned brand offers
 1412 authentic Mexican dishes like migas (scrambled tortilla strips),
 1413 enchiladas verdes, and homemade tamales.
 1414 3. La Condesa - A colorful cart specializing in seafood-focused
 1415 eats including shrimp po' boys, fish tortas, ceviche burritos, and
 1416 more.
 1417 4. Franklin Barbecue (Food Truck Operations) { Although
 1418 primarily famous for their brick-and-mortar location at East
 1419 Cesar Chavez St., Franklin Food Trucks occasionally pop up around
 1420 Austin offering mouth-watering barbecue platters, ribs, brisket
 1421 sandwiches, etc.
 1422 5. Holy Roller Fried Pickle Cart - Don't miss out on these
 1423 crispy fried pickled dill slices that make perfect snacks for any
 1424 occasion!
 1425 6. Chi'Lantro - Savor Korean-inspired fusion cuisine by sampling
 1426 items ranging from bulgogi beef bowls or kimchi quesadillas to
 1427 spicy rice cakes topped with cilantro slaw.
 1428 7. The Frutería - Stocked with fresh fruits and natural juices,
 1429 this vendor serves both locals and tourists fruit-based delights,
 1430 various smoothies & agua frescas.
 1431 8. Home Slice Pizza - Famous for their New York-style pizza cut
 1432 into generous square portions while serving flavorful toppings
 1433 coupled with fantastic service.
 1434 9. Lone Star Shrimp Boil - Catchy name aside, taste buds will
 1435 surely thank you too because they exclusively offer handcrafted
 1436 Cajun boil packs loaded with succulent Louisiana prawns alongside
 1437 corn and smoked sausage.
 1438 10. Swine Haus Gourmet Bacon - An artisanal haven dedicated
 1439 entirely towards providing delectable handmade gourmet bacon
 1440 varieties paired effectively across your favorite breakfast
 1441 classics.
 1442 Remember that while many establishments may have fixed locations,
 1443 it's always wise to check social media, local event listings or
 1444 call ahead before visiting since schedules can change seasonally
 1445 or during unforeseen circumstances. Happy eating!

1446
 1447
 1448
 1449
 1450
 1451 **J.2.2 DPO-POP-ITER**
 1452
 1453
 1454
 1455
 1456

1457 UltraRM reward of 1.3828.

1458 Austin, Texas is known for its vibrant and diverse culinary scene.
 1459 Here are a few popular street food vendors you might want to check
 1460 out:
 1461 1. Veracruz All Natural - This vendor specializes in Mexican
 1462 cuisine, famous for their migas tacos made with crispy tortilla
 1463 strips filled with shredded chicken or cheese.
 1464 2. Torchy's Tacos - A well-known taco chain originating from this
 1465 city offering innovative flavors like the "Trailer Park" (fry
 1466 sauce, queso fresco, pico de gallo) and "Shack Shack," topped with
 1467 bacon and grilled onions.
 1468 3. Tacodeli - Offering Tex-Mex-style breakfast items such as
 1469 breakfast burritos stuffed with scrambled eggs, salsa, avocado,
 1470 jalapeños, and choice of meat { carne guisada, sausage, or
 1471 chorizo.
 1472 4. Home Slice Pizza - Known for their New York-style pizza
 1473 served by the slice. It comes in various toppings including
 1474 classic pepperoni but also more unique options such as cathead
 1475 (a combination of prosciutto and arugula).
 1476 5. G&Raj Mahal - Primarily an Indian restaurant that serves
 1477 delicious Punjabi and North Indian dishes through a mobile
 1478 ordering system designed specifically for their carts.
 1479 6. La Condesa - Specializing in authentic Oaxacan cuisine
 1480 featuring regional favorites like tlayudas (crunchy fried
 1481 grasshopper-like flatbread), mole negro, chiles rellenos, elote,
 1482 and other local specialties.
 1483 7. Torchy's Trailer Park { Another outpost of Torchy's fame; they
 1484 serve creative tacos paired with homemade pickles among other fun
 1485 sides.
 1486 8. ChiLantro Mediterranean Grill - Serves up fresh salads, wraps,
 1487 falafel bowls along with Korean BBQ fusion items like bulgogi beef
 1488 on rice, making it perfect for adventurous eaters.
 1489 These are just a taste of what Austin has to offer when it comes
 1490 to street food culture. Enjoy exploring these vendors during your
 1491 visit!
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501

1502 J.2.3 DPO-MARGIN-GT

1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511 UltraRM reward of -0.0898.

