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ABSTRACT

Aligning large language models (LLMs) to user preferences often relies on learn-
ing a reward model as a proxy from feedback. However, such reward models can
fail on out-of-distribution examples and, if kept static, may reinforce incorrect
preferences. We propose a dynamic alignment method that uses an energy-based
out-of-distribution (OOD) scoring mechanism to identify potential misjudgments,
then judiciously collects oracle feedback to refine both the policy and reward
model. By focusing on the OOD examples, our approach iteratively improves
alignment and robustness in preference-based training. Empirically, we show that
our method enhances the policy model’s generative capabilities on the LM Eval
Harness benchmark and improves the reward model’s judgment capability on Re-
wardBench. Our source code will be available soon at this link.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF) has been extensively employed to enable
large language models to align more closely with human preferences and also ensure that their vast
potential is harnessed responsibly Ziegler et al. (2020). The RLHF/RLAIF pipeline involves firstly
training a reward model for input-output pairs using human/AI feedback in the form of pair-wise
or list-wise preferences over the responses. The parameters of a supervised finetuned model are
then optimized to align it’s outputs with the reward model while controlling it’s deviation from a
base reference model. One of the main approaches to this is Proximal Policy Optimization (PPO)
Schulman et al. (2017) that trains the generator model to maximize the reward signal provided by
a proxy reward model. However, it has a suboptimal performance due to reward misgeneralization
which is a direct implication of holding the proxy reward model static throughout the training.

Rafailov et al. (2024) introduce Direct Preference Optimization (DPO), a method that simplifies
alignment by directly optimizing generative models using human feedback, eliminating the need
for explicit reward models or extensive hyperparameter tuning. While DPO offers a streamlined
approach, its reliance on a static, offline preference dataset poses limitations: model performance
heavily depends on dataset quality, and the risk of overfitting arises due to finite coverage of prompt-
response pairs. This often leads to poor generalization on out-of-distribution (OOD) examples, as
highlighted by Tang et al. (2024). Azar et al. (2023) propose IPO, an extension to DPO

To address these challenges, Iterative DPO (iDPO) ((Xiong et al.),(Dong et al., 2024)) extends the
framework by incorporating multiple rounds of training, where online feedback refines the model
iteratively. However, acquiring real-time human preferences is often impractical. To circumvent
this, researchers propose using LLMs as automated oracles to label new data, leveraging carefully
designed prompts to simulate human judgments.

Building on iterative paradigms, Active Preference Learning (Muldrew et al., 2024) introduces a
dynamic data acquisition loop. Here, the model identifies high-uncertainty (high predictive entropy)
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responses, queries an oracle for labels, and fine-tunes itself on the newly annotated data. This
approach balances exploration and exploitation, enhancing sample efficiency and robustness.

Finally, the interplay between model strength and feedback quality is further explored by Burns et al.
(2023), who demonstrate that even weak reward models when augmented with auxiliary confidence
loss can effectively align significantly stronger policies. This underscores the potential of combin-
ing iterative refinement with judiciously designed auxiliary objectives to overcome reward model’s
limitations.

1.1 OUR CONTRIBUTION

In this work, we propose a hybrid labeling strategy that leverages both an explicit reward model
and an oracle model to efficiently annotate response pairs. As illustrated in Figure 1, we begin
with an offline Direct Preference Optimization (DPO)–trained generator, from which we collect the
top k distinct responses for each prompt. For each example, if it is judged to be in-distribution
according to an energy-based out-of-distribution (OOD) detection score Liu et al. (2020), we trust
the preference annotations from the reward model; otherwise, we query the oracle model. Using the
oracle systematically only when the example is OOD for the reward model, this approach reduces
the number of oracle annotations compared to using an oracle alone and achieves better accuracy
than relying on a suboptimal static reward model.

 

Yes

No

Figure 1: An Illustration of an iteration of our joint trainer framework. Here, Pt and Jt refer to the
policy and reward model respectively at time t. Please refer to 3.3 for further details.

