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ABSTRACT

Despite the success of current segmentation models powered by the transformer,
the camouflaged instance segmentation (CIS) task remains a challenge due to the
similarity between the target and the background. To address this issue, we pro-
pose a novel approach called the local-feature-aware transformer (α-Former) that
incorporates traditional computer vision descriptors to extract critical edge fea-
tures in camouflaged instances. Specifically, we introduce an adapter to merge
local features into the transformer framework. Using the proposed transformer-
based encoder-decoder architecture, our α-Former surpasses state-of-the-art per-
formance on the COD10K and NC4K datasets. Additionally, we introduce an
edge-aware feature fusion module to improve boundary results in the segmenta-
tion model.

1 INTRODUCTION

Camouflaged instance segmentation (CIS) is beneficial for applications in computer vision, like
medical image segmentation, agriculture, etc. (Fan et al. (2020)). However, this task is challenging
compared to traditional object detection and segmentation since camouflaged objects can effectively
blend in with the background, making it difficult for models to detect and annotate them accurately.
Recently, transformer reached outstanding performances in different applications like classification
(Chen et al. (2021), detection (Carion et al. (2020)), segmentation (Strudel et al. (2021)), etc. How-
ever, transformer models usually need a large-scale dataset for training. Thanks to the large-scale
camouflaged datasets and benchmarks like COD10K (Fan et al. (2020), CAMO ( Le et al. (2019)),
CAMO++ (Le et al. (2021)), NC4K (Lv et al. (2021)), it is possible for the researchers to implement
the transformer on CIS. As a result, the transformer achieves state-of-the-art performance in this
field (Pei et al. (2022)).

Despite their effectiveness, current transformer models have limitations in dealing with camouflaged
instance segmentation. As shown in Fig 1, these models tend to predict multiple objects for a single
target when the edge is unclear. This is because the models primarily focus on finding the target
object and ignore the importance of accurately identifying the boundary of the target object. To
improve camouflaged instance segmentation performance, models need to better understand the
object’s location and enhance the features around the instance’s boundary.

In order to improve the boundary features of our model, we have integrated traditional descriptors
like LBP( Ojala et al. (1994)) into the transformer framework. LBP is especially sensitive to edges,
which is advantageous in the context of CIS because of the high similarity between objects and the
background. As depicted in Figure 1, LBP can accurately demarcate the boundary of the target
object, even when the color and texture of the object are similar to that of the background. This
allows the model to achieve superior results, as shown in Figure 1. By combining LBP with the
transformer, we have developed an effective framework for identifying target objects and creating
precise boundaries. We call this framework the local-feature-aware transformer, or α-Former (pro-
nounced ”alpha-former”). Inspired by LBP, we have created a learnable module known as the binary
filter (BF), which can compare pixel values within a field and generate a local feature. The binary
filter consists of a learnable module and a fixed-weight convolution layer called BCNN which can
extract features similar to the LBP.

The fixed convolution layer is able to generate local features by comparing different pairs of pixels,
while the learnable module can collect and consolidate this comparison information. To effectively
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Figure 1: The α-Former was motivated by the need to improve the performance of the camouflaged
instance segmentation model. The model generates a local feature that provides precise boundary
information about the target object. The first image is the input image, the second image is the
prediction result without the local feature, the third is the generated local feature, and the fourth is
the prediction result with the local feature. Incorporating the local feature into the model results in
a more accurate segmentation of the target object.

integrate the features extracted by the binary filter, we have developed a learnable module known as
the feature aggregation adapter (FAA). The FAA can provide the local features to the backbone of
the model without interfering with its performance, even if there are differences in the input distri-
bution. Moreover, our FAA module is highly parameter-efficient and easy to train. Additionally, we
have designed an edge-aware module that can accurately predict boundaries for CIS. This module
includes a multi-level convolution layer that offers a wide receptive field and a fixed-weight convo-
lution layer that extracts local features. To utilize the ground truth edge as supervision, we employ a
1 × 1 convolution layer to generate edge predictions. These edge predictions are then incorporated
into the final prediction head to improve the model’s overall performance.

Our model combines the binary filter (BF), feature aggregation adapter (FAA), and edge-aware fu-
sion module to achieve superior performance on two popular datasets, COD10K and NC4K. Specif-
ically, our model outperforms the current state-of-the-art by approximately 2 average precision (AP)
points. Additionally, we conduct ablation studies to demonstrate the effectiveness of our BF, FAA,
and edge-aware fusion module. Also, we provide lots of qualitative results in our experiments.

