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Abstract

Double-descent refers to the unexpected drop in test loss of a learning algorithm
beyond an interpolating threshold with over-parameterization, which is not pre-
dicted by information criteria in their classical forms due to the limitations in the
standard asymptotic approach. We update these analyses using the information
risk minimization framework and provide Bayesian Information Criterion (BIC)
for models trained by the Gibbs algorithm. Notably, the BIC penalty term for the
Gibbs algorithm corresponds to a specific information measure, i.e., KL divergence.
We extend this information-theoretic analysis to over-parameterized models by
characterizing the Gibbs-based BIC for the random feature model in the regime
where the number of parameters p and the number of samples n tend to infinity,
with p/n fixed. Our experiments demonstrate that the Gibbs-based BIC can select
the high-dimensional model and reveal the mismatch between marginal likelihood
and population risk in the over-parameterized regime, providing new insights for
understanding the double-descent phenomenon.

1 Introduction

The classical understanding of model selection is that more complex models can capture more
complex patterns but tend to overfit and have large generalization error [1]. This tradeoff results in
a ∪-shaped curve characterized by the classical model selection criterion when test loss is plotted
against model complexity. As a result, the models that minimize test loss tend to have moderate
complexity. Recently, the success of deep learning challenges this classical picture since neural
networks are often extremely complex (e.g., able to fit random labels [2]) while also generalizing
well to yield low test error on unseen samples.

An emerging explanation of this behavior is double-descent [3], which posits that: 1) The classical
∪-shaped curve is only valid when the number of model parameters p is smaller than the number of
samples n. 2) In the over-parameterized regime where p is significantly larger than n, and models are
complex enough to fit training data perfectly, test loss can decrease with increased model complexity.

To better understand the double-descent phenomenon, we revisit the classical information criteria
and discern that the penalty term in Akaike Information Criterion (AIC) can be interpreted as
the generalization error, while Bayesian Information Criterion (BIC) approximates the marginal
likelihood using the empirical risk minimization solution. We update the classical analyses of BIC
using the information risk minimization framework proposed in [4] with the Gibbs algorithm. We
make the following contributions in this paper:
1. We provide an information-theoretic analysis for the marginal likelihood of the model learned

by the Gibbs algorithm, resulting in Gibbs-based BIC (equation (5)) with KL divergence as the
penalty term.
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2. We generalize our information-theoretic analysis to over-parameterized random feature (RF)
models, which results in an over-parameterized Gibbs-based BIC (equation (9)) that favors over-
parameterized RF model, while classical information criteria cannot.

3. We empirically demonstrate the mismatch between marginal likelihood (BIC) and generalization
error (AIC) in the over-parameterized setting, where AIC exhibits double-descent but BIC does
not. Such a phenomenon is highly affected by the choice of prior distributions.

2 Preliminaries
Let S = {Zi}ni=1 be the training set, where each random sample Zi = {(Xi, Yi)} ∈ Z are
independent and identically distributed (i.i.d.) from the same data-generating distribution PZ . We
denote the parameter of a machine learning model by w ∈ W , where W is the parameter space. The
performance of the model is measured by a loss function ℓ : W×Z → R, and the log loss ℓlog(w, z) ≜
− logP (y|x;w) associated with a parametric probabilistic model P (y|x;w) is of particular interest
to us. We can define the empirical risk and the population risk for a given w as LE(w, zn) ≜
1
n

∑n
i=1 ℓ(w, zi), and LP (w,PZ) ≜ EPZ

[
ℓ(w,Z)

]
, respectively. A learning algorithm can be

modeled as a randomized mapping from the training set S onto a model parameter Ŵ ∈ W according
to the conditional distribution PŴ |S . The expected generalization error quantifying the degree of
over-fitting can be expressed in the form

gen(PŴ |S , PS) ≜ EPŴ ,S

[
LP (Ŵ , PZ)− LE(Ŵ , S)

]
, (1)

where the expectation is taken over the joint distribution PŴ ,S = PŴ |S ⊗ PS .