1512 As an AI assistant, I'm happy to help you with your question!
 1513 Austin, Texas is known for its vibrant and diverse street food
 1514 scene. Here are some popular street food vendors that you might
 1515 want to check out: 1. Taco Truck Village - This iconic location
 1516 is home to over a dozen taco trucks serving up delicious and
 1517 authentic Tex-Mex cuisine. 2. Franklin Barbecue - Although
 1518 not strictly a vendor, this world-renowned barbecue joint offers
 1519 takeout and is often cited as one of the best BBQ places in
 1520 the country. Be prepared for long lines! 3. Torchy's Tacos
 1521 - A local favorite, Torchy's serves creative tacos filled with
 1522 everything from queso to grilled fish. 4. Veracruz All Natural
 1523 - Another highly-acclaimed taqueria, Veracruz specializes in
 1524 traditional Mexican dishes like carne guisada and chiles rellenos.
 1525 5. Amy's Ice Creams - For something sweet, head to Amy's for
 1526 unique ice cream flavors made fresh daily using locally sourced
 1527 ingredients.
 1528 Remember to always follow safety guidelines when enjoying street
 1529 food, such as making sure proper hand-washing facilities are
 1530 available before consuming any foods served by vendor stands or
 1531 carts. Happy eating!
 1532 Do let me know if there's anything else specific you'd like
 1533 information on, be it general recommendations about visiting
 1534 culinary destinations across different U.S cities or suggestions
 1535 related to creating personalized recipe combinations; feel free to
 1536 ask my questions anytime at all.

J.2.4 DPO-MARGIN-GT-SCALED

1540 UltraRM reward of -2.1563.

1541 As a helpful and respectful assistant, I'd be happy to provide
 1542 information on popular street food vendors in Austin, Texas! Here
 1543 are some well-known options:

1544 1. Torchy's Tacos - This popular taco joint offers creative
 1545 tacos with unique flavor combinations. 2. Franklin Barbecue -
 1546 Although not strictly a street vendor, this famous barbecue spot
 1547 has multiple locations throughout the city. 3. La Condesa - A
 1548 trendy Mexican restaurant that also serves delicious taquitos and
 1549 other street-style eats. 4. Veracruz All Natural - Specializing
 1550 in traditional Oaxacan cuisine like mole poblano and homemade
 1551 tortillas. 5. Home Slice Pizza - Known for their mouthwatering
 1552 New York-style pizza by the slice or whole pie.

1553 Please note that popularity can vary over time and based on
 1554 personal preferences. It is always best to check current reviews
 1555 before visiting any of these establishments as they may have
 1556 changed since my knowledge cutoff date in September 2021. Enjoy
 1557 your culinary adventures exploring Austin's vibrant street food
 1558 scene!

1559 Confidence: 95%

J.2.5 DPO-MARGIN-1

1560 UltraRM reward of 1.25.

1566 Austin is known for its vibrant and diverse culinary scene. Here's
 1567 a list of some well-known and beloved street food vendors across
 1568 the city:
 1569 1. Torchys Tacos - This local favorite specializes in creative
 1570 tacos with unique flavor combinations like Trailer Park (fried
 1571 green tomato, bacon, remoulade) and The Atomic Nacho Tower.
 1572 2. Veracruz All Natural - For authentic Mexican cuisine, head to
 1573 this vendor serving up delicious migas dishes, as well as other
 1574 traditional favorites such as tortas and enchiladas.
 1575 3. La Condesa taqueria - A sister location of Taco Joint on South
 1576 Congress Avenue, offering handmade-made flour or corn tortillas
 1577 filled with meats, seafood options and vegetarian delights.
 1578 4. ChiLantro - Offering Asian-inspired fusion eats, from bulgogi
 1579 beef wraps to Korean-style fried rice bowls. 5. TacoJoint - Run
 1580 by owner Robb White, owners serve generous portions packed full of
 1581 savory meat choices along side fresh homemade chips made daily!
 1582 6. Chuy's - Originating out of Austin, they offer eclectic Tex-Mex
 1583 flavors featuring their signature "Big As YoFace" burrito { you'll
 1584 find plenty more quirky offerings there too!
 1585 7. Mela Indian Cuisine - Serves flavorful North Indian delicacies
 1586 that transport your taste buds through streets of Old Delhi onto
 1587 Rainey Street.
 1588 8. Frank Lloyd Wright Barbecue & Catering Co - Specializes in
 1589 slow-smoked brisket served at various venues around town including
 1590 some pop-up events where it can be found parked nearby Capitol
 1591 Dome during festivals etc..
 1592 These are just a few examples; however, several new eateries
 1593 emerge each year so staying updated would also provide additional
 1594 delightful finds throughout the bustling culinary landscape of
 1595 Austin.
 1596 Remember, always verify hours, locations and current status before
 1597 visiting any establishment due to potential seasonal changes,
 1598 temporary closures or venue shifts.