To summarize, our contributions are:

• We first notice that some traditional descriptors are sensitive to the boundary of camou-
flaged objects. Inspired by the finding, we proposed a learnable module to extract similar
features as the traditional descriptor.

• We proposed α-Former, which firstly provides local binary information to the camouflage
instance segmentation model. Also, we provide edge supervision to our model to improve
the final mask boundary.

• We achieve state-of-art camouflaged instance segmentation performance on two different
datasets. Experiments and ablation study shows the effectiveness of our proposed modules
and architecture.

2 RELATE WORK

Camouflaged Object Detection. Camouflaged object detection aims to find the hidden object in
the image and is more challenging than traditional object detection. Earlier works mainly focus on
some level features like color (Huerta et al. (2007)), and texture (Song & Geng (2010)). With the
development of deep learning, more and more works have started to use neural networks to solve
the problem. These methods (Zhu et al. (2021); Mei et al. (2021)) mostly use a CNN backbone to
extract high-level features and try to locate and predict the camouflaged objects. MGL (Zhai et al.
(2021)) first use a mutual graph to detect and predict the final results. UGTR (Yang et al. (2021))
tried to mimic the human process, adding an uncertain prediction for camouflaged object detection.
OSFormer (Pei et al. (2022)) uses a one-stage architecture and transformer to get the final results.
PFNet (Mei et al. (2021)) firstly adds a positioning and focus module to mimic the human detection
process, which tries to find the target object.
Integrating traditional descriptors to Help CNN. There is a long history of using traditional
descriptors to help improve the performance of CNN. Earlier works use different descriptors to help
CNN. For example, some works (Karanwal & Diwakar (2021a;b)) use LBP (Ojala et al. (1994)) to
help improve face performance recognition. People also use HOG (Dalal & Triggs (2005)) to help
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Figure 2: Examples of our BCNN layer. The
left is a sample of 3 × 3 BCNN layer, the
center is the input image, and the right is the
output of the BCNN layer. Our results show
that BCNN can provide a precise boundary
for a given image.

them improve the performance of human detection (Surasak et al. (2018)) and action recognition
(Patel et al. (2020)). Recently, researchers tried to combine SIFT (Lowe (1999)) and convolution
networks (Gupta et al. (2019); Hossein-Nejad et al. (2021); Kovač & Marák (2022)) to extract
better features and implement the features in different applications. Considering so many works
integrating traditional descriptors with deep learning architecture and get performance improvement
and the lack of effort to apply the traditional descriptor to camouflaged object detection, we try
to use a descriptor inspired by traditional descriptors to improve the performance of camouflaged
object detection.
Binary Filter. The traditional descriptor inspires the idea of using a binary filter for convolution.
Many works already use their binary filter to get good performance in many datasets. For example,
BinaryConnect (Courbariaux et al. (2015)) tried to train a neural network with only binary weights
during propagation. In this article, they approximate the real value in neural networks with binary
values. Based on BinaryConnect, researchers proposed BinaryNet (Courbariaux et al. (2016)),
where both the weights and activations are constrained to +1 or −1. LBCNN (Juefei-Xu et al.
(2017)) uses a fixed-weight binary convolution to replace the original convolution and get good
performance in the classification tasks. These works show the feasibility of using binary filters to
extract features and train neural networks.

3 BINARY FILTER

3.1 WHY USE BINARY FILTER

We have observed that traditional camouflage segmentation models struggle to determine the bound-
ary of objects in ambiguous cases accurately. For example, when presented with an image of a
pipefish, as shown in Fig. 1, a standard model may predict multiple objects instead of correctly
identifying a single target object. However, using a traditional descriptor like LBP, as shown in Fig.
1, enables the model to locate the object’s boundary. The resulting feature representation is also
continuous, encouraging the model to predict the target object as a single entity instead of multiple
objects. Unfortunately, LBP is not a learnable descriptor, meaning that it cannot adapt to new data.

To address this issue, we sought to design an architecture that can detect local binary features similar
to those captured by traditional descriptors but is also learnable. The LBP descriptor compares the
center pixel value with the surrounding pixel values, so we were inspired to create a binary filter
using a fixed binary weight convolution (BCNN) to simulate this process.

