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Learning from synthetic data generated with GRADE
Elia Bonetto∗,† Student Member, IEEE, Chenghao Xu‡,∗, and Aamir Ahmad†,∗ Senior Member, IEEE

Abstract—Recently, synthetic data generation and realistic
rendering has advanced tasks like target tracking and human
pose estimation. Simulations for most robotics applications are
obtained in (semi)static environments, with specific sensors and
low visual fidelity. To solve this, we present a fully customizable
framework for generating realistic animated dynamic environ-
ments (GRADE) for robotics research, first introduced in [1].
GRADE supports full simulation control, ROS integration, re-
alistic physics, while being in an engine that produces high
visual fidelity images and ground truth data. We use GRADE
to generate a dataset focused on indoor dynamic scenes with
people and flying objects. Using this, we evaluate the performance
of YOLO and Mask R-CNN on the tasks of segmenting and
detecting people. Our results provide evidence that using data
generated with GRADE can improve the model performance
when used for a pre-training step. We also show that, even
training using only synthetic data, can generalize well to real-
world images in the same application domain such as the
ones from the TUM-RGBD dataset. The code, results, trained
models, and the generated data are provided as open-source
at https://eliabntt.github.io/grade-rr.

I. INTRODUCTION

An ideal simulation for developing, testing and validating
intelligent robotics systems should have four main character-
istics: i) physical realism, ii) photorealism, iii) full controlla-
bility, and iv) the ability to simulate dynamic entities.

Addressing all these issues, we developed a solution for
Generating Realistic Animated Dynamic Environments —
GRADE [1]. GRADE is a flexible, fully controllable, cus-
tomizable, photorealistic, ROS-integrated framework to simu-
late and advance robotics research. We employ tools from the
computer vision community, such as path-tracing rendering
and material reflections, while keeping robotics in our focus.
We employ NVIDIA Isaac Sim1 and the Omniverse2 suite.
With these tools, we sought to solve all of the above issues
by i) creating a general pipeline that can produce visually
realistic data for general and custom robotics research, ii)
developing and making available a set of functions, tools, and
easy-to-understand examples, that can be easily expanded and
adapted, to allow broad adoption and ease the learning curve
of the Isaac Sim software. To demonstrate the effectiveness of
the method, we: i) generated an indoor dynamic environment
dataset by using only freely available assets. To demonstrate
the visual realism of the simulation, we ii) perform various
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Fig. 1: An example of one of the generated environments with overlays of
the robots used in our experiments.

tests with YOLOv5 [2] and Mask R-CNN [3] by evaluating
their performances after training and fine-tuning with our
synthetic data. We then evaluate these models with the COCO
dataset and some popular dynamic sequences of the TUM
RGBD dataset [4] that we manually labelled on the tasks of
segmenting and detecting people. With this, we show that pre-
training with our synthetic data can outperform the baseline
models on the COCO dataset. By evaluating our models with
the TUM dataset, we show how our synthetic data obtain
comparable performance even without any fine-tuning on real
images.

II. RELATED WORK

In this section, we focus on two components: dynamic
content of the scene, and the simulation engines.

The majority of the dynamic content on a scene comes
from humans and objects. Humans. The most widely adopted
method to describe a human body pose and shape is SMPL [5].
Using that, any motion, synthetic or real, can be seen as a
deformable and untextured mesh. Real-world SMPL fittings
are obtainable only in controlled environments, e.g. through
a VICON or MOCAP systems [6]. These are limited in the
number of subjects, clothing variety, and scenarios. Synthetic
data is being used to solve these problems [7], [8]. How-
ever, such data does not include either the full camera’s
state, IMU readings, scene depth, LiDAR data, or offers the
possibility to easily extend it after the experiment has been
recorded (e.g. with additional cameras or sensors), thus is
generally unusable for any robotics application. Indeed, syn-
thetic datasets are usually developed by stitching people over
image backgrounds [8], statically placing them in some limited
environment [7] and often recorded with static monocular
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cameras that take single pictures [7]. Furthermore, many of
those are generated without any clothing information [9]. Few
datasets, like Cloth3D [10], provide simulated clothed humans
with SMPL fittings usable in other simulations. Commercial
solutions like RenderPeople3 or clo|3d4 exist and would be
applicable. However, using such assets limits the possibility of
reproduction and re-distributing data. Dynamic objects. There
are several datasets about objects [11], being those scanned or
actual CAD models/meshes. Among those, Google Scanned
Objects [11], with its realistically looking household objects,
and ShapeNet [12], with its variety, are two good and popular
examples of datasets that represent these two categories.

