Under review as a conference paper at ICLR 2024

RTMPOSE: REAL-TIME MODELS FOR MULTI-PERSON
POSE ESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies on 2D pose estimation have achieved excellent performance on
public benchmarks, yet its application in the industrial community still suffers
from heavy model parameters and high latency. To bridge this gap, we system-
atically explore key factors in pose estimation including paradigm, model archi-
tecture, training strategy, and deployment, and present a high-performance real-
time multi-person pose estimation pipeline, RTMPose. Our RTMPose-m achieves
75.8% AP on COCO with 90+ FPS on an Intel i7-11700 CPU and 430+ FPS on
an NVIDIA GTX 1660 Ti GPU, and RTMPose-x achieves 65.3% AP on COCO-
WholeBody. We further test RTMPose on mobile devices to evaluate its poten-
tial in critical real-time applications. RTMPose-s model achieves 72.2% AP on
COCO with 70+ FPS on a Snapdragon 865 chip, outperforming existing methods
used by industrial companies.

1 INTRODUCTION

Real-time human pose estimation is appealing to various applications such as human-computer

interaction, action recognition, sports analysis, and VTuber techniques.

Despite the stunning

progress (Sun et al.}[2019; Xu et al.| 2022b) on academic benchmarks (Lin et al., 2014} ?), it remains

a challenging task to perform robust and real-time multi-person pose estimation on devices with lim-

ited computing power. Recent attempts narrow the gap with efficient network architecture (Yu et al.,
2021a};[Bazarevsky et al.}[2020; [Votel et al., [2023) and detection-free paradigms (Kreiss et al.,[2019

d

industrial applications.

80

75

COCO val2017 Keypoint AP(%)

55

50

70| #

Training |
Techniques ema|

Lo
Module
Design

RTMPose

TinyPose Micro

FastPose Design 4 kernel sz.
@® LiteHRNet-30

MobileNetv2

HRNetw32+UDP

HRNetw48+UDP

(O CPU(ONNXRuntime) 420 epochs|
1™ 10M 100M {J1 GPU(TRT-FP16) combine aic&cocol S
2 4 8 16 32 64 128 256 €OCO val2017 AP(%)

Inference Latency(ms), BS=1

189/12.53

|
1.90/12.96

19011296 7

FLOPs(G) / Params(M)

311120285k

18971253477

1.89/12.53

1.89/12.53

flatcos. annealing . 1.80/12.53

189112535

|
v

\
1.90/1278 5

\
190/12.96

|
190/12.96

1.90/12.96 7
|
190/13.07

19171327 7

v

193/13597¢
\
195/14.017
/

193/13597)

Geng et al., 2021} Shi et al., 2022)), which is yet inadequate to reach satisfactory performance for

Figure 1: Left: Comparison of RTMPose and open-source libraries on COCO val set regarding
model size, latency, and precision. The circle size represents the relative size of model parameters;
Right: Step-by-step improvements from a SimCC baseline.



Under review as a conference paper at ICLR 2024

In this work, we systematically study key factors that affect the performance and latency of 2D
multi-person pose estimation pipelines from five aspects: paradigm, backbone network, localiza-
tion method, training strategy, and deployment. With a collection of optimizations, we introduce
RTMPose, a new series of Real-Time Models for Pose estimation.

First, RTMPose employs a top-down approach by using an off-the-shelf detector to obtain bounding
boxes and then estimating the pose of each person individually. Top-down algorithms have been
stereotyped as accurate but slow, due to the extra detection process and increasing workload in crowd
scenes. However, benefiting from the excellent efficiency of real-time detectors (RangiLyu, 2021}
Lyu et al, 2022)), the detection part is no longer a bottleneck of the inference speed of top-down
methods. In most scenarios (within 6 persons per image), the proposed lightweight pose estimation
network is able to perform multiple forward passes for all instances in real time.

Second, RTMPose adopts CSPNeXt (Lyu et al.| 2022)) as the backbone, which is first designed
for object detection. Backbones designed for image classification (He et al., 2015; |Sandler et al.,
2018) are suboptimal for dense prediction tasks like object detection, pose estimation and semantic
segmentation, etc. Some backbones leveraging high-resolution feature maps (Sun et al.| |2019; |Yu
et al.} 2021a) or advanced transformer architectures (Dosovitskiy et al.,2021) achieve high accuracy
on public pose estimation benchmarks, but suffer from high computational cost, high inference
latency, or difficulties in deployment. CSPNeXt shows a good balance of speed and accuracy and is
deployment-friendly.

Third, RTMPose predicts keypoints using a SimCC-based (L1 et al., [2021c) algorithm that treats
keypoint localization as a classification task. Compared with heatmap-based algorithms (Xiao
et al., 2018; [Zhang et al.| [2020; Huang et al.l 2020a; [Xu et al., 2022b)), the SimCC-based algo-
rithm achieves competitive accuracy with lower computational effort. Moreover, SimCC uses a very
simple architecture of two fully-connected layers for prediction, making it easy to deploy on various
backends.

Fourth, we revisit the training settings in previous works (Bazarevsky et al., 2020 L1 et al.l [2021aj
Lyu et al.,|2022), and empirically introduce a collection of training strategies applicable to the pose
estimation task. Our experiments demonstrate that this set of strategies bring significant gains to
proposed RTMPose as well as other pose estimation models.

Finally, we jointly optimize the inference pipeline. We use the skip-frame detection strategy pro-
posed in Bazarevsky et al.[(2020) to reduce the latency and improve the pose-processing with pose
Non-Maximum Suppression (NMS) and smoothing filtering for better robustness. In addition, we
provide a series of RTMPose models with t/s/m/l/x sizes to cover different application scenarios
with the optimum performance-speed trade-off.

‘We summarize our contributions as follows:

* We design a simple experiment by removing the transposed convolutional layers of
SimCC (Li et al., |2021c), revealing that transposed convolutional upsampling layers are
redundant (consuming 35% of parameters and 26.7% of computation while only gaining
0.8 AP), which greatly accelerates model inference with minimal performance loss. This
finding is encouraging for designing low-computation pose estimation models.

* We outline five aspects influencing multi-person pose estimation performance and latency.
We also explore different techniques to improve the performance of the simplified SimCC,
providing guidelines and references for designing future industrial-oriented pose estimation
algorithms.

* We demonstrate that in scenarios emphasizing lightweight and real-time pose estimation,
the top-down paradigm stands out as the optimal choice in terms of both speed and accu-
racy, breaking the conventional academic stereotype.