3 Gibbs-based Information Criteria

3.1 Information Risk Minimization and Gibbs Algorithm

As detailed in Appendix B, classical AIC and BIC depend on maximum likelihood estimate (MLE),
which can be viewed as empirical risk minimization. Instead, we consider the Gibbs algorithm, which
minimizes both empirical risk and an information-theoretic generalization error bound.
Lemma 1 ([5]). Suppose the loss function ℓ(w, z) ∈ [0, 1] is bounded, and S = {Zi}ni=1 contains n

i.i.d. training samples, then |gen(PŴ |S , PS)| ≤
√
I(Ŵ ;S)/(2n).

This upper bound motivates the following information risk minimization (IRM) problem [4, 5, 6]

P ∗
Ŵ |S = argmin

PŴ |S

EPŴ ,S

[
LE(Ŵ , S)

]
+

1

β
D(PŴ |S∥π|PS), (2)

where β > 0 controls the regularization term and balances empirical risk and generalization error.
Note that instead of regularizing I(Ŵ ;S) which requires the knowledge of PŴ , IRM replaces it with
an upper bound D(PŴ |S∥π|PS) ≥ I(Ŵ ;S), where π is an arbitrary prior distribution over W . The
following lemma characterizes the solution to the IRM problem.
Lemma 2 ([4, 6]). The minimum value of the following information risk minimization problem is

min
PŴ |S

EPŴ ,S

[
LE(Ŵ , S)

]
+

1

β
D(PŴ |S∥π|PS) = − 1

β
EPS

[
logEπ[e−βLE(W,S)]

]
, (3)

which is achieved by the Gibbs algorithm (distribution) P ∗
Ŵ |S(w|s) =

π(w)e−βLE(w,s)

Eπ

[
e−βLE(W,s)

] , for β > 0.

3.2 Gibbs-based BIC

The Gibbs-based BIC is constructed by computing the marginal likelihood m(zn) using the IRM
framework. As such, it differs from the standard approach in classical (MLE-based) BIC, as no
Laplace approximation is needed.
Proposition 1. (proved in Appendix C) For the Gibbs algorithm P ∗

Ŵ |S , if we adopt the log-loss
function ℓ(w, z) = − logP (y|x;w), and set β = n, the marginal likelihood is

− 1

n
logm(zn) = EP∗

Ŵ |S=zn

[
LE(Ŵ , zn)

]
+

1

n
D(P ∗

Ŵ |S=zn∥π). (4)
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Motivated by Proposition 1, we propose the Gibbs-based BIC to approximate the marginal likelihood:

BIC+ ≜ LE(Ŵ
∗, zn) +

1

n
D(P ∗

Ŵ |S=zn∥π). (5)

It can be verified that the Gibbs-based BIC has the same BIC penalty term as the classical regime.
Due to space limitations, the discussion of Gibbs-based AIC is provided in Appendix D.

4 BIC for Over-Parameterized RF Model

The classical AIC and BIC fail to capture double-descent behavior. This is because the generalization
error and marginal likelihood have different asymptotic behaviors in the over-parameterized regime.
The classical analyses heavily rely on the asymptotic normality of MLE and Laplace approximation
under certain regularization assumptions, which ignores the prior distribution as n→ ∞. Unfortu-
nately, none of these properties hold in the over-parameterized regime. However, the Gibbs-based
BIC+ in (5) defined using KL divergence can be generalized to over-parameterized models, as
Proposition 1 holds regardless of the values of p and n. So, we can provide analysis of BIC+ to ap-
proximate the marginal likelihood in the over-parameterized regime. Here, we refine the Gibbs-based
BIC+ analysis to this regime for the random feature (RF) model.

