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ABSTRACT

Language models have been effectively applied to modeling natural signals, such
as images, video, speech, and audio. A crucial component of these models is the
codec tokenizer, which compresses high-dimensional natural signals into lower-
dimensional discrete tokens. In this paper, we introduce WavTokenizer, which
offers several advantages over previous state-of-the-art (SOTA) acoustic codec
models in the audio domain: 1) extreme compression. By compressing the layers
of quantizers and the temporal dimension of the discrete codec, one-second audio
of 24kHz sampling rate requires only a single quantizer with 40 or 75 tokens. 2) im-
proved subjective reconstruction quality. Despite the reduced number of tokens,
WavTokenizer achieves SOTA reconstruction quality with outstanding UTMOS
scores and also inherently contains richer semantic information. Specifically,
we achieve these results by designing a broader VQ space, extending contextual
windows, improving attention networks, and introducing a powerful multi-scale
discriminator and an inverse Fourier transform structure. We conduct extensive
reconstruction experiments in the domains of speech, audio, and music. WavTok-
enizer exhibits competitive to superior performance across various objective and
subjective metrics compared to SOTA models. We also evaluate WavTokenizer
on semantic representation, VQ utilization, and adaptability to generative models.
Comprehensive ablation studies confirm the necessity of each module in WavTok-
enizer. The demo is available at https://WavTokenizer.github.io.
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Figure 1: Comparison between different acoustic codec models. The y-axis UTMOS reflects
reconstruction quality (UTMOS highly correlates with human evaluations), the x-axis kbps represents
audio compression levels. The size of circles represents the number of discrete tokens per second.
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1 INTRODUCTION

Recently, significant achievements have been made by large language models (LLMs) (Brown et al.,
2020) in audio generative tasks, including multiple-speaker speech syntheses (Wang et al., 2023;
Kharitonov et al., 2023; Jiang et al., 2023; 2024; Ji et al., 2024c), music generation (Agostinelli
et al., 2023), and audio generation (Kreuk et al., 2022). Furthermore, the integration of the speech
modality into unified large multimodal models also has garnered significant attention, such as
SpeechGPT (Zhang et al., 2023a), AnyGPT (Zhan et al., 2024), GPT-4o1, and Moshi (Défossez
et al., 2024). These successes can be largely attributed to the utilization of discrete acoustic codec
representations produced by neural codec models (Zeghidour et al., 2021; Défossez et al., 2022;
Kumar et al., 2023). These discrete acoustic codec models bridge the gap between continuous speech
signal and discrete-token-based language models, by discretizing high-rate audio signals into a finite
set of tokens, hence enabling the application of LLM architectures to audio data.

Most end-to-end discrete codec models (Défossez et al., 2022; Wu et al., 2023) adopt a three-stage
structure consisting of an encoder, a Residual Vector Quantization (RVQ) module, and a decoder. The
encoder performs downsampling of the audio signal in the time domain to obtain compressed audio
frames. Each compressed audio frame is then quantized by a series of quantizers, with each quantizer
operating on the residual of the previous one. The number of quantizers determines the overall bitrate.
The decoder, on the other hand, performs upsampling in the time domain to reconstruct the audio
signal from the quantizer outputs. Existing acoustic codec models (Kumar et al., 2023) demonstrate
impressive reconstruction quality, and generative models based on discrete codecs are now capable of
synthesizing speech at near-human levels. However, two important directions are worth exploring
beyond the current acoustic codec models, namely, high bitrate compression and semantic richness.

Higher Bitrate Compression. The compression level of current codec models still warrants explo-
ration to achieve higher compression. Two aspects merit optimization: the number of quantizers and
the temporal dimension of the codec. While some efforts have reduced the quantity of quantizers
from eight to four (Yang et al., 2023; Ji et al., 2024a), we argue that a single quantizer layer
fundamentally differs from multiple quantizers. When the number of quantizers exceeds one,
downstream models require additional design efforts, such as VALL-E’s (Wang et al., 2023) AR
and NAR structures, SoundStorm’s (Borsos et al., 2023; Ji et al., 2024b) parallel generation, Music-
Gen’s (Copet et al., 2024; Peng et al., 2024) slanted autoregressive structure, and UniAudio’s (Yang
et al., a) global and local attention structures. Conversely, with a single quantizer, speech modalities
can be directly autoregressively embedded into large multimodal models (Touvron et al., 2023).
Additionally, high temporal dimensions of codecs, such as DAC’s (Kumar et al., 2023) requirement
of 900 tokens per second, substantially degrade language model generation quality and increase
resource consumption.

Richer Semantic Information. Considering the gap between the codec’s reconstruction paradigm and
the generative paradigm of downstream models (SpeechTeam, 2024; Chu et al., 2024), incorporating
more semantic information in codec can facilitate weakly supervised text-to-speech generation.
Moreover, many large multimodal models (Chu et al., 2023; Tang et al., 2023) adopt the Whisper
paradigm for understanding tasks (the target for generation is acoustic codec); hence, incorporating
additional semantic information into acoustic codec models could help unify the understanding and
generation processes in multimodal models. While many approaches attempt to introduce semantic
information through distillation, additional pre-trained semantic modules (Zhang et al., 2023b) can
interfere with the unified modeling of music and audio. Moreover, this distillation-based strategy
may limit the potential of codec models. Exploring more elegant approaches to directly integrate
semantic information into the codec remains an open question.

In this paper, we introduce WavTokenizer, a discrete acoustic codec model capable of reconstructing
24kHz speech, music, and audio using only 40 or 75 tokens per second. WavTokenizer achieves
high reconstruction quality with extreme compression while enhancing the semantic richness of the
codec. Specifically, WavTokenizer enhances audio reconstruction quality by employing a multi-scale
discriminator and an inverse Fourier transform upsampling structure from the vocoder in the decoder.
To compress the codec from multiple quantizers to a single one, we discover that expanding the VQ
space, alongside employing recent K-means clustering initialization and random awakening strate-
gies, can significantly compress audio representations while maintaining high codebook utilization.

1https://openai.com/index/hello-gpt-4o/
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Additionally, expanding the contextual window for speech modeling and incorporating attention
networks in the decoder not only balance reconstruction quality and compression but also enrich the
semantic information. Our contributions can be summarized as follows:

• Conceptual Contributions. We introduce the concept of compressing the quantizer layers of
acoustic codec models to a single quantizer for the first time and enhancing semantic information
of the codec without disrupting the codec paradigm for modeling music and audio. Inspired by a
detailed analysis of the codebook space in Section 3.2, we propose aligning the large speech space
with the textual vocabulary and show the potential of large speech space as a latent form of a
unique language.

• Methodological Contributions. Utilizing K-means clustering initialization and random awakening
strategies on the VQ codebook space, we design an expanded VQ space for compressing the codec
model to a single quantizer. Furthermore, we design extended contextual modeling windows and
add attention mechanisms in the decoder. The integration of an inverse Fourier transform module
and multi-scale discriminator in the vocoder also contributes to improved reconstruction.

• Experimental Contributions. WavTokenizer surpasses the current state-of-the-art (SOTA) models’
subjective reconstruction performance on speech, music, and audio, with only 75 tokens per
second. It achieves comparable results with 40 or 75 tokens per second across broader metrics.
Additional experiments demonstrate the superiority of WavTokenizer over competitive baseline
models regarding semantic information, codebook utilization, and performance in generative
models. Rigorous ablation studies confirm the necessity of each component in WavTokenizer. We
will open-source the entire codebase and pretrained models for WavTokenizer.

