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Abstract
Solving arithmetic tasks is a simple and fun-001
damental skill, yet modern Large Language002
Models (LLMs) have great difficulty with them.003
We introduce the Integrated Gated Calculator004
(IGC), a module that enables LLMs to per-005
form arithmetic by emulating a calculator on006
the GPU. We finetune a Llama model with our007
module and test it on the BigBench Arithmetic008
benchmark, where it beats the State of the Art,009
outperforming all models on the benchmark, in-010
cluding models almost two orders of magnitude011
larger. Our approach takes only a single itera-012
tion to run and requires no external tools. It per-013
forms arithmetic operations entirely inside the014
LLM without the need to produce intermediate015
tokens. It is computationally efficient, inter-016
pretable, and avoids side-effects on tasks that017
do not require arithmetic operations. It reliably018
achieves 98% to 99% accuracy across multiple019
training runs and for all subtasks, including the020
substantially harder subtask of multiplication,021
which was previously unsolved.022

1 Introduction023

Motivation. Large Language Models (LLM) have024

shown impressive abilities in many different fields025

in recent years (Thoppilan et al., 2022; Chowd-026

hery et al., 2023; Brown, 2020). This makes it027

all the more intriguing that even advanced LLMs028

still perform very poorly on basic arithmetic tasks:029

GPT-3 has trouble adding numbers with more than030

three digits (Brown, 2020) and GPT-4 (Achiam031

et al., 2023) still fails to solve multiplication tasks032

(Dziri et al., 2024). The reasons for this surpris-033

ingly poor performance have been studied exten-034

sively (Yuan et al., 2023; Brown, 2020; Dziri et al.,035

2024). Even so the BigBench Arithmetic bench-036

mark (bench authors, 2023), which tests the four037

basic arithmetic operations on merely 5-digit long038

numbers, remains unsolved.039

The Impact of Number Representations. The040

arithmetic abilities of LLMs strongly depend on041

Figure 1: Examples of arithmetic tasks.

the way numbers are represented (Thawani et al., 042

2021). McLeish et al. (2024) improve arithmetic 043

performance by adding positional encodings to 044

numbers. Similarly, Liu and Low (2023) show 045

that good performance can be achieved on addition 046

and subtraction tasks using finetuning only, and 047

they attribute this to the especially well-suited tok- 048

enization method of their model. However, we are 049

not aware of any finetuning method that solves the 050

more difficult subtask of multiplication effectively. 051

Chain of Thought. Chain of Thought (COT) is a 052

prompting method that works by breaking the task 053

down into smaller subtasks and solving them step- 054

by-step (Wei et al., 2023). This approach makes 055

many difficult tasks solvable, but it also increases 056

the model’s runtime as it requires many intermedi- 057

ate outputs to produce the final result. 058

Tool Use. Schick et al. (2023) introduced the 059

Toolformer, which teaches LLMs to call external 060

tools. This method is very powerful, but it increases 061

the inference time due to costly transfers of data 062

between the GPU and CPU. Moreover, since this 063

method is only added after pretraining, the LLM 064

can’t learn to condition its predictions on the re- 065

sults of arithmetic operations during pretraining. 066

Since arithmetic is a fundamental building block 067

of more complex tasks, it would be worthwhile to 068
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enable LLMs to solve arithmetic tasks directly dur-069