4.1 Random Feature Model

The RF model [7] takes the form of a two-layer neural network with fixed random weights in the first
layer. Specifically, the output of RF model with input data x ∈ Rd is

g(x) ≜
p∑
j=1

f
( ⟨x,Fj⟩√

d

)
wj = f

(x⊤F√
d

)
w, (6)

where w ∈ Rp denotes the weights of the model. Moreover, Fj ∈ Rd denotes the jth random feature
vector, which is the jth column of the random feature matrix F ∈ Rd×p whose entries are drawn i.i.d.
from N (0, 1). Finally, f(·) is a point-wise activation function. In our setting, there are n training
samples zn = {(xi, yi)}ni=1, and the xi are drawn i.i.d. from N (0, Id).

We adopt a Gaussian prior distribution w ∼ N (0, σ
2

λnIp), and the weights of the RF model w can be
obtained by the Gibbs algorithm using the regularized log-loss

L(w) =
1

2σ2
∥Y −Bw∥22 +

n

2
log(2πσ2) +

λn∥w∥22
2σ2

, where B ≜ f(XF /
√
d) ∈ Rn×p, (7)

and we collect the training data in a matrix X ∈ Rn×d and a vector Y ∈ Rn to simplify the
notation. As discussed in [8, 9], a significant benefit of using the random feature model is that the
dimensionality of the input data d is not entangled with the number of parameters p.

4.2 Gibbs-based BIC for Over-Parameterized RF Model

To generalize BIC+ to the over-parameterized RF model, it suffices to focus on the second KL-
divergence term in 5. In the random feature model, it can be shown (see Appendix E for details)
that the Gibbs algorithm reduces to the Gaussian posterior distribution P ∗

Ŵ |S ∼ N (Ŵλ,Σw), with
Ŵλ = (λnIp +B⊤B)−1B⊤Y , and Σw = σ2(λnIp +B⊤B)−1.

Thus, the KL-divergence between the Gibbs posterior distribution and prior N (0, σ
2

λnIp) is given by

D(P ∗
Ŵ |S=zn∥π) =

1

2

[λn
σ2

∥Ŵλ∥22 + log
det( σ

2

λnIp)

det(Σw)
+ tr(

λn

σ2
Σw)− p

]
. (8)

To obtain a convenient expression for the determinant and trace terms, we first impose restrictions on
the activation function f(·). Therefore, these two terms can be characterized using random matrix
theory by studying the eigenvalues of Σ ≜ B⊤B/(λn) + Ip in the over-parameterized regime.

Theorem 1 (full statement and proofs can be found Appendix F) motivates us to define the following
Gibbs-based BIC for the over-parameterized RF model to approximate the marginal likelihood,

BIC+ ≜ LE(Ŵ
∗, zn) +

λ

2σ2
∥Ŵλ∥22 −

λ

8
F(

1

λ
, r) +

1

2
V (1/λ, r). (9)
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Figure 1: A comparison of the test and training log loss achieved by Gibbs with varying p when
λ = 0.005 (left). A comparison of over-parameterized BIC+ and classical BIC with varying p
(right). The preferred models selected by different information criteria are marked using stars.

Figure 2: A comparison between the KL-divergence term in BIC+ and the generalization error term
(left). A decomposition of the terms in over-parameterized BIC+ in (9) with λ = 0.005 (right).

The penalty term consists of the ℓ2 norm of the learned weights, and two other terms, F and V (see
Appendix F for detailed definition), capture the log determinant and trace in the over-parameterized
regime, which will be referred to as the covariance term altogether in the next section.

5 Experiments
In the over-parameterized regime, we evaluate the Gibbs-based BIC+ using n = 200 samples
generated by the linear model

yi = x⊤
i w

∗ + ϵi, w∗ ∈ Rp, ∥w∗∥22 = 1, ϵi ∼ N (0, σ2), (10)

with true model p = 400 and noise σ2 = 0.1.

As depicted in Figure 1 (left), the peak of test Log-Loss is located at the interpolation threshold, i.e.,
when p = n = 200, resulting in the highest generalization error. As p continues to increase, the
test error begins to decline again, even falling below the levels observed in the under-parameterized
regime p < n. In the right panel of Figure 1, it is evident that the classic BIC fails to select the
true model, whereas our over-parameterized BIC+ in (9) succeeds. Note that marginal likelihood
does not exhibit double-descent behavior, and a similar mismatch between marginal likelihood and
generalization for ERM has been observed in [10].