2 RELATED WORK

2.1 REWARD MODELING

In traditional RLHF methods Ziegler et al. (2020), a reward is firstly learnt via modeling the human
preference data by a ranking model and then optimizing the policy via RL. While DPO Rafailov et al.
(2024) gets rid of an reward model by reparametrization of reward model in terms of the optimal
policy, explicit reward modelling is still important to this work due to its role as a verifier. In reward
modelling, the SFT model is prompted with the prompts x and (y1, y2) are sampled from πSFT (y|x)
and presented to a human labellers who express preference for one over the other creating a dataset
of comparisons D. These preferences are assumed to be generated based on some reward r∗(x, y)
that is popularly modelled by the Bradley Terry (or in case of ranking data, Plackett-Luce) as
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p∗(y1 ≻ y2|x) =
er

∗(x,y1)

er∗(x,y1) + er∗(x,y2)

Assuming that D is sampled from p∗ and that the reward is parametrized rϕ, the parameters can be
estimated by maximizing the loglikelihood below

LR(rϕ,D) = −E(x,yw,yl)∼D log(σ(rϕ(x, yw)− rϕ(x, yl))

Policy Optimization: RLHF then uses the following optimization objective to allow the learned
reward to provide feedback to the policy model.

maxEx∼D,y∼πθ(y|x) [r(x, y)]− βDKL [πθ(y | x) ∥ πref(y | x)]

In contrast, DPO directly optimizes for the policy that best satisfies the preferences by fitting an
implicit reward model whose policy can be extracted in closed form form the above optimization
objective. The policy is thus optimized for the following objective:

LDPO(πθ;πref) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yl | x)
πref(yl | x)

)]
2.2 UNCERTAINTY ESTIMATION & ACTIVE LEARNING

Uncertainty estimation in classifier models is crucial for reliable decision-making in machine learn-
ing. Early methods utilized ensemble techniques, where multiple models combined their predictions
to quantify uncertainty Lakshminarayanan et al. (2017). Coste et al. (2023) and Eisenstein et al.
(2023) have explored the idea of reward model ensembling to account for the uncertainty in reward
models. Bayesian approaches, such as Bayesian Neural Networks Blundell et al. (2015), offer a
framework for modeling uncertainty through weight distributions. Recent advancements emphasize
the significance of uncertainty in applications such as active learning and safety-critical systems,
highlighting the need for reliable and interpretable classifiers Kendall & Gal (2017). Muldrew et al.
(2024) introduce Active Preference Learning for LLMs through an iterative data acquisition and
fine-tuning loop. At every acquisition step, they use predictive entropy-based uncertainty estimation
score to select prompts to get oracle labels, from a batch of prompts in the data stream.

Hpθ
(y|x) = −Epθ(y|x)[log pθ(y|x)]

They further prioritize prompt/completion pairs with higher implicit reward difference for fine-
tuning.

2.3 ENERGY-BASED OOD DETECTION

Out-of-distribution (OOD) detection aims to identify inputs that deviate from a model’s training data,
ensuring reliable predictions. Energy-based models (EBMs) provide a principled framework for this
task by leveraging the concept of ”energy” to distinguish in-distribution and OOD samples. EBMs
(Song & Kingma (2021), Wang et al. (2021)) define the likelihood of a data point x ∈ X ⊆ RD

using the Boltzmann distribution:

pθ(x) =
exp(−Eθ(x))

Z(θ)

where the partition function Z(θ) =
∫
x∈X exp(−Eθ(x)) dx

Here Eθ(x)) is the energy function, and Z(θ) is the partition function which normalizes the distribu-
tion. The density function pθ(x) is a natural choice to make the distinction between in-distribution
and out-of-distribution data. However, it is a hard problem to obtain this density function because
of the high complexity of computation of the partition function Z(θ) as it involves summation over
a large input space. Liu et al. (2020) observe that the absence of the normalization constant doesn’t
affect OOD detection and a higher probability of occurence of a data point x is equivalent to it hav-
ing a lower energy. Energy scores can thus be reliably used for OOD detection. We can build an
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OOD classifier by setting a threshold on the energy function score. Specifically, we can say that the
in-distribution samples would have energy score below a particular threshold and all the rest are out-
liers. An OOD detector can help maintain the reliability of predictions by flagging the predictions
that are likely to be erroneous.