* We conduct comprehensive inference speed validation on commonly used deployment
frameworks and hardware platforms in the industry. In comparison to currently popular
open-source pose estimation pipelines, our proposed RTMPose achieves a superior balance
between speed and accuracy across all tests (Fig. [T] Left).



Under review as a conference paper at ICLR 2024

2 RELATED WORK

Bottom-up Approaches. Bottom-up algorithms (Pishchulin et al.;|2016;|Cao et al., [2017; Newell
et al., 2017 [Luo et al., 2021} (Cheng et al., [2020; |Geng et al., 2021} Kreiss et al., 20195 Jin et al.
2020a) detect instance-agnostic keypoints in an image and partition these keypoints to obtain the
human pose. The bottom-up paradigm is considered suitable for crowd scenarios because of the sta-
ble computational cost regardless the number of people increases. However, these algorithms often
require a large input resolution to handle various person scales, making it challenging to reconcile
accuracy and inference speed.

Top-down Approaches. Top-down algorithms use off-the-shelf detectors to provide bounding
boxes and then crop the human to a uniform scale for pose estimation. Algorithms of the top-
down paradigm (Xiao et al., 2018 [Cai et al., [2020; Sun et al., 2019; [Liu et al) 2021a; [ Xu et al.,
2022b) have been dominating public benchmarks. The two-stage inference paradigm allows both
the human detector and the pose estimator to use relatively small input resolutions, which allows
them to outperform bottom-up algorithms in terms of speed and accuracy in non-extreme scenarios
(i.e. when the number of people in the image is no more than 6). Additionally, most previous work
has focused on achieving state-of-the-art performance on public datasets, while our work aims to
design models with better speed-accuracy trade-offs to meet the needs of industrial applications.

Coordinate Classification. Previous pose estimation approaches usually regard keypoint local-
ization as either coordinate regression (Toshev & Szegedy, [2014; [Li et al.| 2021a; Mao et al., [2022)
or heatmap regression (Xiao et al., 2018; ?; [Zhang et al., 2020} Xu et al., |2022b). SimCC (L1
et al.l 2021c) introduces a new scheme that formulates keypoint prediction as classification from
sub-pixel bins for horizontal and vertical coordinates respectively, which brings about several ad-
vantages. First, SimCC is freed from the dependence on high-resolution heatmaps, thus allowing for
a very compact architecture that requires neither high-resolution intermediate representations (Sun
et al.l 2019) nor costly upsampling layers (Xiao et al., |2018). Second, SimCC flattens the final
feature map for classification instead of involving global pooling (Toshev & Szegedy, 2014) and
therefore avoids the loss of spatial information. Third, the quantization error can be effectively
alleviated by coordinate classification at the sub-pixel scale, without the need for extra refinement
post-processing (Zhang et al.,|2020). These qualities make SimCC attractive for building lightweight
pose estimation models. In this work, we further exploit the coordinate classification scheme with
optimizations on model architecture and training strategy.

Vision Transformers. Transformer-based architectures (Vaswani et al., [2017) ported from mod-
ern Natural Language Processing (NLP) have achieved great success in various vision tasks like
representation learning (Dosovitskiy et al., 2021} |Liu et al.,[2021b), object detection (Carion et al.|
2020; |Zhu et al.l [2020; L1 et al., [2022), semantic segmentation (Zheng et al., 2021, video under-
standing (Liu et al., [2022a} Bertasius et al., 2021; [Fan et al., 2021}, as well as pose estimation (Xu
et al., 2022b; |Yang et al| [2021; [Mao et al.| 2022} [Li et al [2021d} Shi et al.| [2022). ViTPose (Xu
et al.|[2022b) leverages the state-of-the-art transformer backbones to boost pose estimation accuracy,
while TransPose (Yang et al., 202 1)) integrates transformer encoders with CNNs to efficiently capture
long-range spatial relationships. Token-based keypoint embedding is introduced to incorporate vi-
sual cue querying and anatomic constraint learning, shown effective in both heatmap-based (Li et al.,
2021d) and regression-based (Mao et al.}2022) approaches. PRTR (Li et al.,[2021b)) and PETR (Shi
et al.l 2022) propose end-to-end multi-person pose estimation frameworks with transformers, in-
spired by the pioneer in detection (Carion et al., 2020). Previous pose estimation approaches with
transformers either use a heatmap-based representation or retained both pixel tokens and keypoint
tokens, which results in high computation costs and makes real-time inference difficult. In contrast,
we incorporate the self-attention mechanism with a compact SimCC-based representation to capture
the keypoint dependencies, which significantly reduces the computation load and allows real-time
inference with advanced accuracy and efficiency.

3 METHODOLOGY

In this section, we expound the roadmap we build RTMPose following the coordinate classification
approach. We start by refitting SimCC (Li et al.,|2021c) with more efficient backbone architectures,



Under review as a conference paper at ICLR 2024

1

Y 1 s i |||| ~
X-Axis Coordinate ' S \ 1 1
‘ Classifier }—): A “ (075 Ox oop OX) ‘ (0x, Oy

= _tesher ) .
' \ 0Z,0
Backbone X7 ke GAU | ' G
conv : ! f .
e :
Y-Axis Coordinate !
‘ I '—’ (o;v o;v "y) ‘ (0%, ng)

Classifier '
R

Figure 2: The overall architecture of RTMPose, which contains a convolutional layer, a fully-
connected layer and a Gated Attention Unit (GAU) to refine K keypoint representations. After that
2d pose estimation is regarded as two classification tasks for x-axis and y-axis coordinates to predict
the horizontal and vertical locations of keypoints.

Table 1: Computational costs and accuracy of baseline methods. We show FLOPs and model param-
eters of prediction heads for a detailed comparison. “SimCC*” denotes the removal of upsampling
layers from the standard SimCC head.

Heatmap SimCC SimCC*

Repr. Size 64x48 5124384 512+384
AP 71.8 72.1 71.3
Total FLOPs(G) 5.45 5.50 4.03
Total Params(M)  34.00 36.75 23.59
Head FLOPs(G) 1.425 1.472 0.002

Head Params(M) 10.492 13.245 0.079

which gives a lightweight yet strong baseline (Sec. [3.1). We adopt the training strategies proposed
in RTMDet (Lyu et al.,[2022)) with minor tweaks to make them more effective on the pose estimation
task. The model performance is further improved with a series of delicate modules (Sec. [3.3) and
micro designs (Sec. [3.4). Finally, we jointly optimize the entire top-down inference pipeline toward
higher speed and better reliability. The final model architecture is shown in Fig. [2] and Fig. [[|Right
illustrates the step-by-step gain of the roadmap.