We further investigate the inconsistency between the marginal likelihood and population risk for
the Gibbs algorithm by plotting the KL divergence and the generalization error in Figure 2 (left).
Unlike the classical BIC, where the penalty term (p/(2n)) log n is order-wise larger than the p/n
term in classical AIC, it can be seen that the KL divergence term in the over-parameterized BIC+

can be smaller than the generalization error, depending on the value of λ and p. Thus, the mismatch
between marginal likelihood (BIC) and population risk (AIC) is even more complicated in the
over-parameterized setting due to the influence of prior distribution.

In Figure 2 (right), we decompose the penalty term of the over-parameterized BIC+ in (9) into ℓ2
term, covariance term. When p ≤ n, the model prior can be ignored, and the training loss becomes
the dominant factor of BIC+. In this case, the KL divergence and the covariance term increase with
p, corresponding to the classical BIC. When p ≥ n, the double descent behavior of the ℓ2 norm term
dominates the over-parameterized BIC+. In this regime, multiple weights exist that can fit the training
data perfectly. We observe that the ℓ2 norm of the Gibbs solution decreases as p increases. Note that
similar phenomena are observed for the model learned by SGD, and generalization error bounds
using different weights norms are established in [11, 12], which shows the profound connection of
the double descent between generalization error (AIC) and the marginal likelihood (BIC).
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A Related Works

Previous work has extended the classical BIC to high dimensions, e.g.,[13, 14]. However, these works
seek to replace maximizing marginal likelihood with a different criterion, substituting a penalty term
pf(n) in place of the p log n in BIC. By contrast, we retain the BIC criterion but analyze it beyond
the classical regime for Gibbs with an information-theoretic analysis.

Double-descent of the population risk with increasing model size was introduced in [3]; see also
[15, 16]. An empirical demonstration of double-descent in modern deep networks is provided in
[17]. A variety of work develops simplified models where the characterization of the double-descent
curve can be obtained. For example, double-descent in linear regression models is investigated in
[18, 19, 20, 21], and in linear classification models in [22, 23, 24]. The RF model has been adopted
to understand double-descent in [8], which provides a generalization analysis of the performance
achieved with ridge regression in the over-parameterized regime. In some of our analysis we likewise
adopt this RF model [8, 25, 24, 26, 27], but with a different objective and analysis tools.

Double-descent phenomena have been explained from different perspectives. In [25, 28, 29], double-
descent curves are explained via a refined version of bias-variance tradeoff, where the bias of the
model decreases monotonically with the increase of p, but the variance increases and then decreases
with p. In addition, [30] and [31] employ the analysis of variance (ANOVA) to decompose the
variance of the test error to identify contributing factors to the double descent phenomenon observed
in linear problems with two-layer neural networks. In particular, [31] calculates the limits of the
variance components of the Marchenko-Pastur distribution, a powerful analytical tool that we have
adopted and further expanded upon in our paper. The connection of gradient descent dynamics and
double-descent is discussed in [26, 15]. In [32, 9], sample-wise double-descent is studied under
linear regression, and [33] shows that by adjusting the step sizes, sample-wise double-descent can be
eliminated by early stopping.

Among recent work, our paper is most related to [34, 10], which also examines the difference between
marginal likelihood and generalization error in model selection. However, by focusing on the Gibbs,
we are able to interpret the mismatch between AIC and BIC via information measures, which is more
insightful in understanding double descent and other complex behaviors.

B The Classical Forms of AIC and BIC

The standard derivation of the AIC and the BIC arises from the classical asymptotic analysis of MLE.
Assume we have K candidate models M1,M2, . . . ,MK , and each model Mk is characterized by a
parametric probabilistic model Pk(y|x;θk), a prior distribution πk(θk), where θk ∈ Wk ⊂ Rpk is
the parameter vector. We demonstrate that AIC selects the model with the smallest population risk,
and BIC identifies the true data-generating model by maximizing the marginal likelihood.