2 RELATED WORK

In recent times, neural acoustic codecs (Zeghidour et al., 2021; Défossez et al., 2022; Kumar et al.,
2023) have demonstrated remarkable capabilities in reconstructing high-quality audio at low bitrates.
Typically, these methods employ an encoder to extract deep features in a latent space, which are
subsequently quantized before being fed into the decoder. Given that acoustic tokens, compared to
semantic tokens, can support audio, speech, and music domains, and their rich acoustic details can
eliminate the need for cascading architectures in downstream generative models (Kharitonov et al.,
2023; Huang et al., 2024b) or large multimodal models (SpeechTeam, 2024; Anastassiou et al., 2024),
current optimization directions for acoustic codec models can be categorized as follows:
Pursuing Better Reconstruction Quality. AudioDec (Wu et al., 2023) demonstrates the importance
of discriminators. PromptCodec (Pan et al., 2024) enhances representation capabilities through
additional input prompts. DAC (Kumar et al., 2023) significantly improves reconstruction quality
through techniques like quantizer dropout and a multi-scale Short-Time Fourier Transform (STFT)
based discriminator. Vocos (Siuzdak, 2023) eliminates codec noise artifacts using a pre-trained
Encodec with an inverse Fourier transform vocoder. HILCodec (Ahn et al., 2024) introduces the
MFBD discriminator to guide codec modeling. APCodec (Ahn et al., 2024) further enhances
reconstruction quality by incorporating ConvNextV2 modules in the encoder and decoder.
Enhancing Compression. HiFi-Codec (Yang et al., 2023) proposes a parallel GRVQ structure and
achieves good speech reconstruction quality with just four quantizers. Language-Codec (Ji et al.,
2024a) introduces the MCRVQ mechanism to evenly distribute information across the first quantizer
and only requires four quantizers to achieve excellent performance across various generative models.
Regarding achieving high compression with a single quantizer, Single-Codec (Li et al., 2024) is
most related to our work. Throughout the progression of our work on WavTokenizer, Single-Codec
designs additional BLSTM, hybrid sampling, and resampling modules to ensure basic performance
with a single quantizer; however, different from the impressive reconstruction performance of our
WavTokenizer, Single-Codec’s reconstruction quality is uncompetitve (with UTMOS only 3.0).
Deepening Understanding of the Codec Space. TiCodec (Ren et al., 2024) models the codec space
by distinguishing between time-independent and time-dependent information. FACodec (Ju et al.)
decouples the codec space into content, style, and acoustic-detail modules. Additionally, recognizing
the importance of semantic information in generative models, recent efforts start integrating semantic
information into codec models. RepCodec (Huang et al., 2024c) learns a vector quantization codebook
by reconstructing speech representations from speech encoders like HuBERT (Hsu et al., 2021) or
Data2vec (Baevski et al., 2022). SpeechTokenizer (Zhang et al., 2023b) enriches the semantic
content of the first quantizer through semantic distillation. FunCodec (Du et al., 2023) makes
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semantic tokens optional and explores different combinations. SemanticCodec (Liu et al., 2024) uses
quantized semantic tokens and reconstructs acoustic information using an audio encoder and diffusion
model. Although the semantic codecs achieve good audio reconstruction quality, they disrupt the
encoder-VQ-decoder paradigm of acoustic codec models and introduce additional training costs.

Compared to the aforementioned approaches, WavTokenizer achieves impressive reconstruction
results with only one quantizer and through 40 or 75 tokens. In contrast, for one second of speech,
DAC (Kumar et al., 2023) requires 900 tokens, with 9 quantizers. Furthermore, WavTokenizer
explores enhancing semantic information by strengthening the capabilities of the Codec itself.

3 WAVTOKENIZER

Our model is built on the framework of VQ-GANs, following the same paradigm as Sound-
Stream (Zeghidour et al., 2021) and EnCodec (Défossez et al., 2022). Specifically, WavTokenizer
passes the raw audio X through three modules: 1) A full convolution encoder network that takes
the input audio and generates a latent feature representation Z; 2) A single quantizer discretizes
Z to generate a discrete representation Zq. 3) An improved decoder that reconstructs the audio
signal X̃ from the compressed latent representation Zq . The model is trained end-to-end, optimizing
a reconstruction loss applied over both time and frequency domains, along with a perceptual loss in
the form of discriminators operating at different resolutions.

Considering that WavTokenizer is designed as a discrete token representation for large audio language
models, the focus should be on the subjective reconstruction quality of the codec (audio fidelity) and
semantic content information. In Figure 1, we visualize the relationship between bitrates and UTMOS
metrics (Saeki et al., 2022) across different codec models. As shown in the Figure 1, WavTokenizer
achieves SOTA reconstruction quality with only 75 tokens. Notably, WavTokenizer facilitates extreme
compression bitrates and achieves a fair UTMOS score of 3.6 at 0.48 kpbs.

3.1 ENCODER

Following Encodec (Défossez et al., 2022), the encoder consists of a 1D convolution with C channels
and a kernel size of 7 followed by B convolution blocks. Each convolution block is composed of
a single residual unit followed by a downsampling layer consisting of a strided convolution, with
a kernel size twice of the stride S. The residual unit contains two convolutions with kernel size
of 3 and a skip-connection. The number of channels is doubled whenever downsampling occurs.
The convolution blocks are followed by a two-layer LSTM for sequence modeling and a final 1D
convolution layer with a kernel size of 7 and D output channels. Following Encodec, we set C = 32,
B = 4, D = 512, and use ELU (Clevert et al., 2015) as a non- linear activation function. For the
stride S, we employ two configurations, (2, 4, 5, 8) and (4, 5, 5, 6), to ensure that WavTokenizer can
downsample 24 kHz speech by factors of 320 and 600 along the time dimension.

3.2 RETHINKING THE VECTOR QUANTIZATION SPACE

WavTokenizer aims to compress speech representations into the codebook space of a single quantizer.
This allows for the seamless serialization of speech and elimination of the need of hierarchical design
in downstream models across channel dimensions (Wang et al., 2023; Yang et al., a; Borsos et al.,
2023). Initially, we attempt to rely solely on a single quantizer for reconstruction during training,
without changing any structure; however, we find the results suboptimal. Considering the vast
vocabulary space in natural language, we hypothesize that treating speech as a unique language
might yield better results. Motivated by this hypothesis, we conduct the following analysis. First,
we expand the codebook space from 210 to 214. Next, we train on 585 hours of LibriTTS and then
visualize the probability distribution of codebooks on the LibriTTS test-clean dataset, as shown in
Figure 2 (a). We observe a concentration of the speech vocabulary to the left of 212, indicating the
potential merit of utilizing the larger 212 speech vocabulary space since the current codec codebooks
210 may not fully represent the speech space. More analyses in Appendix D verify that increasing
the training dataset size does not lead to higher codebook space utilization and the codebook space
trained with 4000 hours multilingual data remains concentrated to the left of 212.

4
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Figure 2: The visualization analysis of WavTokenizer’s quantized codebook space. Figure (a)
illustrates the probability distribution of each codebook index (1-16384) on the LibriTTS test-clean
across different codebook spaces. Figure (b) examines the relationship between reconstruction quality
in terms of UTMOS and codebook utilization rate across different codebook spaces.

Simply expanding the quantized codebook space could lead to lower utilization rates. To mitigate
this issue, leveraging recent advancements in codec models (Défossez et al., 2022; Ju et al.), we use
k-means clustering to initialize the codebook vectors. We adjust the number of cluster centers to 200
to align with the larger codebook space. During training, for each input, the code is selected, assigned,
and updated using an exponential moving average with a decay of 0.99, and codes unassigned for
several batches are replaced with input vectors randomly sampled from the current batch. This forced
activation strategy (Dhariwal et al., 2020) helps ensure effective utilization of the large codebook
space. We analyze the relationship between codebook utilization rate and reconstruction result, after
applying the aforementioned k-means clustering initialization and random awakening strategies.
Figure 2 (b) confirms that expanding the corresponding codebook space appropriately can reduce
information loss caused by compressing the hierarchical RVQ structure into a single quantizer. Speech
can be effectively reconstructed under a serialized quantizer structure, with a codebook space of 212
achieving a favorable balance between codebook utilization and reconstruction quality. Furthermore,
the experiments in Section 4.3 explore the potential of a large codebook space in discrete acoustic
codecs as a specialized form of language representations.

