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Abstract

Simulation-based inference (SBI) methods such as approximate Bayesian compu-
tation (ABC), synthetic likelihood, and neural posterior estimation (NPE) rely on
simulating statistics to infer parameters of intractable likelihood models. However,
such methods are known to yield untrustworthy and misleading inference outcomes
under model misspecification, thus hindering their widespread applicability. In
this work, we propose the first general approach to handle model misspecification
that works across different classes of SBI methods. Leveraging the fact that the
choice of statistics determines the degree of misspecification in SBI, we introduce
a regularized loss function that penalizes those statistics that increase the mismatch
between the data and the model. Taking NPE and ABC as use cases, we demon-
strate the superior performance of our method on high-dimensional time-series
models that are artificially misspecified. We also apply our method to real data from
the field of radio propagation where the model is known to be misspecified. We
show empirically that the method yields robust inference in misspecified scenarios,
whilst still being accurate when the model is well-specified.

1 Introduction
Bayesian inference traditionally entails characterizing the posterior distribution of parameters assum-
ing that the observed data came from the chosen model family [7]. However, in practice, the true
data-generating process rarely lies within the family of distributions defined by the model, leading to
model misspecification. This can be caused by, among other things, measurement errors or contami-
nation in the observed data that are not included in the model, or when the model fails to capture the
true nature of the physical phenomenon under study. Misspecified scenarios are especially likely for
simulator-based models, where the goal is to describe some complex real-world phenomenon. Such
simulators, also known as implicit generative models [25], have become prevalent in many domains
of science and engineering such as genetics [71], ecology [3], astrophysics [40], economics [29],
telecommunications [8], cognitive science [79], and agent-based modeling [87]. The growing field of
simulation-based inference (SBI) [21, 51] tackles inference for such intractable likelihood models,
where the approach relies on forward simulations from the model, instead of likelihood evaluations,
to estimate the posterior distribution.

Traditional SBI methods include approximate Bayesian computation (ABC) [4, 51, 76], synthetic
likelihood [67, 85] and minimum distance estimation [15]. More recently, the use of neural networks
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Figure 1: Inference on misspecified Ricker model with two parameters, see Section 4 for details.
Left: Learned statistics obtained using NPE; each point (in black) corresponds to a parameter value
sampled from the prior. The observed statistic (in red) is outside the set of statistics the model
can simulate. Middle: Statistics learned using our robust method; the observed statistic is inside
the distribution of simulated statistics. Right: The resulting posteriors obtained from NPE and our
method. The posterior obtained from our method is close to the true parameter value, while
that from NPE is completely off, going outside the prior range (denoted by dashed grey lines).

as conditional density estimators [72] has fuelled the development of new SBI methods that target
either the likelihood (neural likelihood estimation) [52, 61, 75, 83], the likelihood-to-evidence ratio
(neural ratio estimation) [22, 23, 28, 30, 39, 46, 77], or the posterior (neural posterior estimation)
[38, 41, 53, 58, 59, 70, 75, 83]. A common feature of all these SBI methods is the choice of summary
statistics of the data, which readily impacts their performance [14]. The summary statistics are either
manually handcrafted by domain experts, or learned automatically from simulated data using neural
networks [1, 17, 18, 26, 31, 47, 84].

The unreliability of Bayesian posteriors under misspecification is exacerbated for SBI methods as
the inference relies on simulations from the misspecified model. Moreover, for SBI methods using
conditional density estimators [5, 13, 41, 61, 69], the resulting posteriors can be wildly inaccurate
and may even go outside the prior range [9, 16, 35]; see [27] for an instance of this problem in the
study of molecules. This behavior is exemplified in Figure 1 for the posterior-targeting neural SBI
method called neural posterior estimation (NPE). We see that when the model is misspecified, the
NPE posterior goes outside the prior range. This is because the model is unable to match the observed
statistic for any value of the parameters, as shown in Figure 1(left), and hence, NPE is forced to
generalize outside its training distribution, yielding a posterior that is outside the prior range.

We argue that the choice of statistics is crucial to the notion of misspecification in SBI. Suppose
we wish to fit a Gaussian model to data from some skewed distribution. If we choose, for instance,
the sample mean and the skewness as statistics, then the Gaussian model would fail to match these
statistics for any choice of parameters, and we would end up in the same situation as in Figure 1
where the SBI method is forced to generalize outside its training distribution. However, choosing the
sample mean and sample variance as statistics instead may solve this issue, as the model may be able
to replicate the chosen statistics for some value of parameters, even though the Gaussian model itself
is misspecified for any skewed dataset. This problem of identifying a low-dimensional statistic of
a high-dimensional dataset for which the model of interest is correctly specified is termed the data
selection problem [82]. We refer to the statistics that solve the data selection problem as being robust.

Contributions. In this paper, we learn robust statistics using neural networks to solve the data
selection problem. To that end, we introduce a regularized loss function that balances between
learning statistics that are informative about the parameters, and penalizing those choices of statistics
or features of the data that the model is unable to replicate. By doing so, the observed statistic does
not go outside the set of statistics that the model can simulate, see Figure 1(middle), thereby yielding
a posterior around the true parameter even under misspecification (Figure 1(right)). As our method
relies on learning appropriate statistics and not on the subsequent inference procedure, it is applicable
to all the statistics-based SBI methods, unlike other robust methods in the literature [24, 48, 81]. We
substantiate our claim in Section 4 through extensive numerical studies on NPE and ABC — two
fundamentally different SBI methods. Additionally in Section 5, we apply our method to a real case
of model misspecification in the field of radio propagation [8].
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Related works. Model misspecification has been studied in the context of different SBI methods
such as ABC [9, 33, 35, 36, 74], synthetic likelihood [32, 34, 57], minimum distance estimation
[24], and neural estimators [48, 81]. It was first analyzed for ABC methods such as the regression-
adjustment ABC [5] in [35], and a robust approach was proposed in [33]. In [9], the authors proposed
to handle model misspecification in ABC by incorporating the domain expert while selecting the
statistics. Generalized Bayesian inference [12, 43, 49], which is a popular framework for designing
methods that are robust to misspecification, has also been linked to ABC [74] and synthetic likelihood
[57]. In [24], the authors propose a robust SBI method based on Bayesian nonparametric learning
and the posterior bootstrap. More recently, robustness to model misspecification has been tackled for
neural likelihood [48] and posterior estimators [81]. We use the latter method, called robust neural
posterior estimation (RNPE) [81], as a baseline for comparing our proposed approach. Our method
differs from these previous robust approaches in that it is applicable across distinct SBI methods.

