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ABSTRACT

We investigate the problem of computing the statistical or total variation (TV)
similarity between distributions P and ), which is defined as stv(P,Q) :=
1 —dry(P,Q), where drv is the total variation distance between P and (). Statis-
tical similarity is a basic measure of similarity between distributions with several
natural interpretations. We focus on the case when P and @) are products of
Bernoulli trials. Recent work has established, somewhat surprisingly, that even for
this simple class of distributions exactly computing the TV distance (and hence
statistical similarity) is #P-hard. This motivates the question of designing mul-
tiplicative approximation algorithms for these computational tasks. It is known
that the TV distance computation admits a fully polynomial-time deterministic
approximation scheme (FPTAS). It remained an open question whether efficient
approximation schemes exist for estimating the statistical similarity between two
product distributions. In this work, we affirmatively answer this question by de-
signing an FPTAS for estimating the statistical similarity between two product
distributions. To obtain our result, we introduce a new variant of the knapsack
problem, which we call multidimensional Masked Knapsack problem, and design
an FPTAS to estimate the number of solutions to this problem. This result might
be of independent interest.

1 INTRODUCTION

The total variation (TV) or statistical distance between distributions P and () over a common finite
sample space D, denoted by drv (P, Q), is defined as dpy (P, Q) := maxscp(P(S) — Q(S5)) =
13 .ep |P(z)— Q(x)|. This distance measure naturally defines a similarity measure which is called
TV similarity or statistical similarity. In particular, the statistical similarity between distributions P
and @ is defined as stv (P, Q) := 1 — drv (P, Q).

The statistical (distance) similarity is a fundamental measure for quantifying the (dis)similarity
between probability distributions. It has the following intuitive interpretation: If sTv (P, Q) > 1 — ¢,
then for any event E, its probability with respect to P and () differs by at most . Moreover, the
fundamental fact that any process, deterministic or randomized, cannot decrease statistical similarity
between two random variables is very useful in module analysis of large systems. Because of these
reasons, the notions of statistical distance or similarity between probability distributions has been
used in many areas, including probabilistic algorithms Mitzenmacher & Upfal| (2005), machine
learning [Shalev-Shwartz & Ben-David| (2014), and information theory |(Cover & Thomas|(2006).

To further motivate the notion, we elaborate on some natural interpretations and equivalent charac-
terizations of statistical similarity between distributions. Interestingly, sTv can be interpreted by
using the notion of a coupling between probability distributions. A coupling between probability
distributions P and () is a random variable (X,Y") where X ~ P, Y ~ ). An optimal coupling
O = (X,Y) is a coupling for which Pro[X = Y] is maximized. It is well known that in optimal
case, sTv(P, Q) = Pro[X = Y. Thus, by computing sty between P and ) we can compute the
probability that X equals Y under the optimal coupling O. Couplings, introduced by [Doeblin| (1938)),
have been fundamental in the realms of computer science and mathematics, and have underpinned
some of the most seminal results (Lindvall, 2002} Levin et al.,[2006; Meyn & Tweediel, [2012).

Moreover, it is known that the minimal total error in hypothesis testing equals the statistical similarity
between the underlying distributions (Lehmann & Romano, [2008; Nielsen, |2014). In a similar
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vein, there is a connection between statistical similarity and the error of an optimal aggregated
predictor (Parisi et al., 2014} Berend & Kontorovich, 2015} [Kontorovich| [2024). Consider the
following prediction game. A parameter py € (0,1) is fixed and a random bit ¥ € {0,1} is
drawn according to Bernoulli trial with bias py-, that is, py = Pr[Y = 1]. Conditional on Y, the
sequence X1, Xo,..., X, is drawn i.i.d., where X; € {0, 1} such that Pr[X; = 1|Y = 1] := ¢
and Pr[X; = 1|Y = 0] := ), for some collection of parameters ©,n € (0,1)". The parameters
v = (Y1, ,¢¥,) and n = (m,- - ,n,) are known as sensitivity and specificity, respectively.
An agent who knows the values of ¥, n gets to observe the X,..., X, and wishes to infer the
most likely Y. An optimal predictor fO7 : {0,1}"™ — {0, 1} that minimizes the error probability
Pr [ fOPT(X ) # Y] was given by [Parisi et al.| (2014)). [Kontorovich| (2024) showed that the deci-
sion rule fOPT satisfies Pr[fOPT(X) # Y] = 1srv(Bern(v) , Bern(n)) whereby Bern(v) is the
product of Bern(v;)’s (similarly for Bern(#)). Thus the statistical similarity between Bern(¢)) and
Bern(n) precisely captures the error of the optimal predictor.

