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Abstract

Data missingness and quality are common problems in machine learning, especially for high-
stakes applications such as healthcare. Developers often train machine learning models on
carefully curated datasets using only high-quality data; however, this reduces the utility of
such models in production environments. We propose a novel neural network modification
to mitigate the impacts of low-quality and missing data which involves replacing the fixed
weights of a fully-connected layer with a function of additional input. This is inspired by
neuromodulation in biological neural networks where the cortex can up- and down-regulate
inputs based on their reliability and the presence of other data. In testing, with reliability
scores as a modulating signal, models with modulating layers were found to be more robust
against data quality degradation, including additional missingness. These models are supe-
rior to imputation as they save on training time by entirely skipping the imputation process
and further allow the introduction of other data quality measures that imputation cannot
handle. Our results suggest that explicitly accounting for reduced information quality with a
modulating fully connected layer can enable the deployment of artificial intelligence systems
in real-time applications.

1 Introduction

Despite the enormous academic and industrial interest in artificial intelligence, there is a large gap between
model performance in laboratory settings and real-world deployments. Reports estimate that over 75% of
data science and artificial intelligence projects do not make it into production (VentureBeat, 2019; [Sagar,
2021; |Chen and Asch) 2017)). One difficult transition from the laboratory is handling noisy and missing
data. Errors in predictor data and labels (Northcutt et all 2021) at the training stage are well understood
to produce poor pattern recognition with any strategy; garbage-in garbage-out. In the statistical learning
literature, the effects of inaccurate and missing data on simple classifiers such as logistic regression is
particularly well understood (Ameisen, |2020). As a result, datasets intended to train high-accuracy models
are often carefully curated and reviewed for validity (Ameisen, [2020; |Xiao et al.l |2018]). However, when
faced with noisy data from a new source, these models may fail (L’Heureux et al 2017). One special case
is convolutional neural networks for machine vision; augmenting the dataset with partially obscured inputs
has been shown to increase the network’s ability to match low-level patterns and increases accuracy (Zhong
et al., [2020).

These challenges are even more pronounced in applications that require high reliability and feature pervasive
missing data at inference time, such as healthcare (Chen and Asch| [2017; |Xiao et al., |2018)). Electronic
health records (EHR) can contain a high percentage of missing data both at random (keyboard entry errors,
temporarily absent data due to incomplete charting) and informative or missing-not-at-random (MNAR)
data (selective use of lab tests or invasive monitors based on observed or unobserved patient characteristics).
Medical measurements also have non-uniform noise; for instance, invasive blood pressure measurement is
more accurate than non-invasive blood pressure (Kallioinen et al., [2017)). Another example is the medical
equipment by different manufacturers that have various margins of error which affects the accuracy and
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hence the reliability of the measurement (Patel et al., 2007).

Mammalian brains have a distinct strategy to integrate multi-modal data to generate a model of the sur-
rounding environment. They modify the impact of each input based on the presence and reliability of other
signals. This effect can be observed dynamically in response to temporary changes in available inputs
et al,[2019), as well as long-term as a compensation mechanism for permanent changes such as neural injuries
(Hylin et al., [2017). For example, a human brain gives less weight to visual input in a dark environment and
relies on prior knowledge and other sensory cues more. Unlike simply down-weighting low-accuracy data,
replacement data with related information is up-weighted. This is usually modelled as a Bayesian inference
process (Cao et al., 2019; Ernst and Biilthoff, 2004; Alais and Burr, 2004; [Heeger}, 2017). This modulation
of different inputs is also observed in other organisms where the neural behavior of a neuron or a group
of neurons can be altered using neuromodulators (Harris-Warrick and Marder} [1991). Models of neuronal
activity have also shown that modulation can play an important role in learning (Swinehart and Abbott|
2005)), locomotion control (Stroud et al.,[2018)), context modulation (Podlaski et al.,[2020), and reinforcement
learning (Miconi et al., 2020). We used the inspiration from this process to design a fully-connected neural
network layer with variable weights. Those weights could be modulated based on a variety of inputs, but
we focus in this work on testing their performance on input reliability as a modulating signal. A restricted
structure of modulating inputs and effects on the modulated layer reduces the likelihood of severe over-
fitting and complexity of the estimation problem. This allowed us to train the neural network using datasets
that are loosely preprocessed with a high incidence of missing data while achieving high performance. At
inference time, the network was more capable of producing accurate outputs despite signal degradation. It
also showed more robustness as missingness levels were increased at test time and also as we introduced
out-of-distribution missingness patterns.