1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610 **J.2.6 DPO-MARGIN-0**

1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619 UltraRM reward of 0.4414.

1620 There are many delicious and popular street food vendors in
 1621 Austin, Texas. Here are a few recommendations:
 1622 1. Torchy's Tacos - Known for their creative tacos filled with
 1623 unique ingredients like queso fresco, pickled carrots, onions,
 1624 house-made hot sauce, cilantro lime crema, and more.
 1625 2. Veracruz All Natural - Specializing in migas (mashed tortilla
 1626 chips) topped with scrambled eggs, diced chicken cooked in its own
 1627 lard, onions, tomatoes, jalapeños, refried beans, sour cream or
 1628 Mexican crema & shredded cheese; as well as their famous shrimp
 1629 dishes.
 1630 3. Tacodeli - This local favorite offers breakfast favorites
 1631 such as avocado toast, burritos, quesadillas, and egg sandwiches
 1632 along with other tasty options made from scratch daily using fresh
 1633 locally sourced produce when possible!
 1634 4. Money Lion Vegan Food Truck - A family-owned vegan truck
 1635 offering flavorful plant-based versions of classic Tex-Mex dishes
 1636 including "Lion Burgers," fries covered in chili con carne,
 1637 enchiladas, grilled chicken salads, and so much more!
 1638 5. Good Seed Donuts - With various flavors to choose from on
 1639 multiple days each week at the East Side Public Market they
 1640 specialize in handcrafted donuts made primarily with wholesome
 1641 ingredients and all sorts of delightful toppings available too!
 1642 Remember that this is just an overview { you may want to check
 1643 out additional resources online, visit websites, social media
 1644 pages, call them up directly or visit your personal travel guides
 1645 to learn about even more mouth-watering treats waiting to be
 1646 discovered near you during your stay in vibrant city of Austin!
 1647
 1648
 1649
 1650
 1651

1652 J.3 CASE-3

1653
 1654
 1655
 1656 Prompt: Can you summarize the difficulties faced by customers
 1657 in grocery shopping before the emergence of large supermarkets
 1658 and shopping malls, and how it affected their shopping experience
 1659 and prices? Please provide your summary in an HTML page format.
 1660 Answer:

