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ABSTRACT

Several deep reinforcement learning algorithms use a variant of fitted Q-evaluation
for policy evaluation, alternating between estimating and regressing a target value
function. In the linear function approximator case, Fitted Q-evaluation is related
to the projected Bellman error. A known alternative to the projected Bellman error
is the Bellman residual, but the latter is known to give worse results in practice
for the linear case and was recently shown to perform equally poorly with neural
networks. While insufficient on its own, we show in this paper that the Bell-
man residual can be a useful auxiliary loss for neural fitted Q-evaluation. In fact,
we show that existing auxiliary losses based on modelling the environment’s re-
ward and transition function can be seen as a combination of the Bellman residual
and the projected Bellman error. Experimentally, we show that adding a Bellman
residual loss stabilizes policy evaluation, allowing significantly more aggressive
target network update rates. When applied to Soft-Actor Critic—a strong baseline
for continuous control tasks—we show that the target’s faster update rates yield an
improved sample efficiency on several Mujoco tasks, while without the Bellman
residual auxiliary loss, fitted Q-evaluation would diverge in several such instances.

1 INTRODUCTION

One of the challenges of sequential decision making is that of credit assignment: to improve its
policy, the learner needs to adequately determine the contribution of past actions to the overall per-
formance of its behavior. In Reinforcement Learning (RL, Sutton & Barto 2018), credit assignment
can be addressed by learning a Q function, which estimates future rewards of the agent for any
state-action pair. Endowed with such a function, the problem of finding a policy maximizing the
cumulative rewards simplifies to that of finding a policy greedily maximizing the Q function at the
agent’s state. A seminal deep RL algorithm following this general scheme is DQN (Mnih et al.,
2015), which was able to learn a neural agent performing at human level on a range of Atari games
and kickstarted a wave of impressive practical successes for deep RL.

DQN builds on the foundation of Fitted Q-Iteration (FQI) algorithms (Ernst et al., 2005; Riedmiller,
2005). FQI repeatedly i) computes a target function T Qk by applying the Bellman operator T on
the current Q function estimate Qk, ii) computes a new Q function estimate Qk+1 by minimiz-
ing the mean squared error to the target function T Qk. While other deep RL algorithms such as
PPO (Schulman et al.), TD3 (Fujimoto et al., 2018) or SAC (Haarnoja et al., 2018) are a bigger
departure from FQI than DQN, they still use a similar scheme for evaluating the Q-value of policies,
which we denote more generally as Fitted Q-Evaluation (FQE). Due to its widespread usage in deep
RL, understanding or improving FQE is thus an important research topic.

When the Q function is linear w.r.t. a fixed set of feature vectors, FQE shares similarities with
LSTD (Bradtke & Barto, 1996), in that if FQE converges to a fixed point, this solution similarly
minimizes the mean squared Projected Bellman Error (PBE). In the policy evaluation literature,
an alternative to PBE is the mean squared Bellman Error (BE), also known as the Bellman resid-
ual (Schweitzer & Seidmann, 1985; Antos et al., 2006). There has been a long standing debate on
whether one should minimize the PBE or the BE. For fixed feature sets, the PBE was generally con-
sidered better performing in practice (see e.g. discussion in Sec. 5.3. of Lagoudakis & Parr 2003),
even though minimizing the BE can be more numerically stable (Scherrer, 2010). In the context of
deep RL, Fujimoto et al. (2022) compared BE minimization to a neural FQE scheme and showed
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that while the direct minimization of BE via gradient descent is effective at driving the BE close
to zero (unlike FQE), the distance to the true value function is usually larger for BE minimization
than that of FQE. We note that in the work of Fujimoto et al. (2022), both the environment and
policy were deterministic, and thus the shortcomings of BE as a loss function were independent of
the infamous double sampling issue which otherwise poses a practical challenge for BE minimiza-
tion (Antos et al., 2006).

These negative results for BE minimization suggest that BE may not be a useful loss in deep RL. In
this paper, we arrive at a similar conclusion to Fujimoto et al. (2022), in that BE minimization on
its own does not perform as well as FQE1. The novel outcome of this work however, is that adding
a BE auxiliary loss to FQE makes the latter more robust to higher update rates of FQE’s target
network—which is the number of gradient updates of the critic before the target network is replaced
with the current network. Notably, we show that when the policy evaluation step of SAC (Haarnoja
et al., 2018) is augmented with a BE term, increasing the update rate of the target network remains
stable while improving sample efficiency. This is orthogonal to variants of SAC such as REDQ
(Chen et al., 2020b) that improve sample efficiency by increasing the update-to-sample ratio—i.e.
the number of gradient updates of the critic for every interaction with the environment. In this work
it is the faster update rate of the target network that speeds-up the learning of Q functions, at the cost
of an additional forward and backward pass on the critic incurred by the auxiliary BE term.

In an effort to explain the good performance of this new loss, we start by presenting the BE and
PBE losses in Sec. 2, before proposing a way of combining them in Sec. 3. We show that this new
loss is a lower bound to auxiliary losses previously studied in the literature based on modelling the
agent’s environment (Gelada et al., 2019; Chang et al., 2022). However, the exact loss introduced in
Sec. 3 is expensive to compute and thus we propose a more frugal instantiation thereof in Sec. 4, that
builds on FQE and simply adds a BE auxiliary term. This new policy evaluation scheme is evaluated
on a set of on-policy policy evaluation problems before its integration to an actor-critic algorithm is
assessed on several Mujoco locomotion tasks (Todorov et al., 2012) in Sec. 6.