3.1 SIMCC: A LIGHTWEIGHT YET STRONG BASELINE

Preliminary SimCC (L1 et al.;[2021c¢)) tackles keypoint localization by treating it as a classification
task. It segments horizontal and vertical axes into bins and rounds off coordinates to these bins. The
model is trained to predict the bin where a keypoint is. By using a large number of bins, the error is
minimized to a subpixel level.

The architecture of SimCCC (L1 et al., 202 1c¢) is straightforward, utilizing a single 1 x 1 convolution
layer for feature extraction and two fully connected layers for classification. It also employs Gaus-
sian label smoothing based on the ground truth, which enhances model performance and aligns with
the SORD (Diaz & Marathel 2019) approach in ordinal regression tasks.

Baseline We simplified SimCCC (Li et al.| [2021c) by eliminating expensive upsampling layers.
As shown in our results in Table([T] this optimized version retains high accuracy while significantly
reducing computational costs. By adopting a smaller CSPNext-m (Lyu et al.| 2022)) backbone, the
model becomes more compact, achieving an AP of 69.7%.

3.2 TRAINING TECHNIQUES

Pre-training Previous works (Bazarevsky et al.,[2020; |Li et al.,|2021a) show that pre-training the
backbone using the heatmap-based method can improve the model accuracy. We adopt UDP (Huang
et al., [2020a) method for the backbone pre-training. This improves the model from 69.7% AP to
70.3% AP. We use this technique as a default setting in the following sections.



Under review as a conference paper at ICLR 2024

Optimization Strategy We adopt the optimization strategy from RTMDet (Lyu et al.,|2022). The
Exponential Moving Average (EMA) is used for alleviating overfitting (70.3% to 70.4%). The flat
cosine annealing strategy improves the accuracy to 70.7% AP. We also inhibit weight decay on
normalization layers and biases.

Two-stage training augmentations Following the training strategy in RTMDet (Lyu et al.| [2022)),
we use a strong-then-weak two-stage augmentation. First using strong data augmentations to train
180 epochs and then a weak strategy for 30 epochs. During the strong stage, we use a large random
scaling range [0.6, 1.4], and a large random rotation factor, 80, and set the Cutout (DeVries & Taylor,
2017) probability to 1. According to AID (Huang et al.| |2020b), Cutout helps to prevent the model
from overfitting to the image textures and encourages it to learn the pose structure information. In
the weak strategy stage, we turn off the random shift, use a small random rotation range, and set the
Cutout probability to 0.5 to allow the model to fine-tune in a domain that more closely matches the
real image distribution.

3.3 MODULE DESIGN

Feature dimension We observe that the model performance increases along with higher feature
resolution. Therefore, we use a fully connected layer to expand the 1D keypoint representations to a
desired dimension controlled by the hyper-parameter. In this work, we use 256 dimensions and the
accuracy is improved from 71.2% AP to 71.4% AP.

Self-attention module To further exploit the global and local spatial information, we refine
the keypoint representations X with a self-attention module, inspired by |[Li et al.| (2021d); [Yang
et al.| (2021). We adopt the transformer variant, Gated Attention Unit (GAU) (Hua et al., [2022),
which has faster speed, lower memory cost, and better performance compared to the vanilla trans-
former (Vaswani et al., [2017). Specifically, GAU improves the Feed-Forward Networks (FFN) in
the transformer layer with Gated Linear Unit (GLU) (Shazeer, 2020), and integrates the attention
mechanism in an elegant form:

U = ¢y (XW,)
V= ¢U(XWU) (D
0= (U AV)W,

where W,,, W,,, and W, denote the FFNs, and © is the pairwise multiplication (Hadamard product)
and ¢ is the activation function. In this work we implement the self-attention as follows:

1 X)K(2)T
A Lz QUOK(2)
n Vs
where n is the number of input tokens, W, denotes the FFN, s = 128 is the hidden layer dimension,

Q@ and K are simple linear transformations, and reluz(-) is ReLU then squared. This self-attention
module brings about a 0.5% AP (71.9%) improvement to the model performance.

), Z = ¢ (XW,) 2)

3.4 MICRO DESIGN

Loss function We treat the coordinate classification as an ordinal regression task and follow the
soft label encoding proposed in SORD (Diaz & Marathe, [2019):

e®(re,ri)

- _ 3
Zszl e¢("‘t7’f‘k) ( )

Yi

where ¢(r;,7;) is a metric loss function of our choice that penalizes how far the true metric value
of r; is from the rank r; € Y. In this work, we adopt the unnormalized Gaussian distribution as the
inter-class distance metric:



Under review as a conference paper at ICLR 2024

Table 2: Comparison of different kernel sizes Table 3: Comparison of different tempera-
Kernel Size  mAP ture factors. -
1x1 72.8 I/ mAP
3x3 73.2 1  unstable
5x5 73.2 5 73.1
7x7 73.3 10 73.3
9x9 73.0 15 730

—(re—r)?

G(re,ri) =€ 202 “4)

Note that Eq. [3| can be seen as computing Softmax for all ¢(r;, ;). We add temperatures in the
Softmax operation for both model outputs and soft labels further adjust the normalized distribution
shape:

drem)/T

R 5
Z?:l e¢(7'f,77'1)/7 ( )

Yi

According to the experimental results, using 7 = 0.1 can improve the performance from 71.9% to
72.7%.

Separate o In SimCCC (Li et al.,|2021c), the horizontal and vertical labels are encoded using the
same o. We empirically explore a simple strategy to set separate o for them: o = \/Wg/16. Wy is
the number of bins in the horizontal and vertical directions respectively. This strategy improves the
accuracy from 72.7% to 72.8%.

Larger convolution kernel & Lower Temperature According to [Liu et al|(2022b); [Yu et al.
(2022), the benefits of increasing the kernel size of convolutional layer is significant in Transformer-
like architectures. We experiment with different kernel sizes of the last convolutional layer and find
that using a larger kernel size gives a performance improvement over using 1 x 1 kernel. Finally,
we chose to use a 7 x 7 convolutional layer, which achieves 73.3% AP. We compare model perfor-
mances with different kernel sizes in Table [2] Additionally, we also compare the effect of different
temperature factors in Table[3|using the final model architecture.

More epochs and multi-dataset training Increasing the training epochs brings extra gains to
the model performance. Specifically, training 270 and 420 epochs reach 73.5% AP and 73.7% AP
respectively. To further exploit the model’s potential, we enrich the training data by combining
COCO (Lin et al.,[2014) and AI Challenger (Wu et al.,2017) datasets together for pre-training and
fine-tuning, with a balanced sampling ratio. The performance finally achieves 75.3% AP.