2 Related Work

The most obvious use case we propose for the modulated fully connected layer (MFCL) is handling missing
data. There is a vast literature on imputation, which also attempts to use alternative inputs to replace
missing data. Classical simple methods of imputation include constant values (e.g. mean imputation),
hot deck, k-nearest neighbor, and others . Single or multiple imputation using chained
equations (Gibbs sampling of missing data) is popular due to its relative accuracy and ability to account
for imputation uncertainty (Azur et al) |2011)). More advanced yet classic methods such as Bayesian ridge
regression and random forest imputation (Stekhoven and Bithlmann| [2012) have seen
relative success. Deep learning-based imputation that has been used recently uses generative networks
(Beaulieu-Jones and Moore, 2017, McCoy et all 2018 |[Lu et al., 2020; Lall and Robinson, 2021; McCoy
et all 2018; Mattei and Frellsen) |2019; |Yoon et al., |2018; [Ivanov et al. 2019) and graph networks (You,
et al., [2020). Our modulation approach can be incorporated into these existing deep learning imputation
methods to improve their performance and stability. Additionally, it provides the flexibility of skipping the
imputation step altogether when the task performed does not require imputation (i.e. classification) thus
skipping a preprocessing step and saving processing time.

Incorporating uncertainty measurements into deep neural networks has also been approached with Bayesian
deep learning methods, (Wang and Yeung, |2016; Wilson, [2020) which has a complex, assumption laden
structure using probabilistic graphical models. One simpler variation of Bayesian deep learning is the Gaus-
sian process deep neural network which assigns an uncertainty level at the output based on the missing data
so that inputs with greater missingness lead to higher uncertainty (Bradshaw et al) 2017). Our method
makes use of meaningful missingness patterns as opposed to treating it as a problem that leads to lower
confidence in outputs. The approach to learning despite missingness was also tackled in the Neumiss Ar-
chitecture (Morvan et all, [2020]) but the latter lacks in that it can only incorporate missing flags and not
quality measures.
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3 Methods

3.1 Architecture

A fully connected layer has a transfer function of
hout = f(W . hzn + b)u (1)

where h;, is the input to the layer, W is the weight matrix, b the bias and f the non-linearity function. W
is optimized during training and fixed at inference. We propose a modulated fully connected layer (MFCL)
where weights are made variable by replacing W by Wp,0a (Figure 1) where

Wmod =agw (m)7 (2)
bmod == gb(m); (3)

where m is the modulating signal input and g is the function that is defined by a multilayer perceptron.
Combining equations [T} 2] and [3] and integrating the bias term into the weights, we get

hout = f(gW (m) . hzn) (4)

This form constitutes an interaction term between m and h;, which allows a multiplication operation that
is not possible to compute by neural networks and can only be approximated. This additional functionality
allows for a flexibility to incorporate interaction terms between an input and its quality measures in a more
compact form.

3.2 Experiments

We first examined the modulating behavior of the MFCL using a toy model with simulated data and a
two-input logistic regression model with modulation. We then assessed the performance of the MFCL layer
in classification and imputation tasks using healthcare data from various sources. These experiments used
modulating signals of missing value flags and input reliability values of noisy data. We can think of missing
values as a special case included in reliability where missing implies completely unreliable measurement. For
the sake of clarity, we test the cases of missing values and noisy values separately rather than combining
them. For baseline comparison, we employed models with matching architectures while swapping the first
fully-connected layer with a MFCL. Base architectures were guided by previous best performing imputation
models in the literature. Modulation network architectures were optimized using a grid search. A complete
description of the architectures is elaborated in the appendix.

