
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ESTIMATING STATISTICAL SIMILARITY BETWEEN
PRODUCT DISTRIBUTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate the problem of computing the statistical or total variation (TV)
similarity between distributions P and Q, which is defined as sTV(P,Q) :=
1− dTV(P,Q), where dTV is the total variation distance between P and Q. Statis-
tical similarity is a basic measure of similarity between distributions with several
natural interpretations. We focus on the case when P and Q are products of
Bernoulli trials. Recent work has established, somewhat surprisingly, that even for
this simple class of distributions exactly computing the TV distance (and hence
statistical similarity) is #P-hard. This motivates the question of designing mul-
tiplicative approximation algorithms for these computational tasks. It is known
that the TV distance computation admits a fully polynomial-time deterministic
approximation scheme (FPTAS). It remained an open question whether efficient
approximation schemes exist for estimating the statistical similarity between two
product distributions. In this work, we affirmatively answer this question by de-
signing an FPTAS for estimating the statistical similarity between two product
distributions. To obtain our result, we introduce a new variant of the knapsack
problem, which we call multidimensional Masked Knapsack problem, and design
an FPTAS to estimate the number of solutions to this problem. This result might
be of independent interest.

1 INTRODUCTION

The total variation (TV) or statistical distance between distributions P and Q over a common finite
sample space D, denoted by dTV(P,Q), is defined as dTV(P,Q) := maxS⊆D(P (S)−Q(S)) =
1
2

∑
x∈D |P (x)−Q(x)|. This distance measure naturally defines a similarity measure which is called

TV similarity or statistical similarity. In particular, the statistical similarity between distributions P
and Q is defined as sTV(P,Q) := 1− dTV(P,Q).

The statistical (distance) similarity is a fundamental measure for quantifying the (dis)similarity
between probability distributions. It has the following intuitive interpretation: If sTV(P,Q) ≥ 1− ε,
then for any event E, its probability with respect to P and Q differs by at most ε. Moreover, the
fundamental fact that any process, deterministic or randomized, cannot decrease statistical similarity
between two random variables is very useful in module analysis of large systems. Because of these
reasons, the notions of statistical distance or similarity between probability distributions has been
used in many areas, including probabilistic algorithms Mitzenmacher & Upfal (2005), machine
learning Shalev-Shwartz & Ben-David (2014), and information theory Cover & Thomas (2006).

To further motivate the notion, we elaborate on some natural interpretations and equivalent charac-
terizations of statistical similarity between distributions. Interestingly, sTV can be interpreted by
using the notion of a coupling between probability distributions. A coupling between probability
distributions P and Q is a random variable (X,Y) where X ∼ P , Y ∼ Q. An optimal coupling
O = (X,Y) is a coupling for which PrO[X = Y] is maximized. It is well known that in optimal
case, sTV(P,Q) = PrO[X = Y]. Thus, by computing sTV between P and Q we can compute the
probability that X equals Y under the optimal coupling O. Couplings, introduced by Doeblin (1938),
have been fundamental in the realms of computer science and mathematics, and have underpinned
some of the most seminal results (Lindvall, 2002; Levin et al., 2006; Meyn & Tweedie, 2012).

Moreover, it is known that the minimal total error in hypothesis testing equals the statistical similarity
between the underlying distributions (Lehmann & Romano, 2008; Nielsen, 2014). In a similar

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

vein, there is a connection between statistical similarity and the error of an optimal aggregated
predictor (Parisi et al., 2014; Berend & Kontorovich, 2015; Kontorovich, 2024). Consider the
following prediction game. A parameter pY ∈ (0, 1) is fixed and a random bit Y ∈ {0, 1} is
drawn according to Bernoulli trial with bias pY , that is, pY = Pr[Y = 1]. Conditional on Y , the
sequence X1, X2, . . . , Xn is drawn i.i.d., where Xi ∈ {0, 1} such that Pr[Xi = 1|Y = 1] := ψi

and Pr[Xi = 1|Y = 0] := ηi for some collection of parameters ψ, η ∈ (0, 1)
n. The parameters

ψ = (ψ1, · · · , ψn) and η = (η1, · · · , ηn) are known as sensitivity and specificity, respectively.
An agent who knows the values of ψ, η gets to observe the X1, . . . , Xn and wishes to infer the
most likely Y . An optimal predictor fOPT : {0, 1}n → {0, 1} that minimizes the error probability
Pr
[
fOPT(X) ̸= Y

]
was given by Parisi et al. (2014). Kontorovich (2024) showed that the deci-

sion rule fOPT satisfies Pr
[
fOPT(X) ̸= Y

]
= 1

2sTV(Bern(ψ) ,Bern(η)) whereby Bern(ψ) is the
product of Bern(ψi)’s (similarly for Bern(η)). Thus the statistical similarity between Bern(ψ) and
Bern(η) precisely captures the error of the optimal predictor.

The above discussion demonstrates that statistical similarity is a fundamental concept with broad
applicability across various domains. In this work we focus on the computational aspects of sTV.
Recent work has established that exact computation of sTV is hard. In fact, somewhat surprisingly,
Bhattacharyya et al. (2023) showed that it is #P-hard to exactly compute dTV between two product
distributions. Thus, as sTV = 1 − dTV, exactly computing statistical similarity between product
distributions is also #P-hard. Hence it is unlikely that there exists an efficient algorithm for this
computational task. This motivates the following question:

Is there an efficient multiplicative approximation algorithm for estimating the
statistical similarity between product distributions?

