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ABSTRACT

Modern deep learning (DL) architectures are trained using variants of the SGD
algorithm that is run with a manually defined learning rate schedule, i.e., the
learning rate is dropped at the pre-defined epochs, typically when the training
loss is expected to saturate. In this paper we develop an algorithm that realizes
the learning rate drop automatically. The proposed method, that we refer to as
AutoDrop, is motivated by the observation that the angular velocity of the model
parameters, i.e., the velocity of the changes of the convergence direction, for a fixed
learning rate initially increases rapidly and then progresses towards soft saturation.
At saturation the optimizer slows down thus the angular velocity saturation is a good
indicator for dropping the learning rate. After the drop, the angular velocity “resets”
and follows the previously described pattern - it increases again until saturation. We
show that our method improves over SOTA training approaches: it accelerates the
training of DL models and leads to a better generalization. We also show that our
method does not require any extra hyperparameter tuning. AutoDrop is furthermore
extremely simple to implement and computationally cheap. Finally, we develop
a theoretical framework for analyzing our algorithm and provide convergence
guarantees.

1 INTRODUCTION

As data sets grow in size and complexity, it is becoming more difficult to pull useful features from
them using hand-crafted feature extractors. For this reason, DL frameworks (Goodfellow et al.,
2016) are now widely popular. DL frameworks process input data using multi-layer networks and
automatically find high-quality representation of complex data useful for a particular learning task.
Today DL approaches are generally recognized as superior to all alternatives for image (Krizhevsky
et al., 2012; He et al., 2016), speech (Abdel-Hamid et al., 2012), and video (Karpathy et al., 2014)
recognition, image segmentation (Chen et al., 2016), and natural language processing (Weston et al.,
2014). Furthermore, DL is the leading artificial intelligence technology in major tech companies
such as Facebook, Google, Microsoft, and IBM, as well as in countless start-ups, where it is used
for a plethora of learning problems including content filtering, photo collection management, topic
classification, search/ad ranking, video search and indexing, and copyrighted material detection.

Setting the values and schedules of the hyperparameters for training DL models is computationally
expensive and time consuming, e.g., a deep model with around ten billion parameters requires roughly
500 GPUs to be trained in around two weeks (Shoeybi et al., 2019). Among all hyperparameters used
when training DL models, the learning rate schedule is one of the most important (Jin et al., 2020).
For most SOTA DL architectures, the learning rate is dropped several times during training at epochs
chosen by the user. With growing sizes of modern architectures however, performing any manual
tuning of the hyperparameters will eventually become prohibitive. More efficient techniques that
allow automatic and online setting of hyperparameters translate to substantial savings of resources,
time, and money (today the cost of training a single state-of-the-art DL model reaches up to hundreds
of thousands of dollars (Peng, 2019)).

This paper addresses a challenge of developing an automatic method for adjusting the learning rate
that works in an online fashion during network training and does not introduce any extra hyper-
parameters to tune. The basis for our approach is rooted in the observation that the angular velocity
of the model parameters, defined below, is an excellent indicator of the dynamics of the convergence
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of an optimizer and can be easily used to guide the learning rate drop during network training. The
resulting algorithm that we obtain is extremely simple, can be used on the top of any DL optimizer
(SGD (Bottou, 1998), momentum SGD (Polyak, 1964), ADAM (Kingma & Ba, 2015), etc.), and
enjoys an elegant theoretical framework. We empirically demonstrate that our method accelerates the
training of DL models and leads to better generalization compared to SOTA techniques.
Definition 1. Define the angular velocity of model parameters as:

!i =
\(si, si�1)

1 epoch
, where si = xi+1 � xi (1)

and xi is the parameter vector in the end of the i
th epoch. The operator \(·, ·) calculates the angle

between two vectors and is defined as:

\(si, si�1) =
180�

⇡
· arccos

✓
s
T
i si�1

||si||||si�1||+ ✏

◆
, (2)

where ✏ is a small positive number preventing the division by zero 1.