3.5 INFERENCE PIPELINE

Beyond the pose estimation model, we further optimize the overall top-down inference pipeline
for lower latency and better robustness. We use the skip-frame detection mechanism as in
BlazePose (Bazarevsky et al.l [2020), where human detection is performed every K frames, and in
the interval frames the bounding boxes are generated from the last pose estimation results. Addition-
ally, to achieve smooth prediction over frames, we use OKS-based pose NMS and OneEuro (Casiez
et al.| 2012) filter in the post-processing stage.

4 EXPERIMENTS

4.1 SETTINGS

We trained the RTMPose models using the AdamW optimizer with a base learning rate of 0.004.
The learning rate followed a Flat-Cosine schedule. Training used a batch size of 1024 and included



Under review as a conference paper at ICLR 2024

Table 4: Body pose estimation results on COCO validation set. We only report GFLOPs of pose
model and ignore the detection model. Flip test is not used.

Methods | Backbone | Detector | Det. Input Size | Pose Input Size | GFLOPs | AP | Extra Data
TinyPose Wider NLiteHRNet YOLOvV3 608 x 608 128 x 96 0.08 523
TinyPose Wider NLiteHRNet YOLOv3 608 x 608 256 x 192 0.33 60.9
PaddleDetection TinyPose ‘Wider NLiteHRNet | Faster-RCNN N/A 128 x 96 0.08 56.1 AIC(220K)
(Authors) TinyPose Wider NLiteHRNet | Faster-RCNN N/A 256 x 192 0.33 65.6 | +Internal(unknown)
TinyPose Wider NLiteHRNet PicoDet-s 320 x 320 128 x 96 0.08 48.4
TinyPose Wider NLiteHRNet PicoDet-s 320 x 320 256 x 192 0.33 56.5
FastPose ResNet 50 YOLOV3 608 x 608 256 x 192 591 71.2
FastPose(DUC) ResNet-50 YOLOvV3 608 x 608 256 x 192 9.71 71.7
AlphaPose FastPose(DUC) ResNet-152 YOLOv3 608 x 608 256 x 192 15.99 72.6 R
(Fang et al.;2022) | FastPose ResNet 50 Faster-RCNN N/A 256 x 192 591 69.7
FastPose(DUC) ResNet-50 Faster-RCNN N/A 256 x 192 9.71 70.3
FastPose(DUC) ResNet-152 Faster-RCNN N/A 256 x 192 15.99 71.3
RTMPose-t CSPNeXt-t Faster-RCNN N/A 256 x 192 0.36 65.8
RTMPose-s CSPNeXt-s Faster-RCNN N/A 256 x 192 0.68 69.6
RTMPose-m CSPNeXt-m Faster-RCNN N/A 256 x 192 1.93 73.6 B
RTMPose-1 CSPNeXt-1 Faster-RCNN N/A 256 x 192 4.16 74.8
RTMPose-t CSPNeXt-t YOLOV3 608 x 608 256 x 192 0.36 66.0
RTMPose-s CSPNeXt-s YOLOv3 608 x 608 256 x 192 0.68 70.3
RTMPose-m CSPNeXt-m YOLOv3 608 x 608 256 x 192 1.93 74.7
RTMPose-1 CSPNeXt-1 YOLOv3 608 x 608 256 x 192 4.16 75.7
RTMPose-t CSPNeXt-t Faster-RCNN N/A 256 x 192 0.36 67.1
MMPose RTMPose-s CSPNeXt-s Faster-RCNN N/A 256 x 192 0.68 71.1
(Contributors)2020} | RTMPose-m CSPNeXt-m Faster-RCNN N/A 256 x 192 1.93 75.3
RTMPose-1 CSPNeXt-1 Faster-RCNN N/A 256 x 192 4.16 76.3
RTMPose-t CSPNeXt-t PicoDet-s 320 x 320 256 x 192 036 | 643 AIC(220K)
RTMPose-s CSPNeXt-s PicoDet-s 320 x 320 256 x 192 0.68 68.8
RTMPose-m CSPNeXt-m PicoDet-s 320 x 320 256 x 192 1.93 732
RTMPose-1 CSPNeXt-1 PicoDet-s 320 x 320 256 x 192 4.16 742
RTMPose-t CSPNeXt-t RTMDet-nano 320 x 320 256 x 192 0.36 64.4
RTMPose-s CSPNeXt-s RTMDet-nano 320 x 320 256 x 192 0.68 68.5
RTMPose-m CSPNeXt-m RTMDet-nano 320 x 320 256 x 192 1.93 732
RTMPose-1 CSPNeXt-1 RTMDet-nano 320 x 320 256 x 192 4.16 742
RTMPose-m CSPNeXt-m RTMDet-m 640 x 640 256 x 192 1.93 75.7
RTMPose-1 CSPNeXt-1 RTMDet-m 640 x 640 256 x 192 4.16 76.6

1000 warm-up iterations. Weight decay was set at 0.05 for RTMPose-m/1 and zero for RTMPose-t/s.
We employed an Exponential Moving Average (EMA) decay of 0.9998 for RTMPose-s/m/l/x, while
RTMPose-t did not utilize EMA. The training epochs consisted of 210 for pre-training and 420 for
fine-tuning. As described in Sec.[3.2} we conduct a heatmap-based pre-training (Huang et al.|[2020a)
which follows the same training strategies used in the fine-tuning except for shorter epochs. All our
models are trained on 8§ NVIDIA A100 GPUs. And we evaluate the model performance by mean
Average Precision (AP).

