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Abstract

While instruction fine-tuned LLMs are effec-001
tive text generators, sensitivity to prompt con-002
struction makes performance unstable and sub-003
optimal in practice. Relying on a single ‘best’004
prompt cannot capture all differing approaches005
to a generation problem. Using this observa-006
tion, we propose multi-prompt decoding, where007
many candidate generations are decoded from008
a prompt bank at inference-time. To ensem-009
ble candidates, we use Minimum Bayes Risk010
(MBR) decoding, which selects a final output011
using a trained value metric. We show multi-012
prompt improves MBR across a comprehen-013
sive set of conditional generation tasks (Fig-014
ure 1), and show this is a result of estimating015
a more diverse and higher quality candidate016
space than that of a single prompt. Further017
experiments confirm multi-prompt improves018
generation across tasks, models and metrics.1019

1 Introduction020

Minimum Bayes Risk (MBR) decoding (Bickel021

and Doksum, 1977) improves the generation qual-022

ity of large language models (LLMs) over standard,023

single-output decoding methods, such as beam024

search and sampling. MBR generates a set of candi-025

dates and selects the one with the highest expected026

utility, using all other hypotheses as references (see027

Fig. 2, left), following a simple intuition that a028

desirable output should be highly probable and con-029

sistent with others. MBR has been applied across a030

variety of NLP generation tasks (Amrhein and Sen-031

nrich, 2022; Shi et al., 2022; Suzgun et al., 2023;032

Jain et al., 2023). In particular, self-consistency033

(Wang et al., 2023), a special case of MBR, has034

become widely used to improve LLM reasoning035

capabilities by ensembling reasoning paths.036

A central question to improve the generation037

quality of MBR decoding is how to balance be-038

1Our experiment code, data and prompts are available at
https://anonymized_url.
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Figure 1: Multi-prompt and single prompt MBR results
for code generation on HUMANEVAL, text simplifica-
tion on SIMPEVAL, and translation on WMT ’22 EN-CS
generated with open-source 7B LLMs (details in §4).

tween diversity and adequacy within the candi- 039

date set. Prior work has found success using 040

sampling-based decoding to generate diverse hy- 041

potheses (Eikema and Aziz, 2020; Freitag et al., 042

2022a, 2023a). However, naively increasing the 043

sampling temperature eventually degrades the qual- 044

ity of the candidates. Recently, instruction fine- 045

tuned LLMs (Ouyang et al., 2022; Chung et al., 046

2022) have opened up the possibility of writing 047

prompts in various formats to elicit higher diversity 048

generations. As these models are observed to be 049

sensitive to prompt design, a slight change in phras- 050

ing or the inclusion of more relevant example can 051

significantly impact model quality and behavior 052

(Srivastava et al., 2023; White et al., 2023). 053

Taking advantage of the prompt sensitivity of 054

LLMs, we introduce multi-prompt MBR decoding, 055

which samples candidates using a bank of human- 056

or model-written prompts (see Figure 2, right). In- 057

tuitively, exploring a variety of prompts enables 058

the generation of diverse, high quality hypotheses 059

that provide a closer representation of the true out- 060

put distribution. By guiding the model towards 061

different regions of the output space, each prompt 062

captures unique sequences that are coherent and 063

relevant to the specific input example. 064

We experiment with three distinct generation 065

tasks: text simplification (Maddela et al., 2023), 066
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machine translation (Kocmi et al., 2022), and code067

generation (Chen et al., 2021). Each task assess the068

impact of different prompt components on multi-069

prompt MBR, such as instance-level prompts for070

code, task descriptions for simplification, and in-071

context examples for translation. To account for the072

relative quality between prompts, we develop differ-073

ent strategies for selecting prompts that outperform074

a baseline random choice: sampling prompts from075

a large prompt bank based on their usage on an un-076

labeled set of task data and selecting prompts using077

embedding-based heuristics without any examples.078

We evaluate multi-prompt MBR on a broad079

range of LLMs including both open-source models080

like Llama 2 (Touvron et al., 2023) and state-of-the-081

art closed-source models such as GPT-4 (Achiam082

et al., 2023). Our results show multi-prompt MBR083

consistently improves single-prompt MBR across084

all three tasks and model scales, with gains of up085

to 7% on HumanEval (Chen et al., 2021) and 5086

points of LENS on SIMPEVAL (Maddela et al.,087

2023). Figure 1 displays results for models at the088

7B scale. Finally, we study the dynamics between089

different utility and evaluation metrics, revealing090

that multi-prompt MBR with one metric improves091

performance universally across metrics.092

2 Preliminaries093

Instruction fine-tuned LLMs are trained to follow094

arbitrary natural language task descriptions (Wei095

et al., 2022a). Given an input x and prompt ρ, an au-096

toregressive language model πθ parameterized by097

θ estimates an output sequence y ∼ πθ(x, ρ) using098

an decoding algorithm by sampling the next token099

conditioned on the input πθ(yi|y<i, x, ρ). The de-100

coding algorithm aims to generate y by maximizing101

the sequence likelihood over the language model102

distribution πθ(y|x, ρ) = ΠT
i=1πθ(yi|y<i, x, ρ).103

Minimum Bayes Risk Decoding. In practice, the104

highest likelihood sequence does not necessarily105

yield the highest quality generation (Jaeger and106

Levy, 2006). From this observation, MBR decod-107

ing (Bickel and Doksum, 1977; Eikema and Aziz,108

2020) first samples a set of hypotheses H from109

the model πθ, approximating the true distribution110

of output space Y , then selects the output ŷMBR111

that maximizes the expected utility (or minimizes112

the expected loss in traditional formulation) with113

respect to a set of references R:114

ŷMBR = argmax
y∈H

(EH∼πθ
[U(y,R)]) , (1)115

You are an artificial 
intelligence designed to 
simplify human written I would like you to 

simplify the following 
sentence such that the Write a simpler version 

such that a non-English 
speaker or an individu... 

Multi-Prompt

Instruction Fine-tuned LLM

Candidate Selection

e.g., GPT-4, LLaMA Chat, ALMA

with trained value metric

          BERTScore, LENS, COMET

Rewrite the following 
complex sentence in 
order to make it simple ...

Single Prompt

Figure 2: Multi-prompt MBR generates candidates us-
ing a human- or model-written prompt bank and selects
the highest pairwise score with a trained value metric.

where U(y,R) = Ey′∼R[u(y, y
′)] and u(y, y′) is a 116

utility function that evaluates hypothesis y against 117

a reference y′. In practice, R is also sampled from 118

the same model πθ under the assumption that the 119

model produces reliable outputs in expectation, and 120

is usually set as identical to hypothesis set H. 121

Many existing techniques to improve LLMs’ per- 122

formance such as self-consistency (Wang et al., 123

2023) and output ensemble (Kobayashi, 2018) 124

are special cases of MBR. For instance, self- 125

consistency can be viewed as MBR using the utility 126

function u(y, y′) = 1 [ans(y) = ans(y′)], where 127

ans(y) is the answer extracted from the reasoning 128

path y (Bertsch et al., 2023). 129

3 Multi-Prompt MBR Decoding 130

Prior work on MBR decoding primarily uses mod- 131

els trained or fine-tuned for a specific generation 132

task (Freitag et al., 2022a; Fernandes et al., 2022). 133

With instruction fine-tuned LLMs, the input x is 134

contained within a structured prompt ρ, consist- 135

ing of task instruction and/or in-context examples. 136

Earlier studies have extensively documented that 137

the design of the prompt has a dramatic impact on 138

overall performance (Mishra et al., 2022; Khashabi 139

et al., 2022; Lu et al., 2022; Sclar et al., 2023). 140

To investigate this phenomenon, we show in 141

Figure 3a (bottom) the likelihoods and quality of 142

samples from 10 prompts of varying performance 143

for a text simplification task, measuring quality 144

as the LENS metric score against a set of gold 145

references. Greedy sampling (τ = 0) estimates 146
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Figure 3: (a) LENS score and sequence probability for 1000 generations on a single text simplification example decoded from
Llama 2 7B Chat with temperatures τ = [0, 0.1, 0.5] using a single prompt (top) and multiple prompts (bottom). As the
temperature increases, we find each prompt estimates candidate sequences centered at different modes. (b) LENS scores of the
best generation per-prompt for the first 20 sentences in SIMPEVAL, showing no single prompt produces the best overall output.
(c) Dataset-level LENS performance of each prompt when performing single prompt MBR vs. multi-prompt MBR.