3.3 IMPROVED DECODER

As in FACodec (Ju et al.), we believe that the decoder plays a more crucial role than the encoder during
the acoustic codec reconstruction process. Upsampling and reconstructing audio from the highly
compressed information in WavTokenizer is particularly challenging. Notably, WavTokenizer does
not employ a mirrored decoder upsampling structure (Kumar et al., 2023), a standard practice that
uses a stack of dilated convolutions to increase the receptive field, and uses transposed convolutions to
sequentially upsample the feature sequence to the waveform. Since this standard design is known to
be susceptible to aliasing artifacts, following Vocos (Siuzdak, 2023), we maintain consistent feature
resolution at all depths and achieve waveform upsampling through inverse Fourier transform. In the
decoder, the target audio signal X̃ is represented using STFT:

STFT (X̃[m,k]) =

N∑
n=0

X̃ [n]w [n−m] e−j2πkn/K (1)

where K denotes the number of frequency points after performing Discrete Fourier Transform (DFT),
k denotes the frequency index, N denotes the number of points in the sampled sequence, with n
denoting a particular sample point, and m denoting the index length. In the practical implementation,
STFT is performed by applying a series of Fast Fourier Transforms (FFTs) to overlapping and
windowed frames of data. The window function advances or hops through time to create these frames.

Moreover, to directly enhance the semantic modeling capability of the acoustic codec model, rather
than adding various semantic tokens (Zhang et al., 2023b), we hypothesize that incorporating
an attention network module (Rombach et al., 2022) into the decoder may enhance information
reconstruction and semantic modeling. Although attention models have proven their scalability
and high performance in broader tasks (Dosovitskiy et al., 2020; Fang et al., 2024; Huang et al.,
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2024a; Yang et al., b), the encoder-decoder structure in the acoustic codec model remains fully
convolutional. Concerns may arise about the potential extrapolation issues of attention models when
modeling long sequences during inference, given that acoustic codec models often train on randomly
selected short one-second audio clips. However, our experiments show that WavTokenizer achieves
good reconstruction even for long audio sequences during inference. Additionally, we find that
simply expanding contextual modeling windows to three seconds for WavTokenizer with attention
modules could further improve codec reconstruction during training and in turn the reconstruction
quality during inference. This is probably because one-second clips, including silence, may contain
insufficient semantic information; hence, increasing the contextual modeling window size helps the
Codec model better capture context. We validate these findings through detailed ablation studies
(Section 4.3). We investigate various configurations of introducing attention modules to the encoder,
the decoder, or both, and find that adding the attention module to the decoder only is beneficial, and
adding it before the ConvNext module (Liu et al., 2022) appears to be optimal.

Therefore, for the representation of the intermediate signals Zq after quantization, WavTokenizer
only needs to input Zq into the conv1D layer, attention block, ConvNeXt blocks, which serves as the
fundamental backbone. Subsequently, a Fourier transform is performed on the real-valued signals.
Following Vocos (Siuzdak, 2023), the ConvNeXt Block first embeds the input features into a hidden
dimensionality and then applies a sequence of convolutional blocks. Each block is composed of a
large-kernel-sized depthwise convolution, followed by an inverted bottleneck that projects features
into a higher dimensionality using pointwise convolution. GELU activations (Hendrycks & Gimpel,
2016) are used within the bottleneck, and Layer Normalization is employed between the blocks.
Regarding the transformation of real-valued signals, we utilize a single side band spectrum, resulting
in nfft/2 + 1 coefficients per frame. Since we parameterize the model to output both phase and
magnitude values, the activations of the hidden dimensions are projected into a tensor h with nfft+2
channels. Finally, the inverse Fourier transform F−1 is used to directly reconstruct the final audio.

3.4 THE ADVANCED DISCRIMINATOR AND THE LOSS FUNCTIONS

We use the adversarial loss to promote perceptual quality. Following Vocos (Siuzdak, 2023), We em-
ploy the open-source multi-period discriminator (MPD) (Kong et al., 2020), the single band amplitude
only and multi band complex multi-resolution discriminator (MRD) (Jang et al., 2021). Furthermore,
to learn discriminative features about a specific sub-band and provide a stronger gradient signal to the
generator, following (Kumar et al., 2023), we use a complex STFT discriminator (Zeghidour et al.,
2021) at multiple time-scales (Défossez et al., 2022). We adopt a hinge loss formulation instead of
the least squares GAN objective, as suggested by (Zeghidour et al., 2021). The discriminator training
loss Ldis(X, X̃) is as follows:

1

K

K∑
k=1

max(0, 1−Dk(X)) +max(0, 1 +Dk(X̃)) (2)

K denotes the number of discriminators, Dk denotes the k-th discriminator. The training loss for the
generator of WavTokenizer consists of four components: quantizer loss, mel-spectrum reconstruction
loss, adversarial loss, and feature matching loss. The quantizer loss is defined as follows:

Lq(Z,Zq) =

N∑
i=1

∥∥∥Zi − Ẑi

∥∥∥2
2

(3)

The mel-spectrum reconstruction loss is defined as follows:

Lmel(X, X̃) =
∥∥∥Mel(X)−Mel(X̃)

∥∥∥
1

(4)

Furthermore, we define the adversarial loss as a hinge loss over the logits of these discriminators:

Ladv =
1

K

K∑
k=1

max(0, 1−Dk(X̃)) (5)

The feature matching loss, denoted as Lfeat , is calculated as the mean of the distances between the
lth feature maps of the kth subdistriminator:

Lfeat =
1

K ∗ L
∑
k

∑
l

∥∥∥Dl
k(X)−Dl

k(X̃)
∥∥∥
1

(6)
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The total training loss of the generator, Lgen, is computed as:

Lgen = λqLq + λmelLmel + λadvLadv + λfeatLfeat (7)

where λq , λmel, λadv , λfeat are hyper-parameters.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. Due to constrained computation resources, we conduct the training process only on a subset
of common publicly available datasets. WavTokenizer is trained on approximately 8K hours of
data. For the speech domain, we use LibriTTS (Zen et al., 2019), VCTK (Veaux et al., 2016), and
a subset of CommonVoice (Ardila et al., 2019)(3000 hours are randomly selected). For the audio
domain, we utilize a subset of AudioSet (Gemmeke et al., 2017)(2000 hours are randomly selected);
and for the music domain, we employ the Jamendo (Bogdanov et al., 2019) and MusicDB (Rafii
et al., 2017) datasets. We evaluate speech reconstruction performance of codec in clean and noisy
environments using the LibriTTS test-clean and test-other sets respectively, and assess audio and
music reconstruction performance using the AudioSet eval and MusicDB test sets respectively. On
the other hand, for most confirmatory experiments, such as the ablation experiments, we evaluate the
results with the WavTokenizer trained only on LibriTTS.
Baselines. We select the state-of-the-art (SOTA) codec models as the baselines for WavTokenizer.
To ensure fair comparisons, we employ the official weights provided by Encodec (Défossez et al.,
2022)2, HiFi-Codec (Yang et al., 2023)3, Vocos (Siuzdak, 2023)4, SpeechTokenizer (Zhang et al.,
2023b)5, and DAC (Kumar et al., 2023)6 frameworks.
Evaluation metrics and Implementation Details For objective evaluation of discrete codec models,
following Vocos (Siuzdak, 2023), we employ the UTMOS (Saeki et al., 2022) automatic Mean
Opinion Score (MOS) prediction system. UTMOS can yield scores highly correlated with human
evaluations, closer to human perception than PESQ (Perceptual Evaluation of Speech Quality) (Rix
et al., 2001), but it is restricted to 16 kHz sample rate. we also adopt the metrics in speech enhancement
fields, such as PESQ, STOI (Short-time Objective Intelligibility), and the F1 score for voiced/unvoiced
classification (V/UV F1). In addition to these objective metrics, following Encodec (Défossez et al.,
2022), we also employ the subjective MUSHRA evaluation to assess the reconstruction performance
of the codec. We employ the common subjective CMOS evaluation metrics to assess the performance
of the downstream TTS model with the codec models. Details of the subjective evaluations are in
Appendix C. Training and Inference Settings are detailed in Appendix A.

