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ABSTRACT

State Space Models (SSMs) such as Mamba have shown significant promise for
sequence modeling in Natural Language Processing (NLP) and, more recently,
computer vision. This paper presents a new methodology for both supervised
and self-supervised learning using Mamba and Masked Autoencoder networks
specifically designed for point cloud data. We propose three main contributions
that enhance the capability of Mamba networks to process and understand the
complex structure of this type of data. The first strategy exploits the spectrum of a
graph Laplacian capturing the local connectivity of patches to define an isometry-
invariant traversal order of tokens in the Mamba network. Compared to existing
point cloud Mamba architectures, which traverse point patches based on a 3D grid,
our approach is more robust to the viewpoint and better captures the shape manifold
of the point cloud. The second contribution adapts our approach to segmentation
using a recursive patch partitioning strategy informed by spectral components
of the Laplacian. This strategy enables a more precise integration and analysis
point cloud segments. Our last contribution tackles a significant issue in Masked
Autoencoder (MAE) for Mamba networks by modifying learnable token placement.
Instead of adding them at the end, tokens are restored to their original positions,
maintaining essential order and improving learning effectiveness. Extensive experi-
ments confirm our method’s superiority over State-Of-The-Art (SOTA) baselines,
demonstrating marked improvements in classification, segmentation, and few-shot
tasks. The code for this study is available in an anonymized repository.

1 INTRODUCTION

The analysis of 3D point cloud data is fundamental to various applications, including autonomous
driving (Qi et al., 2021; Shi et al., 2019), VR/AR (Guo et al., 2020), and robotics (Rusu & Cousins,
2011). Compared to the organized structure of 2D images, point clouds consist of 3D coordinates
without direct adjacency information forming an unordered bag. In recent years, considerable efforts
have been dedicated to adapt deep learning models such as convolutional neural networks (CNNs)
and Transformers to this type of data (Qi et al., 2017b; Yu et al., 2022; Pang et al., 2022; Zhang et al.,
2022; Bahri et al., 2024). Due to their permutation invariant self-attention mechanism, Transformer
networks are particularly well-suited for the unordered nature of point clouds. However, the quadratic
complexity of this mechanism, requiring to compute a weight between each pair of tokens, impedes
the application of these networks to large-sized inputs (e.g., 2D images or 3D point clouds represented
by many patches). This has prompted researchers to explore more efficient solutions, including the
Set Transformer (Lee et al., 2019), Sparse Transformer (Child et al., 2019), Longformer (Beltagy
et al., 2020) and Sinkhorn Transformer (Tay et al., 2020).

Recently, methods based on Structured State Space Sequence (S4) (Gu et al., 2021a) such as Mamba
(Gu & Dao, 2023) have gained significant traction as a more efficient alternative to Transformers
(Liu et al., 2024; Zhu et al., 2024). So far, very few studies have investigated the potential of S4
approaches like Mamba for 3D point clouds. Existing methods like Point-Mamba (Liang et al., 2024)
and PCM (Zhang et al., 2024) extend the 2D grid-based traversal employed for images to a 3D
grid. However, this straightforward adaptation to point clouds suffers from three crucial problems.
First: whereas patches from 2D images have adjacency information, which could be exploited by
the grid-based traversal, the 3D point patches in point clouds offer a sparse representation of the

1

https://anonymous.4open.science/r/ST_MAMBA-231F/


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

object’s surface, and nearby patches on a 3D grid are not necessarily adjacent on this surface. Second:
in the absence of self-attention, task-specific performance is highly influenced by the nature of the
token traversal strategy. For example, a traversal suitable for point cloud classification may not be
effective for a local task such as point-level classification (i.e., segmentation). Third: due to the
“direction-sensitive” nature of Mamba, the self-supervised MAE pre-training step of leading point
cloud models like Point-MAE (Pang et al., 2022) and Point-M2AE (Zhang et al., 2022) cannot be
used directly as there is no attention mechanism to learn the masked tokens’ positions.

The contribution of our work focuses on addressing these problems as follows:

1. We introduce a Surface-Aware Spectral Traversing (SAST) strategy based on the Laplacian
spectrum of a patch-connectivity graph. Compared to the 3D grid traversal of current
approaches like Point-Mamba, our strategy is invariant to isometric transformations (e.g.,
choice of viewpoint) and better captures the object’s surface manifold.

2. We also present a Hierarchical Local Traversing (HLT) for point-level classification (seg-
mentation) that partitions patches recursively based on their spectral coordinates. Unlike
our SAST strategy for classification, which considers Laplacian eigenvectors separately
in different traversals, this HLT combines them in a single ordering for a more precise
modeling of geometry.