2 Preliminaries
Simulation-based inference (SBI). Consider a simulator {Pθ : θ ∈ Θ}, which is a family
of distributions parameterized by θ on data space X ⊆ Rd. We assume that Pθ is intractable,
but sampling independent and identically distributed (iid) data x1:n = {x(1), . . . ,x(n)} ∼ Pθ is
straightforward for x(i) ∈ X , 1 ≤ i ≤ n. Given iid observed data y1:n ∼ Q, y(i) ∈ X , from some
true data-generating process Q and a prior distribution of θ, we are interested in estimating a θ⋆ ∈ Θ
such that Pθ⋆ = Q, or alternatively, in characterizing the posterior distribution p(θ|y1:n). Since
X is a high-dimensional space in most practical cases, it is common practice to project both the
simulated and the observed data onto a low-dimensional space of summary statistics S via a mapping
η : Xn → S, such that s = η(x1:n) is the vector of simulated statistics, and sobs = η(y1:n) the
observed statistic. In the following, we assume that this deterministic map η is not known a priori,
but needs to be learned using a neural network, henceforth called the summary network ηψ, with
trainable parameters ψ. We now introduce two different paradigms for learning the statistics.

Learning statistics in neural posterior estimation (NPE) framework. NPEs are a class of SBI
methods which are becoming popular in astrophysics [40] and nuclear fusion [37, 80], among other
fields. They map each statistic vector s to an estimate of the posterior p(θ|s) using conditional
density estimators such as normalizing flows [41, 53, 59, 69]. The posterior is assumed to be a
member of a family of distributions qν , parameterized by ν. NPEs map the statistics to distribution
parameters ν via an inference network hϕ, where ϕ constitutes the weights and biases of h, such that
qhϕ(s)(θ) ≈ p(θ|s). The inference network is trained on dataset {(θi, si)}mi=1, simulated from the
model using prior samples {θi}mi=1 ∼ p(θ), by minimising the loss L(ϕ) = −Ep(θ,s)[log qhϕ(s)(θ)].
Once trained, the posterior estimate is then obtained by simply passing the observed statistic sobs
through the trained network. Hence, NPEs enjoy the benefit of amortization, wherein inference on
new observed dataset is straightforward after a computationally expensive training phase. In cases
where the statistics are not known a priori, the NPE framework allows for joint training of both the
summary and the inference networks by minimizing the loss function

LNPE(ϕ, ψ) = −Ep(θ,x1:n)

[
log qhϕ(ηψ(x1:n))(θ)

]
, (1)

on the training dataset {(θi,x1:n,i)}mi=1 [69]. Even though NPEs are flexible and efficient SBI
methods, they are known to perform poorly when the model is misspecified [16, 81]. This is because
the observed statistic sobs becomes an out-of-distribution sample under misspecification (see Figure 1
for an example), forcing the inference network in NPE to generalize outside its training distribution.

Learning statistics using autoencoders. Unlike NPEs, statistics for other SBI methods are learned
prior to carrying out the inference procedure. This is achieved, for instance, by training an autoencoder
with the reconstruction loss [1]

LAE(ψ,ψd) = Ep(θ,x1:n)

[
(x1:n − η̃ψd(ηψ(x1:n)))

2
]
, (2)

where ψ and ψd are the parameters of the encoder η and the decoder η̃, respectively. The trained
encoder ηψ is then taken as the summarizing function in the SBI method. In this paper, we will use
the encoder ηψ to perform inference in an ABC framework, which we now recall.
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Approximate Bayesian computation (ABC). ABC is arguably the most popular SBI method, and
is widely used in many research domains [64]. ABC relies on computing the distance between the
simulated and the observed statistics to obtain samples from the approximate posterior of a simulator.
Given a discrepancy ρ(·, ·) and a tolerance threshold δ, the basic rejection-ABC method involves
repeating the following algorithm: (i) sample θ′ ∼ p(θ), (ii) simulate x′

1:n ∼ Pθ′ , (iii) compute
s′ = η(x′

1:n), and (iv) if ρ(s′, sobs) < δ, accept θ′, until a sample {θ′i}
nδ
i=1 is obtained from the

approximate posterior. Conditional density estimators have also been used in ABC to improve the
posterior approximation of the rejection-ABC method [5, 11, 13, 14]. These so-called regression
adjustment ABC methods involve fitting a function g between the accepted parameters and statistics
pairs {(θ′i, s′i)}

nδ
i=1 as θ′i = g(s′i) + ωi, 1 ≤ i ≤ nδ, where {ωi}nδi=1 are the residuals. Once fitted,

the accepted parameter samples are then adjusted as θ̃′i = ĝ(sobs) + ω̂i, where ĝ(s) is the estimate
of E[θ|s] and ω̂i is the empirical residual. Despite the popularity of the regression adjustment ABC
methods, they have also been shown to behave wildly under misspecification [9, 35], similar to NPEs.

3 Methodology
Model misspecification in SBI. Bayesian inference assumes that there exists a θ⋆ ∈ Θ such that
Pθ⋆ = Q. Under model misspecification, Pθ ̸= Q for any θ ∈ Θ, which can lead to unreliable
predictive distributions. However, this definition does not apply for models whose inference is carried
out in light of certain summary statistics. For instance, a Gaussian model is clearly misspecified
for a bimodal data sample. However, if inference is based on, say, the sample mean and the sample
variance of the data, the model may still match the observed statistics accurately. Hence, even
when a simulator is misspecified with respect to the true data-generating process, it may still be
well-specified with respect to the observed statistic. The choice of statistics therefore dictates the
notion of misspecification in SBI. We propose an analogous definition for misspecification in SBI:
Definition 3.1 (Misspecification of model-summarizer pair in SBI). Let η#Pnθ be a pushforward
of the probability measure Pnθ = Pθ × · · · × Pθ on Xn under η : Xn → S , meaning that for A ⊂ S ,
η#Pnθ (A) = Pnθ (η−1(A)) = Pθ(η−1(A)1)× · · · × Pθ(η−1(A)n). Then, {η#Pnθ : θ ∈ Θ} is a set of
distributions on the statistics space S induced by the model for a given summarizer η, and η#Qn is
the distribution of the statistics from the true data-generating process. Then, the model-summarizer
pair is misspecified if, ∀θ ∈ Θ, η#Qn ̸= η#Pnθ .

It is trivial to see that if the model is well-specified in the data space X , it will also be well-specified in
the statistic space S for any choice of η. The converse, however, is not true, as previously mentioned.
Using this definition, we quantify the level of misspecification of a model-summarizer pair as follows:
Definition 3.2 (Misspecification margin in SBI). Let D be a distance defined on the set of all Borel
probability measures on S . Then, for a given η, we define the misspecification margin εη in SBI as

εη = inf
θ∈Θ

D (η#Pnθ , η#Qn) . (3)

Note that the margin is equal to zero for the well-specified case. Moreover, the larger the margin, the
bigger the mismatch between the simulated and the observed statistics w.r.t η. Our aim is to learn
an η such that Pθ is represented well whilst the model-summarizer pair is no longer misspecified
as per Definition 3.1, or alternatively, has zero margin as per Definition 3.2. We formulate this as a
constrained optimization problem in Equation (6).