This paper is organized as follows: Section 2 discusses the related work, Section 3 builds an intuition
for understanding our algorithm based on simple examples, Section 4 shows our algorithm, Section 5
captures the theoretical convergence guarantees, Section 6 presents experimental results, and Section 7
concludes the paper. All proofs and experimental details are deferred to the Supplement.

2 RELATED WORK

In this section, we summarize different types of learning rate adaptation methods and divide them into
four major categories. Scheduling-based methods rely on a carefully designed learning rate schedules
that are tailored to the non-convex nature of the deep learning optimization. More specifically, it
was proposed in (Smith, 2017) to use cyclical learning rate pattern to train DL models and apply
a triangular learning rate policy in each cycle (i.e., first increase and then decrease the learning
rate linearly in the cycle) to potentially allow more rapid traversal of saddle point plateaus. This
idea was further extended to the super-convergence policy (Smith & Topin, 2017) where there is
only one triangular cycle for the whole training process. This concept was also applied to other
hyperparameters, e.g.:, momentum coefficient (Smith, 2018). Cyclical learning rates were also used
in (Loshchilov & Hutter, 2017), where the authors combine them with restart techniques when training
deep neural networks. The authors decrease the learning rate from a maximum value to a minimum
value using a cosine annealing scheme and then periodically restart the process. All these methods
define the learning rate policy manually, thus they constitute deterministic scheduling methods. As
opposed to these techniques, (Jin et al., 2020) proposes an automatic learning rate scheduling method.
The authors use Gaussian process as a surrogate model to establish the connection between the
learning rate and the expected validation loss. The method updates a posterior distribution of the
validation loss repeatedly and search for the best learning rate with respect to the posterior on the fly.
This method requires a careful design of an acquisition function and a forecasting model in order to
obtain an accurate prediction of the posterior of the validation loss.

Another group of techniques are hypergradient-based methods (Donini et al., 2020; Yang et al., 2019;
Baydin et al., 2018; Franceschi et al., 2017) that optimize both the model parameters and the learning
rate simultaneously. The authors of these methods typically introduce a hypergradient that is defined
as a gradient of the validation error with respect to the learning rate schedule. The learning rate is
optimized online via gradient descent. This technique however is quite sensitive to the choice of the
hyperparameters and is usually unable to reach state-of-the-art performance (Jin et al., 2020).

Hyperparameter optimization methods aim to automatically find a good set of hyperparameters
offline. They either build explicit regression models to describe the dependence of target algorithm
performance on hyperparameter settings (Hutter et al., 2011), or optimize hyperparameters by
performing random search along with using greedy sequential methods based on the expected
improvement criterion (Bergstra et al., 2011), or use bandit-based approach for hyperparameter
selection (Li et al., 2018). These technique can be combined with Bayesian optimization (Falkner
et al., 2018; Zela et al., 2018). Recently, several parallel methods were proposed for hyperparameter
tuning (Jaderberg et al., 2017; Li et al., 2019; Parker-Holder et al., 2020; Li et al., 2020) as well. The
hyperparameter optimization methods are computationally expensive in practice.

1✏ is omitted in the theoretical derivations.

2



Under review as a conference paper at ICLR 2022

Finally, popular adaptive learning rate optimizers adjust the learning rate for each parameter indi-
vidually based on gradient information from past iterations. AdaGrad (Duchi et al., 2011) proposes
to update each parameter using different learning rate which is proportional to the inverse of the
past accumulated squared gradients of the parameter. Thus the parameters associated with larger
accumulated squared gradients have smaller step size. This method is enabling the model to learn
infrequently occurring features, as these features might be highly informative and discriminative. The
major weakness of AdaGrad is that the learning rates continually decrease during the training and
eventually become too small for the model to learn. Later on, RMSprop (Tieleman et al., 2012) and
Adadelta (Zeiler, 2012) were proposed to resolve the issue of diminishing learning rate in AdaGrad.
Instead of directly summing up the past squared gradients, both methods maintain an exponential
average of the squared gradients which is used to scale the learning rate of each parameter. The
exponential average of the squared gradients could be considered as an approximation to the second
moment of the gradients. One step further, ADAM (Kingma & Ba, 2015) estimates both first and
second moments of the gradients and use them together to update the parameters.