3. During the MAE-based Self-Supervised Learning (SSL), we propose a Traverse-Aware
Repositioning (TAR) strategy to align the masked tokens according to their spectral adja-
cency. This strategy addresses the critical issue of spatial adjacency preservation unique to
Mamba networks.

2 RELATED WORK

Deep Point Cloud Learning. With the progress of deep neural networks (DNNs), there has been
a growing focus on applying such models to point clouds. Drawing inspiration from models like
PointNet (Qi et al., 2017a) and PointNet++ (Qi et al., 2017b), several efforts (Atzmon et al., 2018;
Deng et al., 2023; Landrieu & Simonovsky, 2018; Li et al., 2018; Zhao et al., 2019) have been made
to develop deep architectures that capture local context information more effectively. Subsequently,
models influenced by the Transformer (Vaswani et al., 2017), including versions v1-v3 of the Point
Transformer (Wu et al., 2023b; 2022; Zhao et al., 2021) and the Stratified Transformer (Lai et al.,
2022), have emerged as leading frameworks, effectively combining local and global data to set new
benchmarks. To capitalize on the abundance of unlabeled data, self-supervised pre-training has
also emerged as an effective strategy. Notable implementations like Point-BERT (Yu et al., 2022),
Point-MAE (Pang et al., 2022), MaskPoint (Liu et al., 2022), Point-M2AE (Zhang et al., 2022), and
I2P-MAE (Zhang et al., 2022) have introduced methods for pre-training the Transformer (Vaswani
et al., 2017) using techniques based on masked point modeling (Liu et al., 2023; Tang et al., 2023).

Building on the effectiveness of MAE in Text and Image domains, Point-BERT (Yu et al., 2022)
presented a revolutionary method inspired by BERT (Devlin et al., 2018), tailoring Transformers to
3D point cloud processing. Point-MAE (Pang et al., 2022) applied MAE-style pre-training to 3D point
clouds using a custom Transformer-based Autoencoder (AE) designed to reconstruct masked irregular
patches. The use of multi-scale masking and local spatial self-attention mechanisms in Point-M2AE
(Zhang et al., 2022) has led to SOTA results in 3D representation learning. Furthermore, I2P-
MAE (Zhang et al., 2023) improved self-supervised point cloud processing with a masking strategy
leveraging pre-trained 2D models through an Image-to-Point transformation. Point-GPT (Chen et al.,
2024) introduced an auto-regressive generative pretraining (GPT) approach to address the unordered
nature and low information density of point clouds. Finally, ACT (Dong et al., 2022) proposed a
cross-modal knowledge transfer method using pretrained 2D or natural language Transformers as
teachers for 3D representation learning.

State Space Models. SSMs have long been established in the fields of control theory and signal
processing, providing powerful methods for modeling dynamic systems. Drawing from continuous
SSMs used in control systems, (Gu et al., 2021b) introduced a Linear State-Space Layer (LSSL)
incorporating a continuous-time memorization framework based on the High-Order Polynomial
Projection Operator (HiPPO) (Gu et al., 2020) to model long-range dependencies. However, the
extensive computational and memory requirements of the state representation make LSSL impractical
for standard applications. To address this issue, S4 (Gu et al., 2021a) proposed a method to normalize
parameters into a diagonal structure. Subsequently, a variety of structured SSMs have emerged,
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Figure 1: (a) Surface-Aware Spectral Traversing (SAST) over the patched point clouds of a mesh
surface. (b) From left to right, traversing based on the first to fourth non-constant smallest eigenvectors.
(c) Traversing based on the largest eigenvector forming a fine noncontinuous sequence of tokens.

incorporating complex-diagonal structures (Gupta et al., 2022; Gu et al., 2022), support for multiple-
input multiple-output (Gu et al., 2022), and low-rank decomposition (Hasani et al., 2022). These
models have subsequently been added into broader representation frameworks (Mehta et al., 2022;
Ma et al., 2022b). SGConv (Li et al., 2022) also offers a different method for utilizing S4 as a globally
conventional model. To enhance the speed of S4, GSS (Mehta et al., 2022) utilizes a gating structure
that decreases the dimensionality of the state space module.

Recently, Mamba (Gu & Dao, 2023) has set a new benchmark by achieving linear-time inference and
enhancing the efficiency of the training process. This was accomplished by incorporating selection
mechanisms and hardware-aware algorithms into earlier models (Gu et al., 2022; Gupta et al., 2022).
MoE-Mamba (Pióro et al., 2024) integrates the Mixture of Experts (MoE) with Mamba, surpassing
both standard Mamba and Transformer-MoE models in efficiency.

SSMs for Vision Tasks The above-mentioned works primarily focused on the application of SSMs
to long-range or causal data types such as language and speech. In the field of vision, a notable
study (Liu et al., 2024) proposed the VMamba model which features a Cross-Scan Module (CSM)
for enhanced 1D selective scanning in 2D spaces and architectural optimizations that significantly
improve its performance and speed across various visual tasks. Another significant paper is Vision
Mamba (Zhu et al., 2024) which introduces a novel vision backbone called Vim utilizing bidirectional
Mamba blocks.