2 PRELIMINARIES

Let a Markov Decision Process (MDP) be defined by the tuple (S,A,R, P, p0, γ), where S is a
finite state space; A a finite action space; R : S × A 7→ [0, 1] a bounded reward function; P :
S × A 7→ ∆(S) a transition function mapping a state-action pair (s, a) ∈ S × A to a distribution
over S denoted P (.|s, a); p0 an initial state distribution and finally γ, a discount factor. We formalise
our work with finite state and action spaces to streamline the exposition but the practical algorithm
in Sec. 4 supports MDPs with continuous state-action spaces as demonstrated in our experiments.
Given a stochastic policy π : S 7→ ∆(A), the Q function is defined for a pair (s, a) ∈ S × A
by Qπ(s, a) = E

[∑∞
t=0 γ

tR(st, at)
∣∣∣ s0 = s, a0 = a

]
, for random variables st and at, t > 0,

where st ∼ P (.|st−1, at−1) and at ∼ π(.|st). The V function is defined for s ∈ S as V π(s) =
Ea∼π(.|s) [Q

π(s, a)] and the goal in RL is to find a policy π∗ such that π∗ = argmax
π

Es∼p0
[V π(s)].

To do so, we focus in this paper on the class of (approximate) policy iteration algorithms (Sutton
& Barto, 2018) that, given an initial policy π0, alternate at every iteration k between i) policy eval-
uation, to estimate the Q function Qπk and ii) policy improvement, to find a new policy πk+1 that
selects actions with higher Q value than πk. In the approximate setting, the policy improvement
step can take several forms but since we will use off-the-shelves algorithms for this step we will not
detail it further. Regarding the policy evaluation step, even though S × A is finite, we will assume
that it is so large (e.g. if S is the space of all possible pixel images) that it warrants the usage of a
function approximator to represent the Q function. Since we may not be able to learn Qπ exactly, a
first question of interest is which loss to use to measure the quality of an approximate Q function.

In the remainder of the paper, we will want to learn the Q function Qπ of an arbitrary policy π.
To approximate it, we use functions of the form Q(s, a) = ϕ(s, a) · w, where ϕ : S × A 7→ RK

is a K dimensional feature function and w ∈ RK is a real-valued weight vector. Both the feature
function and the weight vectors are learned—e.g. representing the hidden and final linear layers

1Although our conclusions are more nuanced than those of Fujimoto et al. (2022) since we have found a
few datasets where BE minimization is competitive or outperforms FQE.
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Figure 1: Illustration of the Bellman and projected Bellman losses for linear-in-feature Q functions.

of a neural network. Since the state-action space is finite, we define the |S × A| × K matrix Φ
as the concatenation of feature vectors for all state-action pairs, and we assume that Φ has full
column rank (i.e. feature components are linearly independent) such that ΦTΦ is invertible. We
let Π = Φ(ΦTΦ)−1ΦT be the orthogonal projection matrix w.r.t. the L2 norm into the subspace
spanned by Φ, verifying for any vector x ∈ RK ,

Πx = argmin
y

∥x− Φy∥2 . (1)

We will overload notations of reward and Q functions to additionally designate matrices of size
|S ×A|×1, and we denote by Pπ the |S ×A|×|S×A| matrix such that entry with row index (s, a)
and column index (s′, a′) of Pπ is given by Pπ

(s,a),(s′,a′) = P (s′|s, a)π(a′|s′), i.e. the probability
of being in s′ and executing a′ after having executed a in s. Of course, Φ, R and Pπ follow the same
ordering of state-action pairs for their rows and columns. Finally, we define the Bellman operator
T π such that for any real matrix Q of shape |S × A| × 1 we have T πQ = R + γPπQ. A well
known property of T π is that it admits Qπ as its unique fixed point, such that T πQπ = Qπ .

2.1 POLICY EVALUATION LOSSES

Given an arbitrary function of the state-action space denoted by Q, we ideally want a loss function
that measures some distance ∥Q−Qπ∥ between this function and the true Q function. Qπ being
unknown, prior work in policy evaluation has resorted among other things to measuring how com-
pliant is Q w.r.t. the fixed point property of T π . Fig. 1 illustrates some of the main losses considered
in the linear case, which we refer to as the case where Φ is fixed and only w is learned. These losses
are formally defined in the following way

Bellman Error (BE). BE is measured by the L2 norm ∥Q− T πQ∥2. It is known that bounding the
BE bounds the L∞ norm between Q and Qπ (Williams & Baird, 1994)

∥Qπ −Q∥∞ ≤ 1

1− γ
∥Q− T πQ∥2 . (2)

Projected Bellman Error (PBE). PBE adds an extra step by first projecting T π into the span of
Φ, as illustrated in Fig. 1, before computing the distance with Q, giving the loss ∥Q−ΠT πQ∥2.
It is in general not possible to obtain similar guarantees on closeness to Qπ to those of BE when
minimizing the PBE (Scherrer, 2010), but it can behave in practice better than BE minimization and
has led to popular algorithms in the linear case such as LSPI (Lagoudakis & Parr, 2003).

Projection Cost (PC). The PC refers to the cost of projecting T πQ back into a linear function of
the features and is measured by ∥T πQ−ΠT πQ∥2. From the orthogonality of the projection, the
above three quantities are related by the Pythagorean equation BE2 = PBE2 + PC2. In the linear
case PC is not optimized but is related to an inherent error due to a particular choice of a feature
space (Munos, 2005). In deep RL, one can specifically optimize for feature spaces that have small
PCs (Chang et al., 2022). This will be the starting point of our algorithm.