3 MOTIVATING EXAMPLE

In this section we analyze the properties of the angular velocity for a noisy quadratic model. While
simple, this model is used as a proxy for analyzing neural network optimization (Schaul et al., 2013;
Martens & Grosse, 2015; Zhang et al., 2019b).
Definition 2 (Noisy Quadratic Model). We use the same model as in (Zhang et al., 2019b). The
model is represented by the following loss function

L(x) =
1

2
(x� c)TA(x� c), (3)

where c ⇠ N(x⇤
,⌃) and both A and ⌃ are diagonal. Without loss of generality, we assume x⇤ = 0.

The update formula for the gradient descent at the step t+ 1 is given as
xt+1 = xt � ↵rL(xt) = xt � ↵A(xt � ct), ct ⇠ N(0,⌃), (4)

where ↵ is the learning rate.

We optimize noisy quadratic model with x 2 R200 and A = diag( 1
10 ,

2
10 , ...,

200
10 ) using Gradient

Descent (GD), where in each experiment ↵ = [0.06, 0.03, 0.01, 0, 001].

Figure 1: The behavior of the loss and angular velocity for noisy quadratic model. An optimizer
is run with different settings of the learning rate ↵ = [0.06, 0.03, 0.01, 0, 001]. Angular velocity is
averaged over 20 iterations.

The experiments captured in Figure 1 reveal the following properties:

(P1) Angular velocity saturation: the angular velocity curves2 have the tendency to saturate as the
training proceeds, and furthermore when the angular velocity enters the saturation phase, the
optimizer slows down its convergence,

(P2) Angular velocity saturation levels: i) if the learning rate is large enough such that the algo-
rithm cannot converge to the optimum, the angular velocity saturates at a level larger than
90 degrees and smaller than 120 degrees; ii) as the learning rate decreases, and the algorithm

2For the noisy quadratic model, the angular velocity (given in Definition 1) is computed with respect to one
iteration, rather than an epoch, as for this model there is no notion of the epoch.
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systematically converges closer to the optimum, the angular velocity saturates at progressively
lower levels; iii) smaller learning rate leads to a slower saturation of the angular velocity; iv)
when the learning rate is low enough such that the algorithm can converge to the optimum, the
angular velocity saturates at 90 degrees.

These empirical properties can be theoretically justified as shown in the next theorem.
Theorem 1. Let the i-th diagonal terms of matrices A and ⌃ in the noisy quadratic model be given
as ai and �i, respectively. Then, the expected inner product < st, st+1 > converges to

I
⇤ = lim

t!1
E[< st, st+1 >] = �↵3

nX

i=1

a
3
i�

2
i

2� ↵ai
. (5)

Moreover, the cosine value of an angle between two consecutive steps cos\(st, st+1) satisfies

C
⇤= lim

t!1
E[cos(\(st, st+1))]⇡�

↵

2

Pn
i=1

a3
i�

2
i

2�↵aiPn
i=1

a2
i�

2
i

2�↵ai

��↵maxi ai
2

(6)

C
⇤ 2 [� 1

2 , 0] and thus \(st, st+1) is between 90 to 120 degrees.

