
Flexible Learning of Sparse Neural Networks via
Constrained L0 Regularization

Jose Gallego-Posada
Mila, Université de Montréal∗

Juan Ramirez
Universidad EAFIT

Akram Erraqabi
Mila, Université de Montréal

Abstract

We propose to approach the problem of learning L0-sparse networks using a con-
strained formulation of the optimization problem. This is in contrast to commonly
used penalized approaches, which combine the regularization terms additively with
the (surrogate) empirical risk. Our experiments demonstrate that we can obtain
approximate solutions to the constrained optimization problem with comparable
performance to state-of-the art methods for L0-sparse training. Finally, we discuss
how this constrained approach provides greater (hyper-)parameter interpretability
and accountability from a practitioner’s point of view.

1 Introduction

The great expressive power of neural networks as function approximators (Bengio et al., 2013) comes
with an inherent need for regularization. Regularization aimed at controlling the generalization
behavior of the network can be realized by a wide range of mechanisms: explicitly, through the use of
additive penalties in training (e.g. Structural Risk Minimization (Vapnik and Chervonenkis, 1974));
implicitly, via the choice of optimization algorithm used to train the network (Neyshabur et al., 2015;
Caruana et al., 2001); or even be in-grained in the architecture of the network through stochastic
computation (Srivastava et al., 2014).

The internal structure of commonly used neural networks results in overparametrized models, whose
performance is robust to harsh levels of parameter pruning (Han et al., 2016; Ullrich et al., 2017;
Frankle and Carbin, 2019). Thus, regularization techniques aimed at learning sparse models can
drastically reduce the computational cost associated with the learnt model by removing unnecessary
parameters, and retain good performance in the learning task. With recent research trends exploring
the capabilities of ever more ambitious large-scale models (Brown et al., 2020), developing techniques
which provide reliable training of sparsified models becomes crucial for deploying them in massively-
used systems, or on resource-constrained devices.

Louizos et al. (2018) develop a framework for training classifiers with low L0-norms. The authors
propose to augment the network’s classification loss with an additive surrogate penalty (scaled by a
suitably selected multiplicative factor λ). At convergence, the model is expected to strike a balance
(dependent on λ) between achieving a good performance in the classification task, and having a low
number of active parameters, as measured by its L0-norm. We retain their proposed reparametrization
based on modified binary concrete random variables (Maddison et al., 2017), which allows for a
gradient based optimization procedure, while maintaining exact zeros in the parameter values.

In this paper we advocate for the use of a constrained formulation of the learning problem and resort
to standard saddle-point optimization techniques for optimizing the Lagrangian associated with the
constrained problem. Concretely, we consider constraints of the type ‖θg‖0 ≤ ε, where θg represents
a group g of parameters of the network. In contrast to the penalized formulation of Louizos et al.
(2018), we do not seek to reduce the L0-norm of the model after the given threshold is respected.

∗Correspondence: gallegoj(at)mila(dot)quebec

Published as a workshop paper at the NeurIPS 2021 - LatinX in AI Workshop

Adopting this constrained formulation provides several advantages. It enjoys an interpretable hyper-
parameter: the constraint level. Unlike the multiplicative factor λ, the constraint level ε has straight-
forward semantics associated with the density of a block of parameters θg. Moreover, requiring
different density levels for parameter groups with larger contributions to the overall computation time
simply amounts to specifying several constraints with levels matching these desired densities, thus
eliminating the successive tuning and re-balancing of various multiplicative factors.

We concentrate on the setting of training sparsified networks as a case study to illustrate the advantages
of the constrained approach. However, the benefits of constrained formulations extend to many other
applications beyond the training of sparsified networks.

2 Regularization via L0 penalties

Louizos et al. (2018) propose a framework for training sparse models using the L0-norm as an
additive penalty to the usual training objective. The L0-norm penalizes the number of non-zero
entries of the parameter vector θ, inducing sparsity without attempting to shrink the parameter values.