4.2 MAIN RESULTS

Evaluation on Reconstruction. We compare the speech reconstruction performance of WavTokenizer
with a broad selection of SOTA and competitive codec models as baselines on LibriTTS test-
clean (4837 samples), LibriTTS test-other (5120 samples), and LJSpeech (13100 samples), which
correspond to audio reconstruction in clean, noisy, and out-of-domain environments, respectively.
Notably, RVQ-based codec models often select quantizers with varying bandwidths during training.
To ensure fair comparisons, we use the quantizers that the baseline models are trained on. The results
are shown in Table 1. We observe the following: 1) WavTokenizer achieves impressive results
on the UTMOS metric, with WavTokenizer at 0.9 kbps surpassing the current SOTA DAC
model at 9 kbps on all test sets. Since the UTMOS metric closely aligns with human perception
of audio quality (Saeki et al., 2022), these results validate that WavTokenizer maintains excellent
reconstruction quality under extreme compression. 2) When compared to the SOTA DAC model
with a single quantizer (hence directly comparable to WavTokenizer, shown in the shaded regions of
Table 1), WavTokenizer with 40 and 75 tokens remarkably outperforms DAC with 100 tokens across
all metrics. To the best of our knowledge, WavTokenizer is the first codec model capable of

2https://github.com/facebookresearch/encodec
3https://github.com/yangdongchao/AcademiCodec
4https://github.com/gemelo-ai/vocos
5https://github.com/ZhangXInFD/SpeechTokenizer
6https://github.com/descriptinc/descript-audio-codec
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Table 1: Objective reconstruction results of different codec models on LibriTTS test-clean (clean
environment), LibriTTS test-other (noisy environment), and LJSpeech dataset (out-of-domain
environment). Nq denotes the number of quantizers. GT denotes ground truth waveforms. Best
results from models with a single quantizer (hence directly comparable to WavTokenizer) are in bold.

Model Bandwidth ↓ Nq ↓ token/s ↓ UTMOS ↑ PESQ ↑ STOI ↑ V/UV F1 ↑
LibriTTS test-clean

GT - - - 4.0562 - - -
DAC 9.0kpbs 9 900 3.9097 3.9082 0.9699 0.9781

Encodec 6.0kbps 8 600 3.0399 2.7202 0.9391 0.9527
Vocos 6.0kbps 8 600 3.6954 2.8069 0.9426 0.9437

SpeechTokenizer 6.0kpbs 8 600 3.8794 2.6121 0.9165 0.9495
DAC 4.0kbps 4 400 3.4329 2.7378 0.9280 0.9572

HiFi-Codec 3.0kbps 4 400 3.7529 2.9611 0.9405 0.9617
HiFi-Codec 4.0kbps 4 300 3.9035 3.0116 0.9446 0.9576

Encodec 3.0kbps 4 300 2.3070 2.0517 0.9007 0.9198
Vocos 3.0kbps 4 300 3.5390 2.4026 0.9231 0.9358

SpeechTokenizer 3.0kbps 4 300 3.5632 1.9311 0.8778 0.9273
DAC 1.0kbps 1 100 1.4940 1.2464 0.7706 0.7941

WavTokenizer 0.5kbps 1 40 3.6016 1.7027 0.8615 0.9173
WavTokenizer 0.9kbps 1 75 4.0486 2.3730 0.9139 0.9382

LibriTTS test-other
GT - - - 3.4831 - - -

DAC 9.0kpbs 9 900 3.3566 3.7595 0.9576 0.9696
Encodec 6.0kbps 8 600 2.6568 2.6818 0.9241 0.9338

Vocos 6.0kbps 8 600 3.1956 2.5590 0.9209 0.9202
SpeechTokenizer 6.0kpbs 8 600 3.2851 2.3269 0.8811 0.9205

DAC 4.0kbps 4 400 2.9448 2.5948 0.9083 0.9404
HiFi-Codec 4.0kbps 4 400 3.0750 2.5536 0.9126 0.9387
HiFi-Codec 3.0kbps 4 300 3.3034 2.6083 0.9166 0.9318

Encodec 3.0kbps 4 300 2.0883 2.0520 0.8835 0.8926
Vocos 3.0kbps 4 300 3.0558 2.1933 0.8967 0.9051

SpeechTokenizer 3.0kbps 4 300 3.0183 1.7373 0.8371 0.8907
DAC 1.0kbps 1 100 1.4986 1.2454 0.7505 0.7775

WavTokenizer 0.5kbps 1 40 3.0545 1.6622 0.8336 0.8953
WavTokenizer 0.9kbps 1 75 3.4312 2.2614 0.8907 0.9172

LJSpeech
GT - - - 4.3794 - - -

DAC 9.0kpbs 9 900 4.3007 3.9022 0.9733 0.9757
Encodec 6.0kbps 8 600 3.2286 2.6633 0.9441 0.9555

Vocos 6.0kbps 8 600 4.0332 2.9258 0.9497 0.9459
SpeechTokenizer 6.0kpbs 8 600 4.2373 2.6413 0.9316 0.9452

DAC 4.0kbps 4 400 3.8109 2.7616 0.9338 0.9524
HiFi-Codec 4.0kbps 4 400 4.1656 2.7629 0.9446 0.9497
HiFi-Codec 3.0kbps 4 300 4.2692 2.9091 0.9485 0.9469

Encodec 3.0kbps 4 300 2.3905 2.0194 0.9058 0.9326
Vocos 3.0kbps 4 300 3.7880 2.5006 0.9310 0.9388

SpeechTokenizer 3.0kbps 4 300 3.9908 2.0458 0.9021 0.9299
DAC 1.0kbps 1 100 1.4438 1.2084 0.7822 0.8095

WavTokenizer 0.5kbps 1 40 4.0186 2.1142 0.9093 0.9406
WavTokenizer 0.9kbps 1 75 4.2580 2.4923 0.9312 0.9397

effectively reconstructing audio with a single quantizer. 3) On objective metrics STOI, PESQ, and
F1 score, WavTokenizer also performs comparably to the Vocos model with four quantizers and the
SpeechTokenizer model with eight quantizers. 4) In noisy environments and out-of-domain scenarios,
WavTokenizer demonstrates strong robustness and generalizability across all metrics.

We further evaluate the reconstruction performance of the codec models on the broader range of music
and audio domains. Following Encodec, we used MUSHRA as the metric for subjective evaluation.
As shown in Table 2, WavTokenizer at 0.9 kbps outperforms the SOTA DAC model at 9 kbps in
reconstruction quality on the speech, music, and audio domains. These results further demonstrate
that WavTokenizer is capable of maintaining high subjective reconstruction performance on
speech, music, and audio, with an extremely limited number of tokens.
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Evaluation on Semantic Representation. We evaluate the semantic richness of different codec
models on the ARCH benchmark (La Quatra et al., 2024). Notably, we opt not to utilize the
conventional Superb benchmark (Yang et al., 2021) due to its exclusive focus on the speech domain,
while ARCH enables further assessment of a Codec model in music and audio realms. The ARCH
benchmark comprises 12 datasets in speech, music, audio domains (details in Appendix B). We
extract embeddings corresponding to the discrete codebooks of an acoustic codec model as its
respective representations and evaluate the classification accuracy of the codec model on ARCH
datasets using its representations. For fair comparisons, we evaluate Encodec and DAC models on
semantic representation, as they are under the same paradigm as WavTokenizer. The experimental
results, as shown in Table 3, demonstrate that WavTokenizer substantially outperforms DAC and
Encodec configured with a single quantizer or two quantizers on classification accuracy. Remarkably,
on the AM and SLURP datasets in the speech domain, the MTT and IRMAS datasets in the music
domain, and the FSD50K and VIVAE datasets in the audio domain, WavTokenizer surpasses
DAC with nine quantizers and Encodec with eight quantizers on classification performance.
These findings validate that WavTokenizer with a single quantizer and low bitrates captures semantic
information comparable to the SOTA acoustic codec model DAC with 9 quantizers and 900 tokens/s.
However, we believe that the semantic capabilities of WavTokenizer have room for improvement.
Discussions of its limitations and future plans are in Appendix F.