Learning robust statistics for SBI. Suppose we have the flexibility to choose the summarizer
η from a family of functions parameterized by ψ. Then, a potential approach for tackling model
misspecification in SBI is to select the summarizer η that minimizes the misspecification margin
εη. However, that involves computing the infimum for all possible choices of ψ. To avoid that, we
minimize an upper bound on the margin instead, given as

εηψ ≤ εupperηψ
= Ep(θ) [D (ηψ#Pnθ , ηψ#Qn)] . (4)

Note that Equation (4) is valid for any choice of p(θ), and we call εupperηψ
the margin upper bound.

Minimizing the margin upper bound alone would lead to η being a constant function, which when
used for inference, would yield the prior distribution. Hence, there is a trade-off between choosing
an η that is informative about the parameters and an η that minimizes the margin upper bound. We
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propose to navigate this trade-off by including the margin upper bound as a regularization term in the
loss function for learning η. To that end, let L(ω, ψ) be the loss function used to learn ηψ (along with
additional parameters ω) which, for instance, can be either LNPE from Equation (1) or LAE from
Equation (2). Then, our proposed loss with robust statistics (RS) is written as

LRS(ω, ψ) = L(ω, ψ) + λEp(θ) [D (ηψ#Pnθ , ηψ#Qn)]︸ ︷︷ ︸
regularization

, (5)

where λ ≥ 0 is the weight we place on the regularization term relative to the standard loss L.
Minimizing the loss function in Equation (5) corresponds to solving the Lagrangian relaxation of the
optimization problem:

min
ω,ψ

L(ω, ψ) (6)

s.t. Ep(θ) [D (ηψ#Pnθ , ηψ#Qn)] ≤ ξ, ξ > 0,

with λ ≥ 0 being the Lagrangian multiplier fixed to a constant value.

Estimating the margin upper bound. In order to implement the proposed loss from Equation (5),
we need to estimate the margin upper bound using the training dataset {(θi,x1:n,i)}mi=1 ∼ p(θ,x1:n)
sampled from the prior and the model. However, we only have one sample each from the distributions
ηψ#Pnθi , i = 1, . . . ,m, and one sample of the observed statistic from ηψ#Qn. Taking D to be the
Euclidean distance ∥·∥, we can estimate the margin upper bound as 1

m

∑m
i=1 ∥ηψ(x1:n,i)−ηψ(y1:n)∥.

Although easy to compute, we found this choice of D to yield overly conservative posteriors even in
the well-specified case, see Appendix B.3 for the results. This is because the Euclidean distance is
large even if only a handful of simulated statistics — corresponding to different parameter values
in the training data — are far from the observed statistic. As a result, the regularizer dominates the
loss function while the standard loss term L related to θ is not minimized, leading to underconfident
posteriors. Hence, we need a distance D that is robust to outliers and can be computed between the
set {ηψ(x1:n,i)}mi=1 and ηψ(y1:n), instead of computing the distance point-wise.

To that end, we take D to be the maximum mean discrepancy (MMD) [42], which is a notion of
distance between probability distributions or datasets. MMD has a number of attractive properties
that make it suitable for our method: (i) it can be estimated efficiently using samples [15], (ii) it is
robust against a few outliers (unlike the KL divergence), and (iii) it can be computed for unequal sizes
of datasets. The MMD has been used in a number of frameworks such as ABC [8, 10, 50, 54, 62],
minimum distance estimation [2, 15, 19, 56], generalized Bayesian inference [20, 57], and Bayesian
nonparametric learning [24]. Similar to our method, the MMD has previously been used as a
regularization term to train Bayesian neural networks [66], and in the NPE framework to detect model
misspecification [73]. While we include the mmD-based regularizer to ensure that the observed
statistic is not an out-of-distribution sample in the summary space, the regularizer in [73] involves
computing the MMD between the simulated statistics and samples from a standard Gaussian, thus
ensuring that the learned statistics are jointly Gaussian. They then conduct a goodness-of-fit test [42]
to detect if the model is misspecified. Their method is complementary to ours, such that our method
can be used once misspecification has been detected using [73].

Maximum mean discrepancy (MMD) as D. The MMD is a kernel-based distance between
probability distributions, computed by mapping the distributions to a function space called the
reproducing kernel Hilbert space (RKHS). Let Hk be the RKHS associated with the symmetric and
positive definite function k : S × S → R, called a reproducing kernel [6], defined on the space of
statistics S such that f(s) = ⟨f, k(·, s)⟩Hk

∀f ∈ Hk (called the reproducing property). We denote
the norm and inner product of Hk by ∥ · ∥Hk

and ⟨·, ·⟩Hk
, respectively. Any distribution P can be

mapped to Hk via its kernel-mean embedding µk,P =
∫
S k(·, s)P(ds). The MMD between two

arbitrary probability measures P and Q on S is defined as the distance between their embeddings in
Hk, i.e., MMDk(P,Q) = ∥µk,P − µk,Q∥Hk

[55]. Using the reproducing property, we can express
the squared-MMD as

MMD2
k[P,Q] = Es,s′∼P[k(s, s

′)]− 2Es∼P,s′∼Q[k(s, s
′)] + Es,s′∼Q[k(s, s

′)], (7)

which is computationally convenient as the expectations of the kernel can be estimated using iid
samples from P and Q. Given samples of simulated statistics {ηψ(x1:n,i)}li=1 and the observed
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statistic ηψ(y1:n), we estimate the squared-MMD between them using the V-statistic estimator [42]:

MMD2
k[ηψ#Pnθ , ηψ#Qn] ≈ MMD2

k[{ηψ(x1:n,i)}li=1, ηψ(y1:n)] (8)

=
1

l2

l∑
i,j=1

k(ηψ(x1:n,i), ηψ(x1:n,j))−
2

l

l∑
i=1

k(ηψ(x1:n,i), ηψ(y1:n)).

Note that the last term in Equation (7) is always constant for the estimator above as we only have
one data-point of the observed statistic, hence we disregard it. Equation (8) therefore corresponds to
estimating the MMD between the distribution of the simulated statistics for a given ψ and a Dirac
measure on ηψ(y1:n). The computational cost of estimating the squared-MMD is O(l2) and its rate
of convergence is O(l−

1
2 ). The NPE loss with robust statistics (NPE-RS) can then be estimated as

L̂NPE−RS(ϕ, ψ) = − 1

m

m∑
i=1

log qhϕ(ηψ(x1:n,i))(θi) + λMMD2
k

[
{ηψ(x1:n,i)}li=1, ηψ(y1:n)

]
. (9)

Similarly, the autoencoder loss with robust statistics (AE-RS) reads

L̂AE−RS(ψ,ψd) =
1

m

m∑
i=1

(x1:n,i − η̃ψd(ηψ(x1:n,i)))
2 + λMMD2

k

[
{ηψ(x1:n,i)}li=1, ηψ(y1:n)

]
.