For the classification tasks, the above formulation of energy-based models is adapted as follows

pθ(y|x) =
exp(−Eθ(x, y))

Z(θ;x)

where
Z(θ;x) =

∑
y′∈Y

exp(−Eθ(x, y)) = exp(−Eθ(x))

The Helmholtz-free Energy of a given data point x can be written as the negative log of the partition
function Z(θ;x)

Eθ(x) = − log(Z(θ;x))

The equation
∑

y′∈Y exp(−Eθ(x, y)) = exp(−Eθ(x)) involves non-trivial computations. More
details can be found in the appendix.

3 PRELIMINARIES AND PROBLEM SETUP

3.1 HYPERSPHERICAL ENERGY SCORES FOR REWARD MODELS

We first recall the Bradley-Terry model formulation for context.
Lemma 1. (Bradley-Terry Model for Pairwise Preference) Consider a preference dataset consisting
of quadruplets D = {x(i), y

(i)
1 , y

(i)
0 , I(y

(i)
1 , y

(i)
0 , x(i))}Ni=1, where (x, y1, y0) ∼ D denotes a prompt

and sampled responses, respectively. The indicator variable I(y1, y0, x) is 1 if y1 is preferred over
y0 given x (y1 ≻ y0|x) and 0 otherwise.

The Bradley Terry model estimates the probability of preferring y1 over y0 by assigning scalar
reward scores r(x, y1) and r(x, y0) to the respective prompt-response pairs:

pBT (y1 ≻ y0|x) = σ(r(x, y1)− r(x, y0)) =
er(x,y1)

er(x,y1) + er(x,y0)

where σ is the sigmoid function. The underlying reward model r(x, y) typically maps the input pair
to a scalar score via learned parameters θreward.

Building on the concept of hyperspherical representations for improved OOD detection, we adapt the
energy score framework. We assume the reward model’s encoder hθreward

maps a prompt-response
pair (x, y) to a normalized embedding z = h(x, y) on the unit hypersphere (||z||2 = 1). We further
postulate prototypes on this hypersphere representing canonical ‘chosen’ (µchosen) and ‘rejected’
(µrejected) responses.
Lemma 2. (Hyperspherical Energy Score for Reward Models) Inspired by the connection between
energy scores and log-likelihood on hyperspherical manifolds, we define a hyperspherical energy
score for a single prompt-response pair (x, y) with embedding z = h(x, y). Assuming prototypes
µchosen, µrejected and a temperature parameter τ , the energy is defined via the partition function
over these prototypes:

EHS(x, y; {θreward, µchosen, µrejected}) = −τ log
( ∑
k∈{chosen,rejected}

eµ
⊤
k z/τ

)
= −τ log

(
eµ

⊤
chosenz/τ + eµ

⊤
rejectedz/τ

)
This score reflects the negative log-likelihood (up to constants) of the embedding z under a simplified
mixture model representing typical ‘chosen’ and ‘rejected’ regions in the hyperspherical space.
Lower energy indicates higher likelihood, suggesting the response embedding fits well within the
learned manifold of in-distribution responses. This assumes that all prompts are drawn from the
same distribution, implying a shared criterion for evaluating the quality of their corresponding
responses.
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Why might hyperspherical energy be suitable for OOD detection in reward models? Standard
reward scores r(x, y) aim to capture preference, but may assign high or low scores unpredictably
to inputs far from the training distribution due to extrapolation. The hyperspherical energy score
EHS(x, y), by contrast, attempts to measure the conformity of the response embedding z to the
learned distribution of typical (chosen or rejected) responses. Embeddings lying far from both the
chosen and rejected prototypes will exhibit high energy (low likelihood), providing a signal for OOD
detection that is potentially less prone to extrapolation errors than the raw reward score.

3.2 REWARD MODELING WITH OUT-OF-DISTRIBUTION DETECTION USING
HYPERSPHERICAL ENERGY

We aim to train a reward model θreward (including the encoder h, and parameters defining r,
µchosen, µrejected) that predicts preferences accurately and utilizes the structure learned during this
process to enable OOD detection via hyperspherical energy at inference time.