Table 5: Whole-body pose estimation results on COCO-WholeBody (Jin et al., [2020b; [ Xu et al.,
2022a) V1.0 dataset. We only report the input size and GFLOPs of pose models in top-down ap-
proaches and ignore the detection model. “*” denotes the model is pre-trained on AIC+COCO. “§”
indicates multi-scale testing. Flip test is used.

| Method | Input Size | GFLOPs | whole-body |  body | foot | face | hand
| | | | AP AR | AP AR | AP AR | AP AR | AP AR
Whole- | SNt (Hidalgo et al.|[2019) N/A 272.3 327 456 | 427 583 | 99 369 | 649 69.7 | 408 58.0
body OpenPose (Cao et al.[|2019) N/A 451.1 442 523|563 612|532 645|765 840|386 433
Bottom- | PAF7 (Cao et al.|[2017) 512x512 329.1 29.5 405 | 38.1 526 | 53 278|656 70.1 359 528
up AE (Newell et al.[2017) 512x512 212.4 440 545|580 66.1 | 577 725 | 588 654 | 48.1 574

DeepPose (Toshev & Szegedy![2014) | 384x288 17.3 335 484 | 444 568 | 36.8 537 | 493 663 | 235 41.0
SimpleBaseline (Xiao et al.||2018) 384 %288 20.4 573 67.1 | 66.6 747 | 63.5 763 | 732 812 | 53.7 64.7
HRNet (Sun et al.{[2019) 384 %288 16.0 586 674|701 773|586 692|727 783|516 604
PVT (Wang et al.}|2021) 384 %288 19.7 589 689 | 673 76.1 | 66.0 794 | 745 822|545 654
Top- FastPose50-dcn-si (Fang et al.|[2022) | 256x192 6.1 592 665 | 706 756|702 775|775 825|457 539
down ZoomNet (Jin et al.|[2020b) 384 %288 28.5 63.0 742|745 810|609 708 | 88.0 924 | 579 734
ZoomNAS (Xu et al.|[2022a) 384 %288 18.0 654 744 | 740 807 | 61.7 71.8 | 89 93.0 | 625 74.0
RTMPose-m* 256x192 22 582 674|673 750|615 752|813 87.1|475 589
RTMPose-1* 256x192 4.5 61.1 700 | 69.5 769 | 658 785 | 833 887 | 51.9 628
RTMPose-1* 384 %288 10.1 648 730 | 712 78.1 | 693 811|882 919|579 677
RTMPose-x 384 %288 18.1 652 732|712 780 | 68.1 80.4 | 89.0 922|593 68.7
RTMPose-x* 384x288 18.1 653 733 | 714 784|692 810|889 923 |59.0 685




Under review as a conference paper at ICLR 2024

4.2 BENCHMARK RESULTS

COCO COCO (Lin et al., 2014) is the most popular benchmark for 2d body pose estimation. We
follow the standard splitting of train2017 and val2017, which contains 118K and 5k images
for training and validation respectively. We extensively study the pose estimation performance with
different off-the-shelf detectors including YOLOV3 (Redmon & Farhadil [2018)), Faster-RCNN (Ren
et al., [2015), and RTMDet (Lyu et al., 2022). To conduct a fair comparison with AlphaPose (Fang
et al.| [2022) which doesn’t use extra training data, we also report the performance of RTMPose only
trained on COCO. As shown in Table [d, RTMPose outperforms competitors by a large margin with
much lower complexity and shows strong robustness for detection.

COCO-SinglePerson For a fair comparison with popular pose estimation open-source algorithms
like BlazePose (Bazarevsky et al., [2020), MoveNet (Votel et al.l [2023)), and PaddleDetection (Au-
thors), we construct a COCO-SinglePerson dataset that contains 1045 single-person images from
the COCO val2017 set to evaluate RTMPose as well as other approaches. The evaluation results
can be found in Appendix

COCO-WholeBody We also validate the proposed RTMPose model on the whole-body pose es-
timation task with COCO-WholeBody (Jin et al., 2020b; Xu et al.} 2022a) V1.0 dataset. As shown
in Table [5] RTMPose achieves superior performance and well balances accuracy and complexity.
Specifically, our RTMPose-m model outperforms previous open-source libraries (Cao et al., 2019;
Fang et al. 2022} |Yu et al.| |2021a) with significantly lower GFLOPs. And by increasing the in-
put resolution and training data we obtain competitive accuracy with SOTA approaches (Jin et al.|
2020b; (Xu et al., [2022a)).

Other Datasets As shown in Table[6]and Table[7] we further evaluate RTMPose on AP-10K (Yu
et al.l 2021b)), CrowdPose (Li et al.l [2018)) and MPII (Andriluka et al., 2014) datasets. We report
the model performance using ImageNet (Deng et al., 2009) pre-training for a fair comparison with
baselines. Besides we also report the performance of our models pre-trained using a combination of
COCO (Lin et al.}[2014) and AI Challenger (AIC) (Wu et al.,2017), which achieves higher accuracy
and can be easily reproduced by users with our provided pre-trained weights.

Table 6: Performance on different datasets. “*” denotes the model is pre-trained on AIC+COCO
and fine-tuned on the corresponding dataset. Flip test is used.

Dataset | Methods | Backbone | InputSize | GFLOPs | AP
SimpleBaseline (Xiao et al.|2018) ResNet-50 256 x 256 7.28 68.0

] HRNet (Sun et al.{|2019) HRNet-w32 | 256 x 256 10.27 72.2

AP-10K (Yuetal.[2021b) | pyypose-m CSPNeXt-m | 256 x 256 | 2.57 | 68.4
RTMPose-m* CSPNeXt-m | 256 x 256 2.57 72.2

SimpleBaseline (Xiao et al.|[2018) ResNet-50 256 x 192 5.46 63.7

CrowdPose (L et al.] 2018) HRNet (Sun et al.|[2019) HRNet-w32 | 256 x 192 7.7 67.5
) ] I | RTMPose-m CSPNeXt-m | 256 x 192 1.93 66.9
RTMPose-m* CSPNeXt-m | 256 x 192 1.93 70.6

4.3 INFERENCE SPEED

We perform the export, deployment, inference, and testing of models by MMDeploy (Contributors,
2021)) to test the inference speed on CPU and GPU respectively. To align with industrial deployment
scenarios, we adopt less performant but more commonly used devices in the industry. The TensorRT
inference latency is tested in the half-precision floating-point format (FP16) on an NVIDIA GeForce
GTX 1660 Ti GPU, and the ONNX latency is tested on an Intel I7-11700 CPU with ONNXRuntime
with 1 thread. The inference batch size is 1. All models are tested on the same devices with 50 times
warmup and 200 times inference for fair comparison. The results are shown in Table[§]

Furthermore, we examined the inference speed of RTMPose on a mobile device, specifically the
Snapdragon 865 chip. RTMPose-t achieved a frame speed of 9.02 ms, which is comparable to



Under review as a conference paper at ICLR 2024

TinyPose (Authors). However, it’s important to note that RTMPose offers a wider selection of
high-accuracy models to meet more realistic requirements. We also assessed the pipeline speed
of RTMPose, with RTMPose-s processing frames in 21.7 ms while achieving an average precision
(AP) of 68.5 on COCO-val. For additional details, please refer to the Appendix[A.2]

Table 7: Comparison on MPII (Andriluka et al. 2014) validation set. “*” denotes the model is pre-
trained on AIC+COCO and fine-tuned on MPII. Flip test is used.