(10)
We use a subset of the training dataset of size l < m to compute the MMD instead of m to avoid
incurring additional computational cost in case m is large. The MMD-based regularizer can also be
used as a score in a classification task to detect model misspecification, as shown in Appendix A.

Role of the regularizer λ. The regularizer λ penalizes learning those statistics for which the
observed statistic ηψ(y1:n) is far from the set of statistics that the model can simulate given a prior
distribution. When λ tends to zero, maximization of the likelihood dictates learning of both ϕ and ψ
in Equation (9), and our method converges to the NPE method. On the other hand, the regularization
term is minimized when the summary network outputs the same statistics for both simulated and
observed data, i.e., when D is zero. In this case, the inference network can only rely on information
from the prior p(θ). As a result, for large values of λ, we expect the regularization term to dominate
the loss and the resulting posterior to converge to the prior distribution. Similar argument holds for
the autoencoder loss in Equation (10). We empirically observe this behavior in Section 4. Hence, λ
encodes the trade-off between efficiency and robustness of our inference method. Choosing λ can be
cast as a hyperparameter selection problem, for which we can leverage additional data (if available)
as a validation dataset, or use post-hoc qualitative analysis of the posterior predictive distribution.

4 Numerical experiments
We apply our method of learning robust statistics to two different SBI frameworks — NPE [41] and
ABC [5] (see Appendix B.6 for results on applying our method to neural likelihood estimator [52]).
We also compare the performance of our method against RNPE [81], by using the output of the
trained summary network in NPE as statistics for RNPE. Experiments are conducted on synthetic
data from two time-series models, namely the Ricker model from population ecology [67, 85] and the
Ornstein-Uhlenbeck process [18]. Real data experiment on a radio propagation model is presented
in Section 5. Analysis of the computational cost of our method and results on a 10-dimensional
Gaussian model is presented in Appendix B.4 and B.5, respectively. The code to reproduce our
experiments is available at https://github.com/huangdaolang/robust-sbi.

Ricker model simulates the evolution of population size Nt over the course of time t as Nt+1 =
exp(θ1)Nt exp(−Nt + et), t = 1, . . . , T , where exp(θ1) is the growth rate parameter, et are zero-
mean iid Gaussian noise terms with variance σ2

e , and N0 = 1. The observations xt are assumed to be
Poisson random variables such that xt ∼ Poiss(θ2Nt). For simplicity, we fix σ2

e = 0.09 and estimate
θ = [θ1, θ2]

⊤ using the prior distribution U([2, 8]× [0, 20]), and T = 100 time-steps.

Ornstein-Uhlenbeck process (OUP) is a stochastic differential equation model widely used in
financial mathematics and evolutionary biology. The OU process xt is defined as:

xt+1 = xt +∆xt, t = 1, . . . , T,

∆xt = θ1[exp(θ2)− xt]∆t+ 0.5w,

6
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Figure 2: Performance of the SBI methods in terms of RMSE and MMD for both the Ricker model
and OUP. Each box represents the median and interquartile range (IQR), while the whiskers extend
to the furthest points within 1.5 times the IQR from the edges of the box. For the well-specified case
(ϵ = 0%), the proposed NPE-RS and ABC-RS methods perform similar to their counterpart NPE and
ABC, respectively. Under misspecification (ϵ > 0%), NPE-RS and ABC-RS achieve lower RMSE
and MMD values, demonstrating robustness to model misspecification.

where T = 25, ∆t = 0.2, x0 = 10, and w ∼ N (0,∆t). A uniform prior U([0, 2] × [−2, 2]) is
placed on the parameters θ = [θ1, θ2]

⊤.

Contamination model. We test for robustness relative to the ϵ-contamination model [65], similar
to [24]. For both the Ricker model and the OUP, the observed data comes from the distribution
Q = (1 − ϵ)Pθtrue

+ ϵPθc , where a large proportion of the data comes from the model with θtrue,
while ϵ proportion of the data comes from the distribution Pθc . Hence, ϵ ∈ [0, 1] denotes the level
of misspecification within both the models, with ϵ = 0 resulting in the well-specified case. We take
θtrue = [0.5, 1.0]⊤, θc = [−0.5, 1.0]⊤ for OUP, and θtrue = [4, 10]⊤, θc = [4, 100]⊤ for the Ricker
model.

Implementation details. We takem = 1000 samples for the training data and n = 100 realizations
of both the observed and simulated data for each θ. We set λ using an additional dataset simulated from
the models using θtrue. For the MMD, we take the kernel to be the exponentiated-quadratic kernel
k(s, s′) = exp(−∥s− s′∥22/β2), and set its lengthscale β using the median heuristic β =

√
med/2

[42], where med denotes the median of the set of squared two-norm distances ∥si − sj∥22 for all pairs
of distinct data points in {si}mi=1. We use l = 200 samples of the simulated statistics to estimate
the MMD. For the Ricker model, the summary network ηψ is composed of 1D convolutional layers,
whereas for the OUP, ηψ is a combination of bidirectional long short-term memory (LSTM) recurrent
modules and 1D convolutional layers. The dimension of the statistic space is set to four for both the
models. We take q to be a conditional normalizing flow for all the three NPE methods. We take the
tolerance δ in ABC to be the top 5% of samples that yield the smallest distance.

Performance metrics. We evaluate the accuracy of the posterior, as well as the posterior predictive
distribution of the SBI methods. For the posterior distribution, we compute the root mean squared
error (RMSE) as (1/N

∑N
i=1(θi − θtrue)

2)
1
2 where {θi}Ni=1 are posterior samples. For the predictive

accuracy, we compute the MMD between the observed data and samples from the posterior predictive
distribution of each method. As the models simulate high-dimensional data, we use the kernel spe-
cialized for time-series from [8]. The lengthscale of this kernel is set to β = 1 for all misspecification
levels to facilitate fair comparison.