Recent works of (Bhattacharyya et al., 2023; Feng et al., 2023; 2024) showed that efficient multi-
plicative approximation algorithms exist for estimating total variation distance between product
distributions. Since sTV = 1−dTV, it might appear that sTV can be estimated using a dTV estimation
algorithm. However for a multiplicative approximation, this is not the case. That is, it is not possible
in general to use an efficient multiplicative approximation algorithm for a function f in order to
design an efficient multiplicative approximation algorithm for 1− f .

For instance, let f be a function that takes as input a Boolean DNF formula ϕ and outputs the
probability that a random assignment satisfies ϕ. It is known that there is a randomized multiplicative
approximation algorithm for estimating f Karp et al. (1989). However, a multiplicative approximation
algorithm for estimating 1 − f implies that all NP-complete problems have efficient randomized
algorithms (RP = NP). This is because the complement of a DNF formula is a CNF formula
and there is no efficient randomized multiplicative approximation for estimating the acceptance
probability of CNF formulas unless RP = NP.

1.1 OUR RESULTS

To describe our result, we first recall the notion of a fully polynomial-time approximation scheme
(FPTAS). An FPTAS A for sTV (for product distributions) is a deterministic polynomial-time
algorithm that takes as input (1) two product distributions P and Q and (2) an accuracy error
parameter 0 < ε, and outputs a (1 + ε)-multiplicative approximation of sTV(P,Q). That is, A
outputs a value v so that

sTV(P,Q)

(1 + ε)
≤ v ≤ (1 + ε)sTV(P,Q).

Our main result is an FPTAS that estimates the statistical similarity between two product distributions.
Theorem 1. There is an FPTAS for estimating sTV(P,Q), where P,Q are arbitrary product distri-
butions over n variables, such that each associated Bernoulli parameter can be encoded using ℓ bits.
This FPTAS runs in time O(poly(ℓ, n, 1/ε)), whereby ε is the accuracy error of the FPTAS.

Our algorithm is obtained by a chain of reductions via two intermediate counting problems that we
define next. The first problem is called #MINPMFATLEAST, defined as follows: Given product
distributions P and Q over {0, 1}n and C ≥ 0, compute the number of x ∈ {0, 1}n such that
min(P (x) , Q(x)) ≥ C. We first show that approximating sTV between product distributions
reduces to approximating #MINPMFATLEAST, as stated below.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Proposition 2. For any δ > 0, computing a (1 + δ)-multiplicative approximation to sTV(P,Q)
for product distributions P,Q can be efficiently reduced to computing a (1 + ε)-multiplicative
approximation to polynomially-many #MINPMFATLEAST instances over P , and Q, whereby
ε = Ω(δ).

The second problem that we define is a counting variant of the Knapsack problem which we call
multidimensional #MASKEDKNAPSACK. A multidimensional #MASKEDKNAPSACK instance
I consists of m standard KNAPSACK instances K1, . . . ,Km where each Ki is specified with
weights ai,1, . . . , ai,n and capacity bi. Additionally each Ki is associated with a mask vector
ui = ui,1, . . . , ui,n ∈ {0, 1}n. An string x ∈ {0, 1}n is a solution to I , if

∑n
j=1 ai,j (xj ⊕ ui,j) ≤ bi

for all 1 ≤ i ≤ m. (Here ⊕ denotes the bitwise XOR operation.) The goal is to compute the number
of solutions for a given input instance I .

We prove that #MINPMFATLEAST (exactly) reduces to multidimensional #MASKEDKNAPSACK.

Proposition 3. #MINPMFATLEAST reduces to multidimensional #MASKEDKNAPSACK with
m = 2.

Finally, we design an FPTAS for multidimensional #MASKEDKNAPSACK when m is a constant.
This is a general result and might be of independent algorithmic interest.

Theorem 4. There is an FPTAS for multidimensional #MASKEDKNAPSACK when m = O(1). The

running time of this FPTAS is O
(
(n/ε)

O(1)
)
logW , whereby ε is the desired accuracy error and W

is the maximum total weight among the MASKEDKNAPSACK instances.

1.2 RELATED WORK

The computational aspects of TV distance have attracted attention from a complexity theoretic
viewpoint, where it has been shown that additive approximations of TV distance between distributions
belong to various zero-knowledge classes (Goldreich et al., 1999; Sahai & Vadhan, 2003; Malka,
2008; Dixon et al., 2020; Bouland et al., 2017). In all of these works, the class of distributions
considered are distributions samplable by polynomial-size circuits. The work of Sahai & Vadhan
(2003) established that additively approximating the TV distance between two distributions that are
samplable by Boolean circuits is hard for the complexity class SZK (Statistical Zero Knowledge).
Since complexity of additive approximations for dTV and sTV are equivalent, the above result holds
also for statistical similarity. Goldreich et al. (1999) showed that the problem of deciding whether a
distribution samplable by a Boolean circuit is close or far from the uniform distribution is complete
for NISZK (Non-Interactive Statistical Zero Knowledge). A recent work of Bhattacharyya et al.
(2023) considered much simpler class of distributions. They showed that (a) exactly computing the
TV distance between product distributions is #P-complete, and (b) multiplicatively approximating
the TV distance between Bayes nets is NP-hard.

Regarding algorithmic aspects, Bhattacharyya et al. (2020) designed efficient algorithms to additively
approximate the TV distance between distributions that are efficiently samplable and efficiently
computable. Feng et al. (2023) designed a fully polynomial-time randomized approximation scheme
(FPRAS) for estimating the TV distance between two arbitrary product distributions. Interestingly,
their work used couplings to devise the algorithm. More recently, Feng et al. (2024) gave an FPTAS
for the same task.

1.3 PAPER ORGANIZATION

We present some background material in Section 2. We prove Proposition 2 in Section 3, Proposition 3
in Section 4, Theorem 4 in Section 5, and Theorem 1 in Section 6. Finally, we conclude in Section 7
with some problems. In Appendix A, we present the pseudocode for all of our procedures.