2.2 ALGORITHMS FOR POLICY EVALUATION

In the linear case, both BE and PBE admit a closed form solution (Lagoudakis & Parr, 2003). Of
interest, the solution minimizing the PBE—as given by LSTD (Bradtke & Barto, 1996)—is

w = (ΦT (Φ− γPπΦ))−1ΦTR. (3)

Fitted Q Evaluation (FQE, Ernst et al. 2005), described in Alg 1 can be summarized in the linear
setting as iterating Qk = ΠTπQk−1. If the algorithm reaches a point such that Qk = Qk−1, then Qk
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Algorithm 1 Fitted Q Evaluation (FQE)
Input: Initial function Q0, number of iterations K
Output: QK

1: for k = 1 . . .K do
2: Compute target Q̄k = TπQk−1

3: Find Qk = argminQ
∥∥Q− Q̄k

∥∥2
2

4: end for

has the minimal PBE of zero. FQE can thus be seen as an iterative way of computing the solution of
LSTD. Because of this indirect nature, it was shown in the realizable setting—when Qπ is in the span
of Φ—that convergence of FQE is more restricted than the more direct computation of the LSTD
solution (Perdomo et al., 2022). Despite this, FQE remains widely used because unlike LSTD, it
can be straightforwardly extended to the deep RL setting, by replacing the orthogonal projection in
Line 3 of the algorithm with a few gradient steps over the loss

∥∥Q− Q̄k

∥∥2
2
, evaluated on a mini-

batch of state-action pairs. In the remainder of the paper, when we talk of update rate of the target
network, we mean the number of gradient descent steps performed on the loss

∥∥Q− Q̄k

∥∥2
2
, before

moving to iteration k + 1 and computing a new target Q̄k+1 using the current Q-network Qk.

BE minimization can also be performed by gradient descent in the deep RL case. The only added
difficulty in this case is the double sampling issue which we discuss further in Sec. 4.1. The target
computation in Line 2 is generally carried over a set of transitions (s, a, r, s′, a′) instead of using
the true Bellman operator. However, since we will follow this standard procedure when the model
of the MDP is unknown, we keep the true Bellman operator notation for simplicity.

3 A NEW LOSS FOR POLICY EVALUATION

Our policy evaluation problem is to find a Q = Φw close to Qπ . To measure closeness, PBE works
well in practice for the linear case with algorithms such as LSTD, but for any feature function, as
long as the LSTD solution exists, it will have a PBE of zero. As such, PBE on its own is not enough
to discriminate the quality of features. To address this limitation, our starting idea is to use PBE for
learning w and combine it with one of the other two losses of Sec. 2.1.

Let a feature matrix Φ such that the LSTD solution exists, let w̄ be this solution as given by Eq. 3.
To decide on which loss to use for complementing the PBE, we note that for w̄, the PBE is zero
and from the Pythagorean equation, BE and PC become equal. Hence using any of these two losses
is equivalent. Let the loss L be the Bellman error of Q̄ = Φw̄, where w̄ minimizes the PBE
L(Φ) =

∥∥Q̄− T πQ̄
∥∥
2
. L is only a function of Φ, because w̄ is implicitly defined from Φ. To

the best of our knowledge, no prior tried to minimize L explicitly. However, this loss is related to
several prior work adding auxiliary losses for modelling the MDP’s reward and transition functions
(Gelada et al., 2019; Chang et al., 2022).

3.1 RELATION TO PRIOR MDP MODELING LOSSES

To see the relation between L and MDP modeling losses, let us first write the Q function Q̄ through
simple algebraic manipulations of Eq. 3, into a form that exhibits reward and transition models

Φw̄ = (I − γΠPπΦ)−1ΠR. (4)

Eq. 4 is of course reminiscent of the expression of the true Q function Qπ = (I − γPπ)−1R.
The main difference is that we have exchanged i) the true reward function R with its projection
R̄ := ΠR into the span of Φ and ii) the true next state-action distribution Pπ with the projection
of the expected next state-action feature Φ̄′ := ΠPπΦ into the span of Φ. Despite being perfectly
model-free, the simple act of fixing a feature function Φ implicitly implies the choice of a model
of the MDP R̄ and Φ̄′, as discussed in Parr et al. (2008). Letting Φ′ := PπΦ we can then relate L
with the best linear reward model mr = argminm ∥R − Φm∥22 and best transition model MΦ =

argminM ∥Φ′ − ΦM∥2F of the MDP, where ∥A∥F =
√∑

i

∑
j a

2
i,j is the Frobenius norm.
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Algorithm 2 Neural FQE gradient (+ DouBel + Bias correction)
Input: Neural function Qθ,w = ϕθ · w, target network Qtarg, on policy transition sample
(s, a, r, s′, a′), gβ : S ×A 7→ R
Output: Gradients ∇θ, ∇w and ∇β

1: Compute target: T = r + γQtarg(s
′, a′)

2: Feature function gradient: ∇θ(Qθ,w(s, a) − T )2 + λ∇θ(r + γQθ,w(s
′, a′)−Qθ,w(s, a))

2

−λγ2∇θ(gβ(s, a)−Qθ,w(s
′, a′))2

3: Linear layer gradient: ∇w(Qθ,w(s, a)− T )2

4: Gradient for g: ∇β(gβ(s, a)−Qθ,w(s
′, a′))2

Proposition 3.1. Let Φ be a feature matrix such that the LSTD solution w̄ exists. Then

L(Φ) ≤ ∥R− Φmr∥2 + λw̄ ∥Φ′ − ΦMΦ∥F ,

with λw̄ := γ ∥w̄∥2.