Results. Figure 2 presents the results for both the Ricker model and the OUP across 100 runs.
We observe that both NPE and ABC with our robust statistics (RS) outperform their counterparts,
including RNPE, under misspecification (ϵ = 10% and 20%). Moreover, our performance is similar
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Figure 3: Posteriors obtained from NPE, RNPE, and our NPE-RS method for the Ricker model. We
perform similar to NPE in the well-specified case, unlike RNPE. Under misspecification, NPE and
RNPE posteriors drift away from θtrue, going even beyond the prior range (denoted by dashed gray
lines) in the case of NPE. Our method is robust to model misspecification.

to NPE in the well-specified case (ϵ = 0%). An instance of the NPE posteriors is shown in Figure 3
for the Ricker model. Our NPE-RS posterior is very similar to the NPE posterior for the well-specified
case, whereas the RNPE posterior is underconfident, as noted in [81]. Although RNPE is more
robust than NPE under misspecification, its posterior still drifts away from θtrue, while NPE-RS
posterior stays around θtrue even for ϵ = 20%. This is because our method has the flexibility to
choose appropriate statistics based on misspecification level, while RNPE is bound to a fixed choice
of pre-selected statistics. Posterior plots for ABC and OUP are given in Appendix B.2.
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Figure 4: Posteriors from NPE, RNPE,
and NPE-RS for Ricker model. NPE-RS
is robust to prior misspecification.

Prior misspecification. So far our discussion has per-
tained to the case of likelihood misspecification. How-
ever, in Bayesian inference, the prior is also a part of
the model. Hence, a potential form of misspecification
is prior misspecification, in which the prior gives low or
even zero probability to the “true” data generating pa-
rameters. We investigate the issue of prior misspecifi-
cation using the Ricker model as an example. To that
end, we modify the prior distribution of θ2 by setting it
to LogNormal(0.5, 1.0) while keeping the prior of θ1 un-
changed. We use θtrue = [4, 25]⊤ to generate the observed
data, as θ2 = 25 has very low density under the lognor-
mal prior, and the probability that a value of θ2 ≥ 25
will be sampled is 0.00372. The result in Figure 4 shows
that NPE and RNPE yield posteriors that do not include
the true value of θ2, whereas our NPE-RS posterior is
still around θtrue. This highlights the effectiveness of our
method to handle cases of prior misspecification as well.

Varying regularizer λ. As mentioned in Section 3, our method converges to NPE as λ tends to
zero, and to the prior distribution as λ becomes high. To investigate this effect, we vary λ and measure
the distance between the NPE-RS and the NPE posteriors, and between the NPE-RS posterior and
the prior. We use the MMD from Equation (7) to measure this distance on the Ricker model in the
misspecified case (ϵ = 20%). We see in Figure 5(left) that the MMD values between the prior and
the NPE-RS posteriors go close to zero for λ = 103, indicating that our method essentially returns
the prior for high values of λ. On the other hand, the MMD values between NPE and NPE-RS
posteriors in Figure 5(middle) are smallest for λ = 0.01 and λ = 0.1. For non-extreme values of λ
(i.e. λ = 1 or 10), we observe maximum difference between NPE-RS and NPE. This is because the
NPE posteriors tend to move out of the prior support under misspecification, whereas the NPE-RS
posteriors remain around θtrue, as shown in Figure 3. Finally, the NPE-RS posteriors are also close
to the NPE posteriors for small values of λ in the well-specified case, as shown in Figure 5(right).
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Figure 5: MMD between the NPE-RS posteriors and (left) the prior in the misspecified setting,
(middle) the NPE posteriors in the misspecified setting, (right) the NPE posteriors in the well-
specified setting, for different values of λ.

5 Application to real data: A radio propagation example
Our final experiment involves a stochastic radio channel model, namely the Turin model [45, 63,
78], which is used to simulate radio propagation phenomena in order to test and design wireless
communication systems. The model is driven by an underlying point process which is unobservable,
thereby rendering its likelihood function intractable. The model simulates high-dimensional complex-
valued time-series data, and has four parameters. The parameters govern the starting point, the slope
of the decay, the rate of the point-process, and the noise floor of the time-series, as shown in Figure 6.

Figure 6: Predictive performance of NPE, RNPE
and our NPE-RS method on the Turin model under
misspecification. NPE-RS leads to the best fit.
The shaded regions denote ±1 std. deviation of the
posterior predictive distribution of each method.

We attempt to fit this model to a real dataset
from a measurement campaign [44] for which
the model is known to be misspecified [8], on
account of the data samples being non-iid. The
averaged power of the data (square of the abso-
lute value) as a function of time is shown by the
black curve in Figure 6. The data dimension is
801 and we have n = 100 realizations. We take
the power of the complex data in decibels* as
input to the summary network, which consists
of 1D convolutional layers, and we set uniform
priors for all the four parameters. Descriptions
of the model, the data, and the prior ranges are
provided in Appendix C.

We fit the model to the real data using NPE,
RNPE and our NPE-RS methods. As there is
no notion of ground truth in this case, we plot
the resulting posterior predictive distributions in
Figure 6. Note that the multiple peaks present
in the data are not replicated by the Turin model
for any method, which is due to the model being misspecified for this dataset. Despite that, our
NPE-RS method appears to fit the data well, while NPE performs the worst. Moreover, our method
is better than RNPE at matching the starting point of the data, the slope, and the noise floor, with
RNPE underestimating all three aspects on average. The MMD between the observed data and the
posterior predictive distribution of NPE, RNPE and NPE-RS is 0.11, 0.09, and 0.03, respectively.
Hence, NPE-RS provides a reasonable fit of the model even under misspecification.

6 Conclusion
We proposed a simple and elegant solution for tackling misspecification of simulator-based models.
As our method relies on learning robust statistics and not on the subsequent inference procedure,
it is applicable to any SBI method that utilizes summary statistics. Apart from achieving robust
inference under misspecified scenarios, the method performs reasonably well even when the model
is well-specified. The proposed method only has one hyperparameter that encodes the trade-off
between efficiency and robustness, which can be selected like other neural network hyperparameters,
for instance, via a validation set.

*In wireless communications, the power of the signal is measured in decibels (dB). A power P in linear scale
corresponds to 10 log10(P ) dB.
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Limitations and future work. A limitation of our method is the increased computational com-
plexity due to the cost of estimating the MMD, which can be alleviated using the sample-efficient
MMD estimator from [10] or quasi-Monte Carlo points [56]. Moreover, as our method utilizes the
observed statistic during the training procedure, the corresponding NPE is not amortized anymore —
a limitation we share with RNPE. Thus, working on robust NPE methods which are still amortized (to
some extent) is an interesting direction for future research. An obvious extension of the work could
be to investigate if the ideas translate to likelihood-free model selection methods [68, 76] which can
suffer from similar problems as SBI if all (or some) of the candidate models are misspecified.