ing pretraining, so that it can use this ability as a070

subroutine for more complex problems.071

Our Solution. We develop the Integrated Gated072

Calculator (IGC), a module that enables an LLM073

to accurately perform arithmetic operations, in a074

single iteration and without using external tools. It075

extracts numbers from the tokens in a categorical076

representation and then emulates the calculation077

directly on the GPU.078

Our contributions are:079

• Innovation. We introduce the Integrated080

Gated Calculator, a novel module that can081

emulate a calculator (Section 3). We mod-082

ify a pretrained Llama 3.1 8B model (Tou-083

vron et al., 2023; Dubey et al., 2024) with it084

and finetune on synthetic data. This enables085

the LLM to solve complex arithmetic tasks086

reliably, directly on the GPU, without using087

COTs, a scratchpad, or calling any tools.088

• Results. We achieve near-perfect generaliza-089

tion on the BigBench Arithmetic Benchmark,090

outperforming SOTA models that are almost091

two orders of magnitude larger (Section 4). To092

the best of our knowledge, we are the first to093

enable an LLM to solve multiplication tasks094

without the use of external tools or lengthy095

multi-step procedures.096

• Analysis. We compare our approach with097

alternatives (Section 5) and find that it has098

numerous advantages besides its strong per-099

formance on the benchmark: It is both com-100

putationally efficient and interpretable, and it101

can learn to avoid side effects and destructive102

interference for problems that do not require103

arithmetics.104

• Future Work. We describe how the IGC105

could be integrated into an LLM during pre-106

training instead of finetuning (Section 6). This107

would allow the LLM to learn to use it as a108

subroutine for more complex tasks, an ability109

that is missing from alternative approaches.110

We further describe how our approach could111

be generalized and extended to other non-112

differentiable operations, such as looking up113

items in a database.114

2 Related Work115

Word Problems. We want to highlight the fact116

that arithmetic tasks are different from math word117

problems. In some cases, models fail to solve 118

word problems even though they follow correct 119

reasoning, because they get the arithmetic oper- 120

ations wrong (Schick et al., 2023; Cobbe et al., 121

2021; Gao et al., 2023). In other cases, models 122

fail to solve word problems with trivial arithmetic 123

operations because they fail to extract the numbers 124

or to format the output correctly. We see examples 125

of this in our analysis of existing benchmark data 126

in Section 4. In this paper we focus on arithmetic. 127

We discuss in Future Work (Section 6) how our 128

method could be integrated into an LLM more ef- 129

fectively than alternative approaches, which should 130

help greatly with word problems, too. 131

Chain of Thought. Chain of Thought methods 132

have shown promising results on a variety of dif- 133

ferent tasks and for many different models (Nye 134

et al., 2021; Chung et al., 2024). Lee et al. (2023) 135

investigated ways to teach arithmetic to small trans- 136

formers and found that COT can help significantly 137

on this task as well. 138

Tool Use. Schick et al. (2023) introduced the 139

Toolformer, a generic method to enable an LLM 140

to interact with an external tool. By interacting 141

with a calculator, this method can perfectly solve 142

arithmetic tasks of any complexity. Tool use is a 143

very generic technique with applications for many 144

different tasks and domains (Qu et al., 2024). 145

Other Approaches for Arithmetic Tasks. 146

Cobbe et al. (2021) train verifiers to solve math 147

word problems. Nye et al. (2021) add scratchpads 148

to the COT approach. Imani et al. (2023) compares 149

several Chains of Thoughts to improve reliability. 150

Chen et al. (2022) and Gao et al. (2023) combine 151

COT and Tool Use by generating executable code. 152

Modifying LLMs. Many different techniques 153

for modifying and finetuning LLMs exist Ding et al. 154

(2022). Our approach is most similar to Adapter- 155

based methods (Houlsby et al., 2019), which work 156

by injecting a separate smaller neural network into 157

a pretrained LLM. This Adapter module is trained 158

to modify one of the intermediate activations of the 159

LLM, while the base LLM’s parameters are kept 160

frozen. However, our method has several important 161

differences to typical Adapter methods, which we 162

explain in the next Section. 163

3 Methods 164

Approach. Figure 2 gives an overview of our ap- 165

proach. We introduce the Integrated Gated Calcu- 166

lator (IGC), a new module that modifies the output 167
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Figure 2: Left. The IGC is inserted into a pretrained LLM after a fixed layer, in this case layer 1. It modifies the
output produced by that layer. Right. During training, the IGC takes the latent activations produced by the layer as
its inputs and splits them into two parts: Before and after the anchor token Tt at time step t, which has a special
role for argument selection. The IGC comprises three components, two of which are trainable submodules: The
Input Mapping submodule (Figure 3, left) uses the tokens before Tt to extract the arithmetic task from the text and
to format it for the calculator. It is trained through an auxiliary loss. The calculator itself is emulated on the GPU
through a sequence of non-differentiable tensor operations. It is not a trainable component. The Output Mapping
submodule (Figure 3, right) uses the results of the calculator to modify the tokens after Tt. It is trained by the LLM’s
normal loss function. Note that this image shows the training process using teacher forcing. During inference, the
Input Mapping and the calculator are executed only on the iteration when the anchor token arrives. Their outputs
are cached and reused on subsequent iterations.