Proof.

L(Φ) =
∥∥T πQ̄− Φw̄

∥∥
2
, (5)

=
∥∥R+ γΦ′w̄ − (R̄+ γΦ̄′w̄)

∥∥
2
, (6)

≤
∥∥R− R̄

∥∥
2
+

∥∥γ(Φ′ − Φ̄′)w̄
∥∥
2
, (7)

≤
∥∥R− R̄

∥∥
2
+ λw̄

∥∥Φ′ − Φ̄′∥∥
F
, (8)

= min
mr,MΦ

∥R − Φmr∥2 + λw̄ ∥Φ′ − ΦMΦ∥F . (9)

Eq. 6 uses the form of Q̄ from Eq. 4. Inq. 7 and Inq. 8 respectively use the triangle and Cauchy-
Schwarz inequalities. Finally, the last equality is due to the property of the projection given in Eq. 1,
that is R̄ and Φ̄′ are the best linear approximations of R and Φ′ in the L2 sense.

The interpretation of Eq. 9 is that the loss L(Φ) can be upper bounded by two terms, one measuring
how well can a linear model of Φ approximate the reward function, and the second term relates to
the “self-predictiveness” of Φ, i.e. how well can a linear model of Φ predict the expected next state-
action features Φ′, with λw̄ making the trade-off between these two terms, depending on the scale
of w̄. L being a Bellman error, we know from Eq. 2 that L will upper bound the distance to the true
Q function. Thus, minimizing Eq. 9 minimizes the distance to the true Q function, which justifies
deep RL algorithms that add auxiliary losses for learning accurate models of the MDP (Gelada et al.,
2019; Chang et al., 2022), even-though they are model-free and the models are not used. However,
as we are not using these models, the research question that naturally arises is can we directly use the
Bellman error L as an auxiliary loss instead of its upper bounding model learning terms in Eq. 9?

4 PRACTICAL IMPLEMENTATION

We now derive a practical algorithm for learning Q following insights of Sec. 3. Unfortunately,
optimizing L via gradient descent is challenging because w̄ needs to be recomputed after each
gradient step and LSTD itself can be numerically unstable (Scherrer, 2010). Instead, we will use L
as an auxiliary loss to a standard neural FQE procedure and use the weight w learned by FQE as
an approximation to w̄ for the current feature function. Algorithmically, this will be very close to
the deep MDP procedure (Gelada et al., 2019), with the difference that we swap the model learning
auxiliary losses—as they appear in Eq. 9—with the Bellman error in Eq. 5.

This augmented FQE procedure will involve two Bellman errors, and we will refer to it as the Double
Bellman (DouBel) loss. Alg. 2 shows the gradient computation of neural FQE, and highlights in blue
the contribution of the DouBel loss. Importantly, in Line 2, in the blue term the gradient w.r.t. the
feature function flows through both the Q function computed at (s, a) and (s′, a′). However, the
additional Bellman error has no contribution to the gradient of the linear part in Line 3. Indeed, the
additional term in the DouBel loss aims at reducing the projection cost at w but not for learning w,
which is carried out by the standard FQE procedure.
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Figure 2: Bellman error (top) and corresponding distance to the true Q function on 4 datasets,
showing the mean as well as the 25% and 75% quantiles. Results averaged over 20 runs.

4.1 DEALING WITH THE GRADIENT BIAS

In the blue error term of Line 2, Alg. 2, we have replaced the true Bellman operator T π with a sample
estimate using a single transition, i.e. we are estimating (R(s, a)+γEs′,a′Q(s′, a′)−Q(s, a))2 with
a single sample for the expectation inside the square. Unfortunately, this is a biased estimator of the
squared Bellman error with bias γ2Var[Q(s′, a′)] (Antos et al., 2006), and is wildly referred to as the
double sampling issue. To deal with the bias, a first approach is to simply ignore it. Indeed, many
environments have little to no noise, and algorithms such as SAC quickly reduce the entropy of the
policy making γ2Var[Q(s′, a′)], and hence the bias, small.

The second approach is to correct the bias by estimating and substracting the variance term, as
previously shown in Chang et al. (2022); Chen & Jiang (2019); Antos et al. (2006). Let g : S×A 7→
R be a function such that g = argminf ∥f − PπQ∥2, where the minimization is over all possible
real functions of the state-action space. In this case, we have that

g(s, a) = E[Q(s′, a′) | s′ ∼ P (.|s, a), a′ ∼ π(.|s′)], (10)

and if for a sample transition (s, a, r, s′, a′) we substract γ2(g(s, a) − Qθ,w(s
′, a′))2, we will be

substracting γ2Var[Q(s′, a′)] in expectation of s′ and a′, eliminating the bias. This can be simplified
when the environment is deterministic by using a function of s′ instead of s and a to learn the
expected next state-action Q function. Then, g becomes g(s′) = E[Q(s′, a′) | a′ ∼ π(.|s′)] which
is simply the value function. We use this latter form in our experiments.