The above discussion demonstrates that statistical similarity is a fundamental concept with broad
applicability across various domains. In this work we focus on the computational aspects of stv.
Recent work has established that exact computation of sty is hard. In fact, somewhat surprisingly,
Bhattacharyya et al.|(2023) showed that it is #P-hard to exactly compute drv between two product
distributions. Thus, as sty = 1 — dpvy, exactly computing statistical similarity between product
distributions is also #P-hard. Hence it is unlikely that there exists an efficient algorithm for this
computational task. This motivates the following question:

Is there an efficient multiplicative approximation algorithm for estimating the
statistical similarity between product distributions?

Recent works of (Bhattacharyya et al., 2023}, |Feng et al.| 2023 2024) showed that efficient multi-
plicative approximation algorithms exist for estimating total variation distance between product
distributions. Since sy = 1—drv, it might appear that sTv can be estimated using a dv estimation
algorithm. However for a multiplicative approximation, this is not the case. That is, it is not possible
in general to use an efficient multiplicative approximation algorithm for a function f in order to
design an efficient multiplicative approximation algorithm for 1 — f.

For instance, let f be a function that takes as input a Boolean DNF formula ¢ and outputs the
probability that a random assignment satisfies ¢. It is known that there is a randomized multiplicative
approximation algorithm for estimating f Karp et al.| (1989). However, a multiplicative approximation
algorithm for estimating 1 — f implies that all NP-complete problems have efficient randomized
algorithms (RP = NP). This is because the complement of a DNF formula is a CNF formula
and there is no efficient randomized multiplicative approximation for estimating the acceptance
probability of CNF formulas unless RP = NP.

1.1 OUR RESULTS

To describe our result, we first recall the notion of a fully polynomial-time approximation scheme
(FPTAS). An FPTAS A for sty (for product distributions) is a deterministic polynomial-time
algorithm that takes as input (1) two product distributions P and @ and (2) an accuracy error
parameter 0 < ¢, and outputs a (1 + ¢)-multiplicative approximation of stv (P, Q). That is, A
outputs a value v so that

STV(P ) Q)

(1+4¢)
Our main result is an FPTAS that estimates the statistical similarity between two product distributions.

<v<(14¢)srv(P,Q).

Theorem 1. There is an FPTAS for estimating stv (P, Q), where P, Q) are arbitrary product distri-
butions over n variables, such that each associated Bernoulli parameter can be encoded using { bits.
This FPTAS runs in time O(poly (¢, n,1/¢)), whereby ¢ is the accuracy error of the FPTAS.

Our algorithm is obtained by a chain of reductions via two intermediate counting problems that we
define next. The first problem is called #MINPMFATLEAST, defined as follows: Given product
distributions P and @ over {0,1}" and C' > 0, compute the number of =z € {0,1}" such that
min(P(z),Q(x)) > C. We first show that approximating sty between product distributions
reduces to approximating #MINPMFATLEAST, as stated below.
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Proposition 2. For any § > 0, computing a (1 + 0)-multiplicative approximation to stv (P, Q)
Sor product distributions P,Q can be efficiently reduced to computing a (1 + ¢)-multiplicative
approximation to polynomially-many #MINPMFATLEAST instances over P, and @), whereby

e = Q(0).

The second problem that we define is a counting variant of the Knapsack problem which we call
multidimensional #MASKEDKNAPSACK. A multidimensional #MASKEDKNAPSACK instance
I consists of m standard KNAPSACK instances K7,..., K,, where each K; is specified with
weights a; 1,...,a;, and capacity b;,. Additionally each K; is associated with a mask vector
Wi = Uity -, Uin € {0,1}". Anstring z € {0,1}" is a solution to I, if Z?zl a;; (z; S u; ;) < b;
forall 1 <7 < m. (Here @ denotes the bitwise XOR operation.) The goal is to compute the number
of solutions for a given input instance I.

We prove that #MINPMFATLEAST (exactly) reduces to multidimensional #MASKEDKNAPSACK.

Proposition 3. #MINPMFATLEAST reduces to multidimensional #MASKEDKNAPSACK with
m=2.

Finally, we design an FPTAS for multidimensional #MASKEDKNAPSACK when m is a constant.
This is a general result and might be of independent algorithmic interest.