Acknowledgements

The authors would like to thank Dr. Carl Gustafson and Prof. Fredrik Tufvesson (Lund Univer-
sity) for providing the measurement data. We also thank Masha Naslidnyk, Dr. François-Xavier
Briol, and Dr. Markus Heinonen for their useful comments and discussion. We acknowledge the
computational resources provided by the Aalto Science-IT Project from Computer Science IT. This
work was supported by the Academy of Finland Flagship programme: Finnish Center for Artificial
Intelligence FCAI. SK was supported by the UKRI Turing AI World-Leading Researcher Fellowship,
[EP/W002973/1].

References
[1] Albert, C., Ulzega, S., Ozdemir, F., Perez-Cruz, F., and Mira, A. (2022). Learning Summary

Statistics for Bayesian Inference with Autoencoders. SciPost Phys. Core, 5:043.

[2] Alquier, P. and Gerber, M. (2021). Universal robust regression via maximum mean discrepancy.
arXiv:2006.00840.

[3] Beaumont, M. A. (2010). Approximate Bayesian computation in evolution and ecology. Annual
Review of Ecology, Evolution, and Systematics, 41(1):379–406.

[4] Beaumont, M. A. (2019). Approximate Bayesian computation. Annual Review of Statistics and
Its Application, 6(1):379–403.

[5] Beaumont, M. A., Zhang, W., and Balding, D. J. (2002). Approximate Bayesian computation in
population genetics. Genetics, 162(4):2025–2035.

[6] Berlinet, A. and Thomas-Agnan, C. (2004). Reproducing Kernel Hilbert Spaces in Probability
and Statistics. Springer Science+Business Media, New York.

[7] Bernardo, S. (2000). Bayesian Theory. John Wiley & Sons.

[8] Bharti, A., Briol, F.-X., and Pedersen, T. (2022a). A general method for calibrating stochastic
radio channel models with kernels. IEEE Transactions on Antennas and Propagation, 70(6):3986–
4001.

[9] Bharti, A., Filstroff, L., and Kaski, S. (2022b). Approximate Bayesian computation with domain
expert in the loop. In International Conference on Machine Learning, volume 162, pages 1893–
1905.

[10] Bharti, A., Naslidnyk, M., Key, O., Kaski, S., and Briol, F.-X. (2023). Optimally-weighted
estimators of the maximum mean discrepancy for likelihood-free inference. arXiv:2301.11674.

[11] Bi, J., Shen, W., and Zhu, W. (2021). Random forest adjustment for approximate Bayesian
computation. Journal of Computational and Graphical Statistics, 0(0):1–10.

[12] Bissiri, P. G., Holmes, C. C., and Walker, S. G. (2016). A general framework for updating
belief distributions. Journal of the Royal Statistical Society. Series B (Statistical Methodology),
78(5):1103–1130.

[13] Blum, M. G. B. and François, O. (2010). Non-linear regression models for approximate
Bayesian computation. Statistics and Computing, 20(1):63–73.

10



[14] Blum, M. G. B., Nunes, M. A., Prangle, D., and Sisson, S. A. (2013). A comparative review of
dimension reduction methods in approximate Bayesian computation. Statistical Science, 28(2).

[15] Briol, F.-X., Barp, A., Duncan, A. B., and Girolami, M. (2019). Statistical inference for
generative models with maximum mean discrepancy. arXiv:1906.05944.

[16] Cannon, P., Ward, D., and Schmon, S. M. (2022). Investigating the impact of model misspecifi-
cation in neural simulation-based inference. arXiv preprint arXiv:2209.01845.

[17] Chan, J., Perrone, V., Spence, J., Jenkins, P., Mathieson, S., and Song, Y. (2018). A likelihood-
free inference framework for population genetic data using exchangeable neural networks. In
Advances in Neural Information Processing Systems, volume 31.

[18] Chen, Y., Zhang, D., Gutmann, M. U., Courville, A., and Zhu, Z. (2021). Neural approximate
sufficient statistics for implicit models. In International Conference on Learning Representations.
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Supplementary Materials
The appendix is organized as follows:

• In Appendix A, we present the results on detecting model misspecification.

• In Appendix B, we provide further implementation details and results for the numerical
experiment in Section 4.

– Appendix B.1: Implementation details
– Appendix B.2: Additional posterior plots
– Appendix B.3: Results for D being the Euclidean distance
– Appendix B.4: Computational cost analysis
– Appendix B.5: Adversarial training on Gaussian linear model
– Appendix B.6: Experiment with neural likelihood estimator

• In Appendix C, we provide details of the radio propagation experiment of Section 5.

A Detecting misspecification of simulators

Considering that existing SBI methods can yield unreliable results under misspecification and that
real-world simulators are probably not able to fully replicate observed data in most cases, detecting
whether the simulator is misspecified becomes necessary for generating confidence in the results given
by these methods. As misspecification can lead to observed statistics or features falling outside the
distribution of training statistics, detecting for it essentially boils down to a class of out-of-distribution
detection problems known as novelty detection, where the aim is to detect if the test sample sobs
come from the training distribution induced by {si}mi=1. This two-label classification problem can
potentially be solved by adapting any of the numerous novelty detection methods from the literature.
We propose the following two simple novelty detection techniques for detecting misspecification:

Distance-based approach. We assign a score to the observed statistic based on the value of the
margin upper bound, as introduced in the main text. We use the MMD as the choice of distance D,
and estimate the MMD between the set of simulated statistics {si}mi=1 and the observed statistic sobs.
This MMD-based score can be used in a classification method to detect misspecification.

Density-based approach. In this method, the training samples {si}mi=1 are used to fit a generative
model q, and the log-likelihood of the observed statistics under q are used as the classification score.
We use a Gaussian mixture model (GMM) with k components as q, having the distribution

q(s) =
∑k
i=1 ξiφ(s|µi,Σi), (11)

where ξi, µi, and Σi are the weight, the mean and the covariance matrix associated with the ith
component, and φ denotes the Gaussian pdf. The score ln q(sobs) can then be used to classify it as
either being from in or out of the training distribution.

Experimental set-up. We test the performance of the proposed detection methods on the Ricker
model and the OUP with the same contamination model as given in the main text. For each of these
simulators, we first train the NPE method on m = 1000 training data points, and fit a GMM with
k = 2 components to them. We then generate 1000 test datasets or points, half of them from the
well-specified model and the other half from the misspecified model, and compute their score. The
area under the receiver operating characteristic (AUROC) is used as the performance metric.

Baseline. We construct a baseline for comparing performance of the proposed detection methods.
The baseline is based on the insight that under model misspecification, the NPE posterior moves away
from the true parameter value (even going outside the prior range). Therefore, we take the root mean
squared error (RMSE), defined as (1/N

∑N
i=1(θi − θtrue)

2)
1
2 where {θi}Ni=1 are posterior samples,

as the classification score.
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Figure 7: Misspecification detection experiment. AUROC of the proposed detection methods
(GMM and MMD) versus misspecification level for the Ricker model and the OUP. The RMSE-based
baseline is shown in blue.