Let h(x; θ) be a predictor with parameters θ. Given a supervised learning problem defined by a
dataset of N i.i.d. pairs D = {(xi, yi)}Ni=1, a loss function ` and a regularization coefficient λ ≥ 0,
they formulate the following L0-regularized empirical risk objective:

R(θ) = 1

N

(
N∑
i=1

` (h(xi; θ), yi)

)
+ λ‖θ‖0, ‖θ‖0 =

|θ|∑
j=1

1{θj 6= 0}. (1)

The non-differentiability of the L0-norm makes it poorly suited to gradient-based optimization. The
authors propose a reparametrization θ = θ̃ � z, where θ̃ are free parameter magnitudes, and z
represent independent binary random gates indicating whether a parameter is active or not. To
guarantee differentiability, they model each of these gates using a modified version of the concrete
distribution (Maddison et al., 2017; Jang et al., 2017).

Consider a concrete random variable sj ∼ q(·|φj , (αj , βj)). This variable is then stretched and
clamped, resulting in a mixed distribution with point masses at 0 and 1, and a continuous density
over (0, 1). Formally, given Uj ∼ Unif(0, 1) and hyper-parameters γ < 0 < 1 < ζ,

sj = Sigmoid
(

1

βj
log

(
αj Uj

1− Uj

))
, z = clamp[0,1](s(ζ − γ) + γ)). (2)

Given this stochastic reparameterization of the network parameters, the authors re-define the training
objective to be the mean (under the gate distribution) of the L0-regularized empirical risk in Eq. (1):

R(θ̃,φ) , Ez |φ

[
R(θ̃ � z)

]
= Ez |φ

[
1

N

N∑
i=1

`
(
h(xi; θ̃ � z), yi

)]
︸ ︷︷ ︸

, fobj(θ̃,φ)

+λ Ez |φ [‖z‖0]︸ ︷︷ ︸
, gconst(φ)

. (3)

In practice, the first term is estimated using Monte Carlo samples. Notably, under the specific choice
of re-parametrization in Eq. (2), the expected L0-norm can be expressed in closed-form as:

Ez|φ [‖θ‖0] =
|θ|∑
j=1

P[zj 6= 0] =

|θ|∑
j=1

Sigmoid
(
logαj − β log

−γ
ζ

)
(4)

where βj = β is shared across gates. Note that one parameter φj is required for each gate, and thus
using one gate per model parameter, effectively doubling the number of training parameters. Instead
of considering a gate for each individual parameter, parameters may be gathered under a shared gate,
thus leading to a reduction in the number of training parameters. All experiments presented in this
work match the setting of (Louizos et al., 2018): i) a gate per input neuron for fully connected layers,
and ii) a gate per output feature map for convolutional layers.

Moreover, the use of this “structured sparsity” results in practical computational improvements
as whole parameter groups (e.g. entire slices of a convolution kernel) can be discarded. It is
challenging to achieve comparable savings when using “unstructured/parameter sparsity” (with
individual, scattered parameters being sparse) without specialized hardware.

2

3 Regularization via L0 constraints

We favor formulating regularization goals as constraints, rather than as additive penalties. We refer
to these two approaches as constrained and penalized, respectively. Although an ubiquitous tool in
machine learning, penalized formulations may come at the cost of hyper-parameter interpretability
and are susceptible to intricate dynamics when trying to incorporate multiple sources of regularization.
In the following we show how training L0-sparse models using a constrained formulation allows us
to overcome these challenges.

3.1 Constrained formulation

In contrast to the penalized objective of (Louizos et al., 2018) presented in Eq (4), we propose
to incorporate the L0 sparsity through constraints. We formulate an optimization problem that
aims to minimize the model’s empirical risk, subject to constraints on the expected L0-norm of
pre-determined parameter groups:

min
θ̃,φ

fobj(θ̃,φ) (5)

s.t. gconst(φ[g]) ≤ εg · parcount(φ[g]) for g ∈ [1, . . . G],

where g denotes a subset of gates, φ[g] selects the parameters of the stochastic gates in g, and
parcount(φ[g]) counts the total number of parameters associated with gates in g2.

Note how the parcount(φ[g]) factor in the constraint levels allows us to interpret εg as the maximum
proportion of gates that are allowed to be active (in expectation) within group g. We refer to εg as the
target density of group g.