AIC This criterion [35] ranks statistical models based on the Kullback-Leibler (KL) divergence
between the true data distribution PZ and the learned parametric model. With θ̂

(k)
ML denoting the

MLE of the kth model, AIC selects the model as the solution to

argmin
k

D(PZ∥Pk(y|x; θ̂(k)
ML)) = argmin

k
EPZ

[
− logPk(y|x; θ̂(k)

ML)
]
. (11)

The term EPZ
[− logPk(y|x; θ̂(k)

ML)] can be interpreted as the population risk LP (θ̂
(k)
ML, PZ) of the

MLE under log-loss. From this perspective, AIC measures how well the model fits the unknown data
distribution PZ , with smaller AIC values suggesting a lower population risk.

As the true distribution PZ is unknown, the AIC is obtained by approximating the population risk as
the sum of empirical risk, i.e., the negative log-likelihood of θ̂(k)

ML on training samples and a penalty
term corresponding to the generalization error. In the classic regime where pk is fixed and n→ ∞,
the asymptotic normality of MLE yields

AIC(Mk) ≜ −
L̂k(θ̂

(k)
ML)

n
+
pk
n
, whence AIC = − L̂(θ̂ML)

n
+
p

n
. (12)

Note that our form of AIC differs by a factor of 2 from its classical form to facilitate a direct
comparison to population risk and generalization error.
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BIC This criterion [36] ranks statistical models by their marginal likelihoods of generating the
data, with smaller values of the BIC correspond to larger marginal likelihoods. Approximating the
marginal likelihood of observing zn for Mk, i.e., mk(z

n) ≜
∫
Pk(y

n|xn;θk)πk(θk) dθk, using
Laplace’s method yields

logmk(z
n) = L̂k(θ̂

(k)
ML)−

pk
2

log n+O(1), n→ ∞. (13)

In turn, BIC is obtained from (13) by dropping terms that don’t scale with n and scaling by −1/n:

BIC(Mk) ≜ −
L̂k(θ̂

(k)
ML)

n
+
pk log n

2n
, whence BIC = − L̂(θ̂ML)

n
+
p log n

2n
. (14)

When, further, P (Mk) = 1/K, we obtain

P (Mk|zn) =
mk(z

n)P (Mk)∑K
k=1mk(zn)P (Mk)

∝ mk(z
n). (15)

Thus, when we assume a uniform prior over different models, the BIC ranks models by their
posterior probability of generating the training data, and choosing the smallest BIC corresponds to
the maximum a posteriori rule for model selection.

Both (12) and (14) share a common first term, representing the average negative log-likelihood of
the training data for MLE, which can be interpreted as the empirical risk with log-loss, decreasing
as we adopt more complex models. We note that AIC and BIC in the classical n→ ∞ regime are
independent of the form of the model family P (y|x;θ) and the prior distribution π(θ), which makes
it compatible with general distribution families subject to mild smoothness constraints. But because
AIC and BIC differ in the second penalty term, they select different models.

C Proof of Proposition 1

If we adopt the log-loss function ℓ(w, z) = − logP (y|x;w), and set β = n, the Gibbs distribution
can be viewed as the Bayesian posterior distribution, i.e.,

P ∗
Ŵ |S(w|zn) =

π(w)
n∏
i=1

P (yi|xi;w)

V (zn)
, with V (zn) =

∫
π(w)

n∏
i=1

P (yi|xi;w)dw. (16)

Therefore,

EP∗
Ŵ |S=zn

[
LE(Ŵ , zn)

]
+

1

n
D(P ∗

Ŵ |S=zn∥π)

= EP∗
Ŵ |S=zn

[
LE(Ŵ ,zn)

]
+

1

n
EP∗

Ŵ |S=zn

[
log

exp
(
− nLE(Ŵ , zn)

)
V (zn)

]
= − 1

n
log V (zn)

= − 1

n
logm(zn),

(17)

which completes the proof.