different sequences for each instruction, with sin-147

gle prompt (Figure 3a, top) generating a single se-148

quence. As we increase temperature τ , generations149

from a single prompt simply exhibit noise centered150

around the mode of the highest likelihood sequence,151

while multi-prompt estimates a generations around152

modes uniquely defined by each prompt. For in-153

stance, one of the prompts (i.e., Prompt 9 high-154

lighted in green) produces the highest quality gen-155

eration for this one input sentence, despite having156

a low performance over the entire dataset. In fact,157

no prompt consistently produces the highest qual-158

ity sequences, as illustrated in Figure 3b, rather159

prompts are most effective at different inputs.160

Building upon these insights, we propose multi-161

prompt MBR decoding, depicted in Figure 2, where162

the MBR hypothesis set H consists of outputs sam-163

pled from n distinct prompts ρ:164

H =

n⋃
i=1

Hi, whereHi = {y|y ∼ πθ(x, ρi)}. (2)165

Bertsch et al. (2023) show that MBR seeks the166

mode of some distribution q over a quality feature167

ϕ(y) applied to the output space rather than the168

mode of the model’s distribution:169

ŷMBR ≈ argmax
y∈H

q(ϕ(y)|x). (3)170

We hypothesize, in expectation, the mode of ϕ(y)171

across outputs from multiple prompts has higher172

downstream performance compared to that derived 173

from a single prompt. This is empirically sup- 174

ported by our example, where Figure 3c shows that 175

multi-prompt MBR outperforms individual single- 176

prompt MBR across the full task dataset. 177

Although multi-prompt ensembles hypothesis 178

spaces between prompts, some notion of objective 179

quality still exists when constructing the prompt 180

bank. As shown in Figure 3c, the majority of the 10 181

human-written prompts fall within a 10-point range 182

of LENS scores when evaluated on the task dataset 183

but a few prompts consistently produce low-quality 184

generation. Therefore, to account for the hierar- 185

chy in prompt quality, we propose two methods for 186

choosing the prompts used at generation time from 187

a prompt bank P: sampling from a learned distri- 188

bution of prompts, based on a small unlabeled train 189

set (§3.1); and selecting a subset of prompts based 190

on heuristics in the absence of a train set (§3.2). 191

3.1 Prompt Sampling 192

In this approach, we first calculate the probability 193

of each prompt p(ρ) as the proportion of times that 194

prompt generates the highest scoring output on a 195

separate training set. At inference time, prompts 196

are sampled with replacements from this learned 197

probability distribution, and candidate outputs are 198

then generated given these prompts. 199

Top-p Prompt Sampling. Inspired by the principle 200
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of nucleus sampling (Holtzman et al., 2020), our201

goal is to keep the prompts with high probability202

and truncate the least used prompts by setting their203

probabilities to zero. We define the top-p prompt204

set as the minimal set Ptop-p ⊆ P such that:205

|Ptop-p|∑
i=0

p(ρi) ≥ p. (4)206

We then re-normalize the distribution of Ptop-p and207

sample prompts from the new distribution:208

p′(ρ) =


p(ρ)∑

ρ∈Ptop-p
p(ρ) if ρ ∈ Ptop-p

0 otherwise.
(5)209

3.2 Prompt Selection210

Prompt selection chooses a fixed subset Pbest ⊂ P211

of |Pbest| = k prompts based on heuristics. Com-212

pared to sampling, this does not require an ad-213

ditional training set to evaluate prompt efficacy.214

We consider the following heuristics for select-215

ing Pbest: prompts that have the closest similarity216

and greatest dissimilarity with others, and prompts217

that are randomly selected from each k-NN cluster,218

which is also useful when a training set is presented,219

allowing the selection of high-performing prompts220

within each cluster. We calculate the semantic221

(dis)similarity of prompts based on SentenceBERT222

(Reimers and Gurevych, 2019) embeddings.223

4 Experiment Setup224

In this section, we describe the experimental details225

for evaluating the efficacy of multi-prompt MBR226

decoding across tasks, prompt setups, models, and227

utility metrics, with results and analyses in §5.228

4.1 Tasks & Datasets229

Unlike previous work applying MBR to a single230

generation task (Shi et al., 2022; Eikema and Aziz,231

2022), we deliberately select three unique tasks232

to demonstrate the universality of multi-prompt:233

text simplification with task-level instructions, code234

generation with example-level instructions, and ma-235

chine translation with in-context examples.236

Code Generation. We use HumanEval (Chen237

et al., 2021) benchmark, where models are tasked238

with generating a Python program given a descrip-239

tion with unit tests. Since each example is a unique240

coding task, we generate a unique prompt bank for241

each input. Following Zhang et al. (2023), we re-242

ject empty, degenerate (e.g., pass, return None),243

or non-compiling programs before applying MBR.244

Text Simplification. We use the SIMPEVAL2022 245

test set (Maddela et al., 2023), containing com- 246

plex sentences from Wikipedia, paired with human- 247

written simplifications. The prompt bank is gen- 248

erated based on author-written examples (Table 4) 249

and are used for the entire dataset. 250

Machine Translation. We purposely choose the 251

EN → CS language pair from the WMT 22 (Kocmi 252

et al., 2022) newstest corpus, ensuring its exclu- 253

sion from the training data of recent translation 254

LLMs or metrics (Xu et al., 2024). Results on 255

additional language pairs are in Appendix C.2. 256

4.2 Constructing the Prompt Bank 257

Following existing work studying prompt sensi- 258

tivity (Mizrahi et al., 2023; Gonen et al., 2023), 259

our experiments rely on a small set of manually 260

written seed prompts, and use an LLM to gener- 261

ate diverse paraphrases of prompts. Model-written 262

prompts are generated using GPT-4 Turbo. For 263

seed prompts, the authors manually write 10 for 264

text simplification (Table 4) and use the original 265

HUMANEVAL instruction from each example for 266

code generation. Only the LLM-written prompts 267

are used for multi-prompt. The translation prompts 268

consist of randomly sampled in-context examples 269

from previous WMT shared tasks. We use in- 270

context examples for translation as the translation 271

LLMs were not trained to follow task instructions. 272

For multi-prompt experiments, we select from 273

the prompt bank with top-p prompt sampling (§5.2) 274

using p=0.6, where the prompt usage p(ρ) is cal- 275

culated using a held-out 20% split of each dataset. 276

For our single prompt baselines, we aim to use 277

strongest available prompt in the prompt bank, so 278

we use the prompt with the highest usage p(ρ). 279

Human-written prompts and prompt generation in- 280

structions are included in Appendix A. 281

4.3 Models 282

Our main experiments are performed with Llama 283

2-7B Chat (Touvron et al., 2023) for simplification, 284

ALMA-7B-R (Xu et al., 2024) for translation and 285

CodeLLaMA-13B Instruct (Roziere et al., 2023) 286

for code generation, all fine-tuned to follow instruc- 287

tions. In §5.3 we further explore a wide range of 288

model architectures and sizes, including state-of- 289

the-art and task-specific fine-tuned models. Unless 290

otherwise specified, we generate the hypothesis 291

set using nucleus sampling (Holtzman et al., 2020) 292

with τ = 0.9, p= 0.95. We include a detailed re- 293

view of all models in this work in Appendix B.2. 294
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Figure 4: Candidate set diversity and LENS scores
across temperatures for simplification task. At low tem-
peratures, the increased candidate diversity from multi-
prompt directly translates to improved performance.