1661 1662 1663 1664 1665 1666 1667 J.3.1 DPO-POP-RANDOM

1668
 1669
 1670
 1671
 1672
 1673 UltraRM reward of 8.5625.

```

1674 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8">
1675 <meta name="viewport" content="width=device-width,
1676 initial-scale=1.0"> <title>Summary of Grocery Shopping Before
1677 Supermarkets and Malls</title> </head> <body> <h2>Difficulties
1678 Faced by Customers in Grocery Shopping Before Large Supermarkets
1679 and Shopping Malls</h2> <p>In the absence of modern retail
1680 structures like large supermarkets and shopping malls, grocery
1681 shopping posed several challenges for consumers.</p>
1682 <ol> <li><strong>Time-consuming:</strong> Shopping for groceries
1683 required a significant amount of time as buyers had to visit
1684 various small retailers or markets one after another, making the
1685 entire process laborious and lengthy.</li>
1686 <li><strong>Lack of variety:</strong> The availability of
1687 products was limited due to smaller stores focusing on
1688 regional demand rather than catering globally; this led to
1689 fewer options at shoppers' disposal.</li> <li><strong>Higher
1690 costs:</strong> Competition among these independent vendors wasn't
1691 prevalent, leading to uneven pricing across different locations.
1692 Consequently, high-priced items could be found while cheaper
1693 alternatives were scarce elsewhere.</li>
1694 <li><strong>Farther destinations:</strong> Since each trip needed
1695 to cover multiple shops, long journeys became common which
1696 made traveling further away from homes even more inconvenient.
1697 This resulted in higher fuel consumption and added additional
1698 expenses.</li>
1699 <li><strong>Increased walking distances (for those without
1700 transportation):</strong> Shopping areas often spanned over vast
1701 distances with numerous narrow winding alleys filled with
1702 stalls selling basic goods. Long walking distances coupled with
1703 inclement weather proved difficult tasks especially during extreme
1704 seasons.</li>
1705 <li><strong>Economic disparities:</strong> As distribution channels
1706 remained inefficient and uncentralized, local communities
1707 experienced varied levels of economic development. In urban
1708 centers with prosperous businesses, affluent individuals might
1709 have enjoyed superior access to quality foodstuffs compared to
1710 rural residents or low-income city dwellers.</li> </ol>
1711 <p>The overall effect of such conditions on consumer satisfaction
1712 is evident - extended periods spent searching through numerous
1713 lesser-quality options imposed financial hardships, wasted
1714 precious resources, prolonged travel times, exacerbated social
1715 inequalities, and reduced overall well-being within society.</p>
1716 </body> </html>
1717
1718
1719
1720
1721
1722 J.3.2 DPO-POP-ITER
1723
1724
1725
1726
1727 UltraRM reward of 1.9922.

```

```

1728 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8">
1729 title>Grocery Shopping Before Supermarkets Malls</title> <style>
1730 body font-family: Arial, sans-serif; h1, h2 color: 00698f;
1731 margin-bottom: 20px; </style> </head> <body>
1732 <h1>Grocery Shopping Before Supermarkets and Malls: Challenges
1733 and Impact on Experience and Prices</h1> <p>In a time long
1734 past to our modern era, grocery shopping was quite different
1735 from what we know today. This section will explore some
1736 of the challenges that people encountered when buying
1737 food items without the presence of large supermarkets
1738 or shopping malls.</p> <div style='text-align:center> img
1739 src=https://upload.wikimedia.org/wikipedia/commons/thumb/1/628
1740 _Bartsch.jpg/1200px-Town_square_marker_tasmania.%28TAS%29_March_2019_Australia,
1741 _State_of_Tasmania_(St._Helens_Park).JPG&lt;/div><br>
1742 <h2>Difficulties Faced</h2> <ul> <li> <strong>Bulk
1743 Purchases:</strong>&nbsp;&nbsp; Before big stores existed, bulk
1744 purchases were rare as most households couldn't afford them due to
1745 economic constraints. People had limited storage space which made
1746 storing whole quantities difficult.
1747 </li> <li> <strong>Quality Control:</strong>&nbsp;&nbsp; There
1748 wasn't much regulation for ensuring product quality, so consumers
1749 often relied solely upon word-of-mouth recommendations about
1750 vegetables and other goods they bought directly from farmers or
1751 smaller market stalls.
1752 </li> <li> <strong>Pricing and Haggling:</strong>&nbsp;&nbsp;
1753 Prices varied per location making traveling between places
1754 offering affordable products challenging. Moreover, there was
1755 no standardized pricing system - hence necessitating bargaining
1756 during transactions at marketsplaces (haggler/barterer culture).
1757 </li> </ul>
1758 <h2>The Affecting Factors on Shopping Experience and
1759 Prices</h2><|start_header_id|><|start_header_id|><|start_header_id|><|start_header_id|>
1760 <|start_header_id|><|start_header_id|><|start_header_id|>
1761 <|start_header_id|><|start_header_id|><|start_header_id|> ...
1762 (These tags repeat for a while!)
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773 J.3.3 DPO-MARGIN-GT
1774
1775
1776
1777
1778
1779
1780
1781 UltraRM reward of 3.0.