Table 2: The subjective reconstruction results using MUSHRA (comparative scoring of samples)
of codec models on speech, music and audio domains. Nq denotes the number of quantizers.

Model Bandwidth ↓ Nq ↓ token/s ↓ LibriTTS test-clean ↑ MusicDB ↑ Audioset ↑
GT - - - 96.4±1.2 95.3±1.7 95.8±2.1

DAC 9.0kpbs 9 900 92.8±1.8 92.6±2.4 92.7±1.5
Encodec 6.0kbps 8 600 78.6±1.9 76.9±1.6 81.2±1.8

DAC 1.0kbps 1 100 58.4±2.4 57.6±2.1 56.8±1.4
WavTokenizer 0.9kbps 1 75 96.1±2.3 92.9±2.2 94.4±1.6

Table 3: The semantic representation (speech, music, audio) evaluation of different codec models
on ARCH Benchmark in terms of classification accuracy. Nq represents the number of quantizers.

Model Nq ↓ token/s ↓ RAVDESS ↑ SLURP ↑ EMOVO ↑ AM ↑ FMA ↑ MTT ↑ IRMAS ↑ MS-DB ↑ ESC50 ↑ US8K ↑ FSD50K ↑ VIVAE ↑
DAC 9 900 0.3750 0.0779 0.2363 0.6926 0.3504 0.2805 0.4023 0.6014 0.2594 0.4032 0.1297 0.3440

Encodec 8 600 0.2881 0.0636 0.2261 0.4388 0.2790 0.1993 0.3671 0.3917 0.1925 0.3055 0.1091 0.3005
DAC 4 400 0.3194 0.0782 0.2346 0.6838 0.3379 0.2784 0.3833 0.5942 0.2580 0.3824 0.1293 0.3342

Encodec 4 300 0.2951 0.0660 0.2193 0.4301 0.2728 0.1934 0.3684 0.3656 0.1790 0.3097 0.1099 0.2710
Encodec 2 150 0.2743 0.0627 0.2193 0.3649 0.2816 0.1900 0.3704 0.3245 0.1699 0.2960 0.1065 0.2630

DAC 1 100 0.2500 0.0713 0.2278 0.6287 0.3304 0.2502 0.3572 0.5137 0.2065 0.3350 0.1295 0.2991
WavTokenizer 1 75 0.3255 0.0802 0.3163 0.6957 0.3417 0.2835 0.4117 0.5764 0.2550 0.3975 0.1392 0.3563

Evaluation on Downstream Generative Tasks. We evaluate WavTokenizer’s performance on
downstream generative tasks exemplified by text-to-speech synthesis (TTS) (Ren et al., 2020).
We adopt an autoregressive language model backbone. Specifically, we follow the MusicGen
paradigm (Copet et al., 2024), which expands the acoustic codec sequence through autoregressive
prediction, and modify the open-sourced ParlerTTS model (Lyth & King, 2024) accordingly. We
use the ParlerTTS 600M model configuration and its default hyperparameters, and train TTS models
based on DAC and WavTokenizer representations on the LibriTTS dataset. Each model is trained for
40 epochs on 8 A800 80GB GPUs.

The results are shown in Table 4. In terms of audio quality (CMOS-Q) and audio prosody (CMOS-P),
the speech synthesis model trained on WavTokenizer’s single-layer quantizer representations outper-
forms that trained on DAC’s 9-layer quantizer representations. This demonstrates that: 1) Acoustic
models with a single-layer quantizer show significant potential in downstream autoregressive
audio generation models, and 2) Speech synthesis models using large-codebook acoustic repre-
sentations can also synthesize high-quality audio, suggesting that large-codebook acoustic spaces
have the potential to model speech as a special form of text. We will validate these findings on large
multimodal models (Zhan et al., 2024) based on acoustic codec models that are trained on larger
datasets in future work.
4.3 ABLATION STUDY

Due to limited compute resources, we use 585 hours LibriTTS training data for training WavTokenizer
and conduct ablation studies on reconstruction performance on the LibriTTS test-clean subset. For
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Table 4: The Subjective Evaluations of various acoustic codec models for downstream text-to-
speech synthesis models on the LibriTTS test set. GT denotes ground truth waveforms.

Model Bandwidth ↓ Nq ↓ CMOS-Q↑ CMOS-P↑
GT - - 0.22 0.26

DAC 9.0kbps 9 -0.35 -0.29
WavTokenizer 0.9kbps 1 0.00 0.00

Table 5: Impact of codebook scale. Utiliza-
tion rate reflects codebook’s usage efficiency.

Model Codebooks Utilization rate UTMOS ↑ PESQ ↑ STOI ↑
WavTokenizer 16384 27% 3.9989 2.3600 0.8129
WavTokenizer 8192 68% 4.0220 2.3916 0.9156
WavTokenizer 4096 100% 4.0486 2.3730 0.9139
WavTokenizer 1024 100% 3.4967 1.7781 0.8660

Table 6: Impact of the contextual modeling
window size.

Model Codebooks windows UTMOS ↑ PESQ ↑ STOI ↑
WavTokenizer 4096 1 3.7448 2.0112 0.8944
WavTokenizer 4096 3 4.0486 2.3730 0.9139
WavTokenizer 4096 5 4.0448 2.3556 0.9127

all ablation experiments, we use WavTokenizer with a single quantizer operating at 0.9 kbps.
Codebook size. we evaluate varying codebook sizes on the performance of WavTokenizer. We record
the frequency of each codebook entry on LibriTTS test-clean. As shown in Table 5 and discussed
in Section 3.2, we observe significant potential for expansion in the typical codebook space, even
under extreme compression with a single quantizer, when combined with advanced training strategies
(Section 3.2). We find that expanding the codebook size from the typical 1024 to 4096 significantly
enhances audio quality, with the UTMOS gain by 0.55, PESQ gain by 0.6, and STOI gain by 0.5.
However, excessively large codebook spaces (16384) can lead to reduced codeboook utilization.
Contextual window size. Most Codec models are trained on randomly selected one-second audio
clips. With an attention module in WavTokenizer’s decoder, as shown in Table 6, using a three-second
contextual window further enhances the reconstruction quality. We hypothesize that a one-second
window may contain insufficient information and be more affected by silence. Longer contextual
window may enhance attention module’s ability to capture relevant semantics.
Multi-scale STFT discriminator. As shown in Table 7, the multi-scale STFT discriminator (MSTFTD)
enhances the reconstruction quality, albeit increasing the training time. The improvement is probably
due to the fact that MSTFTD splits STFT into sub-bands and learns discriminative features for a
specific sub-band, hence providing a stronger gradient signal to WavTokenizer’s generator, in turn
improving high-frequency prediction and mitigating aliasing artifacts.
Attention module. We remove the attention module from WavTokenizer’s decoder, resulting in
WavTokenizer w/o attention. As shown in Table 7, removing the attention module degrades WavTok-
enizer’s performance more than MSTFTD. Ablation results on impact of the attention module on
semantic representation are in Appendix E.
Improved decoder. We replace the improved decoder based on the inverse Fourier transform with an
up-sampling structure mirroring the encoder, denoted as WavTokenizer w/ mirror decoder. As shown
in Table 7, a purely mirrored structure substantially compromises the reconstruction performance of
WavTokenizer under extreme compression. This underscores the importance of a robust decoder in
ensuring the reconstruction performance of codec models under high compression.

Table 7: Ablation on the multi-scale STFT discriminator (MSTFTD), the atention module, and
switching from our improved decoder to a mirror decoder, in WavTokenizer.