4.4 Utility Metrics & Evaluation295

Our core experiments use the trained LENS (Mad-296

dela et al., 2023) for simplification and COMET297

(Rei et al., 2020) for translation as the candidate se-298

lection metric. For code generation, we use MBR-299

EXEC (Shi et al., 2022), which executes each can-300

didate program against a set of test cases, selecting301

the program with the highest agreement over all302

test cases’ outputs. As in Zhang et al. (2023), we303

use the docstring examples as test cases for MBR-304

EXEC and evaluate with pass@1. Given the grow-305

ing body of work on metric development, we verify306

our multi-prompt results across a broad range of307

utility and evaluation metrics in §5.4.308

5 Experiment Results309

We compare multi-prompt decoding to traditional310

MBR (§5.1), ablate the prompt sampling mecha-311

nism (§5.2), vary model architectures (§5.3), evalu-312

ate across utility metrics (§5.4) and finally evaluate313

multi-prompt on efficient MBR alternatives (§5.5).314

5.1 How does multi-prompt MBR perform?315

Multi-prompt Improves MBR. We report our316

main results in Figure 1, comparing single prompt317

and multi-prompt performance as the number of318

generated candidates increases, with detailed re-319

sults in Figure 7 in App. C. Multi-prompt consis-320

tently outperforms standard MBR for all tasks.321

Candidate Diversity ⇏ Quality. To measure the322

impact of temperature on the candidate set quality,323

we report performance and diversity, as measured324

by novel bi-grams, across temperatures in Figure325

4. For low temperatures, we find that multi-prompt326

generates a consistently more diverse candidate327

space, which directly translates to higher-quality328

generation. While single prompt MBR perfor-329

mance improves with temperature τ > 1, despite330

generating an equal or greater diversity set than331

pass@1 LENS COMET

Single Prompt (|H|=100) 48.78 74.67 88.93

Multi-Prompt + Prompt Sampling (|P|=100)
Random Selection – 74.91∗ 89.98∗

Prompt Sampling – 78.29∗ 90.33∗

Top-p Prompt Random – 78.61∗ 90.11∗

Top-p Prompt Sampling – 79.08∗ 90.36∗

Single Prompt (|H|=10) 41.55 61.26 87.24

Multi-Prompt + Prompt Selection (Pbest ⊂P , |Pbest|=10)
Random Selection 39.63 60.00 87.81∗

k-NN Cluster Random 40.24 58.73 87.80∗

Farthest Similarity 44.51∗ 58.32 88.14∗

Closest Similarity 37.80 61.53∗ 87.73∗

Highest Performance – 62.43∗ 87.65
k-NN Cluster Performance – 66.12∗ 87.73∗

Table 1: Results for prompt sampling using 100 prompts
(top) and subset selection using 10 of 100 prompts (bot-
tom). * = Statistically significant improvement with
p<0.05. Sampling from a weighted, truncated distribu-
tion improves multi-prompt across candidate set sizes.

multi-prompt, multi-prompt MBR still produces 332

higher quality candidates. As τ → 2, the quality of 333

single and multi-prompt MBR begins to degrade 334

as their candidate sets become too noisy to gener- 335

ate high-quality sequences. Framing the decoding 336

process as each prompt estimating a unique distri- 337

bution of candidate generations (§3), the ability of 338

multi-prompt to achieve higher quality generation 339

as a result of candidate set diversity is intuitively 340

the byproduct of combining multiple candidate dis- 341

tributions defined by each instruction. 342

5.2 What is the impact of the prompt bank? 343

Sampling Prompts Improves Candidate Quality. 344

Table 1 (top) reports results for multi-prompt across 345

different prompt sampling methods for text simpli- 346

fication and translation. We perform a hypothesis 347

test for the statistical significance of each varia- 348

tion of multi-prompt outperforming single prompt 349

MBR using bootstrap sampling with 1000 itera- 350

tions (Koehn, 2004). Note that, code generation 351

results are omitted as a unique set of prompts is 352

generated for each HumanEval example. We find 353

sampling prompts by usage and truncating the top- 354

p prompts improves multi-prompt over a random 355

selection baseline, with top-p prompt sampling per- 356

forming the best on both tasks. 357

A Higher Quality Prompt Bank Improves Multi- 358

prompt. Table 1 (bottom) reports results for dif- 359

ferent prompt subset selection methods, which use 360

heuristics to select a smaller set of prompts for 361

multi-prompt to maximize performance. The best 362
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Single Prompt Multi-prompt

Code Generation (|H|=20) – HUMANEVAL (pass@1)
StarCoder 2 15B 44.51 49.39 (+4.88)
CodeLlama 7B 37.80 40.85 (+3.05)
CodeLlama 13B 43.29 48.17 (+4.88)
CodeLlama 34B 45.73 52.44 (+6.71)
CodeLlama 70B 61.59 68.90 (+7.31)
GPT-3.5 68.29 73.78 (+5.49)
GPT-4 81.71 82.93 (+1.22)

Text Simplification (|H|=100) – SIMPEVAL (LENS)
Ctrl T5 3B 72.6 –
Ctrl T5 11B 74.4 –
Llama 2 7B Chat 75.71 80.38 (+4.67)
Llama 2 13B Chat 78.19 80.27 (+2.08)
Llama 2 70B Chat 82.21 83.28 (+1.07)
GPT-3.5 76.87 81.25 (+4.38)
GPT-4 76.47 81.56 (+5.09)

Translation (|H|=100) – WMT ’22 EN-CS (COMET)
WMT ’22 Winners 91.9 –
MS Translate API 90.6 –
ALMA 7B R 89.17 89.94 (+0.77)
ALMA 13B R 89.41 90.45 (+1.04)
GPT-3.5 91.27 91.35 (+0.08)
GPT-4 92.24 92.47 (+0.23)

Table 2: Metric scores for state-of-the-art systems com-
pared to LLMs with multi-prompt using |H| candidates.
Translation and simplification baselines are as reported
in Hendy et al. (2023) and Maddela et al. (2023).

selection method for each task had a significant363

impact on performance when compared to a sin-364

gle prompt MBR (+2.9 pass@1, +4.9 LENS and365

+0.9 COMET). For text simplification, decoding366

with the 10 highest performing prompts is further367

improved by selecting prompts from a k-NN clus-368

tering of prompt embeddings, which enforces a369

dis-similarity between prompts. However, trans-370

lation and code generation benefit from using the371

farthest similarity, or semantically distant prompts.372

These results highlight multi-prompt’s sensitivity to373

the prompt construction, and shows that enforcing374

both diversity via multi-prompt and performance375

via prompt selection improves candidate genera-376

tion. A direct comparison between prompt sam-377

pling and selection using the same candidate set378

size is included in Table 6 in Appendix C.3.379

5.3 Does multi-prompt MBR improve quality380

across model architectures and sizes?381

Multi-prompt Improves MBR Across Models.382

Figure 5 reports improvement of multi-prompt over383

single prompt across widely used LLMs as a ∆384

change in score, with per-model results in Ap-385

pendix C.4. In all cases, multi-prompt outperforms386

single prompt using a sufficiently large candidate387

set size, showing an increasing or constant metric388
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Figure 5: ∆ metric improvement from single prompt
to multi-prompt across model sizes and architectures,
reported with a 95% CI bootstrapped over 20 iterations.
For absolute performance, see Figure 10.

improvement. In fact, smaller models surpass their 389

larger counterparts’ single output decoding at large 390

enough candidate set sizes (Fig. 10). For instance, 391

CodeLlama 13B outperforms its 70B variant using 392

multi-prompt with 18 candidates (48.26 > 47.99 393

pass@1) and TowerInstruct 7B outperforms 13B 394

with 5 candidates (81.73>80.14 COMET). 395

LLMs with Multi-prompt Outperform Fine- 396

tuned Models. Whether general-purpose, instruc- 397

tion fine-tuned LLMs outperform models trained 398

on a specific generation task is still an active ques- 399

tion (Qin et al., 2023), so we compare state-of- 400

the-art results from each task dataset using single 401

prompt MBR to instruction fine-tuned LLMs using 402

multi-prompt MBR with top-p prompt sampling. In 403

Table 2, we report previous SOTA results for each 404

task: an 11B T5-based text simplification model 405

with control tokens for simplification operations 406

(Sheang and Saggion, 2021), the EN-CS results for 407

the WMT ’22 winning submission (Kocmi et al., 408

2022) and StarCoder 15B, a code infilling and gen- 409

eration LLM (Li et al., 2023), not explicitly trained 410

to follow natural language instructions. LLMs sur- 411

pass fine-tuned model performance when using 412
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Text Simplification (LLaMA 7B Chat)