Dataset | Methods | Backbone | InputSize | GFLOPs | PCKh@0.5
SimpleBaseline (Xiao et al.|[2018) | ResNet-50 | 256 x 256 7.28 88.2
HRNet (Sun et al.[[2019) HRNet-w32 | 256 x 256 10.27 90.0
MPIL SimCC (L1 et al.|[2021c) HRNet-w32 | 256 x 256 10.34 90.0
(Andriluka et al.|[2014) | TokenPose (L1 et al.[[2021d) L/D24 256 x 256 11.0 90.2
RTMPose-m CSPNeXt-m | 256 x 256 2.57 88.9
RTMPose-m* CSPNeXt-m | 256 x 256 2.57 90.7

Table 8: Inference speed on CPU and GPU. RTMPose models are deployed and tested using ON-
NXRuntime and TensorRT respectively. Flip test is not used in this table.

Results | Input Size | GFLOPs | AP | CPU(ms) | GPU(ms)
TinyPose 256 x 192 0.33 65.6 10.580 3.055
LiteHRNet-30 256 x 192 0.42 66.3 22.750 6.561
RTMPose-t 256 x 192 0.36 67.1 3.204 1.064
COCO RTMPose-s 256 x 192 0.68 71.2 4.481 1.392
(Lin et al.|2014) HRNet-w32+UDP 256 x 192 7.7 75.1 37.734 5.133
RTMPose-m 256 x 192 1.93 75.3 11.060 2.288
RTMPose-1 256 x 192 4.16 76.3 18.847 3.459
HRNet-w32+DARK | 256 x 192 7.72 57.8 39.051 5.154
RTMPose-m 256 x 192 2.22 59.1 13.496 4.000
COCO-WholeBody | RTMPose-1 256 x 192 4.52 62.2 23.410 5.673
(Jin et al.||2020Db) HRNet-w48+DARK | 384 x 288 35.52 65.3 150.765 13.974
RTMPose-1 384 x 288 10.07 66.1 44.581 7.678

5 CONCLUSION

This paper empirically explores five key factors in pose estimation the pipeline such as the paradigm,
model architecture, training strategy, and deployment. Based on the findings we present a high-
performance real-time multi-person pose estimation pipeline, RTMPose, which achieves excellence
in balancing model performance and complexity and can be deployed on various devices (CPU,
GPU, and mobile devices) for real-time inference. We hope that the proposed algorithm alone with
its open-sourced implementation can meet some of the demand for applicable pose estimation in
industry, and benefit future explorations on the human pose estimation task.

REFERENCES

Mykhaylo Andriluka, Leonid Pishchulin, Peter V. Gehler, and Bernt Schiele. 2d human pose esti-
mation: New benchmark and state of the art analysis. In CVPR, 2014.

PaddlePaddle Authors. Paddledetection, object detection and instance segmentation toolkit based
on paddlepaddle. https://github.com/PaddlePaddle/PaddleDetectionl

Valentin Bazarevsky, Ivan Grishchenko, Karthik Raveendran, Tyler Zhu, Fan Zhang, and Matthias
Grundmann. Blazepose: On-device real-time body pose tracking, 2020.


https://github.com/PaddlePaddle/PaddleDetection

Under review as a conference paper at ICLR 2024

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is space-time attention all you need for video
understanding? In ICML, 2021.

Yuanhao Cai, Zhicheng Wang, Zhengxiong Luo, Binyi Yin, Angang Du, Haoqian Wang, Xiangyu
Zhang, Xinyu Zhou, Erjin Zhou, and Jian Sun. Learning delicate local representations for multi-
person pose estimation. In ECCV, 2020.

Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. Openpose: Realtime multi-person
2d pose estimation using part affinity fields. TPAMI, 2019.

Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d pose estimation
using part affinity fields. In CVPR, 2017.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In ECCV, 2020.

Géry Casiez, Nicolas Roussel, and Daniel Vogel. 1€ filter: a simple speed-based low-pass filter for
noisy input in interactive systems. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, 2012.

Bowen Cheng, Bin Xiao, Jingdong Wang, Honghui Shi, Thomas S Huang, and Lei Zhang. High-
erhrnet: Scale-aware representation learning for bottom-up human pose estimation. In CVPR,
2020.

MMDeploy Contributors. Openmmlab’s model deployment toolbox. https://github.com/
open—-mmlab/mmdeploy), 2021.

MMPose Contributors. Openmmlab pose estimation toolbox and benchmark. https://github.
com/open—-mmlab/mmpose, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

Terrance DeVries and Graham W. Taylor. Improved regularization of convolutional neural networks
with cutout, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. ICLR, 2021.

Raill Diaz and Amit Marathe. Soft labels for ordinal regression. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan, Jitendra Malik, and
Christoph Feichtenhofer. Multiscale vision transformers. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pp. 6824—6835, 2021.

Hao-Shu Fang, Jiefeng Li, Hongyang Tang, Chao Xu, Haoyi Zhu, Yuliang Xiu, Yong-Lu Li, and
Cewu Lu. Alphapose: Whole-body regional multi-person pose estimation and tracking in real-
time. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.

Zigang Geng, Ke Sun, Bin Xiao, Zhaoxiang Zhang, and Jingdong Wang. Bottom-up human pose
estimation via disentangled keypoint regression. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14676-14686, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385, 2015.

Gines Hidalgo, Yaadhav Raaj, Haroon Idrees, Donglai Xiang, Hanbyul Joo, Tomas Simon, and
Yaser Sheikh. Single-network whole-body pose estimation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 6982-6991, 2019.

Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc V. Le. Transformer quality in linear time. ArXiv,
abs/2202.10447, 2022.

10


https://github.com/open-mmlab/mmdeploy
https://github.com/open-mmlab/mmdeploy
https://github.com/open-mmlab/mmpose
https://github.com/open-mmlab/mmpose

Under review as a conference paper at ICLR 2024

Junjie Huang, Zheng Zhu, Feng Guo, and Guan Huang. The devil is in the details: Delving into
unbiased data processing for human pose estimation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2020a.

Junjie Huang, Zheng Zhu, Guan Huang, and Dalong Du. Aid: Pushing the performance boundary
of human pose estimation with information dropping augmentation, 2020b.

Sheng Jin, Wentao Liu, Enze Xie, Wenhai Wang, Chen Qian, Wanli Ouyang, and Ping Luo. Differ-
entiable hierarchical graph grouping for multi-person pose estimation. In European Conference
on Computer Vision, pp. 718-734. Springer, 2020a.