D Gibbs-based AIC

As we discussed in Section B, the penalty term in AIC can be viewed as the generalization error
of MLE with log-loss. Thus, we start with the following result from [37], which provides an exact
characterization for the generalization error of the Gibbs algorithm using information measure.
Proposition 2 ([37]). For the Gibbs algorithm P ∗

Ŵ |S , the expected generalization error is

gen(P ∗
Ŵ |S , PS) = ISKL(P

∗
Ŵ |S , PS)/β, (18)

where ISKL(P
∗
Ŵ |S , PS) is the symmetrized KL information between Ŵ and S, defined as follows

ISKL(PY |X , PX) ≜ D(PX,Y ∥PX ⊗ PY ) +D(PX ⊗ PY ∥PX,Y ). (19)
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Notably, information risk minimization in (2) regularizes the mutual information I(Ŵ ;S) as a
proxy of the generalization error, but the exact generalization error of the Gibbs algorithm is the
symmetrized KL information, which is always larger than the mutual information.

Thus, Proposition 2 motivates the following Gibbs-based AIC:

AIC+ ≜ LE(ŴGibbs, z
n) +

1

β
ISKL(P

∗
Ŵ |S , PS). (20)

Observe that the penalty term in Gibbs-based AIC is an information measure that characterizes the gen-
eralization error of the Gibbs algorithm. By investigating the asymptotic behavior of ISKL(P

∗
Ŵ |S , PS),

we have the following theorem characterizes the Gibbs-based AIC in the classical asymptotic regime.

Evidently, our information-theoretic analysis has the same AIC penalty term for the AIC+ in the
classical regime, which suggests that the generalization error of the Gibbs algorithm (Gibbs) has the
same order of p/n as that of the MLE (SGD) in this regime.

E Gibbs Distribution of Random Feature Model

For random feature model with the prior distribution π(w) ∼ N (0, σ
2

λnIp) and LE(w, s) =
1
n

∑n
i=1 log(yi|xi, w), the log-posterior log(P ∗

Ŵ |S) ∝ log π(w) + log(e−nLE(S)) , where

LE(S) =
1

2nσ2
∥Y −Bw∥22 +

1

2
log(2πσ2).

Thus, the Gibbs algorithm, in this case, is given by the following Gaussian posterior distribution, as
shown in [38],

P ∗
Ŵ |S ∼ N (Ŵλ,Σw), (21)

where Ŵλ = (λnIp +B⊤B)−1B⊤Y , and Σw = σ2(λnIp +B⊤B)−1.

F Gibbs-based BIC for Over-Parameterized RF Model

In particular, for activation functions f(·) that satisfy conditions

E[f(ε)] = 0, E[f(ε)2] = 1, E[f ′(ε)] = 0,
∣∣E[f(ε)k]∣∣ <∞, for k > 1, (22)

where ε ∼ N (0, 1), the following theorem characterizes the KL divergence term in the over-
parameterized RF model.

Theorem 1. For activation functions f(·) satisfying the conditions in (22), as n, d, p → ∞ with
p/d→ r1, n/d→ r2, and r1/r2 = r, where r1, r2 ∈ (0,∞), we have

1

n
D(P ∗

Ŵ |S=zn∥π) →
λ

2σ2
∥Ŵλ∥22 −

λ

8
F(

1

λ
, r) +

1

2
V (1/λ, r) (23)

almost surely, where

V (γ, r) ≜ r log
(
1 + γ − 1

4
F(γ, r)

)
− 1

4γ
F(γ, r) + log

(
1 + γr − 1

4
F(γ, r)

)
, (24)

with

F(γ, r) ≜
(√

γ(1 +
√
r)2 + 1−

√
γ(1−

√
r)2 + 1

)2

. (25)

F.1 Proof of Theorem 1

We note that the KL divergence between two Gaussian distributions can be written as