Results. The AUROC of the classifiers for different levels of misspecification (ϵ in the main text)
is shown in Fig. 7 for both the models. The proposed GMM-based detection method performs the
best, followed by the MMD-based method. The RMSE-based baseline performs the worst at the
classification task. We conclude that it is possible to detect model misspecification in the space of
summary statistics using simple to use novelty detection methods.

B Additional details and results of the numerical experiments

B.1 Implementation details

We implement our NPE-RS models based on publicly available implementations from https:
//github.com/mackelab/sbi. We use the NPE-C model [41] with Masked Autoregressive Flow
(MAF) [60] as the backbone inference network, and adopt the default configuration with 50 hidden
units and 5 transforms for MAF. The batch size is set to 50, and we maintain a fixed learning rate
of 5 × 10−4. The implementation for RNPE is sourced directly from the original repository at
https://github.com/danielward27/rnpe.

Regarding the summary network in NPE tasks, for the Ricker model, we employ three 1D convolu-
tional layers with 4 hidden channels, and we set the kernel size to 3. For the OUP model, we combine
three 1D convolutional layers with one bidirectional LSTM layer. The convolutional layers have 8
hidden channels and a kernel size equal to 3, while the LSTM layer has 2 hidden dimensions. We
pass the data separately through the convolutional layers and the LSTM layer and then concatenate
the resulting representations to obtain our summary statistics. For the Turin model in Section 5, we
utilize five 1D convolutional layers with hidden units set to [8, 16, 32, 64, 8], and the kernel size is
set to 3. Across all three summary networks, we employ the mean operation as our aggregator to
ensure permutation invariance among realizations.

In ABC tasks, we incorporate autoencoders as our summary network. For the Ricker model, the
encoder consists of three 1D convolutional layers with 4 hidden channels, where the kernel size is set
to 3. The decoder comprises of three 1D transposed convolutional layers with the same settings as
the encoder’s convolutional layers, allowing for data reconstruction. For the OUP model, we adopt a
similar summary network as the one used for the Ricker model but with a smaller stride.

In NPE tasks, we use 1000 samples for the training data, along with 100 realizations of both observed
and simulated data for each value of θ. We also use 1000 samples for training the autoencoders. For
ABC, we use 4000 samples from the prior and accept nδ = 200 samples giving a tolerance rate of 5%.
We take ρ to be Euclidean distance in the rejection ABC and normalize the statistics by the median
absolute deviation before computing the distance to account for the difference in their magnitude.

B.2 Additional posterior plots

We now present examples of the remaining posterior plots, apart from the one shown in the main text.
The posterior plots for OUP using the NPE-based methods is shown in Figure 8. The observations
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are similar to the Ricker model example in the main text: we see that our NPE-RS method yields
similar posterior as NPE in the well-specified case, whereas RNPE posteriors are underconfident.
When the model is misspecified, NPE posterior goes far from the true parameter value. The NPE-Rs
posteriors, however, are still around θtrue, demonstrating robustness to misspecification.
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Figure 8: Ornstein-Uhlenbeck process. Posteriors obtained from our method (NPE-RS), RNPE,
and NPE for different degrees of model misspecification.

Similar behavior is observed in the ABC case for both the Ricker model and OUP in Figure 9 and
Figure 10, respectively. The ABC posteriors go outside the prior range under misspecification, while
ABC with our robust statistics yields posteriors closer to θtrue. In Table 1, we report the sample mean
and standard deviations for the results shown in Figure 2 of the main text.
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Figure 9: Ricker model. Posteriors obtained from our method (ABC-RS) and ABC for different
degrees of model misspecification.

B.3 Results for D being the Euclidean distance

We present results for D being the Euclidean distance in the well-specified case of the Ricker model
in Figure 11(a). As mentioned in Section 3 of the main text, this choice leads to very underconfident
posteriors. This is because the Euclidean distance is not a robust distance: it becomes large even
if a few points are far from the observed statistic. As a result, using this as the regularization term
penalizes most choices of summarizer η, and we learn statistics that are very concentrated around the
observed statistic (orange dot). Although a good choice for being robust, Euclidean distance leads to
statistics that are not informative about the model parameters, yielding posterior that is similar to the
uniform prior. Hence, we used the MMD as the distance in the margin upper bound, which provides
a better trade-off between robustness and efficiency (in terms of learning about model parameters).
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Figure 10: Ornstein-Uhlenbeck process. Posteriors obtained from our method (ABC-RS) and ABC
for different degrees of model misspecification.

Table 1: Performance of the SBI methods in terms of RMSE and MMD for both Ricker and OUP. We
report the average (±1 std. deviation) values across 100 runs for varying levels of misspecification.

RMSE (↓) MMD (↓)

ϵ = 0% ϵ = 10% ϵ = 20% ϵ = 0% ϵ = 10% ϵ = 20%

R
ic

ke
r

NPE 2.16 (3.07) 7.86 (1.57) 11.2 (1.70) 0.04 (0.07) 0.74 (0.09) 1.06 (0.17)
RNPE 3.27 (0.35) 5.51 (0.58) 7.14 (1.15) 0.06 (0.05) 0.51 (0.19) 0.79 (0.25)

NPE-RS (ours) 2.18 (2.66) 2.19 (1.01) 4.66 (4.15) 0.09 (0.14) 0.21 (0.16) 0.42 (0.37)

ABC 1.46 (0.44) 6.95 (0.25) 9.79 (0.96) 0.01 (0.01) 0.85 (0.02) 1.18 (0.04)
ABC-RS (ours) 1.20 (0.51) 3.16 (1.08) 2.99 (1.28) 0.01 (0.02) 0.17 (0.15) 0.18 (0.16)

O
U

P

NPE 0.79 (0.62) 1.26 (1.18) 2.59 (2.75) 0.01 (0.01) 0.34 (0.15) 0.63 (0.29)
RNPE 0.78 (0.09) 0.87 (0.10) 0.98 (0.15) 0.01 (0.01) 0.22 (0.13) 0.49 (0.26)

NPE-RS (ours) 0.74 (0.70) 0.62 (0.33) 0.63 (0.36) 0.02 (0.05) 0.09 (0.09) 0.21 (0.17)

ABC 0.50 (0.07) 1.20 (0.40) 5.16 (2.39) 0.05 (0.03) 0.88 (0.21) 0.92 (0.23)
ABC-RS (ours) 0.44 (0.06) 0.62 (0.23) 0.88 (0.48) 0.02 (0.02) 0.26 (0.17) 0.50 (0.38)

B.4 Computational cost analysis

We now present a quantitative analysis of the computational cost of training with and without our
MMD regularization term. The results, presented in Table 2, are calculated on an Apple M1 Pro
CPU. As expected, we observe a higher runtime for our method due to the computational cost of
estimating the MMD from 200 samples of simulated data. The total runtime also depends on the
number of batchsize Nbatch, hence, as Nbatch increases, the proportion of runtime used for estimating
MMD reduces. As a result, we see that for large Nbatch, the increase in the computational cost of our
method with robust statistics is not significant.