For point cloud analysis based on Mamba, two key works are Point-Mamba (Liang et al., 2024)
and PCM (Zhang et al., 2024). PointMamba introduces a simple approach to token reordering for
point cloud analysis by strategically organizing point tokens based on a 3D grid. Similarly, PCM
enhances Mamba with a Consistent Traverse Serialization (CTS) technique that converts 3D point
clouds into 1D point sequences while maintaining spatial adjacency. Building upon these approaches,
our method introduces the Spectral Spatial Traversing (SST) strategy, which improves token ordering
and maintains spatial adjacency during MAE-based SSL in Mamba networks.

3 METHOD

We begin by outlining the fundamental concepts of SSMs and spectral graph analysis which are
at the core of our work. We then give an in-depth presentation of our Surface-Aware Spectral
Traversing (SAST) strategy for point cloud processing that improves the model’s robustness to
isometric transformations and better captures the underlying manifold of the point cloud. Thereafter,
we provide detailed specifications of our Hierarchical Local Traversing (HLT) strategy for point-
level classification, which defines a more structured patch traversal order based on the recursive
partitioning of spectral information. Finally, we introduce our Traverse-Aware Repositioning (TAR),
which improves the handling of learnable tokens in masked autoencoders within Mamba networks.
Fig. 2 illustrates the overview of the proposed Spectral Spatial Traversing (SST) method.

3.1 PRELIMINARIES

State Space Models (SSMs) use a series of first-order differential equations to describe how the
state of the linear, time-invariant system evolves over time:

ḣ(t) = Ah(t) +Bx(t), y(t) = Ch(t) +Dx(t), (1)

Here, ḣ(t) denotes the time derivative of the state vector h(t). The matrices A, B, C, and D are the
weighting parameters.

Due to their reliance on continuous data streams x(t), SSMs are not natively equipped to handle
discrete inputs represented as {x0, x1, . . .}. This necessitates the use of a discretized SSM version
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Figure 2: Overview of the proposed Spectral Spatial Traversing (SST) method. (a) Point cloud,
(b) Patchification, (c) Forming the adjacency graph, (d) Traversal based on SAST using s smallest
eigenvectors, (e) HLT for segmentation tasks, (f) TAR strategy for Masked Autoencoders. The process
includes reverse and concatenation operations, with learnable tokens, representations, and masked
tokens highlighted. (g) The classification task where tokens are sorted by different eigenvectors
first, concatenated, and then fed into the network. (h) The segmentation task where local traversal is
applied to q, which is then input into the network. (i) A flowchart visualizing the techniques used in
self-supervised learning and various downstream tasks.

for practical applications:

hk = Āhk−1 + B̄xk, yk = C̄hk + D̄xk. (2)

The state space model in its discrete version utilizes a recursive function to link each state hk to
its preceding state, encapsulated by the matrices Ā ∈ RN×N , B̄ ∈ RN×1, and C̄ ∈ RN×1, which
are tuned parameter matrices. While matrix D̄ ∈ RN×1 may be employed as a residual connection,
we follow previous work and exclude it from our model. The transition from a continuous signal
representation x(t) to a discrete sequence involves sampling x(t) at intervals defined by ∆, setting
each discrete input as xk = x(k∆). This adjustment to a discrete framework results in revised matrix
definitions:

Ā = (I − ∆

2
A)−1(I +

∆

2
A), B̄ = (I − ∆

2
A)−1∆B, C̄ = C. (3)

However, the fixed dynamics of Linear Time-Invariant (LTI) models, exemplified by the constant
parameters A, B, and C in Eq. (3), restrict their capacity to selectively retain or discard relevant
information, thereby limiting their contextual awareness. To improve content-aware reasoning, we
use Mamba’s selection mechanism that manages the propagation and interaction of information
across the sequence dimension (Gu & Dao, 2023).

Spectral Graph Analysis. Popularized by Chung in the 90s (Chung, 1997), spectral graph analysis
characterizes the properties of a graph G = (V,E) by the spectrum (eigenvalues and corresponding
eigenvectors) of its Laplacian matrix L. This analysis can be understood as a discretized version of
the Laplace-Beltrami Operator ∆ of a function f defined on a Riemannian manifold:

∆f = div(gradf) (4)

where gradf is the gradient of f and div the divergence on the manifold. The solution to the
Laplacian eigenvalue problem ∆f = −λf , known as Helmholtz wave equation, is an eigenfunction

4
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corresponding to the natural vibration form of a homogeneous membrane with eigenvalue λ (Reuter
et al., 2005).