D(N (µ1,Σ1)∥N (µ2,Σ2)) =
1

2

[
(µ2 − µ1)

⊤Σ−1
2 (µ2 − µ1) + tr(Σ−1

2 Σ1)− p+ log
detΣ2

detΣ1

]
.
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The KL divergence between the Gibbs posterior of the RF model and the prior can be computed by,

1

n
D(P ∗

Ŵ |S=zn∥π) =
1

2n

[
Ŵ⊤
λ (

σ2

λn
Ip)

−1Ŵλ + tr(
λn

σ2
Σw) + log

det( σ
2

λnIp)

det(Σw)
− p

]
(26)

=
1

2n

[
λn

σ2
∥Ŵλ∥22 + tr

(
(Ip +

B⊤B

λn
)−1

)
+ log det(Ip +

B⊤B

λn
)− p

]
.

The trace and the log determinant of the random matrix Σ = B⊤B
λn + Ip can be computed using the

following results from [39], which characterizes the probability density function of the eigenvalues
of the random matrix B⊤B/n in the over-parameterized regime.

Lemma 3. [39] Let the matrix M = 1
nB

⊤B ∈ Rp×p, where B = f
(

XF√
d

)
∈ Rn×p, all the

elements in F ∈ Rd×p and X ∈ Rn×d are generated i.i.d from N (0, 1). Suppose that the activation
function has zero mean and finite moments, i.e.,

E[f(ε)] = 0, E[f(ε)k] <∞, for k > 1, ε ∼ N (0, 1). (27)

and define constants η and ξ as

η ≜ E[f(ε)2], ξ ≜ E[f ′(ε)]2, ε ∼ N (0, 1), (28)

as n, d, p→ ∞ with d/p→ ψ, d/n→ ϕ, where ψ, ϕ ∈ (0,∞), then the Stieltjes transform G(z) of
the spectral density of random matrix M satisfies

dFM (x) =
1

π
lim
ϵ→0+

ImG(x− iϵ), G(z) =
ψ

z
A
( 1

zψ

)
+

1− ψ

z
, (29)

A(t) = 1 + (η − ξ)tAϕ(t)Aψ(t) +
Aϕ(t)Aψ(t)tξ

1−Aϕ(t)Aψ(t)tξ
, (30)

where Aϕ(t) = 1 + (A(t)− 1)ϕ and Aψ(t) = 1 + (A(t)− 1)ψ.

This lemma characterizes the spectral density of random matrix M for any zero-mean activation
functions. However, these implicit equations need to be evaluated numerically, and it is hard to obtain
a closed-form expression or provide more insights.

If we further assume that the assumptions in (22) are satisfied, i.e., E[f(ε)2] = 1, and E[f ′(ε)]2 = 0,
then the result in Lemma 3 can be simplified significantly, as the probability density of the eigenvalues
for random matrix M will converge to the well-known Marchenko-Pastur distribution with shape
parameter r = p/n, i.e.,

dFM (x)→ (1− 1

r
)+δ(x) +

√
(x− a)+(b− x)+

2πrx
, (31)

as n, d, p all go to infinity, where (z)+ ≜ max{0, z}, and a ≜ (1−
√
r)2, and b ≜ (1 +

√
r)2. Thus,

we focus on this case to obtain a convenient, closed-form expression for mutual information.

The following lemma from Sections 2.2.2 and 2.2.3 in [40] characterizes the η-transform and Shannon
transform of the Marchenko-Pastur distribution.
Lemma 4. The η and Shannon transform of a nonnegative random variable X are defined as

ηX(γ) ≜ E[
1

1 + γX
], VX(γ) ≜ E[log(1 + γX)], (32)

respectively. If X is distributed according to Marchenko-Pastur distribution with shape parameter
r = p/n, then

ηX(γ) = 1− F(γ, r)

4rγ
, (33)

VX(γ) = log

(
1 + γ − 1

4
F(γ, r)

)
+

1

r
log

(
1 + γr − 1

4
F(γ, r)

)
− 1

4rγ
F(γ, r), (34)

where

F(γ, r) ≜

(√
γ(1 +

√
r)2 + 1−

√
γ(1−

√
r)2 + 1

)2

. (35)
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Figure 3: A comparison between 1/n(log |Σ| + tr(Σ)−1 − p) and the asymptotic approximation
of the covariance term in Theorem 1 for different value of λ and for different activation functions:
f(x) = (x2 − 1)/

√
2 (left), ReLU (middle) and Sigmoid (right). We adopt the same experiment

settings as in Section 5, and we change r = p/n by fixing n = 200 and varying p.