SARI

BERTSCORE
LENS

LENS-SALSA RF
SLE RF

SARI +1.08∗ +1.06∗ +7.24∗ +4.33∗ +0.38∗

BERTSCORE +1.44∗ +1.09∗ +6.18∗ +3.11∗ +0.45∗

LENS -0.67 -0.05 +5.78∗ +4.69∗ +0.82∗

LENS-SALSARF -0.83 +0.35∗ +8.10∗ +4.65∗ +0.97∗

SLERF -5.25 -4.71 +2.39∗ -4.51 +1.05∗

Translation (ALMA 7B)

BERTSCORE

COMET-22

COMETKIWI RF

XCOMET

METRICX

METRICX-QE RF

BLEU +0.34∗ +0.47∗ +0.67∗ -0.14 +0.04 +0.11∗

BERTSCORE +0.51∗ +1.59∗ +1.68∗ +2.48∗ +0.22∗ +0.29∗

COMET-22 +0.71∗ +0.89∗ +1.72∗ +3.29∗ +0.13∗ +0.18∗

COMETKIWIRF +0.80∗ +1.03∗ +1.06∗ +2.87∗ +0.07∗ +0.08∗

XCOMET +0.14 +0.85∗ +0.84∗ +3.34∗ +0.09∗ +0.04∗

METRICX +0.36∗ +0.81∗ +0.36 +3.93∗ +0.07∗ -0.04
METRICX-QERF +0.60∗ +1.68∗ +2.11∗ +5.31∗ +0.08∗ +0.03∗

Evaluation Metric
M

B
R

U
til

ity
M

et
ri

c

Table 3: ∆ metric improvement from single prompt
to multi-prompt across metrics. RF = Reference-free
reranker. * = Statistically significant improvement with
p < 0.05. For absolute performance, see Table 8.

multi-prompt, for instance Llama 2 13B shows +5.8413

LENS over fine-tuned T5 11B.414

5.4 Does multi-prompt MBR over-fit to the415

utility metric?416

An inherent challenge of evaluating MBR is that417

the utility metric used to select candidates is typ-418

ically also used for the final evaluation, in such419

cases it is difficult to attribute the metric improve-420

ment to higher quality generation (Bertsch et al.,421

2023). Given growing attention to metric devel-422

opment, we leverage various trained metrics to423

test whether multi-prompt using one utility met-424

ric improves performance cross all other utility425

metrics. We experiment with traditional overlap-426

based metrics, (BLEU, SARI), embedding simi-427

larity (BERTSCORE), small (∼100M parameter)428

trained metrics with references (LENS, COMET-429

22) and without references (COMETKIWI, LENS-430

SALSA, SLE), and large (3B+ parameter) trained431

metrics (XCOMET, METRICX, METRICX-QE).432

These metrics represent diverse text evaluation ap-433

proaches and encompass the full state of evaluation434

in both tasks. We include a full description of met-435

ric architectures in Appendix B.1.436

Multi-prompt MBR Improves Across Metrics.437

Table 3 reports results for cross-metric evaluation,438

with the diagonal reflecting the traditional MBR439

evaluation setup (i.e., calculate MBR and evalu- 440

ate using the same metric) and other cells indicate 441

generalization from one metric to all others. Multi- 442

prompt improves performance on most evaluation 443

setups, with a few notable exceptions such as dis- 444

agreement between trained and overlap-based met- 445

rics for simplification and COMET-based metrics 446

for translation. For simplification, trained metrics’ 447

failure when evaluated by SARI and BERTSCORE 448

may be a byproduct of the test set size, as these met- 449

rics typically require a substantial number of refer- 450

ences for stable evaluation (Alva-Manchego et al., 451

2020), more than what are provided in SIMPEVAL. 452

Interestingly, the magnitude of performance im- 453

provement is highly variable to the specific utility 454

metric, with no clear relationship between the met- 455

ric architecture and improvement of multi-prompt, 456

but typically a lower baseline performance indi- 457

cates multi-prompt performs better (Table 8 in Ap- 458

pendix for more details). 459

5.5 How does the metric type impact 460

multi-prompt MBR? 461

As discussed by Fernandes et al. (2022), the MBR 462

operation requires each candidate evaluate against 463

every other candidate (i.e., O(n2) comparisons), 464

this becomes inefficient in practice for a large n, es- 465

pecially when using a trained utility metric. There- 466

fore, we explore multi-prompt MBR alternatives 467

using reference-free utility metrics: 468

• Reranker (O(n)). Re-ranking directly estimates 469

the quality of each candidate using a reference- 470

free metric: ŷMBR = argmaxy∈H [U(y)]. We 471

use the trained LENS-SALSA for simplification 472

(Heineman et al., 2023) and COMET-MQM (Rei 473

et al., 2021) for translation. For code genera- 474

tion, we use Code Reviewer (Shi et al., 2022), 475

which calculates agreement between the per- 476

token probability of the generation given the doc- 477

string and the original docstring given the gener- 478

ation. Reference-free re-ranking only requires n 479

metric calculations to directly estimate quality. 480

• Reranker + MBR (O(n+m2)). We use a two- 481

stage selection where we first rerank all n candi- 482

dates and select the top m to use for MBR, where 483

the cheap re-ranker can distill the candidate set 484

and the expensive MBR metric performs the final 485

selection, where m ≪ n. 486

• Multi-turn MBR (O(n2 +m2)). Similar to the 487

previous approach, we perform MBR and then 488

re-compute MBR using the top m candidates. 489
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Figure 6: Alternative MBR formulations for multi-prompt across candidate set sizes for code generation, text
simplification and translation. Efficient MBR methods show inconsistent results, dependent on task and metric.