2 PRELIMINARIES

We use [n] to denote the set {1, . . . , n}. We will use log to denote log2. The following notion of a
deterministic approximation algorithm is important for this work.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Definition 5. A function f : {0, 1}∗ → R admits a fully polynomial-time approximation scheme
(FPTAS) if there is a deterministic algorithm A such that for every input x (of length n) and ε > 0,
the algorithm A outputs a (1 + ε)-multiplicative approximation to f(x), i.e., a value that lies in the
interval [f(x)/(1 + ε), (1 + ε)f(x)]. The running time of A is polynomial in n and 1/ε.

2.1 PRODUCT DISTRIBUTIONS

A Bernoulli distribution with parameter p is denoted by Bern(p). A product distribution is a product
of independent Bernoulli distributions. A product distribution P over {0, 1}n can be described by
n Bernoulli parameters p1, . . . , pn where each pi ∈ [0, 1] is the probability that the i-th coordinate
equals 1 (such a P is usually denoted by Bern(p1, . . . , pn) or

⊗n
i=1 Bern(pi)). We define ℓ to be

such that each Bernoulli parameter pi encountered in this work can be represented by using (at most)
ℓ bits. For any x ∈ {0, 1}n, the probability of x with respect to the product distribution P is given by

P (x) =
∏
i∈Sx

pi
∏

i∈[n]\Sx

(1− pi) ∈ [0, 1] ,

whereby Sx ⊆ [n] is such that i ∈ Sx if and only if xi = 1.

2.2 TOTAL VARIATION DISTANCE AND STATISTICAL SIMILARITY

The following notion of distance between distributions is central in this work.
Definition 6. For distributions P,Q over a sample space D, the total variation (TV) distance between
P and Q is

dTV(P,Q) := max
S⊆D

(P (S)−Q(S)) =
1

2

∑
x∈D

|P (x)−Q(x)| =
∑
x∈D

max(0, P (x)−Q(x)) .

The TV similarity or statistical similarity between P and Q is sTV(P,Q) := 1− dTV(P,Q).

We present a characterization of sTV that we have used in this work. We present its proof for
completeness.
Proposition 7 (Scheffé’s identity, see also (Tsybakov, 2009)). Let P,Q be distributions over a
sample space D. Then

sTV(P,Q) =
∑
x∈D

min(P (x) , Q(x)) .

Proof. We have that

sTV(P,Q) = 1−
∑
x∈D

max(0, P (x)−Q(x))

=
∑
x∈D

P (x) +
∑
x∈D

min(0, Q(x)− P (x))

=
∑
x∈D

min(P (x) , P (x) +Q(x)− P (x)) =
∑
x∈D

min(P (x) , Q(x)) .

2.3 COUNTING PROBLEMS

A function f from {0, 1}∗ to nonnegative integers is in the class #P if there is a polynomial-time
nondeterministic Turing machine M so that for any x the value of f(x) is equal to the number of
accepting paths of M(x).

2.3.1 #MASKEDKNAPSACK

Let us first remind the reader the standard #KNAPSACK problem: Given weights a1, . . . , an and
capacity b, compute the number of sets S ⊆ [n] such that

∑
i∈S ai ≤ b. For a KNAPSACK instance

with weights a1, . . . , an and a capacity b, its total weight is
∑n

i=1 ai + b. It is a folklore result that
#KNAPSACK is #P-hard.

In this paper, we study the following “masked” notion of KNAPSACK.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Definition 8 (#MASKEDKNAPSACK). #MASKEDKNAPSACK is the following counting problem.
We are given a KNAPSACK instance K, defined by a set of weights a1, . . . , an, a capacity b, and
a mask u = u1, . . . , un ∈ {0, 1}n. We say that x is a solution to K (in symbols, x ∈ S) if∑n

j=1 aj (xj ⊕ uj) ≤ b. The computational goal is to count the number of solutions, that is, the size
of S. Moreover, the sum

∑n
i=1 ai + b is called the total weight of the instance.

It is a straightforward observation that #MASKEDKNAPSACK is #P-hard, since one may reduce
#KNAPSACK to #MASKEDKNAPSACK by setting the mask u to be an all-zeroes string. We focus
on a particular kind of multidimensional #KNAPSACK that is defined over m MASKEDKNAPSACK
instances.
Definition 9 (Multidimensional #MASKEDKNAPSACK). Consider MASKEDKNAPSACK instances
K1, . . . ,Km, whereby Ki is defined by a set of weights ai,1, . . . , ai,n, a capacity bi, and a mask
ui = ui,1, . . . , ui,n ∈ {0, 1}n. We have that x is a solution to Ki (in symbols, x ∈ Si) if∑n

j=1 ai,j (xj ⊕ ui,j) ≤ bi. The output is the size of S =
⋂m

i=1 Si.

3 REDUCTION FROM STATISTICAL SIMILARITY TO #MINPMFATLEAST

We prove Proposition 2.

Proof of Proposition 2. Let P and Q be two product distributions. We will reduce

sTV(P,Q) =
∑

x∈{0,1}n

min(P (x), Q(x))

to a collection of polynomially many #MINPMFATLEAST instances over P and Q.

Let mmin and mmax denote the minimum and maximum nonzero values of min(P (x) , Q(x)) over
all x. By our assumption on the bit representation of the parameters pi, qi, we get thatmmin ≥ m0 :=(
2−ℓ
)n

= 2−ℓn. Moreover, mmax ≤ 1. Let V ≥ 1 be a number so that min(P (x), Q(x))/m0 ≤ V
for all x. Therefore, V ≤ mmax/m0 ≤ 1/m0 = 2ℓn. In fact, let us set V := 2ℓn. Let Yx :=
min(P (x) , Q(x)) /m0 and note that Yx lies in [1, V).

