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Abstract

While Outlier Exposure reliably increases the performance of Out-of-Distribution
detectors, it requires a set of available outliers. In this paper, we propose Generative
Outlier Exposure (GOE), which alleviates the need for available outliers by using
generative models to sample synthetic outliers from low-density regions of the data
distribution. The approach requires no modification of the generator, works on
image and text data, and can be used with pre-trained models. We demonstrate the
effectiveness of generated outliers on several image and text datasets, including
ImageNet.

1 Introduction

Out-of-Distribution (OOD) detection refers to the identification of data points with a low probability
under the data generating distribution. Outlier Exposure (OE) [12], which involves training on a set
of available example outliers, effectively increases the performance of OOD detectors. The general
formulation of the optimization objective of OE is

min
θ

E(x,y)∼pin
[L(x, y) + λEx′∼ptrain

out
[L′(x, y, x′)]] (1)

where pin is the training data distribution, ptrainout is some OOD data distribution, and the L are
some loss functions. In the typical setting, a dataset unrelated to the original task is used as ptrainout .
However, the availability of a sufficiently large dataset of representative outliers can be considered a
strong assumption that might not hold in some settings.

In this work, we explore the use of (possibly pre-trained) generative models to synthesize outliers.
The proposed approach alleviates the need for available outliers by parameterizing ptrainout with a
generative model from which points in low-density regions of the data distribution are drawn. We
empirically demonstrate that such points can be used as representative example outliers such that
models exposed to them generalize to OOD data from different distributions.

2 Synthesizing Outliers

Instead of replacing ptrainout by an existing dataset, we could learn a generative model pG that samples
from the low-density regions of pin. Intuitively, such samples are closer to the decision boundary than
outliers drawn from, say, a uniform distribution, and would therefore have a stronger regularizing
effect on the OOD detector exposed to such outliers. There are at least two strategies to sample such
points from generative models:

1. Biased generator: assuming a sufficient divergence between pG and pin, we can directly use
the samples from the generator as outliers.

2. Sampling-parameters: some generators allow to control the variety of their output by
adjusting sampling-parameters, such as temperature or variance. These parameters can be
modified to sample low probability data points from unbiased generators.
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(a) CIFAR 10 σ2 = 50 (b) CIFAR 100 σ2 = 50 (c) ImageNet σ2 = 2

Figure 1: Outliers generated by a BigGAN [2] at high variance σ2. While the images do not depict
recognizable objects, they still exhibit patterns found in naturally occurring data. Exposing models to
these samples during training increases their OOD robustness over models exposed to uniform noise.

Using one of both approaches, we can sample outliers that still exhibit some of the patterns of natural
data, which makes them efficient for Outlier Exposure. We will refer to this approach as Generative
Outlier Exposure (GOE).

3 Experiments

We conduct experiments on common image and text classification datasets. For each task, we provide
results for Maximum Softmax Probability (MSP) [10], as well as Energy-Based Out-of-Distribution
Detection [19]. In addition to the baseline models, we compare the performance of models trained
with Outlier Exposure using (1) generated outliers, (2) outliers sampled uniformly from the input
space, and (3) natural outliers as originally proposed. Our implementation is based on PyTorch [21]
and PyTorch-OOD [15], and publicly available.1 Detailed information on the used hyper-parameters
is provided in Appendix A.

3.1 Images

For CIFAR 10 and CIFAR 100, we train a BigGAN [2] as (class conditional) generative model
pG(x

′|y), where y is some class label. To sample outliers, we increase the variance σ2 of the isotropic
Gaussian N (0, σ2I) from which the latent vectors are drawn to 50. We generate 50,000 outlier
images in total, sampling from all classes uniformly. A random selection is depicted in Fig. 1.

Following [10, 19, 17, 18], we use a WideResNet with 40 layers as our OOD detector backbone.
During the evaluation, we measure the ability of the detectors to discriminate between samples from
the corresponding test-set and several commonly used OOD datasets: Textures, LSUN Crop, LSUN
Resize, TinyImageNet Crop, TinyImageNet Resize [18]. We calculate the performance for each OOD
dataset individually and report the mean. Results can be found in Tab. 1.

For experiments on ImageNet-1K, we use a pre-trained BigGAN. Outliers are generated by sampling
uniformly from all 1000 classes with a variance σ2 = 2. As OOD detector backbone, we use a
VisionTransformer (ViT) [4] pre-trained on the ImageNet-21K and 1K and fine-tune it with Outlier
Exposure for 1000 batches of size 128. We use the ImageNet validation set as in-distribution, and
ImageNet-A [13], ImageNet-R [9], and ImageNet-O [9] as OOD data during testing. Averaged
performance measures can be found in Tab. 1.