Sheng Jin, Lumin Xu, Jin Xu, Can Wang, Wentao Liu, Chen Qian, Wanli Ouyang, and Ping Luo.
Whole-body human pose estimation in the wild, 2020b.

Sven Kreiss, Lorenzo Bertoni, and Alexandre Alahi. Pifpaf: Composite fields for human pose esti-
mation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,

pp. 11977-11986, 2019.

Jiefeng Li, Can Wang, Hao Zhu, Yihuan Mao, Hao-Shu Fang, and Cewu Lu. Crowdpose: Efficient
crowded scenes pose estimation and a new benchmark. Cornell University - arXiv, 2018.

Jiefeng Li, Siyuan Bian, Ailing Zeng, Can Wang, Bo Pang, Wentao Liu, and Cewu Lu. Human pose
regression with residual log-likelihood estimation. In ICCV, 2021a.

Ke Li, Shijie Wang, Xiang Zhang, Yifan Xu, Weijian Xu, and Zhuowen Tu. Pose recognition with
cascade transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 1944—1953, 2021b.

Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer back-
bones for object detection. arXiv preprint arXiv:2203.16527, 2022.

Yanjie Li, Sen Yang, Peidong Liu, Shoukui Zhang, Yunxiao Wang, Zhicheng Wang, Wankou Yang,
and Shu-Tao Xia. Simcc: a simple coordinate classification perspective for human pose estima-
tion, 2021c.

Yanjie Li, Shoukui Zhang, Zhicheng Wang, Sen Yang, Wankou Yang, Shu-Tao Xia, and Erjin
Zhou. Tokenpose: Learning keypoint tokens for human pose estimation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 11313-11322, 2021d.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In ECCV, 2014.

Huajun Liu, Fugiang Liu, Xinyi Fan, and Dong Huang. Polarized self-attention: towards high-
quality pixel-wise regression. arXiv preprint arXiv:2107.00782, 2021a.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012-10022, 2021b.

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin trans-
former. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp- 3202-3211, 2022a.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s, 2022b.

Zhengxiong Luo, Zhicheng Wang, Yan Huang, Liang Wang, Tieniu Tan, and Erjin Zhou. Rethinking
the heatmap regression for bottom-up human pose estimation. In CVPR, pp. 13264-13273, 2021.

Chengqi Lyu, Wenwei Zhang, Haian Huang, Yue Zhou, Yudong Wang, Yanyi Liu, Shilong Zhang,
and Kai Chen. Rtmdet: An empirical study of designing real-time object detectors, 2022.

Weian Mao, Yongtao Ge, Chunhua Shen, Zhi Tian, Xinlong Wang, Zhibin Wang, and Anton van
den Hengel. Poseur: Direct human pose regression with transformers. In European Conference
on Computer Vision, pp. 72—88. Springer, 2022.

11



Under review as a conference paper at ICLR 2024

Alejandro Newell, Zhiao Huang, and Jia Deng. Associative embedding: End-to-end learning for
joint detection and grouping. NIPS, 30, 2017.

Leonid Pishchulin, Eldar Insafutdinov, Siyu Tang, Bjoern Andres, Mykhaylo Andriluka, Peter V
Gehler, and Bernt Schiele. Deepcut: Joint subset partition and labeling for multi person pose
estimation. In CVPR, pp. 4929-4937, 2016.

Rangillyu. Nanodet-plus: Super fast and high accuracy lightweight anchor-free object detection
model. https://github.com/RangilLyu/nanodet) 2021.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv: Computer Vision
and Pattern Recognition, 2018.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Cornell University - arXiv, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. Cornell University - arXiv, 2018.

Noam Shazeer. Glu variants improve transformer, 2020.

Dahu Shi, Xing Wei, Liangqi Li, Ye Ren, and Wenming Tan. End-to-end multi-person pose estima-
tion with transformers. In CVPR, 2022.

Ke Sun, Bin Xiao, Dong Liu, and Jingdong Wang. Deep high-resolution representation learning for
human pose estimation. In CVPR, 2019.

Alexander Toshev and Christian Szegedy. Deeppose: Human pose estimation via deep neural net-
works. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Ronny Votel, Na Li, and Google Research. Next-generation pose detection with movenet and ten-
sorflow.js. 2023.

Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping Luo,
and Ling Shao. Pyramid vision transformer: A versatile backbone for dense prediction without
convolutions. arXiv: Computer Vision and Pattern Recognition, 2021.

Jiahong Wu, He Zheng, Bo Zhao, Yixin Li, Baoming Yan, Rui Liang, Wenjia Wang, Shipei Zhou,
Guosen Lin, Yanwei Fu, Yizhou Wang, and Yonggang Wang. Ai challenger : A large-scale dataset
for going deeper in image understanding. arXiv: Computer Vision and Pattern Recognition, 2017.

Bin Xiao, Haiping Wu, and Yichen Wei. Simple baselines for human pose estimation and tracking.
In European Conference on Computer Vision (ECCV), 2018.

Lumin Xu, Sheng Jin, Wentao Liu, Chen Qian, Wanli Ouyang, Ping Luo, and Xiaogang Wang.
Zoomnas: Searching for whole-body human pose estimation in the wild. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2022a.

Yufei Xu, Jing Zhang, Qiming Zhang, and Dacheng Tao. Vitpose: Simple vision transformer base-
lines for human pose estimation, 2022b.

Sen Yang, Zhibin Quan, Mu Nie, and Wankou Yang. Transpose: Keypoint localization via trans-
former. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
11802-11812, 2021.

Changgian Yu, Bin Xiao, Changxin Gao, Lu Yuan, Lei Zhang, Nong Sang, and Jingdong Wang.
Lite-hrnet: A lightweight high-resolution network. In CVPR, 2021a.

Hang Yu, Yufei Xu, Jing Zhang, Wei Zhao, Ziyu Guan, and Dacheng Tao. Ap-10k: A benchmark
for animal pose estimation in the wild. Cornell University - arXiv, 2021b.

12


https://github.com/RangiLyu/nanodet

Under review as a conference paper at ICLR 2024

Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, and
Shuicheng Yan. Metaformer is actually what you need for vision, 2022.

Feng Zhang, Xiatian Zhu, Hanbin Dai, Mao Ye, and Ce Zhu. Distribution-aware coordinate repre-
sentation for human pose estimation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020.

Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu, Zekun Luo, Yabiao Wang, Yanwei
Fu, Jianfeng Feng, Tao Xiang, Philip HS Torr, et al. Rethinking semantic segmentation from
a sequence-to-sequence perspective with transformers. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 6881-6890, 2021.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020.

13



Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 MORE BENCHMARK RESULTS

80
85

75

ra

RTMDet-n

80

70

COCO val2017 Keypoints AP(%)

R RTMPose
60 @ PP-TinyPose
AlphaPose 60
Hl YoLov3
55 @ Faster-RCNN «RTMPose-RTMDet

COCO val2017 SinglePerson Keypoints AP(%)

A Pipeline < TinyPose-PicoDet

N - MoveNet
50 AP/DIA FastPose-YOLOv3
icoDet-s

0.04 0.2 1 5 25 582 1 5 25
GFLOPs GFLOPs

Figure 3: Comparison of GFLOPs and accuracy. Left: Comparison of RTMPose and other open-
source pose estimation libraries on full COCO val set. Right: Comparison of RTMPose and other
open-source pose estimation libraries on COCO-SinglePerson val set.

COCO-SinglePerson Popular pose estimation open-source libraries like BlazePose (Bazarevsky
et al., [2020), MoveNet (Votel et al., [2023), and PaddleDetection (Authors) are designed primarily
for single-person or sparse scenarios, which are practical in mobile applications and human-machine
interactions. For a fair comparison, we construct a COCO-SinglePerson dataset that contains 1045
single-person images from the COCO val2017 set to evaluate RTMPose as well as other ap-
proaches. For MoveNet (Votel et al.l 2023), we follow the official inference pipeline to apply a
cropping algorithm, namely using the coarse pose prediction of the first inference to crop the input
image and performing a second inference for better pose estimation results. The evaluation results in
Table[9)and Fig. [3]show that RTMPose archives superior performance and efficiency even compared
to previous solutions tailored for the single-person scenario.

Table 9: Body pose estimation results on COCO-SinglePerson validation set. We sum up top-down
methods’ GFLOPs of detection and pose for a fair comparison with bottom-up methods. “*” denotes
double inference. Flip test is not used.

Methods | Backbone | Detector | Det. Input Size | Pose Input Size | GFLOPs | AP | Extra Data
. BlazePose-Lite BlazePose N/A 256 x 256 N/A NA | 293
MediaPipe {Bazarevsky et al.j2020} ‘ BlazePose-Full BlazePose ‘ N/A ‘ 256 x 256 ‘ N/A ‘ N/A ‘ 354 ‘ Internal(85K)
- ; Lightning MobileNetv2 N/A 192 x 192 N/A 054 | 53.6% )
MoveNet {Votel et al. 2023 ‘ Thunder MobileNetv2 depthx 1.75 N/A ‘ 236 x 256 ‘ N/A ‘ 244 ‘ oagr | [nternal(23.5K)
PaddleDetection {Authors] TinyPose Wider NLiteHRNet PicoDet-s 320 x 320 128 x 96 0.55 58.6 AIC(220K)
ection gAuTon) TinyPose Wider NLiteHRNet PicoDet-s 320 x 320 256 x 192 080 | 69.4 | +Internal(unknown)
RTMPose-t CSPNeXt-t RTMDet-nano | 320 x 320 256 x 192 067 | 721
- RTMPose-s CSPNeXt-s RTMDet-nano 320 x 320 256 x 192 091 77.1
MMPose {Contributors{2020] | pMPpose-m CSPNeXt-m RTMDetnano | 320 x 320 256 x 192 223 | 824 AIC(220K)
RTMPose-1 CSPNeXt-| RTMDet-nano | 320 x 320 256 x 192 447 | 835

A.2 INFERENCE SPEED

In this appendix, we extend our experimentation to assess the inference speed of RTMPose on a
mobile device using ncnn for deployment and testing. Table [T0] demonstrates the comparison of
inference speed on the mobile device, specifically the Snapdragon 865 chip with RTMPose models.

Furthermore, we maintained our evaluation of TensorRT inference latency on an NVIDIA GeForce
GTX 1660 Ti GPU in the half-precision floating-point format (FP16) and ONNX latency on an
Intel I7-11700 CPU with ONNXRuntime, using a single thread. The inference batch size remained

14



Under review as a conference paper at ICLR 2024

consistent at 1. All models underwent a rigorous testing regimen on the same devices, including 50
warm-up runs and 200 inference runs to ensure a fair comparison.

For a comprehensive evaluation, we also included TinyPose (Authors) in our tests, assessing it
with both MMDeploy and FastDeploy. We observed that ONNXRuntime speed on MMDeploy
was slightly faster (10.58 ms vs. 12.84 ms). The detailed results can be found in Table[I0]

Table 10: Comparison of inference speed on Snapdragon 865. RTMPose models are deployed and

tested using ncnn.

Methods | Input Size | GFLOPs | AP(GT) | FP32(ms) | FP16(ms)
_ .| TinyPose 12896 | 008 584 457 327
PaddieDetection {Authors) ‘ TinyPose ‘ 256 x 192 ‘ 0.33 ‘ 68.3 ‘ 14.07 ‘ 833
RTMPose-t | 256 x 192 | 036 63.4 15.84 9.02
: - | RTMPose-s | 256 x 192 |  0.68 728 25.01 13.89
MMPose (Contributors{[2020) | prnipoge-m | 256 x 192 | 1.93 773 49.46 26.44
RTMPose-1 | 256 x 192 | 416 783 85.75 4537

Table [[T] analyzes inference speeds across models and devices, revealing the balance between ac-
curacy and speed. RTMPose performs well across sizes, while RTMDet-nano prioritizes efficiency.
This data aids in selecting models for diverse real-time applications.

Table 11: Pipeline Inference speed on CPU, GPU and Mobile device.

Model ‘ Input Size ‘ GFLOPs ‘ Pipeline AP ‘ CPU(ms) ‘ GPU(ms) ‘ Mobile(ms)
R rnano | 320350 | o3 64.4 12403 | 2467 18.780
RIMDetnano | 320320 | 02 63.5 16658 | 2.730 21.683
N nano | 329 x 520 | 01 732 26613 | 4312 32.122
RIMDctnano | 320320 | 934 742 36311 | 4644 47.642

15



	Introduction
	Related Work
	Methodology
	SimCC: A lightweight yet strong baseline
	Training Techniques
	Module Design
	Micro Design
	Inference pipeline

	Experiments
	Settings
	Benchmark Results
	Inference Speed

	Conclusion
	Appendix
	More Benchmark Results
	Inference Speed