```

```

1782 <!DOCTYPE html> <html lang="en"> <head> <meta
1783 charset="UTF-8"><meta name="viewport" content="width=device-width,
1784 initial-scale=1.0"> <title>Customer Experience in Grocery Shopping
1785 Before Supermarkets & Malls</title> </head> <body>
1786 <h2>A Summary: Customer Difficulties & Impacts on Grocery
1787 Shopping Experiences Premise to Large Supersavers & Malls Era</h2>
1788 <p>In days long past, individuals seeking provisions for daily
1789 consumption encountered various obstacles while embarking upon
1790 a trip to acquire foodstuffs or general household items. These
1791 challenges encompassed limited product selections at smaller shops
1792 or markets; less efficient ordering processes that often caused
1793 consumers frustration along with increased costs due to higher
1794 transport and labor expenses.</p> <ul> <li><strong>Difficulty
1795 in Navigating Product Selection:</strong></li> <p>Certainly
1796 one major challenge shoppers experienced was encountering
1797 narrow choices when browsing through stores operating under
1798 older business models (smaller grocery establishments like
1799 butchers stalls, bakeries etc.). Consequently, these limitations
1800 resulted from restrictive supply chains coupled with lower
1801 economies-of scale which were present among countless smaller
1802 businesses making them vulnerable towards price hikes as well
1803 as shortage of varied offerings available during peak demand
1804 seasons leading to customer dissatisfaction across generations
1805 spanning decades!</p> <li><strong>Inefficient Ordering Systems &
1806 Time Consumptions</strong></li><p>Similar barriers also cropped
1807 up within everyday transactions - notably, consumer orders couldn't
1808 be organized using streamlined tools similar those we use today
1809 { causing time-consuming procedures and creating opportunities
1810 allowing competitors to monopolize sales volume thanks to better
1811 operational systems! Customers had little choice than waiting
1812 impatiently behind endless queues composed primarily of fellow
1813 shopper desperate to complete much needed tasks just to venture
1814 out into wider world once again...</p> <li><strong>Impact On
1815 Price and Overall Consumer Satisfaction</strong></li> <p>The
1816 combined result of such significant roadblocks in both day-to-day
1817 experiences led many folks struggling economically amidst
1818 socio-political turmoil stemming mainly from global conflicts
1819 fueled largely by colonialism... This subsequently instilled
1820 immense hardships amongst low-income households who found
1821 themselves burdened down under mounting financial debts resulting
1822 ultimately culminating into poor purchasing power thus impacting
1823 negatively on overall satisfaction levels between ordinary
1824 citizens and corporations alike...</p> </ul>
1825 </body> </html>
1826
1827
1828
1829
1830 J.3.4 DPO-MARGIN-GT-SCALED
1831
1832
1833
1834
1835 UltraRM reward of 1.9844.

```

```

1836 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8">
1837 <title>Difficulty Faced By Customers In Grocery Shopping Before
1838 Supermarkets And Malls</title> <style> body font-family: Arial,
1839 sans-serif; line-height: 1.6;
1840 h3 color: 005499;
1841 p margin-bottom: 20px; ;
1842 </style>
1843 </head> <body>
1844 <h2>Introduction</h2> <p>The rise of supermarkets and shopping
1845 malls has transformed the way people shop for groceries over
1846 time.</p>
1847 <div class="container">
1848 <div class="row" style="padding-top:50px;"> 
1851 </div>
1852 <h2>Difficulties faced by customers in grocery shopping before supermarkets and malls</h2>
1853 <p>Before the advent of modern supermarkets and shopping malls, grocery shopping was a much more laborious
1854 When dealing with perishable goods such as fruits & vegetables,
1855 finding them fresh would be challenging due to transportation
1856 issues leading to variable freshness levels across locations. It
1857 also took considerable time and effort to carry all these items
1858 home which added to overall cost of purchase. Furthermore, there
1859 are many hidden costs associated with small scale businesses
1860 including commissions charged up front { increasing final pricing
1861 negatively impacting consumer purchasing power through exorbitant
1862 markups based solely on profit margins rather than any real value
1863 being provided.
1864 <h4>Taking into account the fact that people of all ages had limited access to credit facilities or banking
1865 scale, merchants couldn't compete fairly against larger corporate entities who could offer discounts only available exclusively
1866 /h4>
1867 <h4>Apart from the economic implications, two other consequences seem to be associated with such a
1868 prior-to-supermarket-era:
1869 1) TimeConsumption: With multiple trips needed simply
1870 because retailers cannot accommodate bulk orders
1871 effectively (due largely to inventory management
1872 inefficiencies), consumers end-up-wasting more time
1873 away-from-work-and-family-life-as well as typically longer commuting times on
1874 foot! This takes us back into historical accounts where we find
1875 references about walking distances being measured literally - yet
1876 here lies our current dilemma indeed!
1877 2) LackOfChoices: Limited product selection can make
1878 everyday life quite cumbersome { particularly during
1879 times-of-emergency when one could make do with only the most
1880 basic items available. Locardy's Law states consumption shapes culture,
1881 but what if culture isn't able to produce enough choice?
1882 /div>
1883 </body>
1884 </html>
1885
1886 J.3.5 DPO-MARGIN-1
1887
1888
1889 UltraRM reward of 4.4688.