Overall, our method achieves competitive performance improvements over the baseline models. For
the ImageNet dataset, where, to our knowledge, no commonly used Outlier Exposure data is available,
GOE increases the performance significantly over models exposed to uniformly sampled outliers.

1https://gitlab.com/kkirchheim/mlsafety-workshop-goe
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Table 1: Performance of OOD detection methods on image data averaged over different outlier
datasets. ↑ indicates that larger values are better, while ↓ indicates the opposite – all values in percent.

AUROC ↑ AUPR-IN ↑ AUPR-OUT ↑ FPR@95TPR ↓
Outlier Method

CIFAR 10

– MSP 91.74 88.42 93.47 28.94
– Energy 93.03 91.43 93.70 31.57

Noise MSP 94.49 91.75 96.11 17.83
Noise Energy 97.36 96.32 97.95 11.54

Generated MSP 95.54 94.20 96.54 18.31
Generated Energy 95.51 94.04 96.52 18.50
Tiny300k MSP 98.56 97.86 98.92 6.12
Tiny300k Energy 98.63 97.91 98.99 5.88

CIFAR 100

– MSP 78.71 73.35 82.58 58.58
– Energy 84.41 79.72 86.85 48.55

Noise MSP 80.75 76.22 84.69 53.76
Noise Energy 91.57 89.20 93.17 33.05

Generated MSP 91.61 89.05 93.33 33.43
Generated Energy 92.68 89.72 94.48 26.26
Tiny300k MSP 87.13 81.49 89.97 37.91
Tiny300k Energy 86.29 78.60 89.69 37.18

ImageNet 1K

– MSP 82.48 50.38 93.92 61.34
– Energy 88.71 61.91 95.69 47.01

Noise MSP 82.78 50.93 93.89 60.63
Noise Energy 88.87 62.66 95.58 46.05

Generated MSP 85.65 53.57 95.33 55.31
Generated Energy 90.34 62.16 96.76 39.47

GOE results at different variance levels are depicted in Fig. 2. Training with σ2 = 0 has a negligible
effect, small σ2 can have a detrimental effect, and larger σ2 tend to increase the performance, where
the improvement gradually decays with increasing variance.
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Figure 2: Performance of methods at different levels of variance σ2 and temperature T . For
NewsGroups, we calculate confidence intervals based on five experiments with different random
seeds. We observe that low variance can be detrimental to the training, while medium levels of
variance can improve the OOD robustness of models.

3



Table 2: Performance of OOD detection methods on text data averaged over three different outlier
datasets. ↑ indicates that larger values are better, while ↓ indicates the opposite – all values in percent.

AUROC ↑ AUPR-IN ↑ AUPR-OUT ↑ FPR@95TPR ↓
Outlier Method

– Energy 89.35 69.95 94.56 31.93
– MSP 82.06 62.08 88.74 52.02

Noise Energy 93.93 78.20 97.02 18.94
Noise MSP 93.22 77.65 96.42 23.11

Generated MSP 93.02 84.92 96.89 22.55
Generated Energy 95.11 87.12 98.03 17.50

Wiki2 Energy 94.41 86.23 97.87 16.85
Wiki2 MSP 93.84 86.34 97.56 19.55

3.2 Texts

We conduct experiments on text data based on the 20 NewsGroups dataset. We use a Transformer [22]
as generator, while the OOD detection backbone is based on Gated Recurrent Units (GRU), similar
to the one used by Hendrycks et al. [10].

We train the generator on the NewsGroups dataset and subsequently sample 100.000 words at
temperature T = 2, which we use as outlier data during training. For comparison, we create synthetic
texts by sampling random sequences of 20 tokens and use the Wiki2 dataset as natural outliers. We
test all models against the Reuters52, Multi30k, and WMT16 Sentences datasets.

The averaged results are listed in Tab. 2. We observe that GOE outperforms the baselines, as well as
models exposed to random token sequences (Noise). Models exposed to generated outliers perform
on par or even outperform models exposed to natural outliers.

4 Related Work

Several previous works employed generative models for OOD detection. Virtual Outlier Synthesis [5]
generates outliers in the feature space of a neural network by modeling the feature distribution with
Gaussians. GOE instead models the outliers directly in the input space. Generative OpenMax [7]
uses GANs to create outliers to improve the performance of the OpenMax Layer [1]. GOE, on
the other hand, is layer-agnostic. AnoGAN [20] identifies OOD inputs by finding a point in the
latent space of a generator that creates a point similar to the given input, which requires solving
an optimization problem by back-propagation. The likelihood of the input is then estimated by
evaluating the likelihood of the corresponding point in the latent space. GOE is computationally
lightweight and does not introduce a computational overhead during inference. [16] proposes a
training scheme that jointly trains a GAN to create outliers during training. GOE does not require
joint training and can use pre-trained generative models.