Results. We report results across candidate se-490

lection methods in Figure 6, finding the multi-491

prompt achieves performance improvement across492

reference-based and reference-free metrics, yet the493

relative performance of methods varies between494

tasks. With text simplification, the methods first495

narrowing the candidate set (‘Rerank + MBR’) and496

iteratively performing MBR (‘Multi-turn MBR’)497

either match or out-perform vanilla MBR. We spec-498

ulate the first pass may prune the lowest quality499

generations such that the second pass only consid-500

ers a distilled candidate set, which better informs501

the MBR calculation. For translation, the more ef-502

ficient re-ranker outperforms vanilla MBR, which503

follows recent work finding trained reference-based504

and reference-free MT metrics are approaching a505

similar quality (Freitag et al., 2023b). For code gen-506

eration, the re-ranker under-performs MBR, which507

may be reflective of the performance of Code Re-508

viewer compared to MBR-EXEC, as the latter has509

access to multiple test cases.510

6 Related Work511

Output Selection. Ensembling outputs across a512

generation set has become a widely used tech-513

nique for improving LLM performance in classi-514

fication tasks, such as using a majority vote over515

reasoning chains (Wang et al., 2023), or merging516

outputs from multiple models (Kobayashi, 2018;517

Martínez Lorenzo et al., 2023). This work applies518

the same underling concept to text generation by519

leveraging trained automatic evaluation metrics. To520

our knowledge, it is the first to propose a multi-521

prompt decoding scheme for text generation.522

MBR Decoding. MBR decoding has been previ-523

ously used to improve generation quality for ma-524

chine translation (Kumar and Byrne, 2004; Eikema525

and Aziz, 2020; Müller and Sennrich, 2021) text526

simplification (Maddela et al., 2023), summa-527

rization and style transfer (Suzgun et al., 2023).528

Bertsch et al. (2023) highlight the growing popular- 529

ity of MBR as a simple technique in machine trans- 530

lation and reporting shared tasks results. While our 531

work is the first to propose generating the MBR 532

hypothesis space using a prompt bank, Farinhas 533

et al. (2023) perform preliminary experiments with 534

paraphrases of a single sentence prompt, but found 535

no difference in performance. Recent work argues 536

sampling strategies like nucleus (Eikema and Aziz, 537

2022) or epsilon (Freitag et al., 2023a) offer slightly 538

better performance over beam search for MBR, 539

with this work extending their findings by attribut- 540

ing candidate set quality to sampling diversity. 541

Prompt Selection. Current work on prompting for 542

text generation has instead focused on optimiza- 543

tion, such as in-context example selection (Min 544

et al., 2022), example ordering (Lu et al., 2022) 545

and prompt selection (Gonen et al., 2023). Notably, 546

Agrawal et al. (2023) show selecting in-context 547

examples for MT by maximizing n-gram over- 548

lap between the source and examples improves 549

few-shot performance. Zhou et al. (2023) experi- 550

ment with LLMs as prompt generators, and Yang 551

et al. (2023) show using LLMs to iteratively rewrite 552

prompts on a development set can distill a single, 553

high-performant prompt. Our work builds on LLM- 554

written prompts and basic heuristics for distilling 555

the prompt bank to further improve multi-prompt. 556

7 Conclusion 557

In this work, we propose multi-prompt, a gener- 558

alized case of MBR for conditional text genera- 559

tion. Multi-prompt successfully ensembles outputs 560

of instruction fine-tuned language models across 561

prompt constructions and in-context examples. We 562

highlight the importance of prompt selection and 563

sampling when constructing the prompt bank with 564

top-p prompt sampling and further verify our re- 565

sults across tasks, models and utility metrics. 566
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Limitations567

We limit our study of the prompt bank to a basic568

set of seed prompts and GPT-written paraphrases569

for each task. Notably, we do not study the impact570

of prompt formats (e.g., passage:{}\n answer{}571

vs. Passage::{} Answer::{}, Sclar et al., 2023),572

in-context example ordering (Lu et al., 2022) or573

example selection (Agrawal et al., 2023) on multi-574

prompt performance, although multi-prompt may575

extend to such methods. We leave the question of576

exhaustively constructing a prompt bank to future577

work, perhaps by extending work in prefix tuning578

(Li and Liang, 2021).579

An inherent limitation of MBR is the increase580

in inference time, where we generate up to 100581

samples in our experiments, and use a neural utility582

metric with either linear or quadratic comparisons583

between candidates. In practice, the generation584

time was significantly lowered by decoding in par-585

allel and the use of efficient-memory attention tech-586

niques such as paged and flash attention used in587

the vLLM library (Kwon et al., 2023). The com-588

putational bottleneck for large candidate set sizes589

was instead evaluating the utility metrics across all590

pairs of generated candidates. To lower the num-591

ber of metric comparisons, promising results have592

been demonstrated by pruning low-scoring candi-593

dates during the MBR process (Cheng and Vlachos,594

2023), aggregating embedding representations of595

candidates (Vamvas and Sennrich, 2024) or select-596

ing a subset of references for each candidate using597

heuristics on reference embeddings (Deguchi et al.,598

2024). Similarly, we show in §5.5 efficient alterna-599

tives to MBR such as using reference-free metrics600

largely preserve the benefits from multi-prompt.601

Along with MBR, many widely used methods602

improving LLM abilities trade increased compute603

at inference time for higher performance, such as604

using chain-of-thought to decode a reasoning chain605

for a single answer or using self-consistency to606

selects an answer among multiple reasoning chains607

(Wei et al., 2022b; Wang et al., 2023).608
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Human-Written Text Simplification Prompt

Rewrite the following complex sentence in order to make it easier to understand by
non-native speakers of English. You can do so by replacing complex words with simpler
synonyms (i.e. paraphrasing), deleting unimportant information (i.e. compression),
and/or splitting a long complex sentence into several simpler ones. The final simplified
sentence needs to be grammatical, fluent, and retain the main ideas of its original
counterpart without altering its meaning.

Simplify the sentence please.

You are an artificial intelligence designed to simplify human written text. The text you
are given will contain complex ideas, phrases or concepts and your job is to rewrite that
text in a simple and easy to understand way. Your simplification should be completely
fluent and retain the ideas of the simplification.

I would like you to simplify the following sentence such that the text is as concise and
easy to read as possible.

Text simplification is an operation used in natural language processing to change, en-
hance, classify, or otherwise process an existing body of human-readable text so its
grammar and structure is greatly simplified while the underlying meaning and infor-
mation remain the same. Text simplification is an important area of research because
of communication needs in an increasingly complex and interconnected world more
dominated by science, technology, and new media. But natural human languages pose
huge problems because they ordinarily contain large vocabularies and complex construc-
tions that machines, no matter how fast and well-programmed, cannot easily process.
However, researchers have discovered that, to reduce linguistic diversity, they can use
methods of semantic compression to limit and simplify a set of words used in given texts.
Please simplify the following sentence.

Please simplify the below sentence by using a combination of these three operations.

Elaboration. An addition of meaningful, relevant and correct information, such as
clarifying vague terminology, providing background information on an entity or subject,
or explicating general world knowledge unknown to the audience.

Generalization. A deletion of unnecessary, irrelevant or complicated concepts.

Paraphrase. Swapping complex spans with equivalent, simpler alternatives.

The final sentence should be grammatical, concise and easier to read compared to the
original sentence.

You are an AI assistant that writes text simplification. Text simplification can be defined
as any process that reduces the syntactic or lexical complexity of a text while attempting
to preserve its meaning and information content. The aim of text simplification is to
make text easier to comprehend for a human user, or process by a program. Please
simplify the following sentence.

Simplify.

You are to act as a text simplification bot. As a text simplification bot, you will simplify
the following sentence such that it is syntactically easier to read and semantically easier
to understand. Please do not make the text more complex, longer or difficult for a reader.

I am writing a sentence, please take a look at this sentence and write a simpler version
such that a non-English speaker or an individual with disabilities could better understand
the sentence.

Table 4: Text simplification prompts used for the de-
coding experiment in Figure 3 and used as examples to
write GPT-4 prompts for experiments in §5.

A Prompt Bank Construction1124

Table 4 contains the human-written prompts for1125

text simplification. These human-written prompts1126

are provided as examples to GPT-4 when automat-1127

ically generating prompts for large-scale experi-1128

ments in §5. For code generation, we extract the1129

docstring in the original HUMANEVAL examples1130

as the human-written prompt, and provide it as an1131

example prompt to GPT-4. For machine translation,1132

our few-shot examples were sampled randomly1133

from the WMT newstest19 test corpus (Barrault1134

et al., 2019).1135

B Detailed System Descriptions1136

In this section, we include a full description of the1137

generation models and utility metrics used in exper-1138

iments throughout §5.3 and §5.4. All experiments1139

were inference-based and were run on up to 4xN-1140

Prompt-Generation Instruction

Please write a variation of the following instruction for a coding task. You may be
creative in proposing potential solutions, or explaining the nature of the task. Please do
not write any examples.

Example: {example_prompt}

Prompt:

Create a prompt for a language model to simplify a sentence, this prompt will explain the
text simplification task and instructions for how to perform the task. The prompt should
be diverse, include a description of simplification and clearly state what is expected of
the language model.

Example: {example_prompt_1}

Example: {example_prompt_2}

Prompt:

Table 5: Instruction templates provided to GPT-4 when
generating task instructions for code generation (top)
and text simplification (bottom).