Theorem 1 implies that as training proceeds, the angular velocity eventually saturates as stated in
property P1. Theorem 1 furthermore shows that decreasing the learning rate causes the angle between
st and st+1 to converge to a smaller value. Also, from Theorem 1, I⇤ = limt!1 E[< st, st+1 >] =

�
Pn

i=1(↵ai)
3
�
2
i

h
1

2�↵ai

i
. When ↵ai(i = 1, .., n) is small enough, I⇤ can be treated as 0 which

implies that st is orthogonal to st+1. In other words, the angle between st and st+1 converges to
90 degrees for small enough learning rate. Otherwise, for larger learning rates, this angle saturates
above 90 degrees. Furthermore, the limit of cosine angle C

⇤ is approximately larger than � 1
2 , thus

the saturation level of angular velocity should be below 120 degrees. This together supports property
P2 (in particular this supports points i,ii, and iv; point iii remains an empirical observation).

We next empirically verified whether these observations carry over to non-convex DL setting on a
simple experiment reported in Figure 2. Clearly, property P1 holds, whereas property P2 is satisfied
partially. In particular conclusion iii is broken as the angular velocity may not reach 90 degrees. Also,
in a DL setting one can observe that for lower learning rates the angular velocity curves become more
noisy at saturation, which was not the case for a noisy quadratic model.

Figure 2: The behavior of the loss and angular velocity for an exemplary DL problem (training
ResNet-18 on CIFAR-10). An optimizer is run with different settings of the learning rate ↵ =
[0.3, 0.1, 0.03, 0.01, 0.003]. Angular velocity is calculated over a single epoch.

Property P1 is a key observation underlying our algorithm. An important conclusion from this
observation is that the saturation of the angular velocity can potentially guide the drop of the learning
rate of the optimization algorithm. In other words, given the lower-bound on the learning rate, each
time the angular velocity saturates, the learning algorithm should decrease the learning rate. Tracking
the saturation of the angular velocity is more plausible than tracking the saturation of the loss function
since, as can be clearly seen in Figure 1, angular velocity curves follow much harder saturation
pattern. Also, the loss function does not necessary need to have a bounded range, as opposed to the
angular velocity. We found that property P1 is sufficient to design an optimization algorithm for
training DL models. The algorithm is described in Section 4. Property P2 is crucial for the theoretical
analysis provided in Section 5.

Following the above intuition, we implement a simple algorithm for optimizing the noisy quadratic
model. The algorithm drops the learning rate by a factor of 2 when the angular velocity saturates (i.e.:,
the change of the angular velocity averaged across 20 iterations is smaller than 0.01 degree between
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2 consecutive iterations). The initial learning rate was set to 0.06 and the minimal one was set to
0.001. Figure 3 captures the results. It shows that the algorithm that is using the angular velocity to
guide the drop of the learning rate indeed converges to the optimum.

Figure 3: The behavior of the loss and angular velocity for the noisy
quadratic model. An optimizer is using an automatic drop of the
learning rate guided by the saturation of the angular velocity. Angular
velocity is averaged over 20 iterations.

The aforementioned sim-
ple algorithm led us to de-
rive the method for optimiz-
ing DL models using au-
tomatic learning rate drop
that we refer to as Auto-
Drop. The obtained method
is a straightforward exten-
sion of the above algo-
rithm and is described in
the next section. The ex-
tension accommodates the
fundamental difference that
we observed between noisy
quadratic model and the DL model: the fact that in the case of DL models, lower learning rates lead
to a larger noise of the angular velocity at saturation.

Algorithm 1 AutoDrop
Require:

↵0 and ↵: initial learning rate of the optimizer and its lower bound
✓0 and ✓: initial threshold for the change in the angular velocity and its upper bound
⇢: learning rate drop factor
x0 : initial model parameter vector
nd: learning rate drop delay in number of epochs

x x0, ↵ ↵0, ✓  ✓0, s0  0, t 0
drop↵ false

while not converged do

t t+ 1, y  x

Train the model for one epoch with learning rate ↵ and update x accordingly
st  x� y; !t  \(st, st�1)