5 Conclusion & Future Work

We presented Generative Outlier Exposure, a method that uses generative models to sample from low-
density regions of the data distribution to generate synthetic Outlier Exposure data. We demonstrate
that the proposed method outperforms Outlier Exposure with uniformly sampled outliers.

While we conducted experiments on image and text data, the concept constitutes a general framework
that could be easily extended to other data modalities. Generative Outlier Exposure could also be
combined with different variants of Outlier Exposure, such as the Objectosphere Loss [3] or the
Energy-bounded Learning Loss [19]. Since the method can be used with off-the-shelf generative
models and does not require retraining the generator, it provides a computationally cheap method for
settings in which pre-trained generative models exist, but no outliers are available.

We have shown that good sampling-parameters are crucial to achieving competitive performance
improvements. While we selected variance and temperature by manually inspecting the generated
outliers, the automatic selection of adequate parameters remains an open problem.
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A Hyperparameters

Text As generative model, we use the transformer architecture from the official PyTorch examples2

without modifications, and with the default hyperparameters.

We train the GRU for 10 epochs, using the Adam optimizer [14] with a batch size of 32. For Outlier
Exposure, we use λ = 0.5.

Image To train the BigGAN, we used the training scripts provided by the authors with the default
hyperparameters.3

We trained all classification models with SGD, with a learning rate of 0.001. For the CIFAR datasets,
we used the pre-trained models provided by [12] and fine-tuned them with Outlier Exposure with a
batch size of 256, using λ = 0.5, for 25 epochs. Our ViT (base) operates on images of size 224×224,
with a patch size of 16.

B Ablation Studies

Model Architecture In addition to the results for the ViT, we conduct experiments with a ResNet-
101 [8] on the ImageNet. Quantitative performance measures are given in Tab. 3. We observe
results similar to the transformer model; however, the overall performance is slightly decreased.
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Figure 3: Influence of generator variance on a
ResNet-101 model, trained on the ImageNet. Re-
sults are similar to the transformer model.

The main contributing factor behind this differ-
ence is the increased performance of the ViT on
the ImageNet-O, which, as we hypothesize, is
due to the following:

• Pre-training on large-scale datasets
was shown to improve model uncer-
tainty [11, 6].

• Attention mechanisms were shown to
increase the performance of OOD de-
tectors, presumably due to their ability
to model global structures [13].

Results for different levels of variance of the
generator are depicted in Fig. 3. Again, the
results are similar to the ones observed for the
Transformer-based model.

Table 3: Performance of OOD detection methods based on the ResNet-101 on the ImageNet 1K,
averaged over different outlier datasets. ↑ indicates that larger values are better, while ↓ indicates the
opposite – all values in percent.

AUROC ↑ AUPR-IN ↑ AUPR-OUT ↑ FPR@95TPR ↓
Outlier Method

ImageNet 1K

Energy 76.77 43.99 94.92 65.34
MSP 70.48 39.10 93.06 69.92

Noise MSP 70.42 37.03 92.60 71.05
Noise Energy 78.24 43.85 94.90 63.43

Generated MSP 77.41 42.41 94.78 63.30
Generated Energy 82.68 43.52 96.12 55.12

Model Convergence We investigate how different types of outliers influence the performance of
models during optimization. An overview for the CIFAR 100 is given in Fig. 4. We observe that

2https://github.com/pytorch/examples/tree/main/word_language_model
3https://github.com/ajbrock/BigGAN-PyTorch
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Figure 4: Performance of models during optimization on the CIFAR 100. We observe that models
trained with generated outliers converge faster compared to models exposed to noise or natural
outliers.
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Figure 5: Performance of MSP and Energy-Based OOD for different numbers of outliers drawn
from the generative model at σ2 = 50. We observe that larger sample sizes correlate with better
performance. However, even 100 samples can increase the performance significantly.

models trained with generated outliers tend to converge faster than models exposed to noise or natural
outliers. However, the effects of outliers seem to vary between datasets. Generated outliers seem to
increase the performance on TinyImageNet Resize, and LSUN Resize the most. These results suggest
that combining different kinds of outliers could increase performance.

Number of Outliers To investigate the influence of the number of outliers drawn from the generative
model, we measured the performance of models for various outlier dataset sizes. The results are
depicted in Fig. 5. Generally, a larger number of outliers is associated with higher performance at the
end of the training. While this effect seems to saturate at ≈ 50, 000 samples, we see that even 100
outliers can significantly improve the performance.
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