Lowering the target density demands a sparser model and thus a (not necessarily strictly) more
challenging optimization problem from the point of view of the best feasible empirical risk. However,
for any choice of εg ≥ 0, the feasible set in Eq (5) is always non-empty; while values of εg ≥ 1 result
in vacuous constraints.

We highlight one important difference between the constrained and penalized formulations. The
penalized approach is optimizing “jointly” the training loss fobj(θ̃,φ) and the expected L0-norm
gconst(φ), due to their additive combination (mediated by λ). Meanwhile, the constrained method
focuses on obtaining the best possible model within a certain sparsity level ε: given two feasible
solutions, the formulation in Eq (5) only discriminates based on the training losses. In other words,
we aim to satisfy the constraints, not to optimize them.

3.2 Constraints can be liberating

We use the training of L0-sparse networks to illustrate the advantages that constrained formulations
of regularized problems can provide. Note that we do not intend to claim that constrained approaches
are universally better than their penalized counterparts.

First, the semantics of the constraint function gconst(φ[g]) provide a straightforward interpretation
of the “hyper-parameter” in the constrained approach as the maximum proportion of active gates
within group g. In contrast, the value of the multiplier λ in the penalized formulation of (Louizos
et al., 2018) lacks a comparably clear interpretation. This challenge becomes even stronger in the
presence of multiple sources of regularization (i.e., a separate λ for each parameter group).

The tuning of ε and λ is closely linked to the previous discussion on interpretability. Application
specific requirements can provide information on what the desired network sparsity may be. For

2For example, consider a [din, dhid, dout] 1-hidden layer MLP with input-neuron sparsity on both of its two
fully connected layers. For simplicity, we ignore the bias in the description below.

• Grouping at the layer level (akin to “λ sep.” in (Louizos et al., 2018)), would yield G = 2 groups,
with #{g = 1} = din gates in group g = 1. Note that each gate in group 1 is shared across dhid
parameters in θ, thus parcount(φ[1]) = din · dhid. Similarly for group g = 2.

• Alternatively, it is possible to group at the model level (akin to “λ = #
N

” in (Louizos et al., 2018)).
In this case we have G = 1 group, with #{g = 1} = din + dhid gates. Finally, parcount(φ[1]) =
din · dhid + dhid · dout gives the total number of parameters in the network, as expected.

3

example, if the network will be deployed on a resource constrained device, achieving low latency
gives bounds on the allowed number of FLOPS, which directly depend on the number of active
parameters in the network. In the constrained formulation, such requirements can be easily translated
from number of FLOPS into target sparsity levels for (each layer of) the model.

On the other hand, achieving a pre-specified level of sparsity using the penalized approach may
require running several experiments, to find a suitable value of λ which yields an acceptably dense
network with good predictive performance. Finally, employing several multipliers in order to impose
different density levels across different layers in the model is challenging as these multipliers interact
in intricate ways in the penalized objective. Degrave and Korshunova (2021) provide a brief and
modern discussion of the failure modes of gradient descent at thoroughly exploring all trade-offs
between regularized objectives for problems with non-convex Pareto fronts.

3.3 Solving the constrained problem

There is vast literature in solving constrained convex optimization problems (Boyd and Vanden-
berghe, 2004), with notable examples including interior point methods or the Frank-Wolfe algorithm
(Frank and Wolfe, 1956; Jaggi, 2013). However, many of these methods assume convexity in the
objective/constraints, or specific structure of the feasible set. In this work, we focus on applications
that involve neural networks, typically leading to the violation of both of these assumptions.

We start by considering the (nonconvex-concave) Lagrangian associated with the constrained formu-
lation in Eq (5), along with the corresponding min-max game:

argmin
θ̃,φ

argmax
λ≥0

L(θ̃,φ,λ) , fobj(θ̃,φ) +
∑
g

λg

(
gconst(φ[g])

parcount(φ[g])
− εg

)
, (6)

where λ = [λg]
G
g=1 ≥ 0 are Lagrange multipliers associated with each of the constraints.