Model UTMOS ↑ PESQ ↑ STOI ↑ V/UV F1 ↑
WavTokenizer 4.0486 2.3730 0.9139 0.9382

w/ mirror decoder 2.7782 1.5007 0.8249 0.8820
w/o attention module 3.6020 1.9332 0.8734 0.9067
w/o MSTFTD 3.7806 2.1270 0.9008 0.9269

5 CONCLUSION

In this paper, we introduce WavTokenizer, a codec model capable of quantizing one second speech,
music and general audio into 75 or 40 tokens with a single quantizer. Compared to SOTA acoustic
codec models, WavTokenizer maintains high subjective reconstruction quality and preserves rich
semantic information even under extreme compression. The limitation of WavTokenizer and future
work are discussed in Appendix F.
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Edouard Grave, and Neil Zeghidour. Moshi: a speech-text foundation model for real-time dialogue.
Technical report, Kyutai, September 2024. URL http://kyutai.org/Moshi.pdf.

Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya Sutskever.
Jukebox: A generative model for music. arXiv preprint arXiv:2005.00341, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Zhihao Du, Shiliang Zhang, Kai Hu, and Siqi Zheng. Funcodec: A fundamental, reproducible
and integrable open-source toolkit for neural speech codec. ArXiv, abs/2309.07405, 2023. URL
https://api.semanticscholar.org/CorpusID:261823065.

Minghui Fang, Shengpeng Ji, Jialong Zuo, Hai Huang, Yan Xia, Jieming Zhu, Xize Cheng, Xiaoda
Yang, Wenrui Liu, Gang Wang, et al. Ace: A generative cross-modal retrieval framework with
coarse-to-fine semantic modeling. arXiv preprint arXiv:2406.17507, 2024.

Eduardo Fonseca, Xavier Favory, Jordi Pons, Frederic Font, and Xavier Serra. Fsd50k: an open
dataset of human-labeled sound events. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 30:829–852, 2021.

Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Channing
Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for
audio events. In 2017 IEEE international conference on acoustics, speech and signal processing
(ICASSP), pp. 776–780. IEEE, 2017.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Natalie Holz, Pauline Larrouy-Maestri, and David Poeppel. The variably intense vocalizations of
affect and emotion (vivae) corpus prompts new perspective on nonspeech perception. Emotion, 22
(1):213, 2022.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov,
and Abdelrahman Mohamed. Hubert: Self-supervised speech representation learning by masked
prediction of hidden units. IEEE/ACM transactions on audio, speech, and language processing,
29:3451–3460, 2021.

Hai Huang, Yan Xia, Shengpeng Ji, Shulei Wang, Hanting Wang, Jieming Zhu, Zhenhua Dong,
and Zhou Zhao. Unlocking the potential of multimodal unified discrete representation through
training-free codebook optimization and hierarchical alignment. arXiv preprint arXiv:2403.05168,
2024a.

Rongjie Huang, Chunlei Zhang, Yongqi Wang, Dongchao Yang, Jinchuan Tian, Zhenhui Ye, Luping
Liu, Zehan Wang, Ziyue Jiang, Xuankai Chang, et al. Make-a-voice: Revisiting voice large
language models as scalable multilingual and multitask learners. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
10929–10942, 2024b.

Zhichao Huang, Chutong Meng, and Tom Ko. Repcodec: A speech representation codec for speech
tokenization, 2024c. URL https://arxiv.org/abs/2309.00169.

Won Jang, Dan Lim, Jaesam Yoon, Bongwan Kim, and Juntae Kim. Univnet: A neural vocoder with
multi-resolution spectrogram discriminators for high-fidelity waveform generation. arXiv preprint
arXiv:2106.07889, 2021.

12

http://kyutai.org/Moshi.pdf
https://api.semanticscholar.org/CorpusID:261823065
https://arxiv.org/abs/2309.00169


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shengpeng Ji, Minghui Fang, Ziyue Jiang, Rongjie Huang, Jialung Zuo, Shulei Wang, and Zhou
Zhao. Language-codec: Reducing the gaps between discrete codec representation and speech
language models. arXiv preprint arXiv:2402.12208, 2024a.

Shengpeng Ji, Ziyue Jiang, Hanting Wang, Jialong Zuo, and Zhou Zhao. Mobilespeech: A fast and
high-fidelity framework for mobile zero-shot text-to-speech. arXiv preprint arXiv:2402.09378,
2024b.

Shengpeng Ji, Jialong Zuo, Minghui Fang, Ziyue Jiang, Feiyang Chen, Xinyu Duan, Baoxing Huai,
and Zhou Zhao. Textrolspeech: A text style control speech corpus with codec language text-to-
speech models. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 10301–10305. IEEE, 2024c.

Ziyue Jiang, Yi Ren, Zhenhui Ye, Jinglin Liu, Chen Zhang, Qian Yang, Shengpeng Ji, Rongjie
Huang, Chunfeng Wang, Xiang Yin, et al. Mega-tts: Zero-shot text-to-speech at scale with intrinsic
inductive bias. arXiv preprint arXiv:2306.03509, 2023.

Ziyue Jiang, Jinglin Liu, Yi Ren, Jinzheng He, Zhenhui Ye, Shengpeng Ji, Qian Yang, Chen Zhang,
Pengfei Wei, Chunfeng Wang, et al. Mega-tts 2: Boosting prompting mechanisms for zero-shot
speech synthesis. In The Twelfth International Conference on Learning Representations, 2024.

Zeqian Ju, Yuancheng Wang, Kai Shen, Xu Tan, Detai Xin, Dongchao Yang, Eric Liu, Yichong Leng,
Kaitao Song, Siliang Tang, et al. Naturalspeech 3: Zero-shot speech synthesis with factorized
codec and diffusion models. In Forty-first International Conference on Machine Learning.

Eugene Kharitonov, Damien Vincent, Zalán Borsos, Raphaël Marinier, Sertan Girgin, Olivier Pietquin,
Matt Sharifi, Marco Tagliasacchi, and Neil Zeghidour. Speak, read and prompt: High-fidelity
text-to-speech with minimal supervision. Transactions of the Association for Computational
Linguistics, 11:1703–1718, 2023.

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. Hifi-gan: Generative adversarial networks for
efficient and high fidelity speech synthesis. Advances in Neural Information Processing Systems,
33:17022–17033, 2020.

Felix Kreuk, Gabriel Synnaeve, Adam Polyak, Uriel Singer, Alexandre Défossez, Jade Copet, Devi
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A TRAINING AND INFERENCE SETTINGS

We train WavTokenizer up to 2 million iterations, with 1 million iterations allocated to training the
generator and the discriminator respectively, on 8 NVIDIA A800 80G GPUs. Throughout the entire
training process, all input speech, music, and audio samples are resampled to 24 kHz, and the batch
size is 40. We uniformly truncate excessively long segments in the training data to a fixed length
of 10 seconds and subsequently perform a random crop of the waveform to obtain audio snippets
of 3-second duration to be fed into WavTokenizer. WavTokenizer is optimized using the AdamW
optimizer with an initial learning rate of 2e-4 and betas set to (0.9, 0.999). The learning rate is
decayed based on a cosine schedule.

B THE ARCH BENCHMARK

The ARCH benchmark comprises twelve datasets within the speech, music, audio domain. Emotional
Speech and Song (RAVDESS) (Livingstone & Russo, 2012), Audio-MNIST (AM) (Becker et al.,
2024), Spoken Language Understanding Resource Package (SLURP) (Bastianelli et al., 2020), and
EMOVO dataset (Costantini et al., 2014) assess performance in the Speech domain. ESC-50 (Piczak,
2015), US8K (Salamon et al., 2014), FSD50K (Fonseca et al., 2021), and VIVAE (Holz et al., 2022)
assess performance on Acoustic Events. FMA (Defferrard et al., 2016), MTT (Law et al., 2009),
IRMAS (Bosch et al., 2012), and MS-DB (Rafii et al., 2017) assess performance in the Music domain.