Theorem 4. There is an FPTAS for multidimensional #MASKEDKNAPSACK when m = O(1). The
running time of this FPTAS is O ((n/ 5)0(1)> log W, whereby ¢ is the desired accuracy error and W
is the maximum total weight among the MASKEDKNAPSACK instances.

1.2 RELATED WORK

The computational aspects of TV distance have attracted attention from a complexity theoretic
viewpoint, where it has been shown that additive approximations of TV distance between distributions
belong to various zero-knowledge classes (Goldreich et al., [1999} |Sahai & Vadhan| 2003; Malkal
2008;; IDixon et al., 20205 [Bouland et al.l 2017). In all of these works, the class of distributions
considered are distributions samplable by polynomial-size circuits. The work of |Sahai & Vadhan
(2003)) established that additively approximating the TV distance between two distributions that are
samplable by Boolean circuits is hard for the complexity class SZK (Statistical Zero Knowledge).
Since complexity of additive approximations for dpv and sty are equivalent, the above result holds
also for statistical similarity. |Goldreich et al.|(1999) showed that the problem of deciding whether a
distribution samplable by a Boolean circuit is close or far from the uniform distribution is complete
for NISZK (Non-Interactive Statistical Zero Knowledge). A recent work of [Bhattacharyya et al.
(2023) considered much simpler class of distributions. They showed that (a) exactly computing the
TV distance between product distributions is #P-complete, and (b) multiplicatively approximating
the TV distance between Bayes nets is NP-hard.

Regarding algorithmic aspects, |[Bhattacharyya et al.| (2020) designed efficient algorithms to additively
approximate the TV distance between distributions that are efficiently samplable and efficiently
computable. [Feng et al.|(2023)) designed a fully polynomial-time randomized approximation scheme
(FPRAS) for estimating the TV distance between two arbitrary product distributions. Interestingly,
their work used couplings to devise the algorithm. More recently, [Feng et al.| (2024)) gave an FPTAS
for the same task.

1.3 PAPER ORGANIZATION

We present some background material in[Section 2| We prove [Proposition 2]in[Section 3| [Proposition 3
in[Section 4] [Theorem 4]in|Section 5| and [Theorem I|in[Section 6] Finally, we conclude in[Section 7
with some problems. In[Appendix Al we present the pseudocode for all of our procedures.

2 PRELIMINARIES

We use [n] to denote the set {1,...,n}. We will use log to denote log,. The following notion of a
deterministic approximation algorithm is important for this work.



Under review as a conference paper at ICLR 2025

Definition 5. A function f : {0,1}" — R admits a fully polynomial-time approximation scheme
(FPTAS) if there is a deterministic algorithm A such that for every input x (of length n) and € > 0,
the algorithm .4 outputs a (1 + ¢)-multiplicative approximation to f(x), i.e., a value that lies in the
interval [f(z)/(1 +¢€), (1 + €) f(z)]. The running time of A is polynomial in » and 1 /.

2.1 PRrRODUCT DISTRIBUTIONS

A Bernoulli distribution with parameter p is denoted by Bern(p). A product distribution is a product
of independent Bernoulli distributions. A product distribution P over {0, 1}™ can be described by
n Bernoulli parameters p1, . .., p, where each p; € [0, 1] is the probability that the i-th coordinate
equals 1 (such a P is usually denoted by Bern(p, ..., p,) or Q.- Bern(p;)). We define ¢ to be
such that each Bernoulli parameter p; encountered in this work can be represented by using (at most)
¢ bits. For any = € {0, 1}", the probability of = with respect to the product distribution P is given by

=II» [[ -»)elo],
i€S:  i€[n]\Sa
whereby S, C [n] is such that i € S, if and only if z; = 1.

2.2 TOTAL VARIATION DISTANCE AND STATISTICAL SIMILARITY

The following notion of distance between distributions is central in this work.

Definition 6. For distributions P,  over a sample space D, the fotal variation (TV) distance between
Pand Q) is

1
drv (P, Q) :=max(P(5) — Q) = 5 > I1P(2) = Qz)| = Y max(0, P(z) — Q(x)).
z€D z€D
The TV similarity or statistical similarity between P and Q) is sTv(P, Q) := 1 — dpv (P, Q).
We present a characterization of sty that we have used in this work. We present its proof for

completeness.