Simulation engines. Gazebo is currently the standard for
robotic simulation. High reliable physics and tight integration
with ROS are its key advantages. However, the lack of
visual realism and customization possibility greatly limits its
usability for problems which require more flexibility, person-
alization, and photorealism. Indeed, alternatives emerged in
the latest years, such as [13], [14], [15], [16], [17], [18].
AirSim is one of the first that sought to bridge this gap by
working with Unreal Engine. With that, synthetic datasets like
TartanAir [19] and AirPose [7] have been developed. [19]
is a challenging dataset for visual odometry. However, the
generation pipeline and the assets are not publicly available.
BenchBot is based on Isaac Sim. However, it has been
developed as a benchmarking tool for existing algorithms, and
while it is expandable with add-ons those are limited by their
own exposed APIs. GRADE [1] is also built directly upon
Isaac Sim. However, when compared to BenchBot, it presents
a broader focus including both data generation and general
robotic testing while exposing how researchers can easily
adapt the simulation to their needs, including interactions with
objects, visual settings (e.g. fog, time of day) and others.

III. APPROACH

Using the system introduced in our previous work
GRADE [1], we generate an indoor dynamic environment
dataset with flying objects and dynamic humans. The details
about the GRADE framework and of the simulation manage-
ment are thoroughly described in [1].

A. Environments

There exist only a few publicly available indoor environ-
ment datasets that have realistic lighting and textured meshes.
The only free viable solution we found is the 3D-Front [20]
dataset. The environments are randomized with ambientCG5

textures, and with random light colors and intensity.

B. Dynamic assets

Humans: In our work, we decided to employ human
animations from two main datasets. The first one, Cloth3D,
comprises various animated sequences with clothed SMPL
models. The second one is AMASS’s SMPL unclothed fittings

3https://renderpeople.com/
4https://www.clo3d.com/
5https://ambientcg.com/

over the CMU dataset. We randomize the appearance of the
assets by using Surreal’s SMPL textures, which are, although
low-resolution, also freely available. We then load the anima-
tion sequence in Blender and export it as a USD file with a tool
that we developed. Objects: We use two sources of additional
objects in our simulation, namely Google Scanned Objects
and ShapeNet. This increases variability in the simulation and
more difficult scenarios. Those objects are treated as random
flying objects. For simplicity, we do not restrict those objects
to not collide with other parts of the environment.

C. Placement of dynamic assets

To place the humans, we utilize the STLs of the environment
and of each animation sequence to check if there is a collision
between any given couple of STL meshes. Animated humans
are, in this way, randomly placed within the environment.
Flying objects are loaded and randomly rigidly animated,
without considering any possible collision.

D. Data collection strategy

The number of humans and dynamic objects are randomized
once for each experiment, as described in [1]. We simulate a
freely moving camera that automatically explores the environ-
ments by using a drone model controlled by six independent
joints and an active SLAM framework [21]. The initial location
of the robot is randomized within the environment. Each
experiment lasts 60 seconds, yielding 1800 frames (30 FPS).
For each frame we have, among other things, ground-truth
instance segmentation and bounding boxes information for
each human instance.