Equipped with the aforementioned tools from random matrix theory, we could proceed our analysis,

1

n
log det

(
Ip +

1

λn
B⊤B

)
=
r

p

p∑
i=1

log
(
1 +

1

λ
λi(

1

n
B⊤B)

)
, (36)

where the notation λi(·) denote the eigenvalues of the matrix for i = 1, · · · , p. As shown in Lemma 4,
we have

1

p

p∑
i=1

log
(
1 +

1

λ
λi(

1

n
B⊤B)

)
→

∫ ∞

0

log
(
1 +

x

λ
)dFnM (x) = VX(1/λ) (37)

almost surely, when n, d, p→ ∞, p/n = r. Thus, in the over-parameterized regime, we have
1

n
log det

(
Ip +

1

λn
B⊤B

)
→ r · VX(1/λ) = V (1/λ, r). (38)

And the trace term can be simplified as,

1

n
tr(Ip +

1

λn
B⊤B

)−1
= r

1

p

p∑
i=1

1(
1 + 1

λλi(
1
nB

⊤B)
) , (39)

which will converge to the following expression by Lemma 4, when n, d, p→ ∞, p/n = r,

r
1

p

p∑
i=1

1(
1 + 1

λλi(
1
nB

⊤B)
) → r

∫ ∞

0

1

1 + x
λ

dFnM (x) = r(1−
F( 1λ , r)

4r 1
λ

). (40)

Combine (38) and (40) with (26), we obtain the following result
1

n
D(P ∗

Ŵ |S=zn∥π) →
λ

2σ2
∥Ŵλ∥22 −

λ

8
F(

1

λ
, r) +

1

2
V (1/λ, r). (41)

F.2 Empirical Behavior of Covariance Term

To show that Theorem 1 can provide a good approximation for the asymptotic behavior of the log
determinant and trace term in (8), we plot in Figure 3 both the term 1/n(log |Σ| + tr(Σ)−1 − p)
with finite data and 1

2V (1/λ, r)− λ
8F( 1λ , r) in the over-parameterized Gibbs-based BIC for different

activation functions with varying regularizer parameters λ. As shown from Figure 3 (left), our
theoretical results provide a good proxy for the asymptotic behavior of the covariance term, even for
activation functions (e.g., ReLU and Sigmoid in Figure 3 (middle and right)) that do not satisfy the
assumptions in Theorem 1. This is evidence that the particular choice of activation function does not
significantly influence the asymptotic behavior of the covariance term in Gibbs-based BIC.

F.3 Additional Experiments with anisotropic data distribution

The experimental setup remains consistent with the setting in Section 5, except for the data generating
distribution of the training samples zn = (xi, yi)

n
i=1. Here, xi values are drawn i.i.d. from anistropic

distribution N (0,V ). The variance in this distribution, denoted by V , varies within a range of 0 to 2.
As Figure 4 and 5 show, there is no significant difference from the figures we contained in Section 5,
and the proposed Gibbs-based BIC works for general covariance matrices.
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Figure 4: A comparison of the test and training log loss achieved by Gibbs with varying p when
λ = 0.005 (left). A comparison of over-parameterized BIC+ and classical BIC with varying p
(right). The preferred models selected by different information criteria are marked using stars.

Figure 5: A comparison between the KL-divergence term in BIC+ and the generalization error term
(left). A decomposition of the terms in over-parameterized BIC+ in (9) with λ = 0.005 (right).
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