Proposition 7 (Scheffé’s identity, see also (Tsybakovl 2009). Let P,Q be distributions over a
sample space D. Then

stv(P,Q) = Z min( Q(x)).

zeD

Proof. We have that
stv(P,Q) =1- Y max(0, P(x) - Q(x))

— Z P(z) + Z min(0, Q(x) — P(x))
z€D z€D

= Zmln P(x) + Q(x) me Q(x))- u
~eD xeD

2.3 COUNTING PROBLEMS

A function f from {0, 1}* to nonnegative integers is in the class #P if there is a polynomial-time
nondeterministic Turing machine M so that for any x the value of f(z) is equal to the number of
accepting paths of M (z).

2.3.1 #MASKEDKNAPSACK

Let us first remind the reader the standard #KNAPSACK problem: Given weights a1, ..., a, and
capacity b, compute the number of sets S C [n] such that ), ¢ a; < b. For a KNAPSACK instance

with weights a1, ..., a,, and a capacity b, its total weight is Y ;- | a; + b. It is a folklore result that
#KNAPSACK is #P-hard.

In this paper, we study the following “masked” notion of KNAPSACK.
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Definition 8 (#MASKEDKNAPSACK). #MASKEDKNAPSACK is the following counting problem.
We are given a KNAPSACK instance K, defined by a set of weights a1, ..., a,, a capacity b, and
amask u = uy,...,u, € {0,1}". We say that x is a solution to K (in symbols, x € S) if
Z;’L:l a; (z; ® u;) < b. The computational goal is to count the number of solutions, that is, the size

of S. Moreover, the sum Y ", a; + b is called the total weight of the instance.

It is a straightforward observation that # MASKEDKNAPSACK is #P-hard, since one may reduce
#KNAPSACK to #MASKEDKNAPSACK by setting the mask u to be an all-zeroes string. We focus
on a particular kind of multidimensional #KNAPSACK that is defined over m MASKEDKNAPSACK
instances.

Definition 9 (Multidimensional #MASKEDKNAPSACK). Consider MASKEDKNAPSACK instances
Ky, ..., K, whereby K; is defined by a set of weights a; 1, ..., a; , a capacity b;, and a mask
U = Ui1,..., U, € {0,1}". We have that z is a solution to K; (in symbols, z € S;) if
> i=1 @iy (x5 ©uij) < b;. The output is the size of S = ([, ;.

3 REDUCTION FROM STATISTICAL SIMILARITY TO #MINPMFATLEAST

We prove [Proposition

Proof of [Proposition 2] Let P and () be two product distributions. We will reduce
stv(P,Q) = ) min(P(z), Q(x))
z€{0,1}"
to a collection of polynomially many #MINPMFATLEAST instances over P and ().

Let mypin and M,y denote the minimum and maximum nonzero values of min(P(x) , Q(x)) over
all z. By our assumption on the bit representation of the parameters p;, g;, we get that m,;, > mg :=
(2“)” = 27" Moreover, myax < 1. Let V > 1 be a number so that min(P(z), Q(z))/mo <V

for all z. Therefore, V' < Muax/mo < 1/mg = 2. In fact, let us set V := 2", Let Y, :=
min(P(x),Q(z)) /mo and note that Y, lies in [1, V).

We will divide the interval [1, V') into sub-intervals that are multiples of (1 + ¢) for some ¢ that is
within a linear factor of § which we will fix later. More precisely, let

1,V) = O [(1 +e), (1 —|—€)i+1)

be a set of sub-intervals for 0 < ¢ < u—1 = [log;, . V| — 1 < poly(¢,n,1/e). For any
0 <i < u— 1, let n; denote the number of z € {0,1}" such that Y, is in [1, (1+ 5)1) That is,

n = Hx Y, € [1,(1+s)i)}’.

Let the average contribution of Y, in the range [(1+4¢)""!,(1+¢)) be B;. Thatis, B; :=

> Y, /(n; — ni—1), where the sum is over all Y, in the interval [(1+¢)""!, (1+¢)’). Then we
have the following equation:

STV(P7 Q)

m =n1B1—|—(n2 —nl)Bg—F(ng —TL2)Bg+"'+(nu—nu_1)Bu. (1)
0

Since (1 + €)1 < B; < (1 + ¢)?, the following estimate d is a (1 + ¢)-approximation of the RHS
of [Equation (T}
d:=n(14+e)+ (ng —n)(1+e)?+ (ng —n2) (1 + )+ 4+ (ny —nu_1)(1+6)% ()
By reorganizing the terms of we get
d=((14+e)"—=1+e)"") (ny — nu_1)
+ (14" = (14)"?) (ny — nu—2) + -+ (1 +)ny. 3)
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Therefore it suffices to estimate n,, — n; for every 1 < j < u — 1. (We know that n,, = 2".) By
definition, ¢; := n,, — n; counts the number of z € {0,1}" such that Y;, > (1 + ¢)?. Note that

Y, > (1+¢) < min(P(z),Q(z) > (1+¢)’ mo.