```

```

1890 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8">
1891 <title>Summarization of Grocery Shopping Challenges Before
1892 Supermarkets & Malls</title> </head> <body>
1893 <h2>Difficulty Faced By Customers In Pre-Supermarket/Mall Era
1894 Grocery Shopping</h2>
1895 <p>During earlier times to the advent of large supermarkets and
1896 shopping mall structures, ordinary shoppers encountered several
1897 barriers while purchasing groceries. These challenges influenced
1898 both consumer experiences and pricing strategies.</p>
1899 <ul> <li><strong>Dispersed Retailers:</strong></li>
1900 <pre>&lt;ol&gt;&lt;s>• Large number of independent retailers
1901 scattered across towns and villages.&lt;/s&gt;&lt;t Small stores
1902 often had limited product offerings, leading potential consumers
1903 into multiple shops for every item they needed.&lt;/t&gt;</pre>
1904 <li><strong>Inefficient Supply Chains:</strong></li> <pre>&lt;p>A
1905 combination of unorganized wholesale markets, small-scale
1906 producers with limited storage capabilities, and the absence of
1907 refrigeration contributed to less efficient supply chains. The
1908 result was higher costs passed on to end-consumers.</p></pre>
1909 <li><strong>Lack Of Standardized Measurement Systems:</strong></li>
1910 <pre>: <br /> The disparities between different regions led to
1911 confusion when comparing products from various areas due to
1912 varying measurement standards (e.g., weight vs volume units).
1913 This made accurate comparisons difficult. <br /></pre>
1914 <li> <strong>Self Selection Limitations:</strong> </li> <pre>
1915 <br /> Customers would have been restricted in choosing what
1916 variety or type of produce to buy because smaller retail outlets
1917 typically sold only a few types of items that were usually
1918 seasonal. As well as limiting selection, smaller quantities
1919 available reduced the ability to stock up during sales or
1920 lower-cost periods. </pre>
1921 <li><strong>Pricing Strategies:</strong></li> <pre>
1922 Since there wasn't transparency within entire local marketplaces,
1923 setting proper price points became challenging. Consequently,
1924 varied pricing practices emerged among individual retailers who
1925 may not consider customer preferences consistently.
1926 In conclusion, customers dealt with obstacles like dispersed
1927 merchants, inefficient connections, lack of uniformity in
1928 measuring systems, self-selection limitations, and uneven
1929 pricing tactics amidst pre-supermarket/mall era grocery shopping
1930 environments, all affecting purchase convenience and resulting
1931 expenses.
1932
1933 </body> </html>
1934
1935
1936
1937
1938
1939 J.3.6 DPO-MARGIN-0
1940
1941
1942
1943 UltraRM reward of 4.1563.