Following methods for spectral clustering (Ng et al., 2001) and normalized cuts (Shi & Malik, 2000),
we consider a weighted adjacency matrix W : V ×V → R+ where Wij = 0 if (i, j) ̸∈ E to model
the Euclidean distance of nearby patches (see Section 3.3). The Laplacian matrix of G is defined
as L = D −W where D is the diagonal degree matrix such that Dii =

∑
j Wij . To account for

variability in the scale of weights Wij or the distribution of node degrees Dii, it is preferable to
employ a normalized version of the Laplacian. In this work, we use the Random Walk Laplacian
Lrw = I −D−1W which has the following useful properties:

1. Lrw is positive semi-definite and has |V | non-negative real-valued eigenvalues 0 = λ1 ≤
. . . ≤ λ|V |;

2. 0 is an eigenvalue of Lrw with the constant vector as eigenvector and its multiplicity equals
the number of connected components in the graph;

3. Following Courant’s Nodal Line Theorem (Courant & Hilbert, 2008), the n-th eigenmode
of Lrw has at most n poles of vibration;

4. The representation of a shape by the spectrum of Lrw is invariant to isometry (i.e., distance-
preserving transformation).

Our method uses the s first non-constant eigenvectors of Lrw (i.e., the eigenvectors corresponding
to the s smallest non-zero eigenvalues) to define traversal orders for classification (Section 3.3) and
segmentation (Section 3.4) that are robust to the viewpoint (due to isometry invariance) and provide a
smooth parametrization of the surface manifold. We consider the first eigenvectors as they encode
low frequency information (by Courant’s Nodal Line Theorem), making the resulting traversal more
robust to shape variability and noise. Figure 1 illustrates this concept: (a) shows the original mesh,
(b) shows traversals based on the first to fourth non-constant smallest eigenvectors, and (c) shows
traversal based on the largest eigenvector forming a non-continuous sequence of tokens.

3.2 POINT CLOUD PATCHIFICATION

Given a point cloud P = {pi}
Np

i=1, each point represented by 3D coordinates, we convert P to a
reduced set of patches that can be processed more efficiently. Toward this goal, we employ the
Farthest Point Sampling (FPS) algorithm to select a subset C ⊂ P of Nc points offering a good
coverage of the entire point cloud. These selected points will act as the centers of local patches within
the point cloud. For each center point psi ∈ C, we then identify Nn nearest points N (psi) ⊂ P using
the K-Nearest Neighbours (KNN) algorithm. Following this, each patch is defined as a center psi and
its corresponding nearest-neighbors N (psi).

3.3 SURFACE-AWARE SPECTRAL TRAVERSING (SAST)

Current point cloud processing approaches using Mamba, such as Point-Mamba (Liang et al., 2024)
and PCM (Zhang et al., 2024), simply extend the 2D grid-based traversal for images to a 3D grid. As
mentioned before, this naive strategy suffers from two issues: 1) the 3D grid is view dependent, thus
rotating the point cloud or moving the camera yields a different traversal order; 2) unrelated patches
may be adjacent in 3D space, hence can be traversed subsequently. To address these problems, we
define a traversal order based on the Laplacian spectrum of the patch-connectivity graph.

In this graph, each node corresponds to a patch and the weighted adjacency matrix W is defined
using the Euclidean distance between patch centers. For patches i and j defined by center points
psi and psj , we add an edge (i, j) if psj is among the K nearest neighbors of psi or vice-versa. The
weight of this edge is computed using a Gaussian kernel: Wij = exp

(
−∥psi − psj∥22/σ

)
where σ

is a hyperparameter controlling the kernel width.

Following Section 3.1, we compute the s first non-constant eigenvectors of the Random Walk
Laplacian Lrw . This can be achieved efficiently using an iterative method like the Arnoldi algorithm
(Golub & Van Loan, 2013) by exploiting the following facts: 1) matrix W is very sparse, and 2) only
the first few eigenvectors need to be computed. Eigenvector v(k) ∈ RNc , k ∈ {1, . . . , s}, assigns
an eigenfunction value v

(k)
i to each patch i. In each Mamba block of our model, we perform two

separate traversals of tokens (each token corresponds to an input patch) for every eigenvector: a
forward traversal by increasing value of v(k)i and a reserve traversal by decreasing value of v(k)i . At
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a b

Figure 3: Visualization of the four non-constant smallest Laplacian eigenvectors (v(k), k = 1, . . . , 4)
and the discrete partitioning (q) of our HLT strategy combining the information of all four eigenvectors.
Note: we assumed that patches contain a single point for better visualization.

the end of the block, we concatenate for each token the features computed by the s× 2 traversals.
This section is illustrated in Fig. 1 (b), and Fig. 3 (a).