of an existing layer of a pretrained LLM. We keep168

the LLM’s existing weights frozen and train only169

the weights of the IGC. This is similar to Adapter-170

based tuning methods, but with several important171

differences:172

• It has non-differentiable components.173

• It operates on multiple tokens at once.174

• It is executed in discrete steps.175

• It uses gated connections on its outputs.176

We explain the reasons for and implications of each177

of these differences in the following.178

3.1 Main Considerations179

Non-differentiable Components. The IGC uses180

tensor operations to emulate a calculator directly181

on the GPU. The calculator’s input and output182

digits are represented with discrete categorical183

data, which makes it a non-differentiable operation.184

Therefore, the calculator itself is not a trainable185

component and it blocks the gradient coming from186

the LLM’s main loss. We therefore have two sep-187

arate trainable components, which are illustrated188

in Figure 3: The Output Mapping, which is trained 189

as normal, and the Input Mapping, which does not 190

receive a gradient because of the calculator. This 191

necessitates a custom training method using an aux- 192

iliary loss, which we describe in Section 3.2. 193

Dependency on Multiple Tokens. Most applica- 194

tions of Adapter-based methods care about abstract 195

concepts like sentiment, or about the presence or 196

absence of specific named entities, since this type 197

of information is often tested in Natural Language 198

Benchmarks such as GLUE (Wang et al., 2019; 199

Houlsby et al., 2019). LLMs can encode such in- 200

formation in a single token or a fixed set of tokens. 201

However, numbers are encoded in several sequen- 202

tial tokens instead, and their relative position is 203

crucial. Our architecture needs to reflect this. We 204

therefore have to learn a mapping from a variable- 205

length set of tokens to the fixed-size input of the 206

calculator. Conversely, for the output, we need to 207

map the fixed-size number back to all subsequent 208

tokens. We implement this through attention mech- 209

anisms and dynamic gating weights. We did try 210

a simpler variant for comparison, in which the In- 211

put Mapping submodule used fixed inputs, and this 212

architecture performed much worse. 213
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Figure 3: Left. The Input Mapping submodule takes variable-length textual embeddings and extracts the numbers
and operator as fixed-length categorical data. The operands and operator are produced as probability distributions
over possible digit values for each digit. Calculator (not shown). The calculator discretizes the distributions
produced by the Input Mapping submodule by sampling the most probable number and operator. It then emulates
the arithmetic operation. The resulting number is formatted using one-hot encoding. Right. The Output Mapping
submodule uses the fixed-length output of the calculator to modify each of the output tokens. This uses a separate
learned gating weight for each token so that it can easily learn to leave tokens unchanged.

Discrete Execution. Performing an arithmetic214

operation is a discrete task and not a distributed215

heuristic process. One does not perform 5% of a216

calculation one moment and %7 the next. A calcu-217

lation is either performed or it is not. Our module218

is designed to reflect this: Most adapter methods219

work by applying a module to the current token on220

each iteration. We instead perform no operations221

until we are sure that the arithmetic task has been222

fully described, at time t: When the chat switches223

from the user to the system. The IGC is then run224

once, using all tokens available. The token Tt at225

time t is called the anchor token. The Input Map-226

ping submodule uses it to construct a Query in an227

attention mechanism, to find all tokens relevant for228

the arithmetic operation. During training, we use229

a form of teacher-forcing described in Section 3.2.230

During inference, the results of our module at time231

t are cached for later iterations. This unusual im-232

plementation has several benefits:233

• More Effective Training. We can not be cer-234

tain what arithmetic operation is needed until235

all relevant tokens have been encountered. If236

we try to train the Input Mapping before all237

of the information it needs is available, it can238

only learn to guess. This would introduce239

noise and disrupt the training process.240

• Avoiding Redundancy. If there is only one241

arithmetic operation, then every iteration af-242

ter t should learn to perform the exact same 243

Input Mapping. There would be no benefit in 244

repeating the operation multiple times. 245

Gated Outputs. The Output Mapping submod- 246

ule uses gated connections with learned and dynam- 247

ically calculated weights to modify the tokens after 248

Tt. It can learn how much each of the output tokens 249

needs to be modified, and it can simply use near- 250

zero weights to avoid making changes for tasks 251

that do not require arithmetic. As a consequence, 252

the IGC causes no destructive interference in tasks 253

where it is not needed. We have experimentally 254

confirmed that this works by testing our architec- 255

ture on non-arithmetic tasks after training it for 256

the arithmetic tasks described in Section 4. These 257

tasks used easily recognizable input templates, so 258

confirming it for more complex word problems 259

remains as future work. 260

3.2 Training Method 261

Our training is based on the usual teacher-forcing 262

approach. However, because the calculator is non- 263

differentiable and blocks the gradient to the Input 264

Mapping submodule, we have to slightly modify 265

the algorithm. 266

Ground Truth Data. We annotate our train- 267

ing data with ground truth data that specifies for 268

each sample which arithmetic operation needs to 269

be called, and with which operands. For simple 270

arithmetic templates, this information can easily 271
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be extracted automatically. For more difficult ex-272