The red highlights in Alg. 2 show the additional changes for correcting the bias of the squared
Bellman error. In practice, the assumption that g will perfectly approximate E[Q(s′, a′)] is not
realistic and instead the bias correction will introduce an error term (g(s, a) − g̃(s, a))2 of its own
due to using an approximation g̃ of g. Hence, we will consider both approaches outlined in this
section for dealing with the bias in the experiment section, in case (g(s, a)− g̃(s, a))2 is higher than
γ2Var[Q(s′, a′)].

5 RELATED WORK

In supervised learning, finding rich feature functions for large input spaces remains an active area
of research (e.g. Chen et al. 2020a; Jaiswal et al. 2020). The added challenge in RL is that finding
a good representation is a continual process as new data is collected (Dabney et al., 2021). Even
when the feature function is fixed, there has been a long debate on whether to use the Bellman or the
projected Bellman error for learning the linear part. However, in the current RL research landscape,
the Bellman error is seldom optimized and in fact several negative results have discouraged its
use (Fujimoto et al., 2022; Geist et al., 2017), especially in the off-policy setting. On the other hand,
FQE became the prominent policy evaluation scheme in deep RL and recent work has focused on
adding auxiliary losses to FQE instead of completely changing the learning procedure: algorithms
such as DeepMDP (Gelada et al., 2019) or SPR (Schwarzer et al., 2020) aim at learning features that
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Table 1: Distance to the true Q function—mean and 95% CI—on 12 datasets. Numbers next to
algorithm names indicate the number of gradient steps before the target network is updated.

DouBel (1) DouBel (20) FQE (1) FQE (20) BRM TTS BC (1) BC (20)
D

at
as

et
s

Ant 0 252.5 ± 7 229.3 ± 6 314.1 ± 30 235.4 ± 6 256.8 ± 1 263.1 ± 7 325.2 ± 26 235.4 ± 5
Ant 1 545.0 ± 22 484.8 ± 8 637.8 ± 31 494.0 ± 9 546.5 ± 1 544.2 ± 10 776.0 ± 75 503.2 ± 15
Ant 2 66.1 ± 5 55.4 ± 1 80.6 ± 4 57.4 ± 2 200.5 ± 1 174.4 ± 7 83.7 ± 3 59.6 ± 2
Hop 0 126.0 ± 71 14.3 ± 2 269.2 ± 69 19.7 ± 4 6.4 ± 1 8.8 ± 2 570.0 ± 97 22.0 ± 7
Hop 1 272.3 ± 56 95.4 ± 6 723.4 ± 158 107.9 ± 7 201.2 ± 12 126.3 ± 8 822.1 ± 204 99.0 ± 4
Hop 2 634.5 ± 166 128.1 ± 9 1658.1 ± 245 175.2 ± 18 344.3 ± 20 247.5 ± 8 1297.7 ± 241 147.2 ± 8
Walk 0 241.5 ± 8 265.2 ± 11 450.2 ± 106 298.2 ± 7 1836.2 ± 39 629.8 ± 19 478.8 ± 98 310.6 ± 14
Walk 1 339.9 ± 15 357.8 ± 12 493.3 ± 55 380.3 ± 26 1240.4 ± 37 634.0 ± 14 496.2 ± 56 398.3 ± 21
Walk 2 251.1 ± 22 220.5 ± 6 412.6 ± 47 238.2 ± 16 475.5 ± 13 280.5 ± 4 360.9 ± 39 237.3 ± 17
HalfC 0 17.6 ± 2 17.7 ± 1 29.8 ± 5 23.6 ± 2 23.0 ± 1 19.2 ± 1 51.1 ± 13 22.0 ± 1
HalfC 1 141.3 ± 45 34.9 ± 7 788.5 ± 242 189.6 ± 122 420.8 ± 32 119.1 ± 24 1122.9 ± 198 101.9 ± 9
HalfC 2 684.8 ± 15 690.5 ± 16 721.2 ± 25 724.0 ± 35 2771.6 ± 24 2089.2 ± 54 720.4 ± 14 723.3 ± 29

can be “self-predictive” in the sense that ϕ(s, a) can predict next state-action feature ϕ(s′, a′). This
is similar to the work of Chang et al. (2022) or Song et al. (2016) that aim at learning features with
low inherent Bellman error (Munos, 2005), at the exception that the ‘self-prediction’ is limited to
linear models in the latter two papers.

In contrast, in our work minimizing the Bellman error ensures that the projection cost is low for a w
of interest, but not necessarily low for all possible vectors w. This is in a sense a way of applying the
value equivalence principle (Grimm et al., 2020) from the model-based RL literature to prior work
model-free RL algorithms that model the MDP through auxiliary losses: we do not need features
that capture all of the information about future features but only information useful for predicting
future rewards.

Although derived from different principles, the work most similar to ours algorithmically is that
of Chung et al. (2018), where a slow learner minimizes the squared TD error (Sutton & Barto, 2018)
to learn the feature function while a fast learner uses linear TD algorithms such as TDC (Sutton
et al., 2009) to learn the linear layer w. The main difference with our work is that the squared TD
error in prior work is computed using another weight vector w′ which loses the insights of Sec. 3,
that we want minimal projection cost for the current w, and the relation this has with the distance to
the true Q function. Comparisons with this work is included in the next section.

6 EXPERIMENTS

To evaluate the proposed policy evaluation loss, we conduct two sets of experiments. The first
set (Sec. 6.1) is in a controlled setting where the exact Q function of the policy is known. In this
experiment the DouBel loss is compared to various policy evaluation baselines from the literature.
In the second set of experiments (Sec. 6.2), we investigate whether integrating the DouBel loss to an
existing state-of-the-art deep RL algorithm can yield any practical gains.