//Check the condition for dropping ↵

if t > 2 and |!t � !t�1| < ✓ then

z  0, k  0, drop↵ true

end if

if drop↵ then

k  k + 1
z  z + k · x //Accumulate the scaled values of parameters
if k � nd then

x 2z
(nd+1)nd

//Compute the exponential average of model parameters
↵ max{↵, ⇢⇥ ↵}, ✓  min{✓, 1

⇢ ⇥ ✓} //Drop ↵ and adjust ✓
drop↵ false

end if

end if

end while

//Recommended setting of hyperparameters:
↵ = 0.0001, ✓0 = 0.01�, ✓ = 1�, and nd = 20
⇢,↵0 - the same as in SOTA
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4 ALGORITHM

The algorithm for training deep learning models with automatic learning rate drop is captured in
Algorithm 1. The algorithm admits on its input the initial learning rate ↵0, the value of the smallest
permissible learning rate ↵, initial threshold for the change in the angular velocity ✓0 that will
determine the first drop of the learning rate, the value of the largest permissible threshold for the
change in the angular velocity ✓, learning rate drop factor ⇢ (⇢ 2 (0, 1); each time the learning rate is
dropped, it is multiplied by ⇢), initial model parameter vector x0, and the learning rate drop delay nd

(this hyper-parameter will be explained in the next paragraph).

The algorithm triggers the procedure for dropping the learning rate each time the angular velocity
changes by less than the threshold ✓ between two consecutive epochs (✓ is initialized with ✓0). Before
the learning rate is dropped (i.e., multiplied by ⇢), the optimizer continues operating with the current
learning rate for another nd epochs during which it calculates the exponential average of model
parameters (parameter averaging is commonly done by practitioners and was proposed by (Polyak &
Juditsky, 1992)). This is done to stabilize the learning process. Finally, after each learning rate drop,
the threshold for the change in the angular velocity is increased (i.e., divided by ⇢). This is necessary
as the angular velocity becomes more noisy for the lower learning rates.

AutoDrop algorithm can be thought of as a meta-scheme that can be put on the top of any optimization
method for training deep learning models. Thus one can use any optimizer to update model parameters.
In practice we recommend using the following setting of the hyperparameters for our algorithm:
↵ = 0.0001, ✓0 = 0.01�, ✓ = 1�, nd = 20, and ⇢ set in the same way as in SOTA. As will be shown
in the experimental section this set of parameters guarantees good performance for a wide range of
model architectures and data sets.

5 THEORY

This section theoretically shows that decreasing the learning rate when the angular velocity saturates
guarantees the sub-linear convergence rate of SGD and momentum SGD methods.

5.1 UNIFIED CONVERGENCE ANALYSIS FOR SGD AND MOMENTUM SGD WITH DISCRETE
LEARNING RATE DROP

Firstly, we present a unified theoretical framework that covers the update rule of both SGD and
momentum SGD. We refer to these update rules jointly as Unified Momentum (UM) method. This
framework was proposed in (Yang et al., 2016).

UM :

8
><

>:

yt+1 = xt � ↵tG(xt; ⇠t)

y
s
t+1 = xt � s↵tG(xt; ⇠t)

xt+1 = yt+1 + �(yst+1 � y
s
t )

(7)

where t is the iteration index, � is the momentum parameter, ↵t is the learning rate at time t, xt is the
parameter vector at time t, and G(xt; ⇠t) is the gradient of the loss function at time t computed for a
data mini-batch ⇠t. s is the factor that controls the type of optimization method in the following way:

• s = 0 Heavy-Ball (HB) method:
HB: xt+1 = xt � ↵tG(xt; ⇠t) + �(xt � xt�1)

• s = 1 Nestrov (NAG) method:

NAG:
⇢
yt+1 = xt � ↵tG(xt; ⇠t)

xt+1 = yt+1 + �(yt+1 � yt)

• s = 1/(1� �) Gradient Descent (GD) method:
GD: xt+1 = xt � ↵t/(1� �)G(xt; ⇠t).