3.3 Datasets

The motivating dataset for our experiments derives from [Name redacted for anonymity] (ACTFAST). [Name
redacted for anonymity] approved this study and granted a waiver of informed consent. The dataset contains
preoperative measurements of medical conditions, demographics, vital signs, and lab values of patients as well
as postoperative outcomes that were used as labels for supervised learning including 30-day mortality, acute
kidney injury, and heart attack. The ACTFAST dataset was used in previous studies for prediction of 30-day
mortality (Fritz et al., 2020} [2019), acute kidney injury, and other complications (Cui et al., 2019; |Abraham
et al., 2021} |Fritz et al., 2018]). For predictors, we utilized a subset of the input features of preoperative vital
signs and lab values (15 variables). Table [2| (supplementary information) shows a list of variables used and
the missing percentages. Table [3| (supplementary information) shows the distribution of outcome values,
which have a large imbalance between positive and negative samples. We also used the Wisconsin Breast
Cancer (BC) dataset for classification of tumors from features extracted from a fine needle aspirate of breast
mass image (Mangasarian et al.l [1995). We also utilized the OASIS dataset for dementia prediction that was
open-sources on Kaggle (Marcus et al.| [2010). In the data quality experiments we utilized the BC dataset
with simulated noise as well as data from UK Biobank (Sudlow et all 2015) which includes measurements
of spirometry that is accompanied by a quality control measure that was used as modulating signal along
with missing data flags for spirometry and other input variables to predict chronic obstructive pulmonary
disease (COPD).
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Figure 1: Schematic of modulated fully connected layer. The weights of the fully connected layers are
modulated by the output of the modulation network.

3.4 Simulated Data

We created a simulated dataset with 1000 samples of two inputs and one classification output to demonstrate
the operation of the MFCL. The two inputs were IID and the output function depended on the missingness
pattern. It followed the following equation:

()

)1 if zymissing, xo > 0.5
sgn(x1 + x2) otherwise

We then added a missingness criteria for z; whenever o > 0.5 and then additionally removed 5% of x4

randomly. We trained a logistic regression model with MFCL (figure ) with missingness of variables as

the modulation input and then plotted the transfer function when there is no missingness (figure ) and

when each of the inputs is missing (figure & D).

3.5 Classification Task

We ran five experiments for classification using the ACTFAST, BC, and OASIS datasets. We tested the
MFCL in the place of fully-connected (FC) layers at the input level. For modulation input at the MFCL,
we utilized the missingness flags concatenated with the input signal.
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3.5.1 Baselines

The baseline classifiers were four MLPs with matching hidden layer structures that were fed imputed values
using different algorithms, namely: chained regression with Bayesian ridge regularization (Scikit Learn Iter-
ative Imputer), missForest algorithm (Stekhoven and Biithlmann| 2012), hot-deck imputation, and VAEAC
(Ivanov et all |2019)). We also tested one graphical network model GRAPE (You et al. 2020). We also
tested the concatenation of missingness flags with the input along with mean imputation to compare the
performance of MFCL with one of the simple masking models. The last model tested was Neumiss (Morvan
et al.l |2020)) which employed the same concept of learning with missingness.

ACTFAST We built three classifiers to predict 30-day Mortality, Acute Kidney Injury (AKI), and Heart
Attack from the preoperative input features. We used the datasets with the inherent missing data for training
and then tested the trained models with additional missingness artificially introduced in both random and
non-random fashions. Non-random missingness was introduced by two methods: removing the largest values
and by removing all the data points of a certain input feature.

Breast Cancer & OASIS For the classifier with missing flags as modulating signal, we introduced non-
random missingness into the training dataset by removing the highest quartile of each variable. At the
testing phase we evaluated each model with additional missingness similar to the ACTFAST classifiers.

3.6 Classification task with reliability measures

For the classifier with reliability signal, we tested it on the BC and COPD datasets.