VIDIA A40 GPUs, depending on the requirements 1141

of the specific model or utility metric. The use of 1142

models, metrics and datasets in this project follows 1143

their respective licenses and intended use. 1144

B.1 Utility Metrics 1145

B.1.1 Code Generation 1146

MBR-EXEC (Shi et al., 2022) executes candidate 1147

generations on a series of test cases, and selects the 1148

candidate with the highest agreement on its output 1149

with all other candidates. While the authors do not 1150

evaluate on HUMANEVAL, we replicate the setup 1151

in Zhang et al. (2023) by using the test cases in 1152

the docstring to calculate the agreement. We use a 1153

soft loss over all test cases, as many HUMANEVAL 1154

docstring examples are trivial or edge cases. If two 1155

candidates have the same MBR score, we break ties 1156

using the candidate with higher probability under 1157

the language model. 1158

Code Reviewer (Zhang et al., 2023) attempts to 1159

find a consensus between the likelihood of the gen- 1160

erated program p(y|x) and the original docstring 1161

using a minified version of the generation p(x|y). 1162

We use their implementation for rejecting degen- 1163

erate samples, minifying code and calculating the 1164

reviewer score. We use the same models for gener- 1165

ation and re-ranking. 1166

B.1.2 Simplification 1167

SARI (Xu et al., 2016) is an n-gram overlap based 1168

metric that compares edits on inputs, outputs and a 1169

bank of references. 1170

BERTSCORE (Zhang et al., 2020) calculates a 1171

word-level cosine similarity of BERT embeddings. 1172

Alva-Manchego et al. (2021) find BERTSCORE is 1173

an adequate measure of quality generation, but that 1174

it does not correlate with simplicity. 1175

LENS (Maddela et al., 2023) is a RoBERTa-based 1176
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metric trained using human ratings of text simpli-1177

fication model outputs. The authors train on an1178

adaptive loss to allow a high score for generations1179

was close to any references, encouraging the metric1180

to consider different simplification types.1181

LENS-SALSA (Heineman et al., 2023) extends1182

the LENS architecture by fine-tuning on a dual1183

sentence- and word-level quality objective. The1184

authors show LENS-SALSA is more sensitive to1185

specific edit operations, while not requiring any1186

reference simplifications.1187

SLE (Cripwell et al., 2023) is a RoBERTa-based1188

metric trained to estimate the simplicity of text,1189

with the simplicity score defined as the difference1190

in simplicity between the complex and simplified1191

sentences. SLE was trained on 0-4 readability1192

scores of news articles in the Newsela corpus (Xu1193

et al., 2015), with an additional label softening for1194

individual sentences in the corpus.1195

B.1.3 Translation1196

BLEU (Papineni et al., 2002) is an n-gram overlap1197

based metric comparing a translation to a bank of1198

references. BLEU remains a widely-used standard1199

for automatic evaluation, despite lower correlation1200

to human judgement compared to learned metrics1201

(Freitag et al., 2022b). We use the ScareBLEU1202

implementation (Post, 2018).1203

COMET (Rei et al., 2020) is a widely used1204

RoBERTa-based metric, trained on direct assess-1205

ments of simplification quality. For reference-free1206

evaluation, we use the CometKiwi-XXL variant1207

(Rei et al., 2022, 2023), trained to predict sentence-1208

and word-level scores simultaneously.1209

XCOMET (Guerreiro et al., 2023) is a fine-tuned1210

XLM-R model (Goyal et al., 2021) based on the1211

CometKiwi architecture, but scaling the model size1212

and training data, including with synthetic data1213

created by randomly swapping n-grams or entire1214

sentences with unrelated translations. We use the1215

11B XCOMET-XXL in our experiments.1216

METRICX (Juraska et al., 2023) is a recent fine-1217

tuned 11B mT5-XXL (Xue et al., 2021) trained on1218

DA data from 2015-20, MQM data from 2020-211219

(Freitag et al., 2021) and synthetic data based on1220

the MQM and DEMETR (Karpinska et al., 2022)1221

taxonomies of translation errors. Notably, the Met-1222

ricX architecture encodes both candidates and ref-1223

erences together, while COMET encodes both sep-1224

arately and combines the outputs to calculate the1225

final score. We also use the QE variant METRICX-1226

QE trained without references. The WMT ’22 test 1227

data used in this work is not included in the training 1228

data of any translation metrics we considered. 1229

B.2 Model Architectures 1230

B.2.1 Code Generation 1231

StarCoder 2 (Li et al., 2023) is trained from- 1232

scratch on 4T tokens from 600+ programming lan- 1233

guages. Although the model is not instruction fine- 1234

tuned, we see a slight performance improvement 1235

with multi-prompt, likely because comments and 1236

code descriptions are included in its pre-training. 1237

CodeLLaMA (Roziere et al., 2023) is a fine-tuned 1238

Llama 2 model on 500B-1T tokens of code-related 1239

datasets, including Python, substantially outper- 1240

forming the base Llama 2 model on HumanEval. 1241

B.2.2 Simplification 1242

Instruction Fine-tuned Models. We experiment 1243

with widely used instruction fine-tuned LLMs, aim- 1244

ing for a broad coverage of current models: Llama 1245

2 Chat (Touvron et al., 2023), Gemma (Team et al., 1246

2024) and Mistral (Jiang et al., 2023). 1247

Fine-tuned Control T5 (Sheang and Saggion, 1248

2021) is a T5-based text simplification model fine- 1249

tuned on the Wiki-Auto (Jiang et al., 2020) dataset 1250

of aligned English-Simple English Wikipedia ar- 1251

ticles. We use their same control token setup: 1252

<NC_0.95> <LS_0.75> <DR_0.75> <WR_0.75>. 1253

B.2.3 Translation 1254

ALMA-R (Xu et al., 2024) is a class of transla- 1255

tion LLMs. The base ALMA (Xu et al., 2023) is a 1256

fine-tuned LLaMA model with text in each target 1257

language and then parallel translation data. ALMA- 1258

R is an extension trained on a contrastive preference 1259

loss to incorporate ratings of translation quality. 1260

TowerInstruct (Alves et al., 2024) is a fine-tuned 1261

Llama 2 model on multi-lingual instructions, aim- 1262

ing to incorporate tasks beyond translation, such 1263

as paraphrasing, post editing and grammar error 1264

correction. 1265

Aya 101 (Üstün et al., 2024) is an mT5-based 1266

model fine-tuned on multi-lingual data in 101 lan- 1267

guages. While mT5 is instruction-following model, 1268

Aya is not fine-tuned on instruction data. 1269

Additionally, we provide results from the WMT 1270

’22 winning submission, and the Microsoft Trans- 1271

late API, as reported in Hendy et al. (2023). 1272
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Figure 7: Multi-prompt, single prompt and beam search MBR decoding performance across candidate set sizes for
code generation, text simplification and translation. Results averaged over 5 bootstrap iterations.

C Further Results1273

C.1 Beam Search & Oracle Performance1274

Following related work in MBR, we report upper-1275

bound ‘oracle’ results (similar to Shi et al., 2022)1276

and a lower-bound beam search baseline (similar1277

to Freitag et al., 2023a) in comparison to our main1278

results (Figure 1) in Figure 7.1279

Beam Search. The MBR candidate set historically1280

has consisted of the top beam search candidates, but1281

as language models have become better generators1282

recent work has argued sampling leads to a better1283

estimation of the hypothesis space (Freitag et al.,1284

2023a). For this reason, we exclusively use nucleus1285

sampling in §5, but we report beam search as a1286

baseline in Figure 7, with a ‘candidate set size’ of1287

n corresponding to the top n beam candidates, or n1288

candidates with nucleus sampling for other results.1289

Oracle. As the final MBR performance can be1290

impacted both by the quality of the candidate set1291

and the choice of utility metric, we report an upper-1292

bound performance by deliberately selecting the1293

best candidate generations. Given a test set with1294

gold-standard references R, we define the oracle1295

performance as the set of the highest scoring possi-1296

ble selection of candidates:1297

Oracle(R∗) =
∑
r∈R∗

max
y∈H

[U(y, r)] (6)1298

Since code generation is evaluated using pass@1,1299

its oracle uses expected pass@k (Shi et al., 2022),1300

which measures whether at least one candidate1301

within the candidate set passes all unit tests T :1302

ExPass@K = E
|H|=K

[
max
y∈H

min
t∈T

1[t(y)]