Canonicalization of spectrum. Although the spectrum of Lrw forms an isometry-invariant repre-
sentation of the surface manifold, this representation may be impacted by two sources of ambiguity:
1) the sign of eigenvectors is undetermined (i.e., if v(k) is an eigenvector, then so is −v(k)), and
2) the order of eigenvectors with similar eigenvalues may vary. We address these two sources of
ambiguity with the following canonicalization procedure. For the first one, we flip the sign of an
eigenvector v(k) (i.e., v(k) := −v(k)) if its first element is negative (i.e., v(k)1 < 0). To handle
the second ambiguity, we first sort the eigenvectors by non-decreasing eigenvalue. We deal with
eigenvalues having a mutliplicity greater than one by finding pairs of consecutive eigenvectors v(k),
v(k+1) with near-identical eigenvalues (i.e., |λk − λk+1| ≤ ϵ). For such pairs, we flip the order if
v
(k)
1 > v

(k+1)
1 . This reordering process is repeated until no further change occurs.

3.4 HIERARCHICAL LOCAL TRAVERSING (HLT) FOR SEGMENTATION

While effective for classification tasks, the SAST strategy considering each eigenvector in a separate
traversal may not capture the precise relationship between patches needed for segmentation. To
address this issue, we introduce a Hierarchical Local Traversal (HLT) strategy that considers the full
spectrum (all s non-constant eigenvectors) simultaneously.

Our strategy is inspired by the recursive binary partitioning technique of normalized cuts (Shi &
Malik, 2000). Starting from the canonicalized spectrum (see previous section), tokens are first split
based on the first eigenvector v(1), by comparing their corresponding value in v(1) with the mean
value v(1). This yields a binary partition of tokens b(1)i = 1

(
v
(1)
i ≥ v(1)

)
∈ {0, 1} where 1 is the

indicator function. Each subgroup is then divided based on the mean of the second eigenvector v(2),
and so on for other eigenvectors. This partitioning process can be seen as building a binary tree,
where each level corresponds to a different eigenvector and leaf nodes i are uniquely identified by the
sequence of bits bi=[b

(1)
i , . . . , b

(s)
i ] on the path from the root to the leaf. Our HLT method traverses

groups of leaf nodes (groups of tokens) sequentially based on the lexicographic order of their binary
code (e.g., [0000], [0001], [0010], [0011], . . . in the case of four eigenvectors). For convenience,
we convert binary codes bi to a non-negative integer qi (e.g., bin2Int([0011])=3) and define two
traversal orders, by increasing or decreasing values of qi.

For s eigenvectors, the HLT strategy described above divides tokens into 2s segments which are
traversed sequentially. In the best case scenario, ⌈log2(Nc)⌉ eigenvectors are thus needed to split
tokens into individual segments. However, it may happen that multiple tokens fall in the same
segment, especially when using fewer eigenvectors. In such case, one can further sort tokens within
each segment, for example, using the values of the first eigenvector (i.e., v(1)). In our implementation,
we simply sort these tokens randomly to add stochasticity in the training. This section is illustrated in
Fig. 2 (e), and Fig. 3 (b).

As shown in Figure 3, the first Laplacian eigenvectors encode high-level spatial relations (e.g., bottom
vs. top, left vs. right, torso vs. limbs, etc.). In the SAST, because these eigenvectors are used
in separate traversals, the network may not be able to differentiate specific regions/parts of the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

point cloud. In contrast, our HLT strategy can capture such specific parts (e.g., head, left or right
arm/thigh/calf, pelvis, etc.).

3.5 TRAVERSE-AWARE REPOSITIONING (TAR) FOR MASKED AUTOENCODERS

Following state-of-art Transformers for point cloud processing, such as Point-MAE (Pang et al.,
2022) and Point-M2AE (Zhang et al., 2022), our method leverages self-supervised pretraining based
on MAE to boost performance. In Transformer-based approaches, the learnable tokens of masked
patches can be inserted in any position of the sequence (typically at the end) as the self-attention
mechanism can still attend to all tokens irrespective of their positions. However, this approach
presents a significant problem in Mamba networks which are sensitive to the traversal order of tokens.
We handle this problem via a TAR strategy that improves the placement of learnable tokens in MAE
within Mamba networks. Specifically, we restore the learnable tokens to their original positions
rather than appending them at the end of the sequence. This ensures that the essential order of tokens
is maintained, preserving spatial adjacency and enhancing learning effectiveness within Mamba
networks.