The state-of-the-art convergence analysis for common machine learning optimizers only supports
constant learning rate (Le Roux et al., 2012; Yang et al., 2016; Schmidt et al., 2017; Ramezani-Kebrya
et al., 2018; Zhang et al., 2019a) or continuous learning rate drop schemes (Wu et al., 2018; 2019;
Gower et al., 2019). However, the learning rate is dropped in a discrete fashion in many practical
cases, especially in DL. Theorem 2 provides a theoretical convergence guarantee for optimization
algorithms that use discrete learning rate drop. The theorem requires some mild (easy to satisfy
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in practice and thus realistic) constraints on the drop gap (ki), i.e.:, the frequency of dropping the
learning rate. Theorem 2 accommodates learning settings relying on discrete learning rate drops and
thus is well-aligned with approaches used by practitioners. Moreover, in the next section we extend
this theorem to our AutoDrop approach.
Theorem 2. Suppose f(x) is a convex function, E [kG(x; ⇠)� E[G(x; ⇠)]k]  �

2 and k@f(x)k  G

for any x and some non-negative G. Given a sequence of decreasing learning rates {↵̂i}n�1
i=�1 ⇢ (0, 1)

and a sequence of integers {ki}n�1
i=0 ⇢ N (n� 1), there exits constants 1,2 such that

↵̂i  (i+ 2)�
2
3 , ki↵̂i � 1(i+ 2)�

1
3 , ki↵̂i↵̂i�1  2(i+ 1)�1

, 8i = 0, 1, ..., n� 1. (8)

Define a partition ⇧ : 0 = t0 < t1 < ... < tn = T (T =
Pn�1

i=0 ki) based on the integer sequence
{ki}n�1

i=0 such that the gap between ti and ti+1 is ki (ki = ti+1 � ti). Run UM update defined in
Equation 7 for T iterations by setting the learning rate ↵t based on a sequence {↵̂i}n�1

i=�1 as
↵t = ↵̂i, where ti  t < ti+1. (9)

Then the following holds:

min
t=0,...,T�1

{E[f(xt)� f(x⇤)]} 2�(f(x0)� f(x⇤))[(n+ 1)
1
3 � 2

1
3 ]

21(1� �)[(n+ 1)
2
3 � 2

2
3 ]

+
(1� �) kx0 � x

⇤k2

31[(n+ 1)
2
3 � 2

2
3 ]

+
(2s� + 1)(G2 + �

2)2 log n

3(1� �)1[(n+ 1)
2
3 � 2

2
3 ]

. (10)

5.2 CONVERGENCE ANALYSIS OF AUTODROP

For a fixed learning rate ↵, we introduce a simplified mathematical model of the behavior of the
angular velocity as a function of iterations. The model is defined below (and depicted in Figure 4):

v↵(t) =
⇡

2
(1 + ✏↵)

✓
1� 1

�↵t

◆
, (11)

where t is the number of iterations, ✏ and � are two constants that control the asymptote and curvature
of the velocity.

Figure 4: Angular velocity model for
a fixed learning rate ↵.

Algorithm 2 AutoDrop (approximate)
Inputs: x0: initial weight
Hyperparameters: {↵̂i}: set of learning rates, v↵(t): ang.
vel. model, ⌧ : threshold for the derivative of ang. vel.
Initialize i = 0, t0 = 0, t = 0
while i < n do

Update xt via (7) with learning rate ↵t= ↵̂i.
if v

0
↵̂i
(t� ti)  ⌧ then

i = i+ 1; ti = t

end if

t = t+ 1, T = t

end while

return {xt}T�1
t=0 (T: # iterations)

Figure 5: The behavior of the angular velocity (left) and the
learning rate (right) for Algorithm 2.