Preference Modeling We use the standard Bradley-Terry (BT) loss over pairs (y0, y1) from the
preference dataset D to train the model:

LBT = −E(x,y1,y0,I)∼D [I log σ(r(x, y1)− r(x, y0)) + (1− I) log(1− σ(r(x, y1)− r(x, y0)))]

where r(x, y) is the reward score assigned by the model. A potential definition tied to the hyper-
spherical space is r(x, y) = (µchosen − µrejected)

⊤h(x, y). Optimizing this loss implicitly shapes
the embedding space and the prototypes based on preferences.

Out-of-Distribution Detection (at Inference) While not explicitly optimized via a separate loss
term during training, the structure learned by optimizing LBT in the hyperspherical space allows us
to define an OOD classifier function g applied at inference. For a given prompt-response pair (x, y):

g(x, y; {θreward, µchosen, µrejected}) =
{

ID if EHS(x, y; {θreward, µchosen, µrejected}) < λood

OOD if EHS(x, y; {θreward, µchosen, µrejected}) ≥ λood

where EHS(x, y;θreward) is the hyperspherical energy score from Lemma 2. The threshold τood
must be determined post-training using a validation setDRM, val consisting of in-distribution prompt-
response pairs. We compute EHS for all pairs in DRM, val and set λood based on a chosen percentile
(e.g., 95th percentile) of these energy scores.

3.3 ALGORITHM

Algorithm 1 outlines the training of the reward model using the Bradley-Terry loss, followed by the
calibration of a hyperspherical energy threshold for Out-of-Distribution (OOD) detection.

At inference time, given a prompt-response pair (x, y), the trained reward model J (including the
encoder h and prototypes µchosen, µrejected) is used to compute the embedding z = h(x, y; J). The
hyperspherical energy score is then evaluated as

EHS(x, y) = −τ log
(
exp(µ⊤

chosenz/τ) + exp(µ⊤
rejectedz/τ)

)
.

If EHS(x, y) ≥ λood, the pair is classified as OOD; otherwise, it is classified as ID.

When comparing two responses yA and yB for a given prompt x, both pairs (x, yA) and (x, yB) are
first checked for OOD. If both are ID, their respective reward scores r = (µchosen − µrejected)

⊤z
are computed and compared to determine the preferred response. If either response is detected as
OOD, the model abstains from making a preference judgment and we defer those judgements to the
GPT-4 oracle model.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Datasets and Models: We conduct the joint policy-reward training experiments with a Llama-3.2-
3B-Instruct model1 trained on the Ultrafeedback dataset Cui et al. (2025) as the initial reward model.

1https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
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Algorithm 1: First Iteration of Reward Model Training & OOD Threshold Calibration
Input: Preference dataset D,
initial model RM (encoder h, prototypes µchosen, µrejected),
training steps Nsteps,
temperature τ , percentile p
Split dataset: D = DRM, train ∪ DRM, val;
Initialize model: J0;
for s = 0 to Nsteps − 1 do

Sample batch B = {(x(i), y
(i)
1 , y

(i)
0 , I(i))} ∼ DRM, train;

Lbatch ← 0;
foreach (x(i), y

(i)
1 , y

(i)
0 , I(i)) ∈ B do

Compute embeddings: z(i)0 ← h(x(i), y
(i)
0 ; Js), z

(i)
1 ← h(x(i), y

(i)
1 ; Js);

Compute scores:;
r
(i)
0 ← (µchosen − µrejected)

⊤z
(i)
0 ;

r
(i)
1 ← (µchosen − µrejected)

⊤z
(i)
1 ;

Compute loss:;

Li ← −
[
I(i) log σ(r

(i)
1 − r

(i)
0 ) + (1− I(i)) log(1− σ(r

(i)
1 − r

(i)
0 ))

]
;

Lbatch ← Lbatch + Li;
end
Update model: RMs+1 ← OptimizerUpdate(RMs,∇Lbatch);

end
Set final model: J0 ← RMNsteps ;
Initialize energy list: Eval ← ∅;
foreach (x, y1, y0, I) ∈ DRM, val do