That is, ¢; counts the number of z € {0,1}" such that min(P(z),Q(z)) > (1 +¢)’ mg. If we
estimate each ¢; up to a (1 4 ¢)-multiplicative approximation, this in turn would give us a (1 + ¢)-

multiplicative approximation for d by Equation (3)|, and for that matter a (1 + 5)2-mu1tiplicative

approximation for sty (P, ) by[Equation (1) Hence, if we set e := Q(§/2) so that (1+¢)? < (1+96),
we get the desired approximation ratio of (1 + §) for stv (P, Q). O

4 REDUCTION FROM #MINPMFATLEAST TO MULTIDIMENSIONAL
#MASKEDKNAPSACK

We prove [Proposition

Proof of [Proposition 3] Let P and @) be two product distributions with Bernoulli parameters
P1,.-.,Pn and qi,...,qn, respectively. The goal is to show that #MINPMFATLEAST, that

is, computing |[{x € {0,1}" | min(P(z),Q(x)) > C}|, can be written as an instance of
#MASKEDKNAPSACK.

We first give some notation and definitions that are necessary for the proof. Let
) 1—p;
a; = max(m, pz> and b; := min(p;, 1 — p;),
l—pi pi

and

) 1—a;
C; = max( g s ql) and di = min(qi, 1-— Qi) .
1- qi q;

For any = € {0,1}" define sets Tp and T as follows:
1
Tp(x) :{ie[n]|pl-22, x;=1 or p; <

1
2
) 1 1
To(x) = ZE[“H%Z?JH:l or Qi§§,$i=0 .

For all z € {0,1}", let S, be such that i € S, if and only if z; = 1 (that is, z is the characteristic
vector of S).

We require the following claim.

Claim 10. It is the case that

Pa) = T[ o I] (-0 = (ﬁm) (H )

€S, i¢S, i=1 i€Tp
Qz) = H i H (1-q)= (Hdi) H ¢
€S, ¢S, i=1 i€Tq

The proof of is straightforward, and it is based on appropriately rearranging the factors of
the PMFs of P and Q. Thus the inequalities P(z) > C and Q(z) > C are equivalent to

(E{b) [1 a|=c and (E{d) I «|=c

i€Tp(x) i€Tq(z)
°r (T, ) (T, b)) (T, ) (T, d3)
i=1 % i=1% i=1 Ci i—1 i
‘ H a; S C and ‘ H C; S C 5
i¢Tp(x) i¢Tq(x)
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since a;, ¢; > 1 for all 7. In order to make the product a sum, we can take log on both sides, yielding

(IT7y i) (TT2 ba) ([T e) Tz, d)

Z log a; < log c , Z log ¢; < log . =1
i€[n]\Tp (z) i€[n]\Tq (»)

At this point, the expressions look similar to KNAPSACK constraints. While we do not know how to
cast them as standard KNAPSACK constraints, we can frame them as MASKEDKNAPSACK constraints
as follows.

Let y;(z) be the characteristic vector of [n] \ Tp(z) and y»(z) be the characteristic vector of
[n] \ To(z). Then the above inequalities become

Z (loga;) y1(r); < log (Iizy ai>C(HiZ1 b;) ,

(H?:l ci) (H?:l di)
c )

g

M-

Il
_

(log ¢;) ya(z); < log
Define masks up and ug corresponding to P and () as follows: up = up,,...,upy, is such that
up,; = 1 if and only if p; > 1/2, and UQ = UQ,,---,UQ,n 18 such that ug; = 1 if and only if
¢; > 1/2. Then from the definition of Tp, Ty and up, u¢ the above inequalities can be written as

Z (10g ai) (l’i D ’U/p’i) < log (H’:;l ai)cv(H’?il:l bl)’