Breast Cancer We utilized the complete dataset but added Gaussian noise with zero mean and variable
standard deviation (SD) where the SD values were sampled from a uniform distribution between 1 and 10
standard deviations of each variable. The higher end of SD values is very large, simulating a spectrum of
noisy to essentially missing data. Breast cancer dataset includes values that were measured from images of
a fine needle aspirate of a breast mass to describe cell nuclei characteristics. Extracted data includes mean
values as well as standard errors and worst value measurements. Due to this nature of variables and them
including error rate values, we selected 10 variables representing the mean value measurements only for this
experiment.

COPD We selected four variable from the UK Biobank datasets as input all of which contained organically
missing values. These variables are spirometry forced vital capacity (FVC), C-reactive protein, and systolic
and diastolic blood pressure We used these to predict the occurrence of COPD as defined by the existence
of the diagnosis ICD-10 code in the medical records. FVC values, in addition to missingness, contained a
quality control variable assessing the quality of the measurement in 3 levels (best, medium, and worst). We
integrated these levels with the missingness by encoding the three levels from best to worst as 0.0, 0.1, 0.2
and the missing flag as 1.0.

3.7 Imputation Task

We ran two experiments for imputation by an auto-encoder using the ACTFAST dataset. We utilized
the predictor features described above. We added the MFCLs in the place of FC layers at the inputs of
an autoencoder imputation system. All parameters of training were similar to the baseline autoencoder
described below.

3.7.1 Baselines

The baseline autoencoder for imputation was trained by adding artificial missingness to the input values at
random at a ratio of 25%. The loss function at the output layer calculated the mean squared error between
the output values and the original values of the artificially removed values. The naturally missing data was
included in the training dataset but not included in the loss function due to the absence of a known value
to compare to. Then the weights were optimized using an Adam optimizer with learning rate 0.01 and a
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learning rate scheduler that reduced the learning rate after five epochs of loss not improving. We ran 30
epochs of training with a batch size of 64. The models were tested by removing 10% of the test data either
randomly (random removal) or by removing the highest 10% quantile (non-random removal).

my my,
None missing 0 0 (B)
X; missing 1 0 (C)
X, missing 0 1 (D)

Figure 2: Simulation experiment results showing the operation of modulation. (A) The architecture of the
modulation logistic regression model depicting the three test cases. (B) The input output relationship at the
first test case when none of the inputs is missing. (C) The input output relationship when z; is missing, the
missing input axis is labelled in red color and both the z-axis as well as the color map denote the output y.
(D) The input output relationship when x5 is missing.

3.8 Performance Evaluation

We performed an 80:20 training test split for each dataset to measure the performance for each of the
architectures. We performed all our additional missingness tests only on the test split of the datasets. For
classification tasks, we utilized area under receiver operating curve (AUROC) and area under precision and
recall curve (AUPRC). In the training phase, binary cross-entropy loss was utilized as a cost function. For
regression and imputation tasks, we utilized mean squared error loss value as both the training cost function
and the test performance evaluation metric.

To compute the margins of error, we conducted 1000 folds of paired bootstrapping for each experiment and
computed the 95% confidence intervals for each test case. To test for statistical significance, we calculated
repeated measure ANOVA on the bootstrapping results followed by paired t-test between different model
pairs with correction for false discovery rate using Benjamini/Yekutieli method.
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Figure 3: AUPRC of classification tasks with artificial introduction of random, non-random, and feature
missingness averaged over all the bootstrap folds and test missingness levels (Error bars represent 95%
confidence intervals).

4 Results

4.1 Operation of MFCL

Figure 2| shows the results of the simulation experiment. When both inputs are available, the output appears
to be positively correlated equally with both inputs (figure ) When the input z; is missing, the output is
strongly correlated with the value of x5 reflecting the condition when missingness is meaningful. When the
input xo is missing, the output depends on x; only but with a lower slope since the missingness of x5 was
randomly generated and not meaningful but still the output depends on the existing variable. The slope
on the missing value axis is non-meaningful since the missing value is internally replaced with a zero (mean
value of normalized data). These result show that the introduction of modulation alters the behavior of the
fully connected layer to reflect the effect of missingness whether it is meaningful or random.