6.1 POLICY EVALUATION

We run PPO (Schulman et al.) for one million time-steps on 4 Mujoco (Todorov et al., 2012)
environments and every 10K steps, we collect rollouts from the deterministic counterpart of the
current policy. Each dataset contains 5000 transitions with trajectories of length at most 1000 steps.
If after 1000 steps the MDP is not at a terminal state, we roll out an additional 2000 steps that are
not stored but serve the computation of the true Q function. Because the environments and policies
are deterministic, we can compute an extremely accurate estimation of the true Q function for each
state along a trajectory using this single trajectory. For each environment, we select 3 datasets
where the undiscounted return is around 1000, around 2000 and at the highest observed return.
On each dataset we run a policy evaluation algorithm on a neural approximator with three hidden
layers, ReLU activations and 256 neurons on each layer. The considered baselines are i) Fitted-
Q Evaluation (vanilla version of Alg. 2) with label FQE ii) FQE with added DouBel loss (Alg. 2
plus the blue term, using λ = 1) without bias correction since both environment and policy are
deterministic, labeled DouBel iii) Bellman residual minimization which performs gradient descent
on ∥Qθ,w − T πQθ,w∥22, with label BRM iv) Two timescale networks (Chung et al., 2018), using
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Figure 3: Episodic return for DouBel and SAC with three hidden layers for the critic, except the
black curve that has 2 hidden layers. Results averaged over 20 runs showing mean and 95% CI.

Figure 4: Squared Bellman error of DouBel and SAC (T10) for each of the 20 runs. Both algorithms
use a two hidden layer critic in this experiment.

linear TD as a fast learner with 10 times the learning rate of the inner layers, labeled TTS and
finally v) FQE with auxiliary reward and next state feature approximation. The next state feature
prediction is that of a target network as done in Chang et al. (2022), with label BC.

We additionally experiment with two hyper-parameter values for the update rate of the target net-
work: updating it every 20 gradient steps or every gradient step—equivalent to not having a target
network. This applies to FQE, DouBel and BC, whereas BRM and TTS do not have a target network
and behave as the latter update regime. During learning (10K gradient steps), we record every 50
gradient steps the squared Bellman error and the squared distance to the true Q function on the 5000
transitions. All results are averaged over 20 independent runs, and Table 1 shows the mean distance
to the true Q function and its 95% Confidence Interval (CI) on all 12 datasets, while Fig. 2 shows
both the Bellman and true error as a function of time on a selection of 4 datasets—with the rest
deferred to the appendix.

The top row of Fig. 2 shows the BE and without surprise BRM is the best at minimizing this loss.
However, as discussed in Fujimoto et al. (2022), this does not necessarily translate in terms of true
error on the bottom row, except for a few instances. Table 1 shows that BRM performs best on
environments with lower dimensional states (Hopper and HalfCheetah) and when returns are not too
high. When the update rate of FQE is of 20, FQE(20), DouBel(20) and BC(20) follow the same
general tendency in terms of distance to the true error, but DouBel(20) consistently outperforms the
other two on all 12 datasets, whereas BC(20) and FQE(20) are closer to each other, corroborating
the results of Chang et al. (2022). The biggest difference between FQE and DouBel manifests on
the faster update rate of the target, as the additional BE term allows a more effective reduction of
the Bellman and the true errors. In contrast, BC(1) does not have the same effect on FQE. The only
other baseline that rivals DouBel(1) in learning speed is TTS, which even outperforms it on a few
datasets but completely misses the marks on others, typically when BRM similarly fails. Overall,
when the update rate of the target network is slow, we found FQE to be a competitive algorithm.
But the slow update rate has a noticeable impact on learning speed, sometimes requiring orders of
magnitude more gradient steps to reach the same performance of the faster algorithms. As such,
it is not surprising that increasing the number of gradient updates can have a noticeable effect on
the sample efficiency of deep RL algorithms (Chen et al., 2020b) because FQE is slow. However,
since DouBel loss minimization seems more robust to faster target update rates, we will investigate
whether it can constitute an alternative way of improving sample efficiency of deep RL.

6.2 INTEGRATION TO SOFT-ACTOR CRITIC

In this second set of experiments, we integrate the DouBel loss into the stable-baseline3
(Raffin et al., 2021) version of SAC (Haarnoja et al., 2018). Because the policy is now stochastic, the
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Table 2: Undiscounted returns after 500K training steps on Mujoco environments. Results averaged
over 20 runs showing mean and 95% CI.

DouBel DouBel (NB) SAC SAC (T10) DouBel (H3) DouBel
(NB, H3) SAC (H3)

Walker2d 3684± 160 3606± 122 2608± 449 381± 191 4275± 179 3928± 151 3478± 490
Ant 2978± 408 3613± 435 3323± 334 −198± 208 3801± 582 3717± 623 3290± 525
Hopper 2387± 300 2356± 283 2778± 248 1676± 400 2844± 243 3077± 212 2864± 186
Humanoid 4947± 71 5005± 51 4567± 109 4848± 81 5170± 68 5229± 36 4823± 528
HalfChee. 9347± 206 9216± 129 8847± 412 8260± 379 - - -