amples, such as word problems, training data can273

be created by the LLM itself, through a process274

analogous to the one described in the Toolformer275

paper (Schick et al., 2023): The LLM annotates276

its existing training data with arithmetic operations277

that it believes would have been helpful. We then278

measure if annotating the data with the result of279

that operation reduces perplexity compared to the280

un-annotated data. If it does, we add the annotation281

to our training data.282

Modified Training Process. We use this helper283

information to modify the training process in two284

ways: Firstly, we apply an auxiliary loss to the285

Input Mapping component. This is just a simple286

cross-entropy loss that teaches the Input Mapping287

submodule to produce the correct input to the cal-288

culator. Secondly, we replace the output of the cal-289

culator with the correct output, so that the Output290

Mapping can begin training immediately, before291

the Input Mapping has converged. This second step292

is not strictly necessary, but speeds up training.293

One IGC execution per sample. In our training294

data, each sample requires exactly one use of the295

calculator, although these can happen at different296

times for each sample. This limitation simplifies297

the training process and allows for more efficient298

parallelization without loss of generality: Multi-299

step arithmetic tasks can simply be broken up into300

individual samples for each step of the calculation.301

3.3 Implementation Details302

Effects of Tokenization. Previous studies have303

found that tokenization has a large impact on arith-304

metic abilities (Kim et al., 2021; Ding et al., 2022;305

Liu and Low, 2023; Garreth, 2024). For training to306

be efficient, we need to ensure an inductive bias so307

that similar tokens can easily be mapped to similar308

internal representations, for both the input and the309

output of our module. The key consideration is310

that numbers are tokenized from left to right and311

the calculator’s representation of digits must reflect312

this by being left-aligned: The most significant313

digit must be assigned to a fixed index, not the least314

significant one. All architectures described in this315

paper use this left-aligned format. Additionally,316

we need to consider how digits are chunked into317

tokens. While older versions of Llama used one318

token per digit (Yuan et al., 2023; Liu and Low,319

2023), Llama 3.1 (Dubey et al., 2024) groups num-320

bers together in chunks of up to three digits. This321

makes it harder for the model to infer the position322

of each digit, which caused significant problems 323

when we used the more intuitive right-aligned for- 324

mat instead of the left-aligned one. However, using 325

the left-aligned pattern solved the problem and al- 326

lowed us to meet and exceed the performance of 327

other approaches. We expect that the IGC can be 328

adjusted to the tokenization methods and number 329

representations used by other LLMs in a similar 330

manner. See Section A in the Appendix for details. 331

Choosing the Layer. We tried applying our 332

module at several different layers of the LLM. We 333

obtained the best results at early layers. The re- 334

sults reported in our experiments are all based on 335

applying the module to layer 1. 336

4 Experiments 337

The BigBench Arithmetic Benchmark. In this pa- 338

per we focus on arithmetic accuracy and not math- 339

ematical reasoning in general. We therefore picked 340

the BigBench Arithmetic benchmark for our evalu- 341

ations (bench authors, 2023). It uses a deliberately 342

simple template that focuses on raw arithmetic and 343

has a good balance of different operators and input 344

lengths. 345

Alternate Templates. To ensure that the sim- 346

plicity of the BigBench Arithmetic template does 347

not skew results, we additionally trained and tested 348

on several custom templates, as shown in Figure 1, 349

in order to make the task more diverse and chal- 350

lenging. We noticed no difference in performance 351

between these templates. 352

Comparisons. We modify a pretrained and 353

instruction-finetuned Llama 3.1 8B model with an 354

IGC, train it on synthetic data, and test it on the 355

benchmark. The best existing results on the bench- 356

mark were achieved by PALM 535B (Chowdhery 357

et al., 2023), which is significantly larger than our 358

model. We therefore also report the performance of 359

relatively smaller models that are no more than one 360

order of magnitude larger than our model. Unfor- 361

tunately, a direct comparison with existing bench- 362

mark results is slightly unfair, since these were ob- 363

tained with n-shot prompting instead of finetuning. 364

We deliberately make things harder for ourselves 365

in order to strengthen the validity of our results: 366

We report the average performance of our runs and 367

compare it to the best performance of the n-shot 368

runs. Additionally, we also compare our model to a 369

second baseline, which is based on finetuning: We 370

enhance a Llama model with an Adapter method, 371

using the same parameter count as our model, and 372
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finetune it on the same data. It should also be noted373