IV. EVALUATIONS

A. Human detection

To train YOLO and Mask R-CNN we use both a subset
of GRADE, which we call S-GRADE, and the full GRADE
dataset (A-GRADE). Images with a high probability of being
occluded by flying objects are automatically discarded by us-
ing their depth and color information [1]. S-GRADE has 18K
frames, of which 16.2K have humans in them and 1.8K are
background. The train set has 16K images while the validation
set 2K. S-GRADE contains only sequences without flying
objects and the additionally generated scenarios (see [1]), with
added blur (based on the IMU information), random rolling
shutter noise (µ = 0.015, σ = 0.006), and a fixed exposure
time of 0.02 s to the RGB data. A-GRADE consists of all
available data, with images containing flying objects and the
additional scenarios (incl. the single outdoor sequence). To
A-GRADE we add noise with the same parameters as in S-
GRADE but with a random exposure time between 0 and
0.1 seconds. For A-GRADE we also correct the segmentation
masks and bounding boxes to account for the additional blur.
This is not necessary in the case of S-GRADE data. A-
GRADE is made of 591K images (80/20 train/val split) out of
which 362K have humans.

We took a random subset of the COCO dataset, which
we call S-COCO, counting 1256 training and 120 validation
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Fig. 2: An example of the generated data following the pipeline described in Sec. III, using one of the 3D-Front environments and dynamic humans. From
the left, we can see the rendered RGB image, 2D bounding boxes, semantic instances, and semantic segmentation. Best viewed in color.

images, totalling for ∼ 2% and ∼ 4% of COCO, used to
understand how the networks perform with limited real data.
For evaluation, we use both the subset of COCO which
contains humans in the frame (called COCO from now on),
and the fr3 walking sequences of the TUM dataset. Those
sequences are related to a scenario that has a high similarity
to our dataset, thus making them a good testing metric. Our
BASELINEs are the models of networks pre-trained with
the COCO dataset. We evaluate the performance with the
COCO standard metric (mAP@[.5, .95], AP in this work) and
the PASCAL VOC’s metric (mAP@.5, AP50 in this work).
Both networks are trained from scratch with S-GRADE and
A-GRADE, without using any pre-trained weight or real-
world data, and S-COCO. We then fine-tune S-GRADE and
A-GRADE by using both S-COCO and COCO using their
corresponding validation sets, unlike [8].

1) YOLOv5: was trained for a maximum of 300 epochs
with random initial weights and no hyperparameters tuning.
The results can be seen in Tab. I. As expected, when we
evaluate the performance on COCO with the network trained
from scratch using S-GRADE we obtain much lower precision
when compared even to the model trained only on S-COCO.
However, when the model trained on S-GRADE is then fine-
tuned on S-COCO, we see an increased AP for both metrics
of around 6%. Interestingly, when tested with the TUM data,
we can see how S-GRADE performs similarly to the S-
COCO, resulting in a ∼ 5% lower AP50 but in a 6% higher
AP. Once fine-tuned, AP increases ∼ 6% and AP50 ∼ 7%
compared to S-COCO when tested against COCO itself, and
8% in AP50 and 12% in AP when tested with TUM. In both
cases, when fine-tuned on the full COCO, the performances
overcome the ones of the original pre-trained network. This is
more noticeable when considering the COCO dataset (∼ 5%).
Comparing now A-GRADE and S-GRADE we can notice
how YOLO overfit on the task of indoor human detection.
Indeed, while networks (pre)trained on A-GRADE perform
better when evaluated on the TUM dataset, they exhibit
comparable or worse performance when tested with COCO.
In our opinion, this may also be linked to the huge amount of
specialized data of A-GRADE. This is also suggested by the
tests we performed using the 50th training epoch checkpoint,
identified as E50 in Tab. I. We can see how A-GRADE-
E50 performs consistently better than A-GRADE, S-GRADE
and S-GRADE-E50 in all metrics and dataset. Moreover, A-
GRADE-E50, when tested on TUM data, performs better than
models trained from scratch on both synthetic and real data,
as well as models fine-tuned on S-COCO. However, using this
checkpoint as pre-training starting point, yields performance

improvements only when used with S-COCO.