v↵(t) saturates in ⇡
2 [1 + ✏↵] when t

goes to infinity. Note that the given
model complies with the property P2
empirically observed and described
in Section 3: i) if the learning rate
is large enough, the angular veloc-
ity saturates at a level larger than
⇡/2 and smaller than 2⇡/3; ii) as
the learning rate decreases, the angu-
lar velocity saturates at progressively
lower levels; iii) smaller learning rate leads to a slower saturation of angular velocity; iv) when the
learning rate is low enough the angular velocity saturates at ⇡/2. Lets assume an upper-bound ↵max

for the learning rate. Since the limit of the angular velocity should be between ⇡/2 and 2⇡/3, the
range of factor ✏ is set to be (0, 1

3↵max
).
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For the the purpose of the theoretical analysis, we drop the learning rate every time the derivative of
the angular velocity decreases to a threshold ⌧ (Algorithm 2) instead of detecting whether the change
of the angular velocity is small enough (Algorithm 1). Intuitively, when the derivative of the angular
velocity is close to zero, we would expect the angular velocity to saturate. We are going to analyze
the convergence of Algorithm 2, which is an approximate version of Algorithm 1. The behavior of
the angular velocity and the learning rate for Algorithm 2 is depicted in Figure 5.
Theorem 3. Suppose f(x) is a convex function, E [kG(x; ⇠)� E[G(x; ⇠)]k]  �

2 and k@f(x)k  G

for any x and some non-negative G. Given the sequence of the learning rates {↵̂i}n�1
i=�1 such

that ↵̂i = (i + 1)�
2
3 , parameters ✏ 2 (0, 1

3↵̂0
) and � defining the angular velocity model v↵(t)

(Equation 11), and the threshold ⌧ for the derivative of the angular velocity, the sequence of weights
{xt}T�1

t=0 generated by Algorithm 2 satisfies

min
t=0,...,T�1

{E[f(xt)�f(x⇤)]} 
2�(f(x0)� f(x⇤))[( 5T

31
)

3
5 + 2)

1
3 � 2

1
3 ]

21(1� �)[( 5T
32

)
2
5 � 2

2
3 ]

+
(1� �) kx0 � x

⇤k2

31[(
5T
32

)
2
5 � 2

2
3 ]

+
(2s� + 1)(G2 + �

2)2 log((
5T
31

)
3
5 + 1)

3(1� �)1[(
5T
32

)
2
5 � 2

2
3 ]

(12)

= O

⇣
T

� 1
5

⌘
, (13)

where 1 =
q

⇡
2�⌧ and 2 =

q
2⇡
3�⌧ .

Theorem 3 can be obtained by extending Theorem 2 to the setting accommodating the angular velocity
model from Equation 11 and guarantees sub-linear convergence rate of Algorithm 2.

6 EXPERIMENTS

Table 1: Test errors of AutoDrop and baselines reported in
the literature. For CIFAR-10 and CIFAR-100 we ran each
experiment four times with different random seeds. We report
the mean and standard deviation of the final test error (at the
200th epoch). For ImageNet, we ran each experiment once
and report the final test error (at the 105th epoch). † follows
the the setup of (Zhang et al., 2019b). ‡ follows the the setup
of (Zagoruyko & Komodakis, 2016). ⇤ follows the the setup
of (He et al., 2016).

Model Method Test Error [%]

ResNet-18
CIFAR-10

Baseline† (⇢ = 0.2) 4.87± 0.085
AutoDrop (⇢ = 0.1) 5.07± 0.465
AutoDrop (⇢ = 0.2) 4.61± 0.173
AutoDrop (⇢ = 0.5) 4.71± 0.111

WRN-28x10
CIFAR-10

Baseline‡ (⇢ = 0.2) 3.77± 0.05
AutoDrop (⇢ = 0.1) 3.73± 0.26
AutoDrop (⇢ = 0.2) 3.73± 0.10
AutoDrop (⇢ = 0.5) 4.29± 1.13

ResNet-34
CIFAR-100

Baseline† (⇢ = 0.2) 21.91± 0.20
AutoDrop (⇢ = 0.1) 23.27± 0.48
AutoDrop (⇢ = 0.2) 21.82± 0.50
AutoDrop (⇢ = 0.5) 21.43± 0.29