We will divide the interval [1, V) into sub-intervals that are multiples of (1 + ε) for some ε that is
within a linear factor of δ which we will fix later. More precisely, let

[1, V) =

u−1⋃
i=0

[
(1 + ε)i, (1 + ε)i+1

)
be a set of sub-intervals for 0 ≤ i ≤ u − 1 =

⌈
log1+ε V

⌉
− 1 ≤ poly(ℓ, n, 1/ε). For any

0 ≤ i ≤ u− 1, let ni denote the number of x ∈ {0, 1}n such that Yx is in
[
1, (1 + ε)

i
)

. That is,

ni :=
∣∣∣{x | Yx ∈ [1, (1 + ε)

i
)}∣∣∣ .

Let the average contribution of Yx in the range
[
(1 + ε)i−1, (1 + ε)i

)
be Bi. That is, Bi :=∑

Yx/(ni − ni−1), where the sum is over all Yx in the interval
[
(1 + ε)i−1, (1 + ε)i

)
. Then we

have the following equation:

sTV(P,Q)

m0
= n1B1 + (n2 − n1)B2 + (n3 − n2)B3 + · · ·+ (nu − nu−1)Bu. (1)

Since (1 + ε)i−1 ≤ Bi < (1 + ε)i, the following estimate d is a (1 + ε)-approximation of the RHS
of Equation (1):

d := n1(1 + ε) + (n2 − n1)(1 + ε)2 + (n3 − n2)(1 + ε)3 + · · ·+ (nu − nu−1)(1 + ε)u. (2)

By reorganizing the terms of Equation (2), we get

d =
(
(1 + ε)u − (1 + ε)u−1

)
(nu − nu−1)

+
(
(1 + ε)u−1 − (1 + ε)u−2

)
(nu − nu−2) + · · ·+ (1 + ε)nu. (3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Therefore it suffices to estimate nu − nj for every 1 ≤ j ≤ u − 1. (We know that nu = 2n.) By
definition, tj := nu − nj counts the number of x ∈ {0, 1}n such that Yx ≥ (1 + ε)j . Note that

Yx ≥ (1 + ε)
j ⇔ min(P (x) , Q(x)) ≥ (1 + ε)

j
m0.

That is, tj counts the number of x ∈ {0, 1}n such that min(P (x) , Q(x)) ≥ (1 + ε)
j
m0. If we

estimate each tj up to a (1 + ε)-multiplicative approximation, this in turn would give us a (1 + ε)-
multiplicative approximation for d by Equation (3), and for that matter a (1 + ε)

2-multiplicative
approximation for sTV(P,Q) by Equation (1). Hence, if we set ε := Ω(δ/2) so that (1+ε)2 ≤ (1+δ),
we get the desired approximation ratio of (1 + δ) for sTV(P,Q).

4 REDUCTION FROM #MINPMFATLEAST TO MULTIDIMENSIONAL
#MASKEDKNAPSACK

We prove Proposition 3.

Proof of Proposition 3. Let P and Q be two product distributions with Bernoulli parameters
p1, . . . , pn and q1, . . . , qn, respectively. The goal is to show that #MINPMFATLEAST, that
is, computing |{x ∈ {0, 1}n | min(P (x), Q(x)) ≥ C}|, can be written as an instance of
#MASKEDKNAPSACK.

We first give some notation and definitions that are necessary for the proof. Let

ai := max

(
pi

1− pi
,
1− pi
pi

)
and bi := min(pi, 1− pi) ,

and

ci := max

(
qi

1− qi
,
1− qi
qi

)
and di := min(qi, 1− qi) .

For any x ∈ {0, 1}n define sets TP and TQ as follows:

TP (x) :=

{
i ∈ [n] | pi ≥

1

2
, xi = 1 or pi ≤

1

2
, xi = 0

}
,

TQ(x) :=

{
i ∈ [n] | qi ≥

1

2
, xi = 1 or qi ≤

1

2
, xi = 0

}
.

For all x ∈ {0, 1}n, let Sx be such that i ∈ Sx if and only if xi = 1 (that is, x is the characteristic
vector of Sx).

We require the following claim.

Claim 10. It is the case that

P (x) =
∏
i∈Sx

pi
∏
i/∈Sx

(1− pi) =

(
n∏

i=1

bi

)(∏
i∈TP

ai

)
,

Q(x) =
∏
i∈Sx

qi
∏
i/∈Sx

(1− qi) =

(
n∏

i=1

di

)∏
i∈TQ

ci

 .

The proof of Claim 10 is straightforward, and it is based on appropriately rearranging the factors of
the PMFs of P and Q. Thus the inequalities P (x) ≥ C and Q(x) ≥ C are equivalent to(

n∏
i=1

bi

) ∏
i∈TP (x)

ai

 ≥ C and

(
n∏

i=1

di

) ∏
i∈TQ(x)

ci

 ≥ C,
or ∏

i/∈TP (x)

ai ≤
(
∏n

i=1 ai) (
∏n

i=1 bi)

C
and

∏
i/∈TQ(x)

ci ≤
(
∏n

i=1 ci) (
∏n

i=1 di)

C
,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

since ai, ci ≥ 1 for all i. In order to make the product a sum, we can take log on both sides, yielding∑
i∈[n]\TP (x)

log ai ≤ log
(
∏n

i=1 ai) (
∏n

i=1 bi)

C
,

∑
i∈[n]\TQ(x)

log ci ≤ log
(
∏n

i=1 ci) (
∏n

i=1 di)

C
.