that finetuning more accurately tests for arithmetic374

abilities than n-shot prompting does. This is ev-375

ident from inspecting the benchmark results and376

comparing n-shot results for different values of n:377

There is a lot of variance in performance, even378

though the arithmetic tasks are exactly the same,379

and often the 1-shot version outperforms n-shot380

variants with higher n. The loss of accuracy comes381

from an inability to understand the formatting re-382

quired for the output, not an inability to perform383

the calculation.384

Results. Our model outperforms all baselines385

by a large margin.386

• Our model’s performance is close to perfect387

across the board, even for the substantially388

harder subtask of multiplication.389

• Our model is much better than the best of the390

smaller benchmark models.391

• Compared to PALM 535B, which is optimized392

for mathematics and almost two orders of393

magnitude larger, our model is still slightly394

better for most subtasks and significantly bet-395

ter at multiplication.396

• We significantly outperform our finetuning-397

based baseline, which shows that our model’s398

great performance can be attributed to our399

novel architecture and not to the difference400

in evaluation methods.401

• Our experiments had low variance and consis-402

tently converged to the reported values for403

multiple random seeds. In contrast, many404

of the n-shot benchmarks had high variance405

and the worst runs of our method still outper-406

formed the best n-shot variants in the bench-407

mark.408

Investigating Anomalies. Curiously, our model409

performs slightly worse at the division subtask than410

the other operations, even though division is much411

simpler than multiplication. After investigating the412

possible causes, we attribute this to the fact that the413

BigBench Arithmetic benchmark used a different414

algorithm for generating random operands than we415

did. The test data therefore follows a different416

distribution than the training data.417

Ablations. We also created hybrid modules in418

which the Input Mapping produces an additional419

output that is given to the Output Mapping sub- 420

module directly, making it end-to-end trainable 421

just like a normal finetuning method. Figure 4 422

shows convergence behavior and final performance 423

for several architectures: Our original IGC mod- 424

ule without this shortcut, the IGC module with the 425

shortcut, and a baseline that uses only the shortcut 426

and uses no integrated calculator. All architectures 427

start at zero accuracy because the LLM makes triv- 428

ial formatting mistakes. They rapidly improve as 429

they learn the template. The variant that uses only 430

the shortcut showed no improvements after this ini- 431

tial adaptation and its performance is equal to the 432

finetuning baseline. This is unsurprising, since the 433

pretraining likely already included basic arithmetic 434

operations. The IGC module converges within 70 435

epochs and its test performance remains stable af- 436

ter convergence. We observe high variance in the 437

test accuracy for the IGC+shortcut hybrid models, 438

but their final performance is overall lower than 439

the pure IGC without a shortcut connection. We 440

hypothesize that this is caused by overfitting and 441

destructive interference: The finetuning component 442

converges faster than the calculator, but it does not 443

generalize well. 444

Model Sizes and Efficiency. The IGC has 17 445

million parameters and is integrated into a pre- 446

trained Llama model with 8 billion parameters. 447

Meanwhile, PALM 535B has almost two orders of 448

magnitude more parameters than the Llama model, 449

and four orders of magnitude more than the IGC. 450

The size of our module is trivial compared to the 451

gain in performance it provides. The training pro- 452

cess is fast and efficient as well: We generated 453

an optimized dataset by filtering out frequently- 454

occurring subsequences of tokens. Using this tech- 455

nique, our models converged within two to four 456

days of training with a set of only 10,000 samples, 457

on a single GPU. We note that such a small dataset 458

is not enough for a normal model to learn how to 459

generalize, as evidenced by our ablations. This 460

shows that our approach is less data hungry than 461

alternative approaches. We suspect that the reason 462

for this is that the IGC’s internal calculator is a per- 463

fect emulator, resulting in a much better inductive 464

bias than a randomly initialized neural network. 465

5 Comparison to Other Methods 466

Table 2 shows a high-level comparison between our 467

method and other methods for solving arithmetic 468

tasks. 469
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Task Best small model PALM 535B Llama 8B baseline IGC
#Parameters < 100B 535B 8B+17M 8B+17M
Method n-shot n-shot finetuning finetuning
Overall 0.49 0.94 0.70 0.99
Addition 0.49 0.94 0.95 0.99
Subtraction 0.69 0.96 0.88 0.99
Multiplication 0.35 0.91 0.22 0.99
Division 0.71 0.97 0.75 0.98

Table 1: The accuracy of different models on the BigBench Arithmetic benchmark. The two columns about n-shot
methods were extracted from official benchmark results, while the two finetuned variants were trained by us. We
report the averages for the finetuned models and the best value for any n for the n-shot benchmarks. Despite this
lopsided comparison, our model still outperforms everything else.