> (loge) (1, © ) < log (Wit O Tcs @),

i=1

Thus, for an instance P,Q,C of #MINPMFATLEAST we can construct two instances /p and
Ig of #MASKEDKNAPSACK where Ip is specified by the weights logay,...,loga,, capacity

w, and the mask up, and Ig is specified by weights logcy,...,logc,, ca-

c
pacity log M, and the mask ug, so that for all x € {0,1}" it is the case that
min(P(x), Q(x)) > s C'if and only if x is a solution to /p and a solution to /. Finally, note that this
reduction runs in time linear in n. This completes the proof. O

log

5 COUNTING MULTIDIMENSIONAL MASKEDKNAPSACK SOLUTIONS

5.1 BACKGROUND ON BRANCHING PROGRAMS

We first fix some notation and terminology. A (W, n)-branching program is a branching program of
width W over n Boolean input variables. A read-once branching program (ROBP) is a branching
program whereby each input variable is accessed only once. A monotone (W,n)-ROBP is a (W, n)-
ROBP such that in each of its layers L, the nodes of L are totally ordered under some relation <, and
whenever u < v for some nodes v and v it is the case that the set of partial accepting paths that start
at u are a subset of the set of partial accepting paths that start at v.

Given a branching program M and a string z, the notation M (z) denotes the output (“accept”/“reject”)
of M on input z. An implicit description of a monotone ROBP is a description according to which
one can efficiently check the relative order of two nodes under < (within any layer), and given a node
u one can efficiently compute its neighbors.

The following notion of small-space sources was introduced by Kamp et al.| (2011).

Definition 11 (Kamp et al{(2011)). A width-w small-space source is described by a (w, n)-branching
program D with an additional probability distribution p, on the outgoing edges associated with
vertices v € D. Samples from the source are generated by taking a random walk on D according to
the p,’s and outputting the labels of the edges traversed.

We require the following useful claims by [Gopalan et al.| (2010). is an application of
dynamic programming.
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Claim 12 (Gopalan et al.|(2010)). Given a ROBP M of width at most W and a small-space source D
of width at most S, it is the case that Pr,..p[M (z) = 1] can be computed exactly in time O(nSW).

Claim 13 (Gopalan et al. (2010)). Given a (W,n)-ROBP M, the uniform distribution over M’s
accepting inputs, {x | M (x) = 1} is a width W small-space source.
We further require the following important result from (Gopalan et al.| (2010).

Theorem 14 (Gopalan et al. (2010)). Given a monotone (W,n)-ROBP M, 6 > 0, and a small-space
source D over {0,1}" of width at most S, there exists an (O(n?S/4),n)-monotone ROBP My such
that for all z, it is the case that M (z) < My(z) and

Pr[M(z) =1] < Pr[Mo(z) = 1] < (1+9) PriM(z) = 1].
Moreover, given an implicit description of M and a description of D, My can be constructed in

deterministic time O(n3S(S + log W) log(n/d)/9).

The main take-away of [Theorem 14]is that the number of accepting paths of M (under the distribution
D) approximates the number of accepting paths of M (under the distribution D), and moreover M
has small width.

5.2 PROOF OF[THEOREM 4]

We prove To this end, we first show This lemma is based on the Dyer’s
rounding scheme in the context of standard #KNAPSACK.

Lemma 15 (Rounding). Given a collection of MASKEDKNAPSACK instances KNAPSACKs

Ky, ..., Ky, each over n variables and with a total weight of at most W, and solution
sets S1,...,Sm, respectively, we can deterministically in time O(n3 log W) construct new
MASKEDKNAPSACK instances K1, ..., K| with solution sets S, ...,S.., respectively, each with

a total weight of at most O(n3), such that S; C S! forall 1 <1i < m and

m

(S -

i=1

i <n”

Proof. Let
Si =L X E {0, l}n | Zam— (iCj @ui,j) < bl s
j=1
whereby 0 < a;1 < --- < a;,, < b;. Let k; be such that a; ; < b; i/n for j < k; and either k; = n or

@i k41 > bi/n. Let C; {z Ui kit1s - Ui | 2 € {0,1} } If x € C;, then

Za] T DU ) <Zaj<k:b/n<b

and so x € S;. Thatis, C; C S;. Let now «; j := anam-/biJ and 6; ; := nzai,j/bi — a; j, such
that 0 < 9; ; < 1. Let also

n
Sl:=<xe{0,1}"] ZaiJ (xjBuij)<n

and S := (", Si, S := (-, Si. We will prove that |S| < |S’| < n™|S|. Let us first prove that
IS] < 157). Letx € S. Then for all i we have