A commonly used approach to optimize this Lagrangian is simultaneous gradient descent on θ and φ,
and projected (to R+) gradient ascent on λ:

[θ̃t+1,φt+1] = [θ̃t,φt] − ηprimal∇[θ̃t,φt]
L(θ̃t,φt,λt)

λ̂t+1 = λt + ηdual∇λt
L(θ̃t,φt,λt) = λt + ηdual

[
gconst(φ[g])

parcount(φ[g])
− εg

]G
g=1

(7)

λt+1 = max
(
0, λ̂t+1

)
Note how the gradient update for λ matches the size of the violation of each constraint. When a
constraint is satisfied, the gradient for its corresponding Lagrange multiplier is non-positive, leading
to a reduction in the value of the multiplier. On the other hand, just like in the penalized formulation
of (Louizos et al., 2018), the update for θ and φ requires the gradient of the prediction loss and that
of the re-parameterized L0-norm. Hence, the cost of executing this update scheme is the same (up to
the negligible cost of updating the multiplier values) as the cost of a gradient descent update on the
penalized formulation in Eq (4).

Recall that a pure Nash equilibrium of this min-max game corresponds to a saddle point of the
Lagrangian and determines an optimal, feasible solution. However, for non-convex problems such
pure Nash equilibria might not exist, potentially leading to oscillations in parameter space when
performing gradient descent-ascent (GDA) updates. Cotter et al. (2019) propose an algorithm
that returns a pair of mixed strategies which configure a “semi-coarse correlated equilibrium”.
Experimentally we observed stable, reliable, non-oscillatory behavior when using GDA.

Other approaches, such as extra-gradient (Korpelevich, 1976), provide better convergence guarantees
for games like Eq (6), compared to GDA. However, extra-gradient requires twice as many gradient
computations per parameter update and the storage of an auxiliary copy of all the trainable parameters.
Nonetheless, extrapolation from the past (Gidel et al., 2019) enjoys similar convergence properties
to extra-gradient without requiring a second gradient computation. Our experiments showed no
significant difference in performance between GDA and extra-gradient.

One drawback of these techniques is that the constraint violations accumulate in the value of the
Lagrange multipliers, which continues to affect the optimization dynamics, even after a constraint

4

is being satisfied. This results in an excessive regularization, moving the parameters towards the
interior of the feasible set, which can be detrimental if we are only concerned about satisfying (not
minimizing) the constraint. To address this, we propose a dual restart scheme in which the Lagrange
multiplier associated with a constraint is set to 0 whenever the constraint is satisfied, rather than
waiting for the (negative gradient updates) to reduce its value. This removes the contribution of
the expected L0-norm to the Lagrangian for groups g whose constraints are satisfied, so that the
optimization may focus on improving the predictive performance. Any further, more restrictive
sparsity requirements, should be specified as a tighter constraint level.

4 Related work

Cotter et al. (2019) train models under constraints on the prediction rates of the model over different
datasets. The authors argue this approach enables them to take advantage of side information by
incorporating this in a straightforward manner into a training pipeline. While our work shares a
similar motivation, the sparsity-inducing regularization we study in this paper depends only on
properties of the model parameters and not on the model predictions.

The hard-concrete reparameterization in Eq (2) allows us to consider a non-convex, (almost every-
where) differentiable, constrained optimization problem. It would be interesting to incorporate the
idea of proxy constraints by Cotter et al. (2019) in measuring the actual sparsity of the model used at
test time, rather than the surrogate metric given by the model’s expected L0 norm.

In recent work, Lin et al. (2020) present non-asymptotic complexity results showing that two-timescale
GDA can find stationary points for nonconvex-concave minimax problems efficiently.

5 Experiments

Following Louizos et al. (2018), we evaluate our approach on the MNIST classification task using
two different architectures: i) an MLP with 2 hidden layers with 300 and 100 units respectively, and
ii) a convolutional LeNet-5-Caffe network. We followed their reparametrization approach and used
their protocol for network initialization and for the hard-concrete reparametrization of the gates.

The experiments shown below use Adam (Kingma and Ba, 2015) descent scheme for the model
parameters with learning rate ηprimal = 7 · 10−4, and gradient ascent on the Lagrange multipliers with
learning rate ηdual = 10−4. Experiments shown in Table 1 employ dual restarts.

To ensure a fair comparison with the models obtained by Louizos et al. (2018), we estimate the
density levels of their pruned architectures and used these as target density levels for our approach,
hence leveraging the interpretability of the constraint formulation. Similarly to Louizos et al. (2018),
we regularize our models with two grouping schemes: a) with a single constraint at the model level,
or b) with one constraint per layer.