4.2 Classification with missing values

We then investigated whether modulation is beneficial to the classification performance in biomedical datasets
with missing data. Figure [3| plots the mean test AUPRC of MFCL and baseline classifiers across all the
testing conditions. Results for AUROC are shown in figure [ Results of the best performing models are
summarized in table [l We tested three paradigms of missingness with multiple levels of test missingness
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in each paradigm. The first paradigm was random missingness where in the test phase, we removed 20%,
40%, 60%, and 80% of the data in addition to the existing missingness. We found that that MFCL provided
the best AUPRC and AUROC in acute kidney injury (AKI), heart attack, and OASIS datasets. VAEAC
imputation provided best performance in 30-day mortality (AUPRC and AUROC) and tied with MFCL at
AKI AUPRC. Hot deck imputation performed best in breast cancer dataset and tied with MFCL in Oasis
AUROC measure.

The second testing paradigm, we tested a non-random missingness pattern where the highest quantile of
each input was removed. We removed the highest 20%, 40%, 60%, and 80% of the values and calculated the
mean AUPRC and AUROC. In this condition, MFCL had the best AUPRC performance across removals in
the 30-day mortality, AKI, and heart attack datasets achieving also the highest AUROC in the latter two
datasets. GRAPE imputation provided the highest performance in the breast cancer dataset (both AUPRC
and AUROC) and OASIS (AUROC). VAEAC performed achieved the best AUROC in 30-days mortality
and best AUPRC in OASIS dataset.

The final testing paradigm was aimed at testing for complete missingness of certain features. This could
happen when data from different sources are combined with variable data collection capabilities. We tested
the removal of one to five features and calculated the AUPRC and AUROC of classification across different
missingness levels. The missForest algorithm failed when a feature was completely removed so it yielded no
data. MFCL models achieved the best AUPRC in all but the breast cancer dataset and the best AUROC
in all but 30-day mortality and breast cancer. Addition of missingness flags along with mean imputation at
the input achieved the best AUROC at the 30-day mortality dataset while hotdeck imputation achieved the
best AUPRC and AUROC in the breast cancer dataset.

When MFCL model was not the best performing model, it was still among the top performing models
indicating that even in the cases where it was not the highest performer, it did not fail completely. Other
models had significant failures such as GRAPE that can be seen to fail at the feature removal. Other models
such as VAEAC, hot-deck imputation, and addition of missingness flags had comparable performances but
MFCL consistently was the top performing model across the larger and more unbalanced datasets. MFCL,
however, had poorer performance on the breast cancer dataset which was the smallest in size and the most
balanced (table . Another observation is that the model Neumiss which is similar in concept to MFCL
showed the worst performance out of all the models which is quite surprising.

These results show that MFCL produces additional robustness against large quantities of non-random miss-
ingness while still performing strongly well where missingness is low, especially in precision which is most
important in highly imbalanced datasets such as ACTFAST.

4.3 Classification with input values with variable reliability

One of the novelties of this architecture is the possibility of embedding reliability values. We tested the
modulation layer where input reliability (concatenated with the input signal) is used as a modulating signal
instead of missing flags (Figure . We tested the breast cancer dataset with simulated noise added and with
real-world reliability measurements in the COPD dataset along with missing data flags. We compared the
model to a normal DNN model and another DNN with the data quality flags concatenated with the input.
In this condition, the MFCL outperformed all other architectures over both AUROC and AUPRC measures
significantly (figure .

4.4 Autoencoder imputation with missing values

We tested imputation on the ACTFAST dataset (Figure by introducing 10% missingness in the test
datasets and measuring the mean squared error. We found that the addition of modulation layer did not
add much to the imputation performance in comparison to the normal autoencoder for random removal.
However, for the non-random removal, the MFCL layers showed significantly lower loss indicating higher
performance. It appears that all the networks were able to learn that representation indicated by the lower
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Figure 4: Performance of MFCL and baseline models (represented by AUROC and AUPRC) on the input
reliability modulation tasks (Error bars represent 95% confidence intervals over bootstrapping folds).