The proposed TAR strategy selects an arbitrary traversal order and randomly masks a subset of Nm

tokens with the same masking ratio as the transformer-based MAEs. These tokens are then removed
from the sequence, and their positions are recorded. Afterwards, the remaining (visible) tokens are
fed to the encoder that outputs their representation. Before reconstructing the point cloud using the
decoder, we reinsert the learnable tokens in the sequence at their recorded position. The same set of
masked patches is used for other traversal orders. This procedure can be seen in Fig. 2 (f). Following
previous work, we measure the reconstruction error for masked patches using the Chamfer distance:

Lrec =
1

Nm

Nm∑
i=1

Chamfer(Si, Ŝi), (5)

where Si ∈ RNn×3 is the set of points forming the i-th masked patch and Ŝi the reconstructed output
for these points. The Chamfer distance between two sets of points S and Ŝ is defined as

Chamfer(S,S ′) =
∑
p∈S

min
p′∈S′

∥p− p′∥22 +
∑
p′∈S′

min
p∈S

∥p− p′∥22. (6)

4 EXPERIMENTS

Several experiments are conducted to evaluate the proposed method. First, we pretrain the Point-
Mamba network using our techniques on the ShapeNet (Chang et al., 2015) training dataset. We
then assess the performance of these pretrained models across a variety of standard benchmarks,
including object classification, few-shot learning, and segmentation. Additionally, we train the model
from scratch on downstream datasets to demonstrate the robustness and versatility of our method. To
have a fair comparison, we adopt the masking ratio (60%) that was used in the Point-Mamba model.
Moreover, a comprehensive analysis of the computational efficiency, runtime, and memory usage of
our SAST approach is provided in the Supplementary Material.

4.1 PRETRAINING SETUP

Following Point-Mamba, we adopt the ShapeNet (Chang et al., 2015) dataset for the pretraining and
assess the quality of the 3D representations produced by our approach through a linear evaluation on
the ModelNet40 (Wu et al., 2015) dataset. The linear evaluation is performed by a Support Vector
Machine (SVM) fitted on these features. This classification performance is quantified by the accuracy
metric.

4.2 DOWNSTREAM TASKS

Object Classification on Real-World Dataset. To evaluate our method for point clouds, we test it
on the ScanObjectNN dataset (Uy et al., 2019a), as described in previous studies. The augmentation
used during training is random rotation. The results, presented in Table 4, show that our strategy
significantly improves object classification accuracy in both training from scratch and fine-tuning
scenarios. These findings highlight the effectiveness of our approach in enhancing the model’s ability
to identify and classify objects across various backgrounds, demonstrating its robustness in complex
real-world scenarios.
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Object Classification on Clean Objects Dataset. We also evaluated our method on the ModelNet40
(Wu et al., 2015) dataset, following the protocols established in previous works. The augmentation
used during training is scale and transform. As shown in Table 1, our approach achieves notable
enhancements on this challenging dataset compared to both the original Point-Mamba and the
Transformer-based Point-MAE. This demonstrates the robustness and effectiveness of our method
when applied to the Point-Mamba network.

Few-shot Learning. We conducted few-shot learning experiments on ModelNet40 (Wu et al., 2015)
dataset, adhering to the protocols of previous studies (Pang et al., 2022; Zhang et al., 2022; Liu
et al., 2022). The results of our few-shot learning experiments are presented in Table 3. Despite the
competitive nature of this benchmark, our method demonstrated outstanding performance across all

Table 1: Object classification on Model-
Net40 (Wu et al., 2015). All results are from
an input of 1024 points and without voting. Tr:
Transformer, and Ma: Mamba networks.

Methods B
ac

kb
on

e

FL
O

Ps
(G

)

O
A

(%
)

Training from scratch

PointNet (Qi et al., 2017a) - 0.5 89.2
PointNet++ (Qi et al., 2017b) - 1.7 90.7
PointCNN (Li et al., 2018) - - 92.2
DGCNN (Wang et al., 2019) - 2.4 92.9
PointNeXt (Qian et al., 2022) - 1.6 92.9
PCT (Guo et al., 2021) Tr 2.3 93.2
OctFormer (Wang, 2023) Tr - 92.7
Point-MAE (Pang et al., 2022) Tr 2.4 92.3

PointMamba (Liang et al., 2024) Ma 1.8 92.4
Ours Ma 1.8 92.6

Training from pretrained

Transformer (Yu et al., 2022) Tr - 92.1
Point-BERT (Yu et al., 2022) Tr 2.4 92.7
Point-MAE (Pang et al., 2022) Tr 2.4 93.2

PointMamba (Liang et al., 2024) Ma 1.8 92.8
Ours Ma 1.8 93.4

Table 2: Part segmentation on the ShapeNet-
Part (Yi et al., 2016). The mIoU for all instances
(Inst.) is reported. Tr: Transformer, and Ma:
Mamba networks. HLT is Hierarchical Local
Traversing for segmentation.