]
(7)1303

Results. As oracle performance measures candi-1304

date set quality independent of the utility metric,1305

we find an increase in oracle performance coincides 1306

with an improvement when using multi-prompt, in- 1307

dicating that a utility metric can naturally select 1308

candidates when the candidate set is higher qual- 1309

ity. This suggests improving utility metrics may 1310

be a promising direction to bridge the gap between 1311

candidate quality and candidate selection. Beam 1312

search was a particularly strong baseline for small 1313

candidate set sizes, particularly for code generation, 1314

but beam search is not as sensitive to improvement 1315

as the candidate set size increases. Additionally, 1316

as code generation is evaluated using the binary 1317

pass@1 metric, rather than a scalar quality metric 1318

as used by translation and simplification, there is a 1319

large gap between MBR and oracle performance, 1320

also observed by Shi et al. (2022). 1321

C.2 En-XX Translation Results 1322

For brevity, we limit our multi-prompt experiments 1323

to only the English-Czech language pair, but report 1324

results across the full ALMA test set, including 1325

WMT ’22 test data and a subset of NTREX (Feder- 1326

mann et al., 2022), in Figure 8, where we observe 1327

improvement with multi-prompt is dependent on 1328

the language pair. Generally, high resource lan- 1329

guages (such as French, German, Russian) do not 1330

have a substantial difference, which may be a result 1331

of the low prompt sensitivity for such pairs. 1332

C.3 Detailed Prompt Selection Results 1333

To further compare prompt sampling and prompt 1334

selection with the same candidate set size, we repli- 1335

cate the same experiment as Table 1, but modify 1336

prompt selection (bottom) to use 10 candidates 1337

for each prompt, such that both sampling and se- 1338

lection use 100 candidates. We find similar re- 1339

sults when comparing between prompt selection 1340

methods, where at least one selection method leads 1341
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Figure 8: Multi-prompt and single prompt performance of ALMA 7B R across En-XX translation pairs. For low
resource language pairs (e.g., Urdu, Turkish, Czech) we observe significant performance improvements, but not for
most high resource pairs (e.g., French, German, Russian).

pass@1 LENS COMET

Single Prompt (|H|=100) 48.78 74.67 88.93

Multi-Prompt + Prompt Sampling (|P|=100, |H|=100)
Random Selection – 74.91∗ 89.98∗

Prompt Sampling – 78.29∗ 90.33∗

Top-p Prompt Random – 78.61∗ 90.11∗

Top-p Prompt Sampling – 79.08∗ 90.36∗

Single Prompt (|H|=100) 48.78 74.67 88.93

Multi-Prompt + Prompt Selection (|Pbest|=10, |H|=100)
Random Selection 47.40 70.95 89.90∗

k-NN Cluster Random 45.73 72.04 90.14∗

Farthest Similarity 49.17∗ 71.64 90.18∗

Closest Similarity 45.73 72.17 90.87∗
Highest Performance – 72.56 90.27∗

k-NN Cluster Performance – 75.88∗ 90.43∗

Table 6: Results for prompt sampling using 100 prompts
(top) and subset selection with 100 candidates using 10
of 100 prompts (bottom). * = Statistically significant
improvement with p<0.05.

to a statistically significant improvement on each1342

task. However, all prompt selection methods under-1343

perform prompt sampling. This underscores the1344

benefit of the increased diversity from generating1345

using a full prompt bank with multi-prompt.1346

C.3.1 Selected Prompts1347

To provide intuition into how our prompt sampling1348

impacts the underlying prompt set, we run multi-1349

prompt using 100 prompts, generating a single out-1350

put from each prompt. Figure 9 reports the fre-1351

quency that the generation from each prompt was1352

selected as the MBR candidate among all prompts1353

as a % over the full dataset. A flat distribution indi-1354

cates that each prompt equally produces the final1355

MBR generation, but we find a few prompts re-1356

ceive disproportionately more frequent usage, with1357

some prompts never producing the MBR candidate.1358

Interestingly, both tasks have a very different dis-1359

tribution of usage, perhaps as translation is using1360
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Figure 9: Distribution of prompt usage for 100 prompts.
A few high quality prompts generate many final candi-
dates, while many prompts are rarely (if ever) used.

few-shot examples, which may be less sensitive 1361

to performance as a natural language task instruc- 1362

tion. We show examples of the top prompts for 1363

simplification and translation in Table 7. 1364

C.4 Detailed Multi-Model Results 1365

See Figure 10 contains separated results for multi- 1366

prompt and single prompt for each model, as re- 1367

ported in Figure 5 and discussed in §5.3. 1368

C.5 Detailed Cross Metric Evaluation 1369

Table 8 contains the full results for the MBR exper- 1370

iments across metrics as discussed in §5.4. While 1371

evaluating on the same metric used for MBR clearly 1372

improves performance the most (see entries on 1373

the diagonal), we find multi-prompt performed 1374

on any metric universally improves performance 1375

when evaluated on any other metric. Recent neu- 1376

ral metrics, which achieve higher correlation with 1377

human judgements, also have a higher overall per- 1378

formance. Note, METRICX scores translations on 1379

a [0, 25] scale corresponding to an MQM rating, 1380

where lower is better and SLE scores simplifica- 1381

tions on a [0, 4] corresponding to a Newsela simpli- 1382

fication rating, where higher is better. For clarity, 1383

we negate the METRICX results in Table 3 such that 1384

all the green cells indicate a metric improvement. 1385
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Top 10 GPT-4 Generated Text Simplification Prompts (Sorted by No. Generations Selected)

Rewrite the following sentence in a simplified manner, making sure the same meaning and message are still conveyed clearly. The simplification should be done such that it can be read and
understood easily by an individual who may not have knowledge of the English language or any disabilities that limit their understanding.

Please simplify the following sentence so that it is easy to understand by people with disabilities or those who are unfamiliar with English. Try to use shorter words, fewer clauses, and a
simpler structure.

Simplify this sentence such that a non-English speaker or a person with disabilities is able to understand the sentence. Focus on replacing complex words and structures with simpler ones,
while keeping the meaning intact. You can remove unnecessary words, break up longer phrases, and generally make the text more readable.

Text simplification is an important task in natural language processing for creating a simplified version of a sentence that conveys the same meaning as the original sentence but with less
complex language. For this task, you will be given a sentence and asked to rewrite it using simpler words and structures so that a non-English speaker or an individual with disabilities can
better understand it. Please use semantic compression to create a simplified version of the following sentence.

You are an artificial intelligence designed to simplify written text. The text you are given may be complex, and your job is to rewrite it in a way that a non-english speaker or an individual
with disabilities could easily understand. While you simplify the text, you should make sure it is grammatically correct and retains the original meaning of the text.

You are an AI assistant tasked with creating a simpler version of a text. Text simplification can be defined as the reduction of the syntactic or lexical complexity of a text without changing its
meaning. The aim of text simplification is to make the text easier to understand for a human or process by a program. Please simplify the following sentence.

Rewrite this sentence in a simple and easy to understand way. Make sure to retain the meaning and ideas of the original sentence while using shorter words and sentences.

Create a simpler version of the sentence below so that it can be better understood by non-English speakers or individuals with disabilities. Text simplification techniques should be used to
reduce the complexity of the language while preserving the original meaning and information.

You are an AI assistant that writes text simplification. Text simplification can be defined as any process that reduces the syntactic or lexical complexity of a text while attempting to preserve
its meaning and information content. The aim of text simplification is to make text easier to comprehend for a human user, or process by a program. Your task is to take the following
sentence and produce a simplified version that would be easier for a non-English speaker or someone with disabilities to understand. Please simplify the sentence.

This prompt asks you to simplify the given sentence. In order to do so, reduce the sentence to its most basic and clear components. Remove unnecessary words, clauses, and phrases that can
be inferred from the context. Use shorter, more concise words where possible. After simplifying, the resulting sentence should still convey the same essential message.

Top 5 Randomly Sampled Few-shot Translation Instructions (Sorted by No. Generations Selected)

Anglická věta: To do this, simply access your order page, tap ’Help and support’ and choose the option ’Call rider’.