Figure 4: The accuracy of various architectures on the
BigBench Arithmetic benchmark as training proceeds.
Multiple lines with the same color correspond to differ-
ent random seeds for the same architecture.

Capability. The only method that can solve470

arbitrary arithmetic tasks as reliably as the IGC is471

the use of external tools.472

Efficiency. Our method runs in a single step and473

avoids expensive transfers of data between GPU474

and CPU, making it more efficient than both COT475

and tool use.476

Interpretability. The IGC is highly inter-477

pretable because the numbers and operator are rep-478

resented explicitly. Moreover, the results of the cal-479

culation are mapped back to the LLM using learned480

gates, which allows us to measure how much they481

affect future tokens.482

Integration. We have reason to believe that483

our method can be more cleanly integrated into484

an LLM than other methods. Firstly, the IGC is485

entirely internal to the model and does not affect486

output tokens directly. This is important, because487

the output is an information bottleneck. If the arith-488

metic operation is only a subtask of a larger task,489

needing to generate tokens for it may distract the490

LLM from its main task. Additionally, teacher491

forcing generates separate gradients for each out-492

put token, which means that later steps taken for the493

same arithmetic operations can not repair mistakes 494

made at earlier steps. In contrast, since the IGC 495

is internal to the model and only executed once, it 496

receives a single, coherent gradient. Secondly, all 497

three approaches (IGC, COT, tool use) share a com- 498

mon weakness, but only the IGC offers a path to fix 499

that weakness: All three approaches are added af- 500

ter pretraining. This implies that the model can not 501

know what the true result of a calculation is during 502

pretraining. It is therefore forced to learn how to 503

make plausible guesses. Later, when we add the 504

technique to solve arithmetic tasks correctly, the 505

LLM has to unlearn these heuristics again. The 506

results of our ablation studies in Section 4 show 507

that the presence of these incorrect heuristics is 508

harmful and leads to a severe reduction in training 509

speed and generalization ability. Unlike COT and 510

tool use methods, our method can be modified to 511

avoid these problems: We describe in Future Work 512

how the IGC could be trained during pretraining 513

(Section 6). 514

Extensibility. Our method is specialized for 515

arithmetic and trained on numbers up to a fixed 516

length. By design, it can not help with any other 517

type of task and it needs to be trained up to the 518

largest number length we expect to see. We address 519

this in the Limitations (Section 8) and explain why 520

it is not much of a hindrance in practice. We also 521

note that the basic design of our module could 522

be generalized and adjusted to other tasks. We 523

describe how in Future Work (Section 6). 524

6 Future Work 525

Using the IGC during Pretraining. As explained 526

in Section 5, it would be preferable if the IGC was 527

trained directly during pretraining. The difficulty 528

here is that the IGC requires annotated training 529
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Feature Feature Type Basic LLM COT Tool use IGC
Addition & Subtraction Capability ✗ ✓ ✓ ✓

Multiplication & Division Capability ✗ ✗ ✓ ✓

Single-step Solutions Efficiency ✓ ✗ ✗ ✓

On GPU Efficiency ✓ ✓ ✗ ✓

Explicit Representations Interpretability ✗ ✓ ✓ ✓

Modularity Interpretability ✗ # # ✓

Internal Integration ✓ ✗ ✗ ✓

Pretraining Integration ✓ ✗ ✗ ✓

Dynamic Number Lengths Extensibility ✓ ✓ ✓ ✗

Generically Extensible Extensibility ✓ ✓ ✓ #

Table 2: A comparison of different methods for solving arithmetic tasks. Addition & Subtraction. Can the
model generalize on addition and subtraction tasks? Multiplication & Division. Can the model generalize on
multiplication and division tasks? Single-step Solutions. Does the model run in constant time? On GPU. Does the
model run entirely on the GPU? Explicit Representation. Can you tell when the model performs an arithmetic
operation? Modularity. Can you tell how the model uses the results of an arithmetic operation? Internal. Is the
arithmetic task solved entirely within latent variables, or does it need to generate output tokens? Pretraining. Is it
possible to train the technique during pretraining, or is it only added afterwards? Dynamic Number Lengths. Can
the model work with inputs of any size? Generically Extensible. Can the technique be extended to other tasks?