Compute embeddings: z0 ← h(x, y0; J0), z1 ← h(x, y1; J0);
Compute energies:;

E0 ← −τ log
(
exp(µ⊤

chosenz0/τ) + exp(µ⊤
rejectedz0/τ)

)
;

E1 ← −τ log
(
exp(µ⊤

chosenz1/τ) + exp(µ⊤
rejectedz1/τ)

)
;

Append to list: Eval ← Eval ∪ {E0, E1};
end
Compute threshold: τood ← Percentile(Eval, p);
return J0, τood;

The same dataset serves as the source of prompts for generating responses from a supervised fine-
tuned (SFT) Llama-3-8B model2. At every iteration, for each prompt in the Ultrafeedback dataset,
we generate k = 4 responses. These responses are evaluated by judge models, and we select the
pair with the highest and lowest scores. If this pair is determined to be out-of-distribution (OOD),
the oracle model is used to perform the relabeling and obtain preference labels.

Iterative Training: We use an iterative process to sequentially train policy models P1, . . . , PT and
reward models J1, . . . , JT . In each iteration t, for each prompt in the Ultrafeedback dataset, the
current policy Pt generates k = 4 responses as described in the above paragraph. All possible

(
4
2

)
response pairs are created and evaluated by judge models, from which we select the pair with the
highest and lowest scores. If this pair is OOD, the oracle model is used to perform the relabeling
and obtain preference labels. The resulting preference data Dt

policy is used to train the next policy
Pt+1 with DPO, while the reward model Jt+1 is updated using oracle preferences for OOD samples
Dt

RM,train. We also replay random samples from the reward training data from the previous iterations
to prevent catastrophic forgetting (Thompson et al. (2019), Zhang et al. (2024)). This iterative joint
update of the policy and the reward model ensures that as the policy improves, it’s outputs are within
the reward model’s judging capabilities.

2RLHFlow/LLaMA3-SFT-v2
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Downstream Evaluation: We evaluate our language policy using the widely adopted LM Eval
Harness Gao et al. (2024) Benchmark , designed to assess the capabilities of LLMs on a diverse
range of tasks. Similarly, we evaluate the reward model across iterations on Reward-Bench Lambert
et al. and assess the judgement accuracy of the preference reward model and test its limits on
instruction-following (chat), safety and reasoning domains.

4.2 RESULTS AND DISCUSSION

The LM-Eval harness results demonstrate that the dynamically updated reward model consistently
improves the DPO policy more effectively than the static reward model across iterations. This aligns
with the stronger performance of the dynamically updated reward model on the reward bench, where
it achieves superior results in complex and safety-critical tasks (e.g., chat hard, safety). However,
exploring better continual learning techniques for the dynamic reward model could enhance its ro-
bustness and prevent catastrophic forgetting across alignment iterations.

Model ARC-C MMLU TruthfulQA MathQA GSM8K HumanEval IFEval
SFT 56.2 62.8 53.9 42.5 77.6 57.3 29.9

S-I 1 56.0 62.9 56.4 42.0 79.3 58.5 30.7
D-I 1 56.5 62.8 55.4 42.1 79.0 59.1 30.9
S-I 2 55.9 63.0 57.5 42.1 79.6 58.5 29.8
D-I 2 56.3 63.2 58.3 42.0 79.6 60.6 31.1

Table 1: Evaluation results on lm-eval-harness tasks (scores in percentages). Here S-I stands for
iteration with static reward model whereas D-I stands for a training iteration with a dynamic reward
model.

Model Chat Chat Hard Safety Reasoning
Iteration 0 40.2 51.8 51.5 31.2
Iteration 1 40.6 56.9 62.9 30.1
Iteration 2 41.8 58.3 64.6 31.6

Table 2: Reward Model’s performance comparison across iterations

5 CONCLUSION

In conclusion, we propose an energy-based out-of-distribution (OOD) score to guide the joint train-
ing of our policy and judge models. This method removes the need for a static reward model,
resulting in competitive performance and better sample efficiency.
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A APPENDIX

Theorem 1 (Helmholtz Free Energy and the Partition Function). For a system in thermal equilib-
rium at temperature T with inverse temperature β = 1

kBT , if the partition function is defined by

Z =
∑
x∈X

exp
(
−βE(x)

)
,

then the Helmholtz free energy F is given by

F = − 1

β
logZ.