B.5 Adversarial training on Gaussian linear model

To verify the robustness of our method on higher dimensional parameter space, we run an experiment
on the Gaussian linear model, where the data x ∈ R10 is sampled from N (θ, 0.1·I10). A uniform prior
U([−1, 1])10 is placed on the parameters θ ∈ R10. We take θtrue = [0.5, ..., 0.5]⊤, θc = [2, ..., 2]⊤.
To introduce contamination to the observed data, we employ the same approach as outlined in the main
text of our paper. However, there is a slight divergence in our experimental setup. In this example, we
employ adversarial training, meaning that the model is trained on observed data with a high degree
of misspecification (ϵ = 20%), while we perform inference on data with a lower misspecification
degree (ϵ = 10%). For the summary network, we utilize the DeepSet [86] architecture. The encoder
comprises two linear layers, each with a width of 20 hidden units, paired with the ReLU activation
function. The decoder is constructed with a single linear layer of 20 hidden units.

The results are shown in Table 3. NPE-RS outperforms NPE in terms of MMD between the posterior
predictive distribution and the observed data, which highlights the effectiveness of our approach in
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Figure 11: Ricker model. Posteriors and summary statistics for D being the Euclidean distance.

Table 2: Comparison of computational costs across different models on Ricker model. We report
the mean value (standard deviation) derived from 20 updates. We use different batch size Nbatch and
generate 100 realizations for each θ.

Runtime (seconds)

Nbatch = 50 Nbatch = 100 Nbatch = 200

NPE 0.22 (0.03) 0.46 (0.04) 0.87 (0.03)
NPE-RS (ours) 1.26 (0.05) 1.53 (0.14) 1.92 (0.10)

ABC 0.68 (0.04) 1.41 (0.04) 3.29 (0.27)
ABC-RS (ours) 1.79 (0.04) 2.71 (0.25) 4.25 (0.46)

high-dimensional parameter spaces, even though the observed data was not used in the training of
NPE-RS. This points towards the possibility that by employing adversarial training, we might achieve
robustness against lower levels of misspecification whilst still being amortized.

Table 3: Performance comparison between NPE and NPE-RS for Gaussian linear model. We use
MMD between the posterior predictive distribution and the observed data as our metric. We report
the average (±1 std. deviation) values across 100 runs.

NPE NPE-RS

λ - 20 50 100

MMD 0.26 (0.02) 0.19 (0.04) 0.18 (0.06) 0.21 (0.08)

B.6 Experiment with neural likelihood estimators

In this section, we explore the performance of our method when paired with Neural Likelihood
Estimators (NLE). NLE are a class of methods that leverage neural density estimators to directly
estimate likelihood functions, bridging the gap between simulators and statistical models.

For this experiment, we adopt NLE-A as proposed by [61]. The original implementation can be
found at https://github.com/mackelab/sbi. Similar to our approach with ABC, we adapt our
method to NLE by pre-emptively training an autoencoder with our regularization term to learn the
summary statistics. We refer to our adapted method as NLE-RS. The configurations for our summary
network and simulator are consistent with those described in Appendix B.1.

Figure 12 presents the posterior plots for the Ricker model using the NLE-based methods. Consis-
tent with our observations in the previous experiments, NLE-RS still demonstrates robustness to
misspecification, while the NLE posterior tends to deviate away from the true parameters.
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Figure 12: Ricker model. Posteriors obtained from our method (NLE-RS) and NLE. We set ϵ = 10%
for this experiment.

C Details of the radio propagation experiment

In this section, we describe the data and the Turin model used in Section 5 of the main text.

Data and model description. Let B be the frequency bandwidth used to measure radio channel
data at K equidistant points, leading to a frequency separation of ∆f = B/(K − 1). The measured
transfer function at kth point, Yk, is modelled as

Yk = Hk +Wk, k = 0, 1, . . . ,K − 1,

whereHk is the transfer function at the kth frequency, andWk is additive zero-mean complex circular
symmetric Gaussian noise with variance σ2

W . Taking the inverse Fourier transform, the time-domain
signal y(t) can be obtained as

y(t) =
1

K

K−1∑
k=0

Yi exp(j2πk∆ft).

The Turin model defines the transfer function as Hk =
∑
l αl exp(−j2π∆fkτl), where τl is the

time-delay and αl is the complex gain of the lth component. The arrival time of the delays is
modeled as one-dimensional homogeneous Poisson point processes, i.e., τl ∼ PPP(R+, ν), with
ν > 0. The gains conditioned on the delays are modeled as iid zero-mean complex Gaussian random
variables with conditional variance E[|αl|2|τl] = G0 exp(−τl/T )/ν. The parameters of the model
are θ = [G0, T, ν, σ

2
W ]⊤. The prior ranges used for the parameters are given in Table 4.

Table 4: Prior distributions for the parameters of the Turin model.

G0 T ν σ2
W

Prior U(10−9, 10−8) U(10−9, 10−8) U(107, 5× 109) U(10−10, 10−9)

The radio channel data from [44] is collected in a small conference room of dimensions 3× 4× 3 m3,
using a vector network analyzer. The measurement was performed with a bandwidth of B = 4
GHz, and K = 801. Denote each complex-valued time-series by ỹ ∈ RK , and the whole dataset
by ỹ1:n, where n = 100 realizations. We take the input to the summary network to be y1:n =
10 log10(|ỹ1:n|2).

Scatter-plot of learned statistics. In Figure 13 and Figure 14, we show the scatter-plots of the
learned statistics using the NPE and our NPE-RS method, respectively. We observe that the observed
statistics (shown in orange) is often outside the set of simulated statistics (shown in blue) for the NPE
method. Hence, the inference network is forced to generalize outside its training distribution, which
leads to poor fit of the model, as shown in Section 5 of the main text. On the other hand, the observed
statistic is always inside the set of simulated statistics (or the training distribution) for our method in
Figure 14, which leads to robustness against model misspecification.
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Figure 13: Pairwise scatter-plots of summary statistics learned using NPE method for the Turin
model. Each blue dot corresponds to simulated statistic obtained from a parameter value sampled
from the prior. The orange dot represents the observed statistic.
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Figure 14: Pairwise scatter-plots of summary statistics learned using our NPE-RS method for the
Turin model. Each blue dot corresponds to simulated statistic obtained from a parameter value
sampled from the prior. The orange dot represents the observed statistic.
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