Table 1: Best performing models across different missingness levels for each paradigm as tested by pairwise
t-tests.

MEASURE DATASET RANDOM NON-RANDOM FEATURE

30-DAY MORT. VAEAC MFCL MFCL

AKI MFCL/VAEAC MFCL MFCL

AUPRC HEART ATTACK MFCL MFCL MFCL
BREAST CANCER HoT DECK GRAPE Hot DECK

OASIS MFCL VAEAC MFCL

30-DAY MORT. VAEAC VAEAC MEAN

AKI MFCL MFCL MFCL

AUROC HEART ATTACK MFCL MFCL MFCL
BREAST CANCER Hot DECK GRAPE Hot DECK

OASIS MFCL/HOT DECK GRAPE MFCL

loss in the non-random removal case but with MFCL learning was superior. These results show that the
addition of MFCL layer improved the imputation performance of autoencoders.

5 Discussion and Conclusion

We propose a new layer for artificial neural networks inspired by biological neuromodulation mechanisms
(Harris-Warrick and Marder} |1991). It allows the neural network to alter its weights and thus behavior based
on the modulating signal (figure . Our experiments showed that, when added to standard architectures,
modulating input layers make predictions more robust to missing and low quality data. Modulation was
useful when missingness was introduced across different paradigms indicating the usefulness of modulation
as a technique for introducing robustness into a system. This could provide an explanation of the existence
of neuromodulation since it allows a compact and flexible implementation of the multiplication operation
meaning it is possible to implement Bayesian inference in one layer. This was shown to be useful for
multiple biological operations such as learning (Swinehart and Abbott] 2005), locomotion control

9 |
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Figure 5: Performance on imputation tasks with artificial introduction of missing data in random (R) and
non-random (NR) fashions (Error bars represent 95% confidence intervals of bootstrapping folds).

et al., 2018)), context modulation (Podlaski et al.| [2020), and reinforcement learning (Miconi et al., 2020).

Modulation was shown to have a very strong performance especially in non-random removal which was
more pronounced in the complete feature removal. This could be useful when data from different sources
are combined such as deploying healthcare machine learning models to hospitals with limited resources.
In lower resource settings, marginalized groups have been observed to have more missing data (Chen
et al., 2020). Prediction methods not accounting for missing data can produce inaccurate results for
these groups and hence, disadvantaging them. Therefore, methods that explicitly account for missing
and low quality data instead of discarding the data are better in terms of social equity. On the other
hand, non-transparency of neural networks, especially that use only small amount of data points for
feature values can lead to feature-wise bias amplification (Leino et al., [2018). MFCL could improve the
equity of machine learning systems and mitigate biases that arise due to socioeconomic differences between
different communities. Another advantage over imputation techniques is that it also forgoes imputation oper-
ation leading to a decrease in computation power needed making the model suitable for low resource settings.

Despite our best effort, our testing procedure was limited by multiple factors discussed below. First, due
to the novelty and flexibility of this model, there are many possible combinations for hyperparameters to
explore. In order to limit the hyperparameter search space, we fixed the main network architecture and
only varied the modulation network hyperparameters, but in practice there may be interactions between
the hyperparameters of the two component networks. One other limitation is the lack of availability of large
open tabular datasets with high missingness which limits the ability to generalize our findings. To make
our experiments with informative missingness comparable across features, we restricted our input space to
numeric variables and discarded categorical variables. Although our method could be applied to missing
categorical variables, usually creating a “missing" level is fairly effective. Small technical modifications
would also be required to modulate all features derived from encoding a categorical variable in the same
way. We tested the application of the modulation process only in fully connected layers which are limited
by nature in the types of data that they can handle. We intend to test the inclusion of modulation into
other architectures such as convolutional layers and gated-recurrent units. It is important to address the
issue of the high number of parameters in the modulation network. We did not search over regularization
strategies of the modulation network, which could further improve its performance. Additionally, further
improvements to the layer could enhance this performance such as data augmentation or noise injection

10
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which is a subject of future work.