ZO‘M (2 ®uij) < 2/b Zaw (zj B uij) < ( Q/b) =n’,

j=1

so z € S} and therefore z € S’. Thus S C 5" and so |S| < |5].
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Let us now show that |S’| < n™ |S|. To this end, let L; := {j | a; ; < b;/n}. Forz € S’ \ S, let
I(z) :={i |z € S]\ S;}. Forevery i € I(x), there exists p;(x) ¢ L; such that x,,, ® u;,, = 1 and
@ p,(z) > M. Otherwise, x € C; C S; C S;. (If there exist more than one such integer, take p;(z) to
be the smallest.) Construct f(x) = y by y,,(») = 0 fori € I(x) and y; = x; otherwise. Then for
any z € S’ \ S, with y = f(z), we have

WE

D ai (Y ®uiy) = 3 2 (@i + i) (y; ®uiy)
i=1 j

J

Il
-

n

bi [ —
=3 D iy (s ®uig) + Y0 (y; @ uig)
j=1 j=1
T a2 D i (@5 © uig) = Qi (a) (Tp, S Ui py@) + D 0is (Y5 S i)
j=1 j=1
bz n n
=3 D i (@ @ uig) = Qi)+ D05 (Y5 S uij)
j=1 j=1

i

<
Sz

(nz—n+n):bi.

That is, f(x) € S; and so f(x) € S. Hence f(S’) = S. The inverse mapping changes some set of
coordinates P with 0 < |P| < m, so

) <14n+ <n) oot <n> <nm.
2 m
That is, [S| < n™|S’|. Therefore [S'| < |f~(S)| < n™|9]. O

We may now prove [Theorem 4|by using [Lemma

Proof of[Theorem 4 We will appeal to the techniques of [Gopalan et al| (2010). First, we will apply
Lemma 15|to obtain MASKEDKNAPSACK instances K7, ..., K , each with a total weight of at most
O(n?), and solution sets S, ..., S/, respectively.

Let D be the uniform distribution over the set S” := (-, S/ and observe that by [Claim 13| D can
be generated by an explicit O(n3m) space source. For 1 < i < m, let M* be a (W, n)-ROBP
exactly computing the indicator function for S;. Let § = O(g/ (m (n + 1)™)) to be chosen later.

For every 1 < i < m, by [Theorem 14{ we can explicitly in time n°("™) (log W) /& construct a
(n®(™) /§,m)-ROBP M; such that

Pr[M}(z) # M(z)] <é.
Define M such that M (z) :== A", M}(z) for any z. Then M is a (no(m2)/6m, n) -ROBP. By a
union bound,

Pr
z~D

On the other hand, by

M(x) # /\Mz(x)] < mé.

m

Pr | A = 1] > 1/ (n+1)".

Therefore, by setting § := &/ (2m (n + 1)), we get

= <

Z\lMi(m) = 11 <(1+¢) Pr[M(z) =1].
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Thus, p := Pry 0,13 [z € S| Proop[M(z) = 1] is a (1 + )-multiplicative approximation to the
fraction of solutions to all constraints

xw{O 1}” x~{0,1}"

\ Mi(z) = 1] :

i=1

/\M’ 11 = Pr [zed]Pr

The result now follows since we can compute p in time (n/é)o(m2) using [Claim 12} as D is a
small-space source of width O (n®™) and M has width (n/ §)O(m2). O

6 ESTIMATING STATISTICAL SIMILARITY

We now prove [Theorem 1|by combining the previous results.

Proof of[Theorem 1} By |Proposition 2} the (1 + §)-multiplicative approximation of stv (P, Q) re-
duces to the (1 + ¢)-multiplicative approximation of polynomially-many #MINPMFATLEAST
instances over P, Q, namely t1, ..., t, fore = Q(6/2) and k = poly(¢, n). By [Proposition 3| the
instances t1, . . ., t; can be reduced to multidimensional #MASKEDKNAPSACK for m = 2. Using
Theorem 4[, we can estimate each ¢; up to a (1 + ¢)-multiplicative approximation in deterministic
polynomial time.

The running time of this algorithm is polynomial in ¢,n, 1/ because we ran a polynomial-time
approximation algorithm for multidimensional #MASKEDKNAPSACK polynomially many times.