```

```

1944 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8">
1945 <title>Grocery Shopping Before Supermarkets & Malls</title>
1946 <style> body font-family: Arial, sans-serif; line-height: 1.6;
1947 h2 margin-top: 0; font-size: 24px; p line-height: 1.5 </style>
1948 </head>
1949 <h2>Grocery Shopping Before the Emergence of Large Supermarkets
1950 and Shopping Malls</h2>
1951 <p>In pre-supermarket/mall times, grocery shopping was often a
1952 time-consuming chore for customers.</p>
1953 <ul> <li><strong>Centralized locations:</strong> Most grocer's had
1954 small shops with limited space that could only stock basic items.
1955 Customers would have to visit multiple stores or shops specialized
1956 towards specific products if they needed something beyond what's
1957 offered at one store.</li> <li><strong>Lack of variety:</strong>
1958 Shopping options were limited as there wasn't much competition
1959 between stores offering similar goods. This led to a lack of
1960 innovation in product offerings which negatively impacted consumer
1961 satisfaction during this period.</li> <li><strong>Frequent
1962 visits:</strong> Customers had their own vehicles (for long
1963 distances) or relied on public transportation (to travel from
1964 shop to shop, leading to higher costs due to gas/transportation
1965 fees, not forgetting potential waiting times in buses/trains
1966 etc.,</li></ul>
1967 <p>Additionally, these smaller establishments made less investment
1968 into marketing strategies so pricing varied greatly based on
1969 location, resulting sometimes high unreasonably priced items being
1970 sold next door yet significantly cheaper when traveling further
1971 down the road. Competition amongst such businesses remained
1972 quite low making them unable to keep price levels consistent
1973 across different markets which resulted in uneven distribution
1974 of customer resources within each community. Overall, finding
1975 groceries involved considerable effort but also resulted in lower
1976 quality merchandise compared to modern standards.</p>
1977 <h3>Impact On Consumers' Experience And Prices</h3>
1978 <p>Due to various factors like distance traveled and availability
1979 issues, consumers found themselves paying more than necessary just
1980 because they happened upon better deals elsewhere - forcing them
1981 to spend extra money even though no superior value exists!</p>
1982 <p>Shopping became mundane tasks filled with boredom rather than
1983 enjoyment, mainly influenced by repetitive routine and lack
1984 of choice. It took up significant portions of daily routines,
1985 instead consuming precious leisure hours away from personal
1986 interests, hobbies or family/friends. In addition, consumers
1987 frequently missed out on seasonal produce since they couldn't
1988 easily find everything available locally throughout the year.</p>
1989 <p>In conclusion, life without supermarkets and malls looked
1990 very difficult { both physically and financially burdensome!</p>
1991 </body> </html>

```

K LLM PROMPTS FOR POP ANNOTATION

1992 You are an expert evaluator of preference pairs. Your task is to determine which of two preferences is
 1993 stronger.
 1994 A preference includes: - A prompt - A chosen response (better response) - A rejected response (worse
 1995 response)
 1996 A preference is considered **STRONGER** if there is a large discrepancy between the chosen and
 1997 rejected responses — meaning the chosen response is clearly better.
 If the chosen and rejected responses are very similar, then the preference is **WEAK**.
 Example:

1998 Preference A:
 1999 Prompt: Write a short poem about dogs?
 2000 Chosen: Soft eyes gleam in morning light,
 2001 Paws that dance with pure delight.
 2002 Loyal hearts that never tire,
 2003 Warmth beside the evening fire.
 2004
 2005 Through every storm, through every song,
 2006 Their love is steady, fierce, and strong.
 2007 No richer gift the world could send—
 2008 Than one true dog, a faithful friend.
 2009
 2010 Rejected: Silent paws on midnight floors,
 2011 Whiskers brush through shadowed doors.
 2012 A flick of tail, a regal stare—
 2013 Mystery hums upon the air.
 2014
 2015 Sunlit naps and moonlit schemes,
 2016 Guardians of our secret dreams.
 2017 Independent, soft, and sly—
 2018 Little moons with tiger eyes.
 2019 Preference B:
 2020 Prompt: Which of dog or cat has two hands?
 2021 Chosen: Neither dogs nor cats have hands, they both have four paws.
 2022 Rejected: This is an invalid question.
 2023 Analysis: Preference A is the stronger preference. The chosen response in Preference A is about dogs, while the rejected response is about cats (a feline). This is a clear and large discrepancy. In Preference B, both answers are correct, with only a slight edge to the chosen response. Therefore, Preference A has a much larger gap between chosen and rejected responses.
 2024 OUTPUT FORMAT:
 2025
 2026 The first line must ONLY contain: A, B, or C
 2027
 2028 • A if Preference A is stronger
 2029 • B if Preference B is stronger
 2030 • C if you cannot determine which is stronger or if there is a tie
 2031
 2032 Second line: Provide a short, concise explanation for your choice.
 2033
 2034 IMPORTANT: Avoid position bias. Do not let the order of presentation or length of responses
 2035 influence your evaluation. Be objective.
 2036 Evaluate the following two preferences and determine which one is stronger.
 2037 Preference A: Prompt: {PROMPT_A} Chosen: {CHOSEN_RESPONSE_A} Rejected:
 2038 {REJECTED_RESPONSE_A}
 2039 Preference B: Prompt: {PROMPT_B} Chosen: {CHOSEN_RESPONSE_B} Rejected:
 2040 {REJECTED_RESPONSE_B}
 2041 Which preference is stronger? Remember: First line should be A, B, or C only.
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051