The main benefit of the modulation strategy compared to the conventional strategy of imputation is the
high performance accompanied by a saving of a processing step. Its modular form also allows its addition
to any architecture in a plug-and-play fashion. In future work we also plan to test its introduction to
the state-of-the-art imputation models and investigate their utility in data imputation especially with its
relative stability across different tasks in comparison to the other methods. The other main appeal to this
method is its flexibility to the addition of reliability measures in combination with missingness flags.

One extension of our approach is to add the MFCL in locations in the network beyond the input layer.
Preliminary experiments placing MFCL layers deep in the autoencoder experiments did not yield visible
improvement (data not shown). The modulating signal could also be any input signal (not only reliability
signal) such as context signal in a context switching task which could yield this network useful in multi-task
reinforcement learning problems among many other applications (Jovanovich and Phillips, 2018). It can also
be useful in compressing multi-task networks by compressing the multiple outputs into one with modulating
input acting as a switch to change behavior of the network based on the task in question (Kendall et al.|
2018} |Chen et al.l |2018; |Li et al., 2020)).

In conclusion, we have demonstrated that a modulation architecture could benefit in training neural networks
in avenues where data quality is an issue. It can lead to advance the field of MLOps which is concerned with
the integration of machine learning systems into production environments and thus fulfilling a big portion
of the potential of artificial intelligence systems in advancing state-of-the-art technologies.

6 Code and Data Availability

ACTFAST data is not available due to clinical data privacy. COPD data was extracted under UK Biobank
application [Number redacted for anonymity]. Breast Cancer data is available through scikit-learn and
preprocessed OASIS dataset is available through the Kaggle website https://www.kaggle.com/datasets/
jboysen/mri-and-alzheimers| while the raw data is available through the OASIS project https://www.
oasis-brains.org/. Code is available under MIT license on Github: [Link redacted for anonymity]

7 Competing Interest Declaration

The authors declare no competing interests.
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A Appendix

The models were all built and tested using pytorch 1.6 and run on a GeForce GTX 1080 GPU (Nvidia
Corportation, United States). The base networks were designed based on knowledge of previous literature
that utilized the datasets we used in this paper. For the MFCL layer architectures, we tested a small subset
of modulation architectures on the ACTFAST 30-day mortality data. We then fixed the architecture for
other ACTFAST tasks. We decreased the size of the architecture on other datasets to avoid overfitting. To
perform the hyperparameter search, we split the data into training, validation, and test sets using a 70:10:20
ratio. Tested architectures for the modulation layer are as follows:

e 1 hidden layer with 8 neurons
e 2 hidden layers with 8 neurons each
e 3 hidden layers with 8 neurons each

e 3 hidden layers with 8-4-8 neurons
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Table 2: Input variables and missing percentages in ACTFAST datasets.

Input Variable Missing Percentage

30-day Mortality AKI Heart Attack

N=67961 N=106870 N=111888
Systolic Blood Pressure 58.5% 57.3% 57.5%
Diastolic Blood Pressure 59.0% 57.8% 58.1%
Heart Rate 1.2% 1.3% 1.3%
SpOsy 1.0% 1.1% 1.1%
Alanine Transaminase 67.5% 65.4% 66.1%
Albumin 67.3% 65.1% 65.8%
Alkaline Phosphatase 67.5% 65.4% 66.1%
Creatinine 22.4% 23.8% 26.1%
Glucose 20.2% 21.7% 23.4%
Hematocrit 20.4% 22.4% 24.1%
Partial Thromboplastin Time 61.5% 59.3% 60.2%
Potassium 22.0% 23.3% 25.0%
Sodium 21.9% 23.3% 25.0%
Urea Nitrogen 22.0% 23.4% 25.1%
White Blood Cells 22.2% 23.9% 26.2%

e 3 hidden layers with 16 neurons each
e 4 hidden layers with 8 neurons each

e 5 hidden layers with 8 neurons each

We found little differences (none significant) and selected the highest performing architecture. We then
combined the training and validation sets to generate a new training set that was used on the final model
training. We tried to avoid a large number of hyperparameter tuning as we attempt to test the stability of
the new architecture in less than optimal conditions.