In particular, the running time is poly (¢, n,1/¢) - O((n/é)o(l)) logW = O((Z : n/6)o(1)) (since

W = poly(n), by[Cemma 13).
7 CONCLUSION

We have given a simple FPTAS for estimating the statistical similarity between product distributions.
We reiterate that the known FPTAS for TV distance Feng et al.| (2024) does not in general yield
an FPTAS for statistical similarity. In fact, we use different techniques than that of [Feng et al.
(2024)) to design the FPTAS for statistical similarity. Our algorithm is based on a reduction to a
new knapsack counting problem which we call (multidimensional) #MASKEDKNAPSACK which
might be of independent interest. Extending our results to more general classes of distributions
and establishing lower bounds is a promising and significant research direction. Finally, we believe
that a complexity-theoretic study of functions f in #P with range in [0, 1], for which there are
approximation schemes for both f and 1 — f, is significant.
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A PSEUDOCODE

We present the pseudocode of our algorithms, in reverse order.

We present the pseudocode for[Theorem 4|in|[Algorithm 1}

Algorithm 1 The pseudocode for|Algorithm 1}

Require: m instances of MASKEDKNAPSACK, specified by weights {a;},",, whereby a;, =
@1, .-, 0y, mask vectors {u; }.—,, whereby u; = w;1,...,u;n, capacities by, ..., by, and
an accuracy error parameter €.

Ensure: The output p is an (1 4 ¢)-estimate to multidimensional #MASKEDKNAPSACK.

1: {By parsing the input, we can compute m and n.}

2: fori«1,...,mdo

3: forj<«1,...,ndo
4: QG 5 < Lngai,j/bij
5:  end for

6: end for

7. 8"« {0,1}"

8: fori«+ 1,...,mdo

9:  {Itis the case that S; := {x € {0, 13" | 327 aij (zj Duiy) < bi}.}

10:  Compute M*

11:  {M%is a (W,n)-ROBP exactly computing the indicator function for S;.}

12 Compute M}

13:  {M!isa (n®™/5,n)-ROBP that is a rounding of M", as given by Theorem 14} }

14 Sj« {w €{0,1}" | 307 iy (z5 D uyg) < ng}

15:  {The set S, can be computed by dynamic programming in time polynomial in n.}
16: S« SNS;
17: end for

18: M+ \i-, M}

19: pp + Pry.p[M(z) =1]

20: {The probability pp can be computed by [Claim 12] }
21: pgr < |S/|/2n

22: {Note that ps: = Pr, (0,13~ [z € §'].}

23: p < pp - ps

24: return p

We present the pseudocode for [Proposition 2|in[Algorithm 2|

We present the pseudocode for [Proposition 2|in|Algorithm 3|

12
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Algorithm 2 The pseudocode for [Proposition 3]

Require: Product distributions P, () through their Bernoulli parameters p1, ..., Pn,q1, - - - > Gn, and
a parameter C'.

Ensure: The output [ is an instance of the multidimensional #MASKEDKNAPSACK problem for

m = 2.
1: {By parsing the input, we can compute n.}
2: 11, + 1
3: 10, + 1
4: II,. 1
5: IIg 1
6: fori < 1,...,ndo
7: aﬁ—max(lf;i,%)
8: b « min(p;, 1 —p;)
9 ¢+ Inax(lfqia 1;%

10:  d; + min(g;, 1 — ¢;)
11: I, < II, - a;

12: II, < II; - b;

13: I, < II. - ¢

14: Iy <« Il - d;

15:  if p; > 1/2 then

16: up,? 1

17:  else

18: up,t 40

19:  end if

20:  if ¢; > 1/2 then
21: uQ,t <1

22: else

23: uQ,t <0

24:  end if

25: end for

26: Cp — IOg(HaHb/C)

27: Cg + 1og(HcHd/C)

28: Ip + ((log ai)z;l ,uP,C’p)
29: IQ — ((log Ci)?:l ,UQ,CQ)
30: T+ (Ip,1Iy)

31: return /

13
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Algorithm 3 The pseudocode for [Proposition 2}

Require: Product distributions P, () through their Bernoulli parameters p1, ..., Pn, q1, - - - , ¢n, and
an accuracy error parameter 9.
Ensure: The output d is an (1 + ¢)-estimate of stv (P, Q).
1: {By parsing the input, we can compute n.}
2: {We define (-), to be a function that maps any number z to its (standard) binary representation
in {0,1}".}
3:£+0
4: fori+—1,...,ndo
st max(l il o))
7
8

: end for
L Mg g—tn
c Vo 2tn
9: u<log,, .V
10: {Note that u < poly(¢,n,1/c).}
11: n, «< 2"
12: d < (14¢€)n,
13: for k < 2,...,udo

14 t), « [Algorithm 1|(|Alg0rithm 2|<P, Q,(1+e)F mo) ,5/2)
)

15: dd+ ((1 +eo)f — (142!
16: end for
17: return d

Tk
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