At this point, the expressions look similar to KNAPSACK constraints. While we do not know how to
cast them as standard KNAPSACK constraints, we can frame them as MASKEDKNAPSACK constraints
as follows.

Let y1(x) be the characteristic vector of [n] \ TP (x) and y2(x) be the characteristic vector of
[n] \ TQ(x). Then the above inequalities become

n∑
i=1

(log ai) y1(x)i ≤ log
(
∏n

i=1 ai) (
∏n

i=1 bi)

C
,

n∑
i=1

(log ci) y2(x)i ≤ log
(
∏n

i=1 ci) (
∏n

i=1 di)

C
.

Define masks uP and uQ corresponding to P and Q as follows: uP = uP,i, . . . , uP,n is such that
uP,i = 1 if and only if pi ≥ 1/2, and uQ = uQ,i, . . . , uQ,n is such that uQ,i = 1 if and only if
qi ≥ 1/2. Then from the definition of TP , TQ and uP , uQ the above inequalities can be written as

n∑
i=1

(log ai) (xi ⊕ uP,i) ≤ log
(
∏n

i=1 ai) (
∏n

i=1 bi)

C
,

n∑
i=1

(log ci) (xi ⊕ uQ,i) ≤ log
(
∏n

i=1 ci) (
∏n

i=1 di)

C
.

Thus, for an instance P,Q,C of #MINPMFATLEAST we can construct two instances IP and
IQ of #MASKEDKNAPSACK where IP is specified by the weights log a1, . . . , log an, capacity

log
(
∏n

i=1 ai)(
∏n

i=1 bi)
C , and the mask uP , and IQ is specified by weights log c1, . . . , log cn, ca-

pacity log
(
∏n

i=1 ci)(
∏n

i=1 di)
C , and the mask uQ, so that for all x ∈ {0, 1}n it is the case that

min(P (x), Q(x)) ≥ C if and only if x is a solution to IP and a solution to IQ. Finally, note that this
reduction runs in time linear in n. This completes the proof.

5 COUNTING MULTIDIMENSIONAL MASKEDKNAPSACK SOLUTIONS

5.1 BACKGROUND ON BRANCHING PROGRAMS

We first fix some notation and terminology. A (W,n)-branching program is a branching program of
width W over n Boolean input variables. A read-once branching program (ROBP) is a branching
program whereby each input variable is accessed only once. A monotone (W,n)-ROBP is a (W,n)-
ROBP such that in each of its layers L, the nodes of L are totally ordered under some relation ≺, and
whenever u ≺ v for some nodes u and v it is the case that the set of partial accepting paths that start
at u are a subset of the set of partial accepting paths that start at v.

Given a branching programM and a string z, the notationM(z) denotes the output (“accept”/“reject”)
of M on input z. An implicit description of a monotone ROBP is a description according to which
one can efficiently check the relative order of two nodes under ≺ (within any layer), and given a node
u one can efficiently compute its neighbors.

The following notion of small-space sources was introduced by Kamp et al. (2011).
Definition 11 (Kamp et al. (2011)). A width-w small-space source is described by a (w, n)-branching
program D with an additional probability distribution pv on the outgoing edges associated with
vertices v ∈ D. Samples from the source are generated by taking a random walk on D according to
the pv’s and outputting the labels of the edges traversed.

We require the following useful claims by Gopalan et al. (2010). Claim 12 is an application of
dynamic programming.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Claim 12 (Gopalan et al. (2010)). Given a ROBP M of width at most W and a small-space source D
of width at most S, it is the case that Prx∼D[M(x) = 1] can be computed exactly in time O(nSW).

Claim 13 (Gopalan et al. (2010)). Given a (W,n)-ROBP M , the uniform distribution over M ’s
accepting inputs, {x |M(x) = 1} is a width W small-space source.

We further require the following important result from Gopalan et al. (2010).
Theorem 14 (Gopalan et al. (2010)). Given a monotone (W,n)-ROBP M , δ > 0, and a small-space
source D over {0, 1}n of width at most S, there exists an (O(n2S/δ), n)-monotone ROBP M0 such
that for all z, it is the case that M(z) ≤M0(z) and

Pr
z∼D

[M(z) = 1] ≤ Pr
z∼D

[M0(z) = 1] ≤ (1 + δ) Pr
z∼D

[M(z) = 1] .

Moreover, given an implicit description of M and a description of D, M0 can be constructed in
deterministic time O(n3S(S + logW) log(n/δ)/δ).

The main take-away of Theorem 14 is that the number of accepting paths ofM0 (under the distribution
D) approximates the number of accepting paths of M (under the distribution D), and moreover M0

has small width.

5.2 PROOF OF THEOREM 4

We prove Theorem 4. To this end, we first show Lemma 15. This lemma is based on the Dyer’s
rounding scheme in the context of standard #KNAPSACK.
Lemma 15 (Rounding). Given a collection of MASKEDKNAPSACK instances KNAPSACKs
K1, . . . ,Km, each over n variables and with a total weight of at most W , and solution
sets S1, . . . , Sm, respectively, we can deterministically in time O