Performance comparison. We report in Table 1 the resulting pruned architectures and their cor-
responding performances. Previous works reported the best performance throughout training only.
Regarding this evaluation metric, our method proves to be competitive compared to previous work,
and in worst cases (MLP with single constraint) as good as (Louizos et al., 2018). We also report the
average error at the end of training, across 5 different runs.

Training dynamics. Figure 1 portrays the training dynamics of our approach. During the first epochs
of training, the optimization focuses on improving the model’s prediction capabilities and disregards
sparsity. When the multiplier increases, the density of the model is reduced, which also causes
the validation error to increase. Afterwards, when the model reaches the desired sparsity level, λg
decreases. For optimizations with dual restarts, this amounts to a decrease back to 0, while for no
dual restarts the decrease is gradual and slow. Then, the model trained with dual restarts stays near
the desired density level during the rest of training, whilst the other becomes more sparse at the cost
of prediction performance.

5

Architecture Approach
Pruned Error (%)

architecture best at 200 epochs
(avg ± 95% CI)

MLP

Sparse VD (Molchanov et al., 2017) 512-114-72 1.8 –
BC-GNJ (Louizos et al., 2017) 278-98-13 1.8 –
BC-GHS (Louizos et al., 2017) 311-86-14 1.8 –

784-300-100 λ = 0.1/N (Louizos et al., 2018) 219-214-100 1.4 –
Ours: ε = 33% 198-233-100 1.4 1.69 ± 0.11
λ = [0.1, 0.1, 0.1]/N (Louizos et al., 2018) 266-88-33 1.8 –
Ours: ε = [30%, 30%, 30%] 243-89-29 1.63 2.18 ± 0.10

LeNet5

Sparse VD (Molchanov et al., 2017) 14-19-242-131 1.0 –
GL (Wen et al., 2016) 3-12-192-500 1.0 –
GD (Srinivas and Babu, 2016) 7-13-208-16 1.1 –
SBP (Neklyudov et al., 2017) 3-18-284-283 0.9 –
BC-GNJ (Louizos et al., 2017) 8-13-88-13 1.0 –

20-50-800-500 BC-GHS (Louizos et al., 2017) 5-10-76-16 1.0 –
λ = 0.1/N (Louizos et al., 2018) 20-25-45-462 0.9 –
Ours: ε = 10% 20-21-34-407 0.53 1.04 ± 0.09
λ = [10, 0.5, 0.1, 0.1]/N (Louizos et al., 2018) 9-18-65-25 1.0 –
Ours: ε = [50%, 30%, 70%, 10%] 10-14-224-29 0.7 0.97 ± 0.06

Table 1: Pruned MLP and LeNet5 Caffe architectures and their respective performances. Previous
works only reported best performance throughout training. In addition, for our models, we also report
the average final performance across 5 runs of 200 epochs each, along with 95% confidence intervals.

0 50 100 150 200
Epoch

0.0

0.5

1.0

C
on

st
ra

in
t

0 50 100 150 200
Epoch

0

1

g

0 50 100 150 200
Epoch

0.0

0.1

0.2

Tr
ai

n
lo

ss

0 50 100 150 200
Epoch

2

4

Va
l.

E
rr

or

Dual Restart No Dual Restart

Figure 1: Training dynamics for an MLP model with ε = 33% (at the model-level) along 200 epochs,
one trained employing dual restarts and another without them.

Acknowledgements

We thank Manuel del Verme for many insightful discussions and his contributions to the implementa-
tion of some constrained optimization methods used in this paper.

JGP was partially supported by the Canada CIFAR AI Chair Program and by an IVADO PhD
Excellence Scholarship.

References
Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives.

IEEE TPAMI, 35(8):1798–1828, 2013.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

6

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,
G. Sastry, A. Askell, et al. Language Models are Few-Shot Learners. In NeurIPS, 2020.

R. Caruana, S. Lawrence, and C. Giles. Overfitting in Neural Nets: Backpropagation, Conjugate
Gradient, and Early Stopping. In NeurIPS, 2001.