data for its auxiliary loss. Fortunately, it should suf-530

fice to intersperse the LLM’s normal training data531

with small amounts of our annotated arithmetic-532

specific data. During training, the IGC would be533

executed for all data, but its Input Mapping sub-534

module would only be trained on this annotated535

data. For data that lacks this annotation, the sub-536

module simply does not receive a gradient. This537

makes the training process resilient to noise or even538

to mistakes in the remainder of the training data, so539

long as we are careful about the way our annotated540

data is constructed.541

Word Problems. Word problems are different542

from pure arithmetic problems: In addition to the543

ability to perform arithmetic operations, they also544

require the model to identify the correct operator545

and inputs from the text. The IGC is only designed546

to perform arithmetic operations, so this is outside547

of its scope. However, it is relevant to investigate548

how effectively the IGC can be integrated into the549

LLM: When an LLM extracts an arithmetic task550

from a word problem, does it represent this task551

internally in a consistent manner, so that our In-552

put Mapping submodule can access it effectively?553

We expect that this integration will be better if the554

IGC is trained during pretraining: The Input Map-555

ping submodule generates gradients that encourage556

the rest of the LLM to extract numbers in an inter-557

pretable format, but these gradients are ignored if558

we only train the IGC and keep the LLM’s parame-559

ter’s frozen.560

Generalizing the IGC Mechanism. The core 561

component of the IGC is a non-differentiable calcu- 562

lator. From the perspective of the trainable compo- 563

nents, this is a blackbox. That raises the question: 564

What other mechanisms could be implemented in 565

such a blackbox? For example, if we replaced it 566

with a lookup table and adjusted the training mech- 567

anism appropriately, it would enable the model 568

to perform database lookups or knowledge graph 569

traversals in a single iteration and without generat- 570

ing any tokens. Such a mechanism could be used 571

to improve upon the popular technique of Retrieval 572

Augmented Generation (Lewis et al., 2020). 573

7 Conclusion 574

We introduce the Integrated Gated Calculator 575

(IGC), a module that enhances an LLM with the 576

ability to solve arithmetic tasks. We achieve near- 577

perfect generalization on the BigBench Arithmetic 578

benchmark, outperforming all existing models. In 579

addition to its impressive performance, the IGC is 580

also more practical than competing approaches: It 581

avoids both the need for expensive tool calls, as 582

well as lengthy and distracting Chains of Thought. 583

We discuss how to integrate our module into an 584

LLM during pretraining and explain why this could 585

improve the model’s ability even further, supported 586

by empirical evidence from our ablation studies. 587

Lastly, we note that our method could be general- 588

ized to integrate other types of non-differentiable 589

tools into an LLM. 590
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8 Limitations591

Fixed Maximum Length. By construction, the592

IGC uses a fixed maximum input length for its593

numbers. This size can be arbitrarily large, but can594

not be adjusted later. To mitigate this issue, we595

can simply train the IGC with the largest size that596

we expect to see for the majority of practical tasks.597

That number may be surprisingly small: In the598

MATH dataset (Hendrycks et al., 2021), a standard599

benchmark for math word problems, 99% of num-600

bers have four digits or less. In the rare cases when601

the model does have to deal with larger numbers,602

the LLM can still use the IGC as a very reliable603

approximator. It should also be noted that the IGC604

is not mutually exclusive with other methods: If the605

model encounters an arithmetic task that is both too606

large for the IGC and that requires high accuracy,607

it can resort to calling external tools. This mirrors608

human behavior: We learn to solve numbers up to609

a certain size in our heads. If we encounter tasks610

more complex than that, we either perform a rough611

calculation, or we resort to tools. Being able to612

solve simple arithmetic tasks in our heads without613

needing to use a tool is useful, but starting at a614

certain level of complexity it is no longer worth the615

effort.616
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A Tokenization 758