(
n3 logW

)
construct new

MASKEDKNAPSACK instances K ′
1, . . . ,K

′
m with solution sets S′

1, . . . , S
′
m, respectively, each with

a total weight of at most O
(
n3
)
, such that Si ⊆ S′

i for all 1 ≤ i ≤ m and∣∣∣∣∣
m⋂
i=1

S′
i

∣∣∣∣∣ ≤ nm
∣∣∣∣∣
m⋂
i=1

Si

∣∣∣∣∣ .
Proof. Let

Si :=

x ∈ {0, 1}n |
n∑

j=1

ai,j (xj ⊕ ui,j) ≤ bi

 ,

whereby 0 ≤ ai,1 ≤ · · · ≤ ai,n ≤ bi. Let ki be such that ai,j ≤ bi/n for j ≤ ki and either ki = n or

ai,ki+1 > bi/n. Let Ci :=
{
z, ui,ki+1, . . . , ui,n | z ∈ {0, 1}ki

}
. If x ∈ Ci, then

n∑
j=1

aj (xj ⊕ ui,j) ≤
n∑

j=1

aj ≤ kibi/n ≤ bi

and so x ∈ Si. That is, Ci ⊆ Si. Let now αi,j :=
⌊
n2ai,j/bi

⌋
and δi,j := n2ai,j/bi − αi,j , such

that 0 ≤ δi,j < 1. Let also

S′
i :=

x ∈ {0, 1}n |
n∑

j=1

αi,j (xj ⊕ ui,j) ≤ n2


and S :=
⋂m

i=1 Si, S′ :=
⋂m

i=1 S
′
i. We will prove that |S| ≤ |S′| ≤ nm |S|. Let us first prove that

|S| ≤ |S′|. Let x ∈ S. Then for all i we have
n∑

j=1

αi,j (xj ⊕ ui,j) ≤
(
n2/bi

) n∑
j=1

ai,j (xj ⊕ ui,j) ≤
(
n2/bi

)
bi = n2,

so x ∈ S′
i and therefore x ∈ S′. Thus S ⊆ S′ and so |S| ≤ |S′|.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Let us now show that |S′| ≤ nm |S|. To this end, let Li := {j | ai,j ≤ bi/n}. For x ∈ S′ \ S, let
I(x) := {i | x ∈ S′

i \ Si}. For every i ∈ I(x), there exists pi(x) /∈ Li such that xpi
⊕ ui,pi

= 1 and
αi,pi(x) ≥ n. Otherwise, x ∈ Ci ⊆ Si ⊆ S′

i. (If there exist more than one such integer, take pi(x) to
be the smallest.) Construct f(x) = y by ypi(x) = 0 for i ∈ I(x) and yj = xj otherwise. Then for
any x ∈ S′ \ S, with y = f(x), we have

n∑
j=1

ai,j (yj ⊕ ui,j) =
bi
n2

n∑
j=1

(αi,j + δi,j) (yj ⊕ ui,j)

=
bi
n2

 n∑
j=1

αi,j (yj ⊕ ui,j) +
n∑

j=1

δi,j (yj ⊕ ui,j)


=

bi
n2

 n∑
j=1

αi,j (xj ⊕ ui,j)− αi,pi(x)

(
xpi
⊕ ui,pi(x)

)
+

n∑
j=1

δi,j (yj ⊕ ui,j)


=

bi
n2

 n∑
j=1

αi,j (xj ⊕ ui,j)− αi,pi(x) +

n∑
j=1

δi,j (yj ⊕ ui,j)


≤ bi
n2
(
n2 − n+ n

)
= bi.

That is, f(x) ∈ Si and so f(x) ∈ S. Hence f(S′) = S. The inverse mapping changes some set of
coordinates P with 0 ≤ |P | ≤ m, so∣∣f−1(y)

∣∣ ≤ 1 + n+

(
n

2

)
+ · · ·+

(
n

m

)
≤ nm.

That is, |S| ≤ nm |S′|. Therefore |S′| ≤
∣∣f−1(S)

∣∣ ≤ nm |S|.
We may now prove Theorem 4 by using Lemma 15.

Proof of Theorem 4. We will appeal to the techniques of Gopalan et al. (2010). First, we will apply
Lemma 15 to obtain MASKEDKNAPSACK instancesK ′

1, . . . ,K
′
m, each with a total weight of at most

O
(
n3
)
, and solution sets S′

1, . . . , S
′
m, respectively.

Let D be the uniform distribution over the set S′ :=
⋂m

i=1 S
′
i and observe that by Claim 13 D can

be generated by an explicit O
(
n3m

)
space source. For 1 ≤ i ≤ m, let M i be a (W,n)-ROBP

exactly computing the indicator function for Si. Let δ = O(ε/ (m (n+ 1)
m
)) to be chosen later.

For every 1 ≤ i ≤ m, by Theorem 14 we can explicitly in time nO(m) (logW) /δ construct a(
nO(m)/δ, n

)
-ROBP M i

r such that

Pr
[
M i

r(x) ̸=M(x)
]
≤ δ.

Define M such that M(x) :=
∧m

i=1M
i
r(x) for any x. Then M is a

(
nO(m

2)/δm, n
)

-ROBP. By a
union bound,

Pr
x∼D

[
M(x) ̸=

m∧
i=1

M i(x)

]
≤ mδ.

On the other hand, by Theorem 14,

Pr
x∼D

[
m∧
i=1

M i(x) = 1

]
≥ 1/ (n+ 1)

m
.

Therefore, by setting δ := ε/ (2m (n+ 1)
m
), we get

Pr
x∼D

[M(x) = 1] ≤ Pr
x∼D

[
m∧
i=1

M i(x) = 1

]
≤ (1 + ε) Pr

x∼D
[M(x) = 1] .

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Thus, p := Prx∼{0,1}n [x ∈ S′]Prx∼D[M(x) = 1] is a (1 + ε)-multiplicative approximation to the
fraction of solutions to all constraints

Pr
x∼{0,1}n

[
m∧
i=1

M i(x) = 1

]
= Pr

x∼{0,1}n
[x ∈ S′] Pr

x∼D

[
m∧
i=1

M i(x) = 1

]
.

The result now follows since we can compute p in time (n/δ)
O(m2) using Claim 12, as D is a

small-space source of width O
(
n3m

)
and M has width (n/δ)

O(m2).