A. Cotter, H. Jiang, M. Gupta, S. Wang, T. Narayan, S. You, and K. Sridharan. Optimization with
Non-Differentiable Constraints with Applications to Fairness, Recall, Churn, and Other Goals. In
JMLR, 2019.

J. Degrave and I. Korshunova. Why machine learning algorithms are hard to tune and how to fix it.
Engraved, blog: www.engraved.blog/why-machine-learning-algorithms-are-hard-to-tune/,
2021.

M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quarterly,
3(1-2):95–110, 1956.

J. Frankle and M. Carbin. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks.
In ICLR, 2019.

G. Gidel, H. Berard, G. Vignoud, P. Vincent, and S. Lacoste-Julien. A Variational Inequality
Perspective on Generative Adversarial Networks. In ICLR, 2019.

S. Han, H. Mao, and W. J. Dally. Deep Compression: Compressing Deep Neural Networks with
Pruning, Trained Quantization and Huffman Coding. In ICLR, 2016.

M. Jaggi. Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization. In ICML, 2013.

E. Jang, S. Gu, and B. Poole. Categorical Reparameterization with Gumbel-Softmax. In ICLR, 2017.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In ICLR, 2015.

G. M. Korpelevich. The extragradient method for finding saddle points and other problems. Matecon,
1976.

T. Lin, C. Jin, and M. Jordan. On Gradient Descent Ascent for Nonconvex-Concave Minimax
Problems. In ICML, 2020.

C. Louizos, K. Ullrich, and M. Welling. Bayesian Compression for Deep Learning. In NeurIPS,
2017.

C. Louizos, M. Welling, and D. P. Kingma. Learning Sparse Neural Networks through L0 Regular-
ization. In ICLR, 2018.

C. J. Maddison, A. Mnih, and Y. W. Teh. The Concrete Distribution: A Continuous Relaxation of
Discrete Random Variables. In ICLR, 2017.

D. Molchanov, A. Ashukha, and D. Vetrov. Variational Dropout Sparsifies Deep Neural Networks. In
ICML, 2017.

K. Neklyudov, D. Molchanov, A. Ashukha, and D. Vetrov. Structured Bayesian Pruning via Log-
Normal Multiplicative Noise. In NeurIPS, 2017.

B. Neyshabur, R. Tomioka, and N. Srebro. In Search of the Real Inductive Bias: On the Role of
Implicit Regularization in Deep Learning. In ICLR - Workshop, 2015.

S. Srinivas and R. V. Babu. Generalized Dropout. arXiv preprint arXiv:1611.06791, 2016.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A Simple Way
to Prevent Neural Networks from Overfitting. In JMLR, volume 15, pages 1929–1958, 2014.

K. Ullrich, E. Meeds, and M. Welling. Soft Weight-Sharing for Neural Network Compression. In
ICLR, 2017.

V. Vapnik and A. Chervonenkis. Theory of Pattern Recognition, 1974.

W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning Structured Sparsity in Deep Neural Networks.
In NeurIPS, 2016.

7

A Varying the target density

Figure 2 shows the performance of our approach when setting different target densities. The initial
model architectures and the optimization hyper-parameters are the same as presented in Section 5.
Note that while many of the results correspond to models which are unfeasible (due to the use of
dual restarts), the magnitude of the constraint violation is very low. We remark that our proposed
constrained method mostly results in models whose density is reasonably close the desired target
density, for a wide range of values of the target density.

Figure 2: Average error after 100 epochs across three runs for different configurations of the constraint
level. Top panels correspond to the LeNet architecture, and inferior panels to MLPs; left panels
comprise runs where parameters are grouped at a layer level, those on the right where groups at a
model level.
Annotations indicate the worst achieved constraint value across runs. For layer-level experiments,
this is selected according to the most dense layer.

As expected, low values of εg demand more sparse models which have worse predictive performance.
This is more notorious for layer-wise experiments, as this grouping results in constraints which reduce
the flexibility of the model in comparison to model-layer groupings.

8

	Introduction
	Regularization via L0 penalties
	Regularization via L0 constraints
	Constrained formulation
	Constraints can be liberating
	Solving the constrained problem

	Related work
	Experiments
	Varying the target density