The Problem. We experimented with different 759

ways to construct the input and output format of 760

our module to improve learning speed and general- 761

ization. The basic goal is that similar tokens must 762

be mapped to similar internal representations, for 763

both the input and the output of our module. The 764

main hindrance to this is that tokenization groups 765

multiple digits together into single tokens. 766

Analysis. We have empirically analyzed the way 767

tokenization works in our model: Llama 3.1 8B 768

uses a tokenization method that consistently parses 769

numbers from left to right and groups digits to- 770

gether in groups of three, unless there are only two 771

or one digit left. It also conveniently tokenizes in 772

such a way that these 3-digit tokens do not contain 773

non-numeric characters. When read from the left, 774

the tokens are always multiples of 3 digits, which 775

makes it predictable which part of which token cor- 776

responds to which significant digit. For example, 777

the 4th most significant digit always maps to the 778

second token. Only the three least significant digits 779

have any ambiguity. In contrast, when you read 780

from the right, then figuring out which token a digit 781

belongs to depends on the length of the number, 782

which is non-local information and therefore much 783

harder to learn. Table 3 illustrates this. 784

Consequences for the Architecture. The left- 785

aligned format requires more work to implement 786

because the position of the digit no longer matches 787

the digit’s significance. Adjusting the architecture 788

to work with left-aligned numbers requires two 789

small changes: Firstly, each of the digits now needs 790

to be represented as a classifier with eleven options 791

instead of ten: One for each possible digits and one 792

for the special placeholder symbol (an asterisk in 793

Table 3). Secondly, extracting the number from a 794

left-aligned representation requires an additional 795

step compared to the right-aligned representation: 796

We need to know the index of the first placeholder 797

and shift the number accordingly to ensure we get 798

the right magnitude. This is demonstrated by the 799

code in Section B. 800
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Results. We tried a right-aligned version of our801

architecture as well. The difference in performance802

was significant and in many cases the right-aligned803

variant failed to converge or to improve upon the804

performance of a finetuned model at all.805

Other Tokenization Methods. The left-aligned806

architecture described here works well because807

of the way Llama 3.1 tokenizes the data. Other808

tokenization models may have different require-809

ments and work better with other types of archi-810

tectures. We have written code to automatically811

analyze the distribution of tokens when generating812

training data. This code can help you to determine813

the optimal architecture to use. We will make it814

available upon acceptance of the paper.815

B Code816

In the following we provide python code for the817

three stages of our module.818

B.1 Code of the Input Mapping and Auxiliary819

Loss820

(We will provide code upon acceptance of the pa-821

per. The code in its current stage still needs to be822

optimized and documented for other researchers.)823

B.2 Code for Emulating a Calculator824

The calculator emulation works in three steps:825

• Translate left-aligned digits to numbers. We826

take inputs in a fixed-length categorical format827

that represents digits and translate this into a828

single number.829

• Perform a calculation on the numbers. To en-830

sure that the module can be trained on batches831

of data, we perform all four operations in par-832

allel and then take a weighted average.833

• Translate the result back into left-aligned dig-834

its.835

Numerical Accuracy. One important imple-836

mentation detail to be aware of is the numerical837

accuracy of torch tensors. We only calculate up to838

10 digits because that is all that is needed for the839

benchmark. If the calculator should be able to han-840

dle longer numbers that do not fit into a torch.int64841

datatype, the calculation must be broken down into842

several smaller steps. This leads to code that is843

longer and harder to understand, although the oper-844

ations are still fairly simple.845

(We will provide code upon acceptance of the 846

paper. The code in its current stage still needs to be 847

optimized and documented for other researchers.) 848

B.3 Code of the Output Mapping 849

(We will provide code upon acceptance of the pa- 850

per. The code in its current stage still needs to be 851

optimized and documented for other researchers.) 852
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Number Tokenization Right-aligned Left-aligned
1234567890 "123"456"789"0" 1234567890 1234567890
123456789 "123"456"789" 0123456789 123456789*
12345678 "123"456"78" 0012345678 12345678**
234567890 "234"567"890" 0234567890 234567890*
34567890 "345"678"90" 0034567890 34567890**

Table 3: Examples of numbers, how they get tokenized, and two different variants for representing them internally.
Both variants use a fixed size of 10 digits for illustration. The right-aligned variant is the intuitive, default format,
and puts the least significant digit at a fixed index. In contrast, the left-aligned format puts the most significant digit
at a fixed index. The right-aligned format can be padded with zeros, but the left-aligned format requires a special
symbol to mark where the number ends. The underlining in the two formatted numbers indicates which digits get
grouped together into the same token. Note that the underlining is the same for all examples in the left-aligned
format, but is inconsistent in the default format. This makes the mapping between the tokens and the format much
easier to learn for the left-aligned format. The last two lines illustrates that removing digits from the left instead of
the right as in the examples above does not lead to the reverse phenomenon: The tokenization is now different, so it
doesn’t help that the right-aligned representation is similar.
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