C SUBJECTIVE EVALUATIONS

For the subjective evaluations, we follow the MUSHRA protocol (Series, 2014), using both a hidden
reference and a low anchor. Annotators are recruited using a crowd-sourcing platform, in which they
are asked to rate the perceptual quality of the provided samples in a range between 1 to 100. We
randomly select 50 samples from each category of the test set and ensure at least 10 annotations per
sample. To filter out noisy annotations and outliers, we remove annotators who rate the reference
recordings less then 90 in at least 20% of the cases, or rate the low-anchor recording above 80 more
than 50% of the time.

For CMOS-Q and CMOS-P evaluations, we randomly choose 40 samples from the LibriTTS test-set
for the subjective evaluation, and each audio is listened to by at least 10 testers. We analyze the
CMOS in two aspects: CMOS-Q (quality, clarity and high-frequency details), CMOS-P (Speech rate,
pauses, and pitch). We instruct the testers to focus on the aspect in question and ignore the other
aspect when scoring the aspect being considered.

D ABLATION EXPERIMENTS ON MORE TRAINING DATA AND CODEBOOK
SPACE

We further evaluate whether a larger training dataset would elevate the upper bound of the codebook
space. The results, shown in Table 8, present codebook utilization on the LibriTTS test-clean dataset.
We find that increasing the training dataset size from 585 hours to 4000 hours does not lead to higher
codebook space utilization. Moreover, through visualizing the probability distribution, we observe
that the codebook space trained with larger datasets remains concentrated on the left side of the 4096
range.

Table 8: The ablation study investigates the impact of dataset size on codebook utilization.
Model Dataset Codebooks Utilization rate UTMOS ↑ PESQ ↑ STOI ↑

WavTokenizer 585 Hours 16384 27% 3.9989 2.3600 0.8129
WavTokenizer 4000 Hours 16384 26.5% 3.9465 2.3721 0.8217
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E ABLATION ON THE ATTENTION MODULE AND THE CONTEXTUAL MODEL
SIZE ON THE ARCH BENCHMARK

We conduct ablation study on the impact of the attention module and the extended context modeling
window in WavTokenizer on semantic information, with experiments performed on the ARCH
(La Quatra et al., 2024) speech-domain datasets. The experimental results, as shown in Table 9,
indicate that adding an attention module to the decoder and also extending the context window in the
codec model improve the preservation of semantic information within the codec.

Table 9: The ablation study of the attention module and the contextual window size on the semantic
information in WavTokenizer.

Model Nq ↓ token/s ↓ RAVDESS ↑ SLURP ↑ EMOVO ↑ AM ↑
WavTokenizer w/o attention w/o extended windows 1 75 0.2614 0.0643 0.2368 0.6192

WavTokenizer 1 75 0.3255 0.0802 0.3163 0.6957

F LIMITATION AND FUTURE WORK

While WavTokenizer is capable of reconstructing high-quality audio using only 75 tokens and
demonstrates the potential of a single-layer quantizer with a large codebook space in downstream
generative models, current acoustic codec models lack the understanding capabilities (ASR) found
in semantic models (Hsu et al., 2021). This limitation constrains the development of codec models
within unified multimodal understanding and generation frameworks, such as the GPT-4o paradigm.
At present, distillation methods used in acoustic codec models serve more as temporary solutions.
Unlike the powerful decoder we design in WavTokenizer, in future work, we aim to explore a
more robust encoder module that can further improve compression, reconstruction, and semantic
information retention. Specifically, a key focus of our future work on WavTokenizer will be to explore
elegant methods for significantly enhancing the semantic capacity of discrete tokens within the
encoder.

Additionally, we will train WavTokenizer on hundreds of thousands of hours of speech data, and will
verify whether acoustic codec models with single-layer quantizers and large codebook spaces, trained
on a large amount of speech data, can truly align speech as a special form of language to the text
space within unified large multimodal models.

G WAVTOKENIZER AT 16KHZ AND 48KHZ SAMPLING RATE

We have augmented the reconstruction evaluations by training both 16kHz and 48kHz versions of
WavTokenizer using LibriTTS while maintaining a consistent downsampling factor of 320x. The
hyperparameters are kept at their default settings. Experimental results on the LibriTTS test-clean
dataset (4,837 samples) are presented in Table 10.

We find that WavTokenizer delivers high-quality and comparable audio reconstruction performance
across different sampling rates of 16kHz, 24kHz, and 48kHz. Notably, at 16kHz sampling rate,
WavTokenizer can effectively reconstruct audio with high fidelity using only 50 tokens. We also
observed that all objective metrics, except for UTMOS, exhibit an increasing trend of increasing
scores when the number of tokens increases. In contrast, UTMOS for WavTokenizer remains
relatively stable. We hypothesize that the reconstruction quality of WavTokenizer should be stable
across different sampling rates, to human perception of audio quality; hence, this observation of
stable UTMOS aligns with prior finding Saeki et al. (2022) that UTMOS highly correlates with
human subjective auditory perception.

H EVALUATION ON THE CODEC-SUPERB AND DASB BENCHMARKS

To provide a more comprehensive comparison between our WavTokenizer and existing codec models
under standardized settings, we have supplemented the experimental results of comparing WavTok-
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Table 10: Objective reconstruction performance for WavTokenizer at different sampling rates
on Librispeech test-clean. Sr denotes sampling rate. The results of WacTokenizer at 24kHz are
compared to baseline models in Table 1.

Methods Sr Tokens/s UTMOS ↑ PESQ ↑ STOI ↑ V/UV F1 ↑
WavTokenizer 16000 50 3.9606 2.3240 0.9095 0.9375
WavTokenizer 24000 75 4.0486 2.3730 0.9139 0.9382
WavTokenizer 48000 150 3.9582 2.7230 0.9350 0.9496

enizer against the baselines on the complete Codec-Superb benchmark (Wu et al., 2024) and subtsets
of the DASB benchmark (Mousavi et al., 2024). Note that some subtasks of the DASB benchmark
can only be accessed upon request, such as IEMOCAP and VoxCeleb; moreover, some tasks in
DASB are similar to subtasks in the ARCH benchmark, which have already been used to evaluate
WavTokenizer and baseline models, as reported in Table 3 and discussed in Section 4.2 Evaluation on
Semantic Representation.

While we believe that adding evaluations on these two benchmarks provides further insights into
WavTokenizer’s performance, three important considerations warrant discussion:

1. Generalization: It is crucial to point out that WavTokenizer in the paper uses less diverse
training data (only 8k hours) than most recent codec models which are trained on several
tens of thousands of hours. This disparity may affect WavTokenizer’s generalizability on
certain out-of-distribution tasks.

2. Limitations of Objective Metrics: Note that objective metrics alone may not fully cap-
ture WavTokenizer’s performance. Hence, in the paper, following Encodec, we also use
MUSHRA as the metric for subjective evaluation. Line 429-430 summarized that as shown
in Table 2, WavTokenizer at 0.9kbps outperforms the SOTA acoustic codec model DAC
at 9kbps in reconstruction quality on the speech, music, and audio domains. We also em-
phasized WavTokenizer’s improved subjective reconstruction quality in Line 018 of the
paper.

3. Assessing low-bitrate codec models like WavTokenizer on these benchmarks is not
entirely fair. For example, in the Application-level Evaluation of the Codec-Superb bench-
mark, all metrics for Encodec dropped significantly when the bitrate decreased from 3kbps
to 1.5kbps.

Despite these limitations, WavTokenizer still demonstrats promising performance on both Codec-
Superb and DASB benchmarks. As shown in Table 11 and Table 12, we find that WavTokenizer
exhibits comparable reconstruction performance in Signal-Level Evaluation of the Codec-Superb
Benchmark and achieves competitive performance in Application-level Evaluation of the Codec-
Superb Benchmark, compared to the baselines, particularly excelling in the audio event classification
task, where it achieves a score of 58.10%, surpassing all previously reported codec models.

As shown in Table 13, on the DASB benchmark, WavTokenizer also demonstrates competitive
performance in both the Speech Enhancement (SE) and Speech Separation (SS) tasks.