Methods B
ac

kb
on

e

FL
O

Ps
(G

)

m
Io

U
(%

)

Training from scratch

PointNet (Qi et al., 2017a) - - 83.7
PointNet++ (Qi et al., 2017b) - - 85.1
DGCNN (Wang et al., 2019) - - 85.2
APES (Wu et al., 2023a) - - 85.8
Point-MAE (Pang et al., 2022) Tr 15.5 85.7

PointMamba (Liang et al., 2024) Ma 14.3 85.8
Ours (HLT) Ma 14.3 85.9

Training from pretrained

Transformer (Yu et al., 2022) Tr 15.5 85.1
Point-BERT (Yu et al., 2022) Tr 15.5 85.6
Point-MAE (Pang et al., 2022) Tr 15.5 86.1
Point-M2AE (Zhang et al., 2022) Tr 15.5 86.5
Point-GPT-S (Chen et al., 2024) Tr - 86.2
ACT (Dong et al., 2022) Tr - 86.2
I2P-MAE (Zhang et al., 2023) Tr - 86.8

PointMamba (Liang et al., 2024) Ma 14.3 86.0
Ours (SAST) Ma 14.3 85.7
Ours (HLT) Ma 14.3 86.1

Table 3: Few-shot classification on ModelNet40. We report the average accuracy (%) and standard
deviation (%) of 10 independent experiments. ‘∗’ denotes reproduced results.

Method
5-way 10-way

10-shot 20-shot 10-shot 20-shot

DGCNN (Wang et al., 2019) 91.8 ±3.7 93.4 ±3.2 86.3 ±6.2 90.9 ±5.1

DGCNN + OcCo (Wang et al., 2021) 91.9 ±3.3 93.9 ±3.1 86.4 ±5.4 91.3 ±4.6

Transformer (Yu et al., 2022) 87.8 ±5.2 93.3 ±4.3 84.6 ±5.5 89.4 ±6.3

Transf. + OcCo (Yu et al., 2022) 94.0 ±3.6 95.9 ±2.3 89.4 ±5.1 92.4 ±4.6

Point-BERT (Yu et al., 2022) 94.6 ±3.1 96.3 ±2.7 91.0 ±5.4 92.7 ±5.1
Point-M2AE (Zhang et al., 2022) 96.8 ±1.8 98.3 ±1.4 92.3 ±4.5 95.0 ±3.0
Point-MAE (Pang et al., 2022) 96.3 ±2.5 97.8 ±1.8 92.6 ±4.1 95.0 ±3.0

PointMamba∗ (Liang et al., 2024) 95.9 ±2.1 97.3 ±1.9 91.6 ±5.3 94.5 ±3.5
Ours 96.4 ±2.7 98.5 ±1.5 92.0 ±5.1 95.1 ±3.6
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tested scenarios. As shown in Table 3, our Mamba-based method achieves results comparable to or
exceeding those of transformer-based methods (Point-MAE and Point-M2AE).

Part Segmentation. Our method’s capacity for representation learning was assessed using the
ShapeNetPart dataset (Yi et al., 2016), following the same experimental settings as in prior studies (Qi
et al., 2017a;b; Yu et al., 2022). Table 2 presents the results of various methods on a highly
challenging dataset. As observed, the trend of improvement in previous methods is minor, indicating
the difficulty of achieving significant performance gains on this dataset. For instance, Point-GPT
(Chen et al., 2024) and ACT (Dong et al., 2022), despite being state-of-the-art and complex methods,
show only marginal improvements over each other and other state-of-the-art approaches. Similarly,
I2P-MAE (Zhang et al., 2023), which supplements 3D data with additional 2D information and
uses the Point-M2AE backbone, also fails to achieve significant improvements in segmentation
compared to Point-M2AE. For the “Training from scratch” setting, our method outperforms several
state-of-the-art approaches. In the “Training from pretrained” setting, we further demonstrate the
effectiveness of HLT strategy compared to SAST in the segmentation task. Given the difficulty of
achieving major gains in this domain, our results are reasonable and follow the observed trend.

4.3 ABLATION STUDIES

In this section, we aim to investigate the effects of different parameters on our method. We will focus
on two key aspects: the effect of the number of non-constant smallest eigenvectors and the adjacency
matrix used in the SAST strategy, and the analysis of the TAR strategy.

Analysis of Eigenvectors and Graph. One of our ablation studies investigates the impact of the
number of non-constant smallest eigenvectors used in the SAST and TAR strategies. As depicted in
Fig. 4 (left), the best performance is achieved when using the four non-constant smallest eigenvectors
(blue line) for traversing. When the number of non-constant smallest eigenvectors increases beyond
four, the performance drops. This is because the additional eigenvectors are closer to the largest
eigenvectors, which are less smooth and do not capture the most significant structural variations
effectively. For comparison, the green line represents the performance of the Point-Mamba (Liang
et al., 2024) model, and the orange line represents the Point-MAE (Pang et al., 2022) model. Finally,
the brown line indicates the performance of the Point-Mamba model without any traversing, capturing

Table 4: Object classification on ScanObjectNN (Uy et al., 2019b). Accuracy (%) is reported. †

indicates that this method was fine-tuned without rotation augmentation.