Proof. We begin with the standard definitions in statistical mechanics. Let X denote the set of
microstates of the system with corresponding energies E(x). The probability of the system being in
state x is given by

p(x) =
exp(−βE(x))

Z
,

where the partition function is defined as

Z =
∑
x∈X

exp
(
−βE(x)

)
.

1. Expected Energy: The expected (internal) energy is

⟨E⟩ =
∑
x∈X

p(x)E(x).

Differentiating Z with respect to β, we have

∂Z

∂β
= −

∑
x∈X

E(x) exp(−βE(x)).

Thus,
∂ logZ

∂β
=

1

Z

∂Z

∂β
= −⟨E⟩,

9

https://aclanthology.org/N19-1209/
https://arxiv.org/abs/2107.12628
https://arxiv.org/abs/2107.12628
https://arxiv.org/abs/2402.14228
https://arxiv.org/abs/1909.08593


Published at the ICLR 2025 Workshop on Bidirectional Human-AI Alignment (BiAlign)

or equivalently,

⟨E⟩ = −∂ logZ

∂β
.

2. Entropy: The statistical definition of the entropy is

S = −kB
∑
x∈X

p(x) log p(x).

Substituting the expression for p(x) yields

S = −kB
∑
x∈X

exp(−βE(x))

Z
log

(
exp(−βE(x))

Z

)
= −kB

∑
x∈X

exp(−βE(x))

Z

[
−βE(x)− logZ

]
= kBβ

∑
x∈X

p(x)E(x) + kB logZ
∑
x∈X

p(x)

= kBβ ⟨E⟩+ kB logZ.

3. Helmholtz Free Energy: The Helmholtz free energy is defined as

F = ⟨E⟩ − TS.

Substitute the expression for S:

F = ⟨E⟩ − T
(
kBβ ⟨E⟩+ kB logZ

)
= ⟨E⟩ − kBTβ ⟨E⟩ − kBT logZ.

Since β = 1
kBT , we have kBTβ = 1. Therefore,

F = ⟨E⟩ − ⟨E⟩ − kBT logZ = −kBT logZ.

Expressing this result in terms of β, we obtain

F = − 1

β
logZ.

Thus, the Helmholtz free energy is given by the negative log of the partition function:

F = − 1

β
logZ.

A.1 TEMPERATURE SCALING

Taking log on both sides of the expression for probability p(x), we get

log p(x) =
−E(x)

kBT
− logZ

If we increase the temperature T ≫ 1, p(x) assumes an almost uniform distribution. This makes
the distinction between in-distribution and out-of-distribution samples hard. Thus, for the sake of
simplicity, we fix β = 1
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GPT-4 as a Judge Prompt

You are an AI judge tasked with evaluating responses from a conversational agent based
on their harmlessness, helpfulness, instruction following, and truthfulness. Your analysis
should be objective and comprehensive. You will be given a user prompt and two candi-
date responses generated by the model. Your task is to determine which of the generated
responses is better, considering the following criteria:

1. Harmlessness: Is the response harmless and respectful, avoiding any potential
threat to society?

2. Helpfulness & Relevance: How well does the response address the user’s prompt?
Does it provide a complete and informative answer?

3. Instruction Following: Does the response adhere to the instructions or guidelines
provided in the user’s prompt?

4. Truthfulness: Is the response factually correct and free from hallucinations or
misinformation?

Here are the two responses you have to compare:

User Prompt: ⟨prompt⟩
Response A: ⟨response1⟩
Response B: ⟨response2⟩

Evaluate both responses step-by-step, and provide your judgment according to this format:
use “[[A]]” if response A is better than response B; use “[[B]]” if response B is better
than response A; and use “[[N]]” if both responses are equally effective.

Justification: ⟨your explanation here⟩
Better Response: ⟨better response⟩. Do not output any explanation after the final answer.
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