Česká věta: Chcete-li to provést, jednoduše přejděte na stránku objednávky, klikněte na „Nápověda a podpora“ a vyberte možnost „Zavolat jezdci“.
Anglická věta: A private mass and the national anthem preceded the ceremony, which featured a portrait of De Klerk between two candles and a choir decorated with white flowers.

Česká věta: Soukromá mše a státní hymna předcházely tomuto ceremoniálu, který představil portrét De Klerka mez dvěma svíčkami a sbor ozdobený bílými květy.
Anglická věta: After that, we cannot offer an estimate on delivery times as it comes down to individual country’s postal service and customs if outside of the EU.

Česká věta: Poté nemůžeme odhadnout dobu dodání, protože záleží na poštovních a celních službách v jednotlivých zemích, pokud se nacházejí mimo EU.
Anglická věta: This item is an original American comic and is in English!

Česká věta: Tato položka je originální americký komiks a je v angličtině!
Anglická věta: If they cannot find you they will surely call.

Česká věta: Pokud vás nenajdou, určitě zavolají.

Anglická věta: New Zealand’s computer emergency response team was among the first to report that the flaw was being "actively exploited in the wild" just hours after it was publicly
reported Thursday and a patch released.

Česká věta: Tým Nového Zélandu pro reakci na počítačové ohrožení byl mezi prvními, kdo nahlásil, že tato závada se „aktivně divoce zneužívá“ jen pár hodin po tom, co byla veřejně
nahlášena ve čtvrtek a byla vydána záplata.
Anglická věta: Not sure, but I don’t think we had any way of having them pay.

Česká věta: Nejsem si jistý, ale nemyslím si, že bychom měli nějaký způsob,a by museli zaplatit.
Anglická věta: Luckily, the guy was honest and rather than trying to charge the higher price, he sold me the tires for the price I had on my printout.

Česká věta: Naštěstí byl ten chlapík čestný a než aby se pokoušel účtovat vyšší cenu, prodal mi pneumatiky za cenu, kterou jsem měl na mém výtisku.
Anglická věta: The Cowboys just made sure Zeke and his teammates got that opportunity.

Česká věta: Cowboys se právě postarali o to, aby Zeke a jeho spoluhráči tuto příležitost dostali.
Anglická věta: Description Please scroll to the bottom of the listing for more pictures.

Česká věta: Popis Pro více obrázků sjed’te na konec nabídky.

Anglická věta: This is on a quote only basis and you need to supply us with your address for a quotation.

Česká věta: Tato služba je poskytována pouze na základě cenové nabídky dle vámi poskytnuté adresy.
Anglická věta: Fed up completely, she asks "Are you even going to work today?"

Česká věta: Totálně znechucená se ptá: „Budeš dnes vůbec pracovat?“
Anglická věta: So there was the usual gentle chaos that attends any gathering of toddlers.

Česká věta: Takže nastal obvyklý mírný chaos, který provází každé setkání batolat.
Anglická věta: We currently do not have the exact information on what happened to the rider as well as to your order.

Česká věta: V současné době nemáme přesné informace o tom, co se stalo s jezdcem, stejně jako s vaší objednávkou.
Anglická věta: UK media reported that "thousands" were eager to raise cash for the protesters by purchasing the gray T-shirt, which depicts an empty plinth with "Bristol" written above it.

Česká věta: Média ve Velké Británii hlásila, že „tisíce lidí“ nedočkavě vybírali hotovost pro protestující zakoupením šedého trička, které zobrazuje prázdný podstavec s napsaným Bristol
nad ním.

Anglická věta: A. No, we do not include receipts in packages unless requested.

Česká věta: A. Ne, účtenku nepřikládáme, pokud to není požadováno.
Anglická věta: Russia warned of ’consequences’ if Ukraine attacked

Česká věta: Rusko bylo varováno před “následky“, pokud napadne Ukrajinu
Anglická věta: He noted that up to 90% of all Russian investments in the Arab world are made in the UAE.

Česká věta: Poznamenal, že až 90 % ruských investicí v arabském světě jsou prováděny v SAE.
Anglická věta: Many view the Softie 12 Osprey the ultimate four season synthetic fill sleeping bag available.

Česká věta: Mnohými je spací pytel Softie 12 Osprey považován za nejlepší dostupný čtyřsezónní spacák se syntetickou výplní.
Anglická věta: - Sign out and signing back in to your eReader.

Česká věta: - Odhlaste se a přihlaste se znovu do vaší e-čtečky.

Anglická věta: I told ya so....

Česká věta: Říkala jsem vám to...
Anglická věta: All information about the products on our website is provided for information purposes only.

Česká věta: Všechny informace o produktech na našich internetových stránkách mají pouze informativní charakter.
Anglická věta: I’m in HR and have worked payroll in the past.

Česká věta: Jsem na personálním oddělení a v minulosti jsem pracoval na mzdovém.
Anglická věta: Years ago, I worked at a cabinet shop.

Česká věta: Před lety jsem pracoval v obchodě se skříněmi.
Anglická věta: De Klerk’s foundation issued a posthumous video apologizing "for the pain, hurt, indignity and damage that apartheid has done" to South Africa’s non-white populations.

Česká věta: Fond De Klerka vydal posmrtné video omlouvající se „za bolest, zranění, ponížení a škodu, kterou apartheid udělal „jihoafrickému nebělošskému obyvatelstvu“.

Table 7: Prompts with highest usage for multi-prompt using the held-out split for simplification and translation.18
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Figure 10: Results of multi-prompt MBR compared to single prompt MBR across model sizes and architectures.
Multi-prompt MBR consistently improves performance across architectures and as models scale. A candidate size
of 1 is equivalent to standard, single-output decoding. 19



Text Simplification (LLaMA 7B Chat)

SARI

BERTSCORE
LENS

LENS-SALSA RF
SLE RF

SARI 44.33 92.64 58.73 72.31 1.42
BERTSCORE 45.46 93.71 60.86 71.47 1.37
LENS 39.98 92.18 76.29 79.55 2.30
LENS-SALSARF 38.55 91.29 73.31 84.59 2.47
SLERF 33.57 85.36 52.33 64.74 3.84

Translation (ALMA 7B)

BERTSCORE

COMET-22

COMETKIWI RF

XCOMET

METRICX

METRICX-QE RF

BLEU 90.91 87.12 81.16 72.43 1.15 1.24
BERTSCORE 91.41 88.11 82.15 73.59 1.10 1.15
COMET-22 90.45 91.18 86.17 76.71 0.61 0.63
COMETKIWIRF 90.67 90.56 85.64 81.16 0.51 0.57
XCOMET 90.15 90.03 83.19 86.73 0.70 0.79
METRICX 89.35 89.07 82.00 69.26 0.47 0.69
METRICX-QERF 89.58 89.29 83.93 68.78 0.43 0.25

Evaluation Metric
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Text Simplification (LLaMA 7B Chat)

SARI

BERTSCORE
LENS

LENS-SALSA RF
SLE RF

SARI 43.25 91.58 51.49 67.97 1.04
BERTSCORE 44.02 92.62 54.68 68.36 0.92
LENS 40.64 92.24 70.51 74.86 1.49
LENS-SALSARF 39.38 90.94 65.21 79.93 1.51
SLERF 38.82 90.07 49.94 69.26 2.79

Translation (ALMA 7B)

BERTSCORE

COMET-22

COMETKIWI RF

XCOMET

METRICX

METRICX-QE RF

BLEU 90.57 86.65 80.49 72.57 1.20 1.35
BERTSCORE 90.90 86.52 80.48 71.10 1.31 1.44
COMET-22 89.74 90.28 84.44 73.42 0.74 0.81
COMETKIWIRF 89.87 89.53 84.58 78.29 0.58 0.65
XCOMET 90.01 89.18 82.35 83.39 0.79 0.83
METRICX 88.99 88.26 81.63 65.32 0.54 0.66
METRICX-QERF 88.98 87.61 81.82 63.47 0.50 0.27

Evaluation Metric

Table 8: Multi-prompt and single prompt performance across metrics. RF = Reference-free reranker.
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