Table 11: Performance of WavTokenizer on Codec-Superb Signal-level Evaluation.
Metrics Value

Average SDR for speech datasets 0.6388
Average Mel Loss for speech datasets 0.7997

Average STOI for speech datasets 0.8205
Average PESQ for speech datasets 1.9731
Average SDR for audio datasets -3.2675

Average Mel Loss for audio datasets 1.0865

I RECONSTRUCTION SPEED
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Table 12: Performance of WavTokenizer on Codec-Superb Application-level Evaluation.
Model Kbps WER↓ (ASR) EER↓ (ASV) minDCF↓ (ASV) ACC↑ (ER) mAP↑ (AEC)
DAC 8 3.18 3.59 0.26 69.18 32.04

Encodec 1.5 9.21 13.88 0.68 58.84 18.84
WavTokenizer 0.9 5.19 4.96 0.38 66.93 58.10

Table 13: Performance of WavTokenizer on DASB Generation Evaluation.
Model Kbps DNSMOS↑ (SE) dWER↓ (SE) SPKSim↑ (SE) DNSMOS↑ (SS) dWER↓ (SS) SPKSim↑ (SS)
DAC high bitrate 3.95 46.07 0.860 2.53 208 0.784

Encodec high bitrate 2.87 68.22 0.814 2.95 97.73 0.839
DAC low bitrate 3.30 57.41 0.853 3.01 102.00 0.854

Encodec low bitrate 3.15 34.35 0.852 3.11 83.55 0.877
WavTokenizer 0.9 3.51 29.72 0.917 3.44 46.83 0.926

We evaluate the reconstruction speed of Semanticodec Encodec, DAC, and WavTokenizer on a single
NVIDIA A100 80G GPU on the LibriTTS test-clean dataset. We calculate the real-time factor (RTF)
by dividing the total reconstruction time by the duration of the generated audio. The results are shown
in Table ??. Notably, despite incorporating the attention module in the decoder of WavTokenizer, its
reconstruction speed remains remarkably fast. This can be attributed to two factors: (1) the use of
a fast inverse Fourier transform, following Vocos, and (2) the low bitrate of WavTokenizer. These
results demonstrate the high reconstruction efficiency of WavTokenizer.

Table 14: Reconstruction speed (measured by RTF) of different codec models on reconstruction on
the LibriTTS test-clean dataset. RTF is computed by dividing the total reconstruction time by the
duration of the generated audio.

Methods RTF ↓
SemantiCodec 0.9483

Encodec 0.0175
DAC 0.0144

WavTokenizer 0.0098

J DIFFERENT VQ STRATEGIES

We supplemented our work with experiments on low-dimensional code lookups and L2-normalization,
which are used in DAC. However, during training, we observed that the gradient of the commit loss
was not stable. As shown in Table 15, replacing different VQ strategies in WavTokenizer did not
result in significant gains. In fact, under identical configurations, WavTokenizer experienced a slight
performance drop.

K MORE TTS RESULTS

Note that in Section 4.2, we present the subjective evaluation results of TTS models in the acoustic
codec and LLM architecture in Table 4. We further supplement these results with synthesis accuracy
and speaker similarity results. Building on the pre-trained TTS model using WavTokenizer as
presented in Section 4.2, we further evaluate the synthesis accuracy, measured by WER, and speaker
similarity SPK, computed by using WavLM to extract speaker embeddings for cosine similarity, on the
zero-shot TTS task, following the same settings as the VALL-E-continue version (Wang et al., 2023).
As shown in Table 16, in the audio codec and autoregressive LLM architecture for audio generation,
with an identical generative model, the TTS model trained on WavTokenizer (0.9kbps) yields
substantially lower WER than the TTS model trained on SOTA acoustic codec model DAC
(9.0kbps), as 5.1% versus 6.9%, and also achieves better speaker similarity performance, as 0.61
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Table 15: Impact of the different vq strategies on the codebook utilization rate and reconstruction
performance of WavTokenizer on LibriTTS test-clean. Note that the reconstruction performance of
the second row, as WavTokenizer with codebook size 4096, is shown in Table 1.

Model Codebooks Utilization Rate UTMOS ↑ PESQ ↑ STOI ↑
WavTokenizer 8192 68% 4.0220 2.3916 0.9156
WavTokenizer 4096 100% 4.0486 2.3730 0.9139

WavTokenizer w/ low-dimensional, L2-normalization 8192 71% 3.9683 2.2678 0.9044
WavTokenizer w/ low-dimensional, L2-normalization 4096 100% 3.9615 2.2423 0.9036

Table 16: Word Error Rate (WER) and Speaker Similarity (SPK) of various acoustic codec models
for downstream speech synthesis models. GT denotes ground truth waveforms. To evaluate Spk
between the original prompt and the synthesized speech, we utilize the base-plus-sv version of
WavLM.

Model Bandwidth ↓ Nq ↓ WER↓ SPK↑
GT - - 2.4 -

DAC 9.0kbps 9 6.9 0.59
WavTokenizer 0.9kbps 1 5.1 0.61

versus DAC’s 0.59. This further confirms that WavTokenizer demonstrates excellent performance in
the downstream TTS tasks.

L COMPARISON WITH SEMANTICODEC, SINGLE-CODEC, AND MIMI(MOSHI)

In Section 4.2, we primarily compare WavTokenizer against a 9-layer 44.1kHz DAC, which we
consider to be one of the most widely adopted and effective acoustic codec models that are publicly
available. In this section, we extend the comparisons to other three recent codec models, namely,
SemanticCodec, Single-Codec, and Mimi (used in Moshi), as follows.

SemantiCodec. As discussed in Section 2, Semanticodec introduces a paradigm shift that deviates
from the conventional encoder-VQ/RVQ-decoder framework for training acoustic codecs. We believe
this divergence makes it less suitable for tasks involving audio compression, reconstruction, and
downstream generation. Specifically, our reconstruction evaluation on the LibriTTS test-clean dataset
reveals that Semanticodec operates at a significantly slower real-time factor (RTF, computed by
dividing the total reconstruction time by the duration of the generated audio), approximately 90 to
100 times slower than RTF of WavTokenizer and other common acoustic codec models, as shown in
Table 14. Given these limitations, we did not include SemanticCodec in our comparisons.

Single-Codec. We have already discussed the Single-Codec model in Section 2. As a contemporane-
ous study, we note that its reconstruction performance, as reported in its paper, shown in Table 17,
is mediocre (merely 3.0 UTMOS). Furthermore, since the model’s implementation is not publicly
available, we were unable to include Single-Codec in our evaluations.

Table 17: Reconstruction results of Single-Codec reported in the original paper.
Model UTMOS ↑ PESQ↑ STOI ↑

Single-Codec Li et al. (2024) 3.031 1.933 0.842

Mimi(Moshi). I personally hold great admiration for the work of Moshi and believe that Mimi and
Moshi represent significant advancements for the academic community. However, it is important
to note that Mimi was released after the WavTokenizer work was completed and only a few weeks
before the ICLR submission deadline (9.17 on arxiv). According to ICLR guidelines, there is no
obligation to compare against works released less than four months prior to submission. Additionally,
many of Mimi’s design choices, such as the use of large codebooks and attention mechanisms, are
similar to those in WavTokenizer, which might render a direct comparison less equitable. However,
given the reviewer interest in the comparison between Mimi and WavTokenizer, we have included
additional reconstruction experiments on the full LibriTTS test-clean datatsets during the rebuttal
phase to provide a more comprehensive evaluation.
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Table 18: Comparison of reconstruction performance of Mimi and WavTokenizer on LibriTTS
test-clean.

Model Sr Tokens/s UTMOS ↑ PESQ↑ STOI ↑ V/UV F1 ↑
Mimi(Moshi) 24000 100 3.5731 2.2695 0.9118 0.9128
WavTokenizer 24000 75 4.0486 2.3730 0.9139 0.9382
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