6 ESTIMATING STATISTICAL SIMILARITY

We now prove Theorem 1 by combining the previous results.

Proof of Theorem 1. By Proposition 2, the (1 + δ)-multiplicative approximation of sTV(P,Q) re-
duces to the (1 + ε)-multiplicative approximation of polynomially-many #MINPMFATLEAST
instances over P,Q, namely t1, . . . , tk, for ε = Ω(δ/2) and k = poly(ℓ, n). By Proposition 3, the
instances t1, . . . , tk can be reduced to multidimensional #MASKEDKNAPSACK for m = 2. Using
Theorem 4, we can estimate each tj up to a (1 + ε)-multiplicative approximation in deterministic
polynomial time.

The running time of this algorithm is polynomial in ℓ, n, 1/δ because we ran a polynomial-time
approximation algorithm for multidimensional #MASKEDKNAPSACK polynomially many times.
In particular, the running time is poly(ℓ, n, 1/ε) ·O

(
(n/δ)

O(1)
)
logW = O

(
(ℓ · n/δ)O(1)

)
(since

W = poly(n), by Lemma 15).

7 CONCLUSION

We have given a simple FPTAS for estimating the statistical similarity between product distributions.
We reiterate that the known FPTAS for TV distance Feng et al. (2024) does not in general yield
an FPTAS for statistical similarity. In fact, we use different techniques than that of Feng et al.
(2024) to design the FPTAS for statistical similarity. Our algorithm is based on a reduction to a
new knapsack counting problem which we call (multidimensional) #MASKEDKNAPSACK which
might be of independent interest. Extending our results to more general classes of distributions
and establishing lower bounds is a promising and significant research direction. Finally, we believe
that a complexity-theoretic study of functions f in #P with range in [0, 1], for which there are
approximation schemes for both f and 1− f , is significant.

REFERENCES

Daniel Berend and Aryeh Kontorovich. A finite sample analysis of the naive Bayes classifier. J.
Mach. Learn. Res., 16:1519–1545, 2015.

Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, and N. V. Vinodchandran. Efficient distance
approximation for structured high-dimensional distributions via learning. In Proc. of NeurIPS,
2020.

Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, and N. V.
Vinodchandran. On approximating total variation distance. In Proceedings of IJCAI, 2023.

Adam Bouland, Lijie Chen, Dhiraj Holden, Justin Thaler, and Prashant Nalini Vasudevan. On the
power of statistical zero knowledge. In 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017,, pp. 708–719, 2017.

Thomas M. Cover and Joy A. Thomas. Elements of information theory (2. ed.). Wiley, 2006.

Peter Dixon, Sutanu Gayen, Aduri Pavan, and N. V. Vinodchandran. Perfect zero knowledge: New
upperbounds and relativized separations. In Rafael Pass and Krzysztof Pietrzak (eds.), Proc. of
TCC, volume 12550 of Lecture Notes in Computer Science, pp. 684–704. Springer, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Wolfang Doeblin. Exposé de la théorie des chaınes simples constantes de markova un nombre fini
d’états. Mathématique de l’Union Interbalkanique, 2(77-105):78–80, 1938.

Weiming Feng, Heng Guo, Mark Jerrum, and Jiaheng Wang. A simple polynomial-time approxima-
tion algorithm for the total variation distance between two product distributions. TheoretiCS, 2,
2023.

Weiming Feng, Liqiang Liu, and Tianren Liu. On deterministically approximating total variation
distance. In Proceedings of SODA, 2024.

Oded Goldreich, Amit Sahai, and Salil P. Vadhan. Can statistical zero knowledge be made non-
interactive? or On the relationship of SZK and NISZK. In Proc. of CRYPTO, pp. 467–484,
1999.

Parikshit Gopalan, Adam R. Klivans, and Raghu Meka. Polynomial-time approximation schemes
for Knapsack and related counting problems using branching programs. Electron. Colloquium
Comput. Complex., pp. 133, 2010.

Jesse Kamp, Anup Rao, Salil P. Vadhan, and David Zuckerman. Deterministic extractors for small-
space sources. J. Comput. Syst. Sci., 77(1):191–220, 2011. doi: 10.1016/J.JCSS.2010.06.014.
URL https://doi.org/10.1016/j.jcss.2010.06.014.

Richard M. Karp, Michael Luby, and Neal Madras. Monte-Carlo approximation algorithms for
enumeration problems. J. Algorithms, 10(3):429–448, 1989.

Aryeh Kontorovich. Sharp bounds on aggregate expert error, 2024. URL https://arxiv.org/
abs/2407.16642.

Erich Leo Lehmann and Joseph P. Romano. Testing Statistical Hypotheses, Third Edition. Springer
texts in statistics. Springer, 2008.

David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains and mixing times. American
Mathematical Society, 2006.

Torgny Lindvall. Lectures on the coupling method. Courier Corporation, 2002.

Lior Malka. How to achieve perfect simulation and A complete problem for non-interactive perfect
zero-knowledge. In Ran Canetti (ed.), Theory of Cryptography, Fifth Theory of Cryptography
Conference, TCC 2008, New York, USA, March 19-21, 2008, volume 4948 of Lecture Notes in
Computer Science, pp. 89–106. Springer, 2008.

Sean P Meyn and Richard L Tweedie. Markov chains and stochastic stability. Springer Science &
Business Media, 2012.

Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005.

Frank Nielsen. Generalized Bhattacharyya and Chernoff upper bounds on Bayes error using quasi-
arithmetic means. Pattern Recognit. Lett., 42:25–34, 2014.

Fabio Parisi, Francesco Strino, Boaz Nadler, and Yuval Kluger. Ranking and combining multiple
predictors without labeled data. Proceedings of the National Academy of Sciences, 111(4):1253–
1258, 2014.