The architectures and training parameter of the networks presented are as follows

Classification tasks ACTFAST
The base network architecture were as follows:

e Number of hidden layers: 2
o Hidden layers’ architecture: 8-4

o Modulation network architecture: 3 hidden layers with 8 neurons each (mortality task) and 3 hidden
layers with 16 neurons each (AKI and heart attack tasks)

o Hidden layers activation function: ReLU
o Output layer activation function: Sigmoid

e Modulation layer location: Hidden layer 1

Classification tasks Breast Cancer (including both missing data and noised data tasks)
The base network architecture were as follows:
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e Number of hidden layers: 2

e Hidden layers’ architecture: 4-2

e Modulation network architecture: 2 hidden layers with 8-8 neurons
o Hidden layers activation function: ReLU

o Output layer activation function: Sigmoid

e Modulation layer location: Hidden layer 1

Classification tasks OASIS
The base network architecture were as follows:

e Number of hidden layers: 2

e Hidden layers’ architecture: 4-2

e Modulation network architecture: 2 hidden layers with 4-4 neurons
o Hidden layers activation function: ReLLU

o Output layer activation function: Sigmoid

e Modulation layer location: Hidden layer 1

Classification tasks COPD
The base network architecture were as follows:

e Number of hidden layers: 2

e Hidden layers’ architecture: 4-2

o Modulation network architecture: 2 hidden layers with 8-4 neurons
o Hidden layers activation function: ReLU

e Output layer activation function: Sigmoid

e Modulation layer location: Hidden layer 1
30-day Mortality task The training parameters were as follows

o Batch size: 64

e Number of epochs: 50

o Optimizer: Stochastic gradient descent
e Learning rate: 0.001

e Momentum: 0.9
Acute kidney injury task The training parameters were as follows

o Batch size: 64

e Number of epochs: 50

e Optimizer: Stochastic gradient descent
o Learning rate: 0.001

e Momentum: 0.9
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Heart attack task The training parameters were as follows

o Batch size: 64

e Number of epochs: 50

o Optimizer: Stochastic gradient descent
e Learning rate: 0.001

e Momentum: 0.9
Breast cancer task The training parameters were as follows

o Batch size: 64

Number of epochs: 50
e Optimizer: Stochastic gradient descent
e Learning rate: 0.03

e Momentum: 0.9
OASIS task The training parameters were as follows

o Batch size: 64

e Number of epochs: 1000

e Optimizer: Stochastic gradient descent
o Learning rate: 0.01

e Momentum: 0.9
COPD task The training parameters were as follows

o Batch size: 64

e Number of epochs: 50

e Optimizer: Stochastic gradient descent
e Learning rate: 0.03

e Momentum: 0.9

Imputation Tasks ACTFAST
The base network architecture were as follows:

e Number of hidden layers: 3

o Hidden layers’ architecture: 10-5-10

o Hidden layers activation function: ReLU

e Output layer activation function: Linear

o Modulation network architecture: 3 hidden layers with 8 neurons each

e Modulation layer location: 1st hidden layer
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Table 3: Output variables imbalance in classification datasets.

Output Variable Positive Percentage
30-day Mortality 2.3%

Acute Kidney Injury 6.1%

Heart Attack 0.9%

Breast Cancer 62.7%

OASIS 44.8%

COPD 4.0%

Imputation Tasks Training parameters were as follows:

o Batch size: 64

e Number of epochs: ACTFAST: 30
o Optimizer: Adam

e Learning rate: 0.01

e Betas: 0.9 and 0.999
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Figure 6: AUROC of classification tasks with artificial introduction of random, non-random, and feature
missingness averaged over all the bootstrap folds and test missingness levels (Error bars represent 95%

confidence intervals).
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