blue term in Alg. 2 is biased. We will test two variants, one that ignores the bias and one that corrects
it, labeled DouBel (NB). We also test another baseline that include auxiliary losses modeling the
environment, but to not clutter further the plots, we defer this comparison to the appendix. To test
whether a faster update rate of the target can speed-up SAC, we change the default behavior of doing
a Polyak averaging of past networks (Haarnoja et al., 2018) with swapping the target network with
the current network every 10 gradient steps. We use this setting for DouBel as well as λ = 0.1 for
all experiments. A second hyper-parameter we experiment with is adding a third hidden layer for
the critic network to test whether the faster update rate remains robust to more complex function
approximators. As baseline, we use i) SAC with the optimized Mujoco hyper-parameters from
stable-baseline3, ii) SAC with a similar target update rate as DouBel, labeled SAC (T10)
and finally iii) SAC with a 3 hidden layer critic labelled SAC (H3). Results are averaged over 20
seeds averaging the mean episodic return and computing its 95% CI. Table 2 shows a synthesis
of all experiments, Fig. 3 shows the learning progress for the three layer comparisons while the
comparison against SAC (T10) is deferred to the appendix.

Figure 5: The episodic
return of a few unstable
runs from SAC (H3) and
all 20 runs of DouBel
(H3).

From Table 2, we can see that DouBel (NB) outperforms SAC in 4 en-
vironments out of 5 with the biggest difference being on Walker2d.
Compared to SAC (T10), we see that without the additional BE term,
the faster update rate leads to catastrophic consequence on several envi-
ronments. Fig. 4 shows the Bellman error on these environments and, un-
surprisingly, the faster update rate caused a blow up of the error, whereas
it remains a lot more contained for DouBel. As for the bias correction of
DouBel, there does not seem to be major differences between correcting
the bias or ignoring it on these (deterministic) environments. When in-
creasing the number of hidden layers of the critic, DouBel remains stable
and in fact widens the gap with vanilla SAC. We also observe improve-
ments for SAC (H3) but the reward curve in Walker2d shows some
oscillations. Upon closer inspection, we see in Fig. 5 that there are a few
seeds that exhibit an erratic behavior whereas all 20 runs of DouBel re-
main stable. In summary, we have shown that by the simple addition of a Bellman error term to the
loss of the critic, the FQE procedure of SAC becomes robust to a wider range of hyper-parameters,
including using more aggressive target network update rates or, more surprisingly, deeper critics
which all have tangible effects on performance. These results bode well for the wider applicability
of our loss to the policy evaluation procedure of other deep RL algorithms.

7 CONCLUSION

In this paper we have introduced the DouBel loss that adds an auxiliary squared Bellman error term
to the standard fitted Q evaluation procedure. Importantly, only the gradient of the feature function—
for example the hidden layers of a neural network—flows through this additional term. This forces
the features to be “self-predictive”—without explicitly learning a model—which helps contain the
Bellman error and make the fitted Q evaluation more robust to hyper-parameters such as the target
network update rate or the number of hidden layers. When integrated into SAC, a state-of-the-
art deep RL algorithm, both these hyper-parameters had tangible effects on performance. For future
work, one could study the combination of DouBel with variants of SAC that use a larger ensemble of
critics or a higher update-to-sample ratio. More broadly, it would be interesting to integrate DouBel
into the policy evaluation of other deep RL approaches such as DQN. Finally, finding alternative
ways of minimizing L in a tractable way could be another interesting research direction.

9
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REPRODUCIBILITY

All our results are averaged over 20 independent runs and we provide each time the confidence
intervals of these averages. Our integration of DouBel is made on a widely tested version of SAC
with optimized and publicly available hyper-parameters. The datasets used in the policy evaluation
section will be made publicly available in addition to the code for both the policy evaluation and the
integration to SAC.
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Christopher Grimm, André Barreto, Satinder Singh, and David Silver. The value equivalence princi-
ple for model-based reinforcement learning. Advances in Neural Information Processing Systems
(NeurIPS), 2020.

10



Under review as a conference paper at ICLR 2024

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning (ICML), 2018.

Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, and Fillia
Makedon. A survey on contrastive self-supervised learning. Technologies, 2020.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in neural information processing systems, 32, 2019.

Michail G Lagoudakis and Ronald Parr. Least-squares policy iteration. The Journal of Machine
Learning Research, 4:1107–1149, 2003.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 2015.
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Figure 6: Episodic return for DouBel, SAC and SAC (T10) with two hidden layers. Results averaged
over 20 runs showing mean and 95% CI.

A APPENDIX

We include in this appendix additional results for which space lacked in the main paper. Namely,
results on the two hidden layer setting of SAC, an additional baseline for the experiment in Sec. 6.2,
a sensitivity analysis on the parameter λ, additional experiments integrating DouBel to DQN on five
discrete action tasks and finally all the learning curve for the experiments in Sec. 6.1.

A.1 SAC ON MUJOCO TASKS EXPERIMENTS

Execution times. In our experiments, the execution time of DouBel was about ∼ 1.2 times the
execution time of vanilla SAC on all Mujoco tasks, while the execution time of DouBel with bias
correction was ∼ 1.5 times the execution time of vanilla SAC. This is due to the additional V-value
network for the bias correction. Note that to keep comparisons fair, we did not use the value network
beyond the bias correction, but in practice the time overhead of learning a value function could be
compensated by using the value function to, e.g., reduce the variance of the next state value estimate.

Fig. 6 shows the learning curves of experiments in Sec. 6.2 for SAC with a target update of 10 and
no BE auxiliary loss. It can be seen that on some tasks, the agent fails to learn completely, which as
has been shown in Sec. 6.2, correlates with an explosion of the Bellman error (Fig. 4).