COCO TUM
AP50 AP AP50 AP

BASELINE 0.753 0.492 0.916 0.722
S-COCO 0.492 0.242 0.661 0.365
S-GRADE 0.206 0.109 0.616 0.425
S-GRADE-E50 0.234 0.116 0.683 0.431
A-GRADE 0.176 0.093 0.637 0.459
A-GRADE-E50 0.282 0.154 0.798 0.613
S-GRADE + S-COCO 0.561 0.302 0.744 0.488
A-GRADE + S-COCO 0.540 0.299 0.762 0.514
A-GRADE-E50 + S-COCO 0.558 0.314 0.808 0.565
S-GRADE + COCO 0.801 0.544 0.931 0.778
A-GRADE + COCO 0.797 0.542 0.932 0.786
A-GRADE-E50 + COCO 0.797 0.543 0.932 0.777

TABLE I: YOLOv5 bounding box evaluation results.
2) Mask R-CNN: We use the detectron2 implementation of

Mask R-CNN, using a 3x training schedule6 and a ResNet50
backbone. We used the default steps (210K and 250K) and
maximum iterations (270K) parameters when training A-
GRADE and COCO, while reducing them respectively to
60K, 80K and 90K when training S-GRADE and to 80K,
108K and 120K for S-COCO. We evaluate the models every
2K iterations and save the best one by comparing the AP50
metric on the given task. Due to the size of A-GRADE, we
opted to evaluate the model trained from scratch on this data
every 3k iterations and that this may be a sub-optimal training
schedule considering the size of the dataset. Note that by
default, and differently from YOLO, Mask R-CNN does not
use images without segmentation targets. We then test both the
bounding box and the instance segmentation accuracy using
those models with a confidence threshold of both 0.70. The
results, depicted in Tab. II and Tab. III, allow us to make
similar considerations to the ones that we have done above.
The main difference is that, in this case, we are not able to
surpass the baseline results. However, we argue that this may
be related to the training and the evaluation schedule, which
greatly impacts the results on this network7. These specify
the frequencies of the evaluations on the validation set, the
learning rate value and its decay, and are tied to both the size
of the dataset and the number of GPUs used. Indeed, when
we trained from scratch the model with the COCO data, C-
BASELINE in the table, we obtained lower performance with
respect to both the released baseline model and our fine-tuned
models, successfully showing the usefulness of our synthetic
data.

6https://github.com/facebookresearch/detectron2/blob/main/configs/Misc/
scratch mask rcnn R 50 FPN 3x gn.yaml

7https://github.com/facebookresearch/detectron2/blob/main/MODEL ZOO.
md
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COCO TUM
AP AP50 AP AP50

BASELINE 0.495 0.716 0.716 0.886
S-COCO 0.161 0.340 0.250 0.526
S-GRADE 0.064 0.128 0.312 0.563
A-GRADE 0.115 0.202 0.502 0.727
S-GRADE + S-COCO 0.232 0.428 0.412 0.708
A-GRADE + S-COCO 0.262 0.450 0.489 0.736
S-GRADE + COCO 0.474 0.693 0.679 0.858
A-GRADE + COCO 0.489 0.714 0.696 0.869
C-BASELINE 0.471 0.693 0.653 0.829

TABLE II: Mask R-CNN bounding boxes evaluation results. Thr. 0.7

COCO TUM
AP AP50 AP AP50

BASELINE 0.432 0.705 0.674 0.887
S-COCO 0.155 0.351 0.231 0.543
S-GRADE 0.043 0.100 0.264 0.509
A-GRADE 0.088 0.178 0.408 0.709
S-GRADE + S-COCO 0.195 0.401 0.374 0.665
A-GRADE + S-COCO 0.231 0.460 0.449 0.758
S-GRADE + COCO 0.415 0.682 0.611 0.858
A-GRADE + COCO 0.430 0.710 0.638 0.869
C-BASELINE 0.410 0.681 0.584 0.838

TABLE III: Mask R-CNN instance segmentation evaluation results. Thr. 0.7

Another difference is that, when using A-GRADE, we are
consistently better than the corresponding model (pre)trained
on S-GRADE in both datasets. In the tasks of people detection
A-GRADE shows similar performance to S-COCO on the
COCO dataset and way better results on the TUM dataset.
Indeed, the performance is ∼ 2% better on COCO and 3−5%
better on TUM when compared to C-BASELINE.