Methods Backbone Param. (M) FLOPs (G) OBJ-BG OBJ-ONLY PB-T50-RS

Training from scratch

PointNet (Qi et al., 2017a) - 3.5 0.5 73.3 79.2 68.0
PointNet++ (Qi et al., 2017b) - 1.5 1.7 82.3 84.3 77.9
DGCNN (Wang et al., 2019) - 1.8 2.4 82.8 86.2 78.1
PRANet (Cheng et al., 2021) - - - - - 81.0
PointNeXt (Qian et al., 2022) - 1.4 1.6 - - 87.7
PointMLP (Ma et al., 2022a) - 13.2 31.4 - - 85.4
RepSurf-U (Ran et al., 2022) - 1.5 0.8 - - 84.3
ADS (Hong et al., 2023) - - - - - 87.5
Transformer (Yu et al., 2022) Transformer 22.1 4.8 79.86 80.55 77.24
Point-MAE (Pang et al., 2022) Transformer 22.1 4.8 86.75 86.92 80.78

PointMamba(Liang et al., 2024) Mamba 12.3 3.6 90.87 90.18 85.60
Ours Mamba 12.3 3.6 92.42 91.39 87.61

Training from pretrained

Transformer (Yu et al., 2022) Transformer 22.1 4.8 79.86 80.55 77.24
Transformer-OcCo (Yu et al., 2022) Transformer - - 84.85 85.54 78.79
Point-BERT (Yu et al., 2022) Transformer 22.1 4.8 87.43 88.12 83.07
Point-M2AE† (Zhang et al., 2022) Transformer - - 91.22 88.81 86.43
Point-MAE (Pang et al., 2022) Transformer 22.1 4.8 92.77 91.22 89.04

PointMamba (Liang et al., 2024) Mamba 12.3 3.6 93.29 91.56 88.17
PCM (Zhang et al., 2024) Mamba 12.3 3.6 - - 86.9
Ours Mamba 12.3 3.6 94.32 92.08 89.10
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Figure 4: Analysis of the number of non-constant smallest eigenvectors and comparison with previous
methods (left) and Analysis of the number of nearest neighbors K (right).
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Figure 5: The effect of the TAR strategy in the pretraining phase (left) and in finetuning (right).

input without specific ordering. The significantly lower performance of this model compared to ours
underscores the importance of appropriate traversing for Mamba networks. All of these methods are
trained and tested on the ScanObjectNN dataset (Uy et al., 2019a) (OBJ-BG) from scratch with Scale
and Transform augmentation.

Another study examines the impact of the number of nearest neighbors used in creating the adjacency
matrix. As shown in Fig. 4 (right), the best performance (blue line) is achieved with 20 nearest
neighbors. The model’s accuracy increases as the number of nearest neighbors increases from 10 to
20, reaching its peak at 20 nearest neighbors. Beyond this point, the performance starts to decline.

Analysis of TAR Strategy. One of the studies examines the impact of the TAR strategy on the
model’s performance. As shown in Fig. 5 (left), the accuracy of the model with and without the
TAR strategy is plotted against the number of epochs. The model incorporating the TAR strategy
(light blue line) demonstrates superior performance compared to the model without TAR (dark blue
line). This figure relates to the pretraining phase on the ShapeNet (Chang et al., 2015) dataset, which
is subsequently tested on the ModelNet (Wu et al., 2015) dataset using a SVM. The final accuracy
achieved with the TAR strategy is 91.05%, whereas the model without TAR achieves a lower accuracy
of 90.11%. This improvement highlights the significance of the TAR strategy, which restores the
learnable tokens to their original positions rather than appending them at the end of the sequence to
maintain spatial adjacency and positional information during the training process.

Additionally, we show the effect of the TAR strategy in a downstream task. Pretrained models
with and without the TAR strategy are fine-tuned on the ScanObjectNN dataset (Uy et al., 2019a)
(OBJ-BG). As shown in Fig. 5 (right), the model pretrained with the TAR strategy (light blue line)
achieves significantly higher overall accuracy compared to the model without the TAR strategy (dark
blue line). This demonstrates that the model pretrained with the TAR strategy has learned more
meaningful features, leading to better performance in the downstream task.

5 CONCLUSION

We introduced three strategies to enhance Mamba networks for point cloud data: isometry-invariant
token traversal, recursive patch partitioning for segmentation, and improved learnable token placement.
Our methods demonstrate superior performance over state-of-the-art baselines in classification,
segmentation, and few-shot tasks.
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