A.2 COMPARISONS WITH ENVIRONMENT MODELLING AUXILIARY LOSSES

In this section we assess whether adding an auxiliary loss to learn models of the reward and transition
function can help stabilize FQE in SAC when the target update rate is set to 10, in the same way that
DouBel did. To do so, we add to the FQE loss of SAC an auxiliary loss for predicting the reward
and next state features following Chang et al. (2022). We label this baseline SAC + BC in Fig. 7.
We run again this baseline with 20 seeds and evaluate it for two values of a parameter λ, that for this
baseline, trades-off between the FQE loss and the modeling losses. We see in Fig. 7 that on some
tasks, the higher value of λ performs better and on some other tasks it perform worse, but for both,
the environment modeling auxiliary losses do not stabilize FQE at such a high target network update
rate the same way DouBel does.

A.3 SENSITIVITY ANALYSIS OVER λ

DouBel critically depends on a parameter λ that trades-off between the FQE loss and the BE loss.
In all the SAC experiments we have set λ = 0.1 and in this section we investigate the behavior
of DouBel for various values of λ both larger and smaller than 0.1. The experimental setting is
that of Sec. 6.2, using a three hidden layer critic. We run again twenty seeds for each value of λ.
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Figure 7: Episodic return for DouBel, SAC and SAC + BC. Results averaged over 20 runs showing
mean and 95% CI.

Figure 8: Sensitivity analysis of DouBel to the hyper-parameter λ. Results averaged over 20 runs
showing mean and 95% CI.

Fig. 8 shows that values of 0.1, 0.05 and 0.2 perform rather similarly, with the value of 0.05 slightly
outperforming the value of λ = 0.1 we used in Sec. 6.2. For the lowest value of 0.01, SAC shows
signs of instability which is not surprising since as λ goes to zero we revert to vanilla SAC which
we know is unstable for such high update rates of the target network.

More interestingly, when λ is too high (values of 0.5 and 1.0), we do not observe sharp decreases
in policy return in the same way than when λ = 0.01 on Ant-v4 but rather that learning becomes
slow. A possible explanation could be given by the same mechanisms governing the two-timescale
network of Chung et al. (2018). Recall that in the loss L of Sec. 3, we want the weight w to be
the LSTD solution of the current feature set. As such, the FQE loss should be optimzed at a faster
time-scale than the BE loss following Chung et al. (2018). One way of achieving this is to weight
the FQE loss more than the BE loss, which is not the case anymore when λ is large.

Insights on how to set λ. In the experiment of Sec. 6.2, since SAC with target update rate of
10 would diverge rather fast, setting an appropriate value of λ was relatively easy and consisted
in finding the smallest value of λ that would stabilize FQE in the first few iterations. We note in
addition that both the FQE loss and the auxiliary BE loss have the same scale, so the value of λ
should be independent of the scale of the reward function or of the current Q-function. λ = 0.1
could thus be a reasonable starting point for many different tasks.

A.4 DOUBEL WITH DQN.

In this set of experiments, we integrate the DouBel loss into the FQE procedure of DQN on several
MinAtar environments (Young & Tian, 2019) and the LunarLander-v2 environment. The ex-
perimental protocol is similar to the integration with SAC, and we set an aggressive target update
rate of 1 and see if the additional BE loss can improve over the vanilla algorithm. We note that in
these simpler environments, FQE did not diverge as in Mujoco tasks even with such a high target
update rate. Fig. 9 shows the performance of DQN and DouBel for various choices of λ. In these
environments and with this target update rate, the value of λ = 0.2 seems to perform best on all
the tasks compared to λ = 0.1 and λ = 0.05, and we observe on several games improvements of
DouBel over DQN, confirming on a different setting than the SAC + Mujoco tasks of Sec. 6.2 that
the added BE loss can improve over vanilla FQE in high target update rate regimes.
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Figure 9: Episodic return of DQN and DouBel for various values of λ on finite action space tasks.
Results averaged over 20 runs showing mean and 95% CI.

A.5 HYPER-PARAMETERS

Parameter Value
γ 0.99
Critic network (256, 256)
Actor network (256, 256)
Activation ReLU
Learning rate 3e-4
Optimizer Adam
Replay buffer size 10e+6
Number of burn-in time-steps 10e+4
τ 0.005
Entropy lower bound MBPO values Janner et al. (2019)
Gradients per time-step 1
Number of critics 2

Table 3: Hyper-parameters of vanilla SAC with a two hidden layer critic network.

Parameter Value
γ 0.99
Critic network (256, 256, 256)
Activation ReLU
Learning rate 3e-4
Optimizer Adam
Replay buffer size 10e+6
Number of burn-in time-steps 10e+4
Gradients per time-step 1

Table 4: Hyper-parameters for the DQN experiments.

A.6 LEARNING CURVES FOR THE POLICY EVALUATION SECTION

In this final set of figures, we plot the learning curve (both Bellman error and distance to true Q-
function) for the 12 considered datasets.
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Figure 10: Bellman error (top) and corresponding distance to the true Q function on 4 datasets (id
= 0), showing the mean as well as the 25% and 75% quantiles. Results averaged over 20 runs.

Figure 11: Bellman error (top) and corresponding distance to the true Q function on 4 datasets (id
= 1), showing the mean as well as the 25% and 75% quantiles. Results averaged over 20 runs

Figure 12: Bellman error (top) and corresponding distance to the true Q function on 4 datasets (id
= 2), showing the mean as well as the 25% and 75% quantiles. Results averaged over 20 runs
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