In Tab. IV and Tab. V we report the results of the same
models with a threshold value of 0.05 as done in [8]. Although
they report only bounding boxes results and use a slightly
different network model, we can still draw some conclusions.
Indeed, notice how our training results on S-COCO and COCO
(C-BASELINE on the tables) are comparable to theirs in terms
of AP and AP50. The differences are most probably linked to
the difference between the dataset size when comparing S-
COCO and the number of training steps when considering
COCO. However, we can see that both S-GRADE and A-
GRADE greatly outperform PeopleSansPeople synthetic data,
obtaining a remarkable +3-8% in the small version of the
dataset and a +7-12%, despite the fact that our data is solely
focused on indoor environments. This, with much shorter
training procedures, i.e. 270K iterations for A-GRADE as
opposed to 4M of the biggest synthetic set of [8]. Furthermore,
while it is true that their increment when using a subset of
COCO as fine-tuning dataset is noticeable (around 30%), and
much greater than ours, the improvement they exhibit when
using both the full dataset and full COCO is just 0.7%, almost
half of our 1.3%. However, in addition to the longer training
procedure, we must also account for the fact that the validation
set used in [8] is the full validation set. Thus, their saved
model, i.e. the best-performing model on the validation set
on the given metric, is saved according to the full COCO
validation set, while ours are saved based on the reduced
validation set of just 120 images.

COCO TUM
AP AP50 AP AP50

BASELINE 0.556 0.841 0.736 0.920
S-COCO 0.195 0.439 0.282 0.610
S-GRADE 0.077 0.167 0.343 0.637
A-GRADE 0.140 0.269 0.531 0.784
S-GRADE + S-COCO 0.265 0.518 0.432 0.748
A-GRADE + S-COCO 0.303 0.560 0.515 0.788
S-GRADE + COCO 0.539 0.833 0.713 0.916
A-GRADE + COCO 0.550 0.843 0.728 0.916
C-BASELINE 0.537 0.829 0.692 0.898

TABLE IV: Mask R-CNN bounding boxes evaluation results. Thr. 0.05
COCO TUM

AP AP50 AP AP50
BASELINE 0.479 0.817 0.692 0.922
S-COCO 0.168 0.392 0.241 0.568
S-GRADE 0.048 0.117 0.283 0.561
A-GRADE 0.100 0.214 0.425 0.749
S-GRADE + S-COCO 0.216 0.465 0.387 0.694
A-GRADE + S-COCO 0.247 0.515 0.458 0.780
S-GRADE + COCO 0.467 0.805 0.633 0.905
A-GRADE + COCO 0.476 0.813 0.660 0.908
C-BASELINE 0.461 0.801 0.611 0.890

TABLE V: Mask R-CNN instance segmentation evaluation results. Thr. 0.05

3) Considerations: Testing over COCO is, in our opinion,
not fair since we lack crowded scenes, outdoor scenarios with
humans placed in the background, and diversified clothing in
the assets we use (i.e. we do not have humans wearing ski
suits or helmets). Thus, when testing against COCO, we are
using a model trained on an indoor dataset to evaluate its
performance on not comparable data. Indeed, we see how our
synthetic data generalize well to the real world if we consider
the TUM dataset, which instead consists of sequences more
related to the one that we generate.

V. CONCLUSIONS
In this work, we presented a novel framework, named

GRADE, to simulate multiple robots in realistically looking
dynamic environments. GRADE is a flexible system that cov-
ers all the steps necessary to do that, from the generation of the
single assets to fine simulation management, from placement
of said assets to post-processing of the data. With GRADE
we generated a dataset of indoor dynamic environments and
used that to i) show how our synthetic data alone can be used
for training a good indoor human detection model, and ii)
to improve the performance of both YOLO and Mask R-CNN
when used for pre-training. This holds even though the current
quality of the assets is not optimal due to the choice of using
only freely available ones. We believe that adopting com-
mercial solutions for environments and/or dynamic humans
will greatly increase the quality of the generated data. Finally,
we demonstrate how our data is, in principle, better than the
one introduced by PeopleSansPeople, both when used as pre-
training data and when adopted as-is, despite being focused
solely on indoor scenarios. This is by yielding performance
improvements that range between 1.3% to 12% while using
up to 10 times shorter training procedures. Finally, all our work
is available as open source and based solely on open-source
assets.
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