WRN-40x10
CIFAR-100

Baseline‡ (⇢ = 0.2) 19.16± 0.11
AutoDrop (⇢ = 0.1) 18.25± 0.33
AutoDrop (⇢ = 0.2) 18.17± 0.25
AutoDrop (⇢ = 0.5) 23.15± 3.43

ResNet-18
ImageNet

Baseline⇤ (⇢ = 0.1) 29.93
AutoDrop (⇢ = 0.1) 29.80

In this section, we compare the per-
formance of our method, AutoDrop,
that automatically adjusts the learn-
ing rate, with the SOTA optimization
approaches for training DL models
that instead manually drop the learn-
ing rate. The comparison is performed
on the popular DL architectures and
benchmark data sets. Our method was
run with three different settings of the
learning rate drop factor ⇢, whereas
the remaining hyper-parameters were
set as recommended in Section 4. The
baselines that we compare with are
SOTA approaches taken from the ref-
erenced papers that rely on different
variants of SGD. Finally, the codes of
our method will be publicly released.

In Table 1 we show the final test errors
obtained on CIFAR-10, CIFAR-100,
and ImageNet data sets. Our method
shows better performance in terms of
the final test error compared to the
baseline approaches while automati-
cally selecting the epochs for drop-
ping the learning rate. Across all the
experiments on CIFAR data sets, Au-
toDrop run with the learning drop fac-
tor ⇢ = 0.2 (the drop factor used by
the baselines), was always among the winning AutoDrop strategies. For ImageNet the baseline

8



Under review as a conference paper at ICLR 2022

recommended using ⇢ = 0.1 and again for this setting AutoDrop performed favorably. Furthermore,
in Figure 6 we report an exemplary plot capturing the behavior of the learning rate, train loss, and
test error as a function of the number of epochs.

Figure 6: Experimental curves for WRN-28x10 model and CIFAR-10 data set: learning rate, train
loss, test error, and zoomed test error.
Table 2: Test error [%] of AutoDrop and
the baseline for different initial learning rates.
Resnet-18 on CIFAR-10.

Initial Baseline AutoDrop
LR (⇢ = 0.2) (⇢ = 0.2)
0.15 5.04± 0.19 4.90± 0.20
0.1 4.80± 0.12 4.62± 0.14
0.05 4.87± 0.09 4.61± 0.17
0.03 5.07± 0.28 4.73± 0.25 Figure 7: The average number of training epochs

needed by an optimizer to achieve the lowest test error.
AutoDrop and Baseline use ⇢ = 0.2.

Next, in Table 2 we verify if AutoDrop is more robust to the choice of the initial learning rate than
the baseline. We ran an experiment on CIFAR-10 and ResNet-18 and confirmed that indeed across
different choices of the initial learning rate, AutoDrop consistently outperforms the baseline.

Finally, Figure 7 is confronting the convergence speed of our method and the baseline by reporting
the average number of training epochs needed by AutoDrop and the baseline to achieve the lowest
test error. We ran each experiment four times with different random seeds and report the mean value.
Clearly, AutoDrop is faster.

7 CONCLUSIONS

This paper is motivated by a growing need to develop DL optimization techniques that are more
automated in order to increase their scalability and improve the accessibility to DL technology by a
wider range of participants. The selection of hyperparameters for training DL models, and especially
the learning rate scheduling, is a very hard problem and still remains largely unsolved in the literature.
We provide a new algorithm, AutoDrop, for adjusting the learning rate drop during training of DL
models that works online and can be run on the top of any DL optimization scheme. It is furthermore
a very simple algorithm to implement and use. AutoDrop enjoys favorable empirical performance
compared to SOTA training approaches in terms of test error and convergence speed. Finally, our
method has a theoretical underpinning that we show, and enjoys sub-linear convergence.
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