Amit Sahai and Salil P. Vadhan. A complete problem for statistical zero knowledge. J. ACM, 50(2):
196–249, 2003.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From Theory to
Algorithms. Cambridge University Press, 2014.

Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. Springer series in statistics.
Springer, 2009. ISBN 978-0-387-79051-0. doi: 10.1007/B13794. URL https://doi.org/
10.1007/b13794.

11

https://doi.org/10.1016/j.jcss.2010.06.014
https://arxiv.org/abs/2407.16642
https://arxiv.org/abs/2407.16642
https://doi.org/10.1007/b13794
https://doi.org/10.1007/b13794

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A PSEUDOCODE

We present the pseudocode of our algorithms, in reverse order.

We present the pseudocode for Theorem 4 in Algorithm 1.

Algorithm 1 The pseudocode for Algorithm 1.
Require: m instances of MASKEDKNAPSACK, specified by weights {ai}mi=1, whereby ai =

ai,1, . . . , ai,n, mask vectors {ui}mi=1, whereby ui = ui,1, . . . , ui,n, capacities b1, . . . , bm, and
an accuracy error parameter ε.

Ensure: The output p is an (1 + ε)-estimate to multidimensional #MASKEDKNAPSACK.
1: {By parsing the input, we can compute m and n.}
2: for i← 1, . . . ,m do
3: for j ← 1, . . . , n do
4: αi,j ←

⌊
n2ai,j/bi

⌋
5: end for
6: end for
7: S′ ← {0, 1}n
8: for i← 1, . . . ,m do
9: {It is the case that Si :=

{
x ∈ {0, 1}n |

∑n
j=1 ai,j (xj ⊕ ui,j) ≤ bi

}
.}

10: Compute M i

11: {M i is a (W,n)-ROBP exactly computing the indicator function for Si.}
12: Compute M i

r

13: {M i
r is a

(
nO(m)/δ, n

)
-ROBP that is a rounding of M i, as given by Theorem 14.}

14: S′
i ←

{
x ∈ {0, 1}n |

∑n
j=1 αi,j (xj ⊕ ui,j) ≤ n2

}
15: {The set S′

i can be computed by dynamic programming in time polynomial in n.}
16: S′ ← S′ ∩ S′

i
17: end for
18: M ←

∧m
i=1M

i
r

19: pD ← Prx∼D[M(x) = 1]
20: {The probability pD can be computed by Claim 12.}
21: pS′ ← |S′|/2n
22: {Note that pS′ = Prx∼{0,1}n [x ∈ S′].}
23: p← pD · pS′

24: return p

We present the pseudocode for Proposition 2 in Algorithm 2.

We present the pseudocode for Proposition 2 in Algorithm 3.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Algorithm 2 The pseudocode for Proposition 3.
Require: Product distributions P,Q through their Bernoulli parameters p1, . . . , pn, q1, . . . , qn, and

a parameter C.
Ensure: The output I is an instance of the multidimensional #MASKEDKNAPSACK problem for

m = 2.
1: {By parsing the input, we can compute n.}
2: Πa ← 1
3: Πb ← 1
4: Πc ← 1
5: Πd ← 1
6: for i← 1, . . . , n do
7: ai ← max

(
pi

1−pi
, 1−pi

pi

)
8: bi ← min(pi, 1− pi)
9: ci ← max

(
qi

1−qi
, 1−qi

qi

)
10: di ← min(qi, 1− qi)
11: Πa ← Πa · ai
12: Πb ← Πb · bi
13: Πc ← Πc · ci
14: Πd ← Πd · di
15: if pi ≥ 1/2 then
16: uP , i← 1
17: else
18: uP , i← 0
19: end if
20: if qi ≥ 1/2 then
21: uQ, i← 1
22: else
23: uQ, i← 0
24: end if
25: end for
26: CP ← log(ΠaΠb/C)
27: CQ ← log(ΠcΠd/C)
28: IP ← ((log ai)

n
i=1 , uP , CP)

29: IQ ← ((log ci)
n
i=1 , uQ, CQ)

30: I ← (IP , IQ)
31: return I

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 3 The pseudocode for Proposition 2.
Require: Product distributions P,Q through their Bernoulli parameters p1, . . . , pn, q1, . . . , qn, and

an accuracy error parameter δ.
Ensure: The output d is an (1 + δ)-estimate of sTV(P,Q).

1: {By parsing the input, we can compute n.}
2: {We define ⟨·⟩2 to be a function that maps any number x to its (standard) binary representation

in {0, 1}∗.}
3: ℓ← 0
4: for i← 1, . . . , n do
5: ℓ← max(ℓ, |⟨pi⟩2| , |⟨qi⟩2|)
6: end for
7: m0 ← 2−ℓn

8: V ← 2ℓn

9: u← log1+ε V
10: {Note that u ≤ poly(ℓ, n, 1/ε).}
11: nu ← 2n

12: d← (1 + ε)nu
13: for k ← 2, . . . , u do
14: tk ← Algorithm 1

(
Algorithm 2

(
P,Q, (1 + ε)

k
m0

)
, δ/2

)
15: d← d+

(
(1 + ε)

k − (1 + ε)
k−1
)
tk

16: end for
17: return d

14

	Introduction
	Our Results
	Related Work
	Paper Organization

	Preliminaries
	Product Distributions
	Total Variation Distance and Statistical Similarity
	Counting Problems
	

	Reduction from Statistical Similarity to
	Reduction from to Multidimensional
	Counting Multidimensional Solutions
	Background on Branching Programs
	Proof of

	Estimating Statistical Similarity
	Conclusion
	Pseudocode