3.2 ARCHITECTURE OF BINARY FILTER

In this section, we describe the architecture of our proposed binary filter, which allows for compari-
son operations that are difficult to perform with traditional convolution layers. As illustrated in Fig.
2, we can simulate the comparison operation by designing a convolution kernel where the center
value is -1, the left value is 1, and all other values are 0. After applying this convolution operation,
we compare the output with 0. If the output is greater than 0, we know that the left pixel value is
greater than the center pixel value; otherwise, the left pixel value is less than the center pixel value.
Our designed binary convolution layer with fixed binary weight convolution (BCNN) can extract
the precise boundary for the target object, as demonstrated in Fig. 2. To increase the robustness of
BCNN, we use multiple binary convolution kernels for each BCNN layer, and for each kernel, we
randomly select a value from −1, 0, 1. However, the BCNN is not trainable, and to make the binary
filter trainable, we add a 1×1 convolution layer after each BCNN layer to gather information, which
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Figure 3: α-Former comprises a feature ex-
tractor, an encoder-decoder, an edge-aware
fusion module, and a prediction head. The
input of the α-Former is a single RGB image,
and α-Former can segment the camouflaged
object in the input image.

is trainable. This trainable 1 × 1 convolution layer is very light and easy to train compared to the
traditional CNN architecture.

4 METHODS

Architecture Our proposed α-Former has five crucial modules. (1) A feature extractor with a binary
filter to extract similar features as the LBP( Ojala et al. (1994)), an adapter to transfer the input
domain, and a backbone to extract object features. (2) A transformer encoder that uses global and
local features to generate object embedding. (3) An edge-aware feature fusion module to generate
precise boundaries. (4) A transformer decoder to extract the information from the embedding (5)
Mask predict head to predict final instance mask. The whole architecture is shown in Fig.3

4.1 FEATURE EXTRACTOR

Our feature extractor consists of three parts: a learnable local binary filter (BF), a feature aggregation
adapter (FAA), and a pre-trained CNN backbone. These components are shown in Fig.4.
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Figure 4: Our feature extractor contains a preprocessing module, several binary filters, a feature
aggregation adapter, and a pre-trained backbone. The binary filter can extract local features of the
input image. After getting local features, we concatenate the original image and local features and
use our feature aggregation adapter to transfer the new image domain to the input image domain.
After the feature aggregation adapter, we use a pre-trained backbone to extract high-level and low-
level features.

4.1.1 BINARY FILTER (BF)

The purpose of the binary filter is to extract local features. Here, given an input image I ∈ RH×W×3,
we firstly use a convolution layer to preprocess the image. After the preprocessing, we use a pre-
defined binary filter to extract local binary features. The detail of the binary filter is already discussed
in Sec.3. In every experiment, we use multiple binary filters to extract the local binary information.
After the BF module, we can get a feature F ∈ RH×W×C where C is the channel number of the
final 1× 1 convolution. Then we concatenate the original image I and the feature F .

4.1.2 FEATURE AGGREGATION ADAPTER (FAA)

After the BF module, the channel numbers of concatenate images are different from the backbone
training images, which makes it not practical to use the pre-trained backbone directly. In order to use
the pre-trained backbone, we need a method to transfer the concatenated image to the same domain
as the original images. Here, we introduce a feature aggregation adapter to transfer the new image
domain to the original image domain. The architecture of the adapter is a 1 × 1 convolution and a
skip connection, which can be seen in Fig.4. The output shape of the adapter is H ×W × 3, which
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is the same as the original images. The purpose of adding a skip connection is that, at the beginning
of the training, it is challenging to initialize the parameter of the 1× 1 convolution to guarantee the
domain of the output is the same as the domain of the original image. In order not to influence the
performance of the backbone at the beginning of the training, we can set very tiny initial values of
the 1 × 1 convolution layer. Furthermore, we can directly add the first three channels, the original
images, to the output for the skip connection. This operation can ensure the input of the backbone
is almost the same as the original image at the beginning of the training. During training, the model
can gradually learn to use the local binary features.

4.1.3 CNN BACKBONE

We use a pre-trained backbone in our experiments. In order to provide low-level features and high-
level features to the prediction module, we use multi-scale features from the backbone. We will
use most of our experiments’ last four layers’ features. We will use F2 − F5 to represent different
layer features in the following parts. Because the backbone’s input contains more local features than
the original image, the extracted features of the backbone contain extra information compared to
directly inputting the original images to the backbone.

Figure 5: Our encoder contains a position encoding module, a self-attention module, and a CNN
architecture. The encoder’s input is the extracted third to fifth layer’s backbone features. After
getting the input feature, we first add a position embedding to the features and then use a self-
attention module to get its local features. After getting the local feature, we use an add & norm
operation followed by a CNN architecture to get the final output of the encoder. Then we restore
and grid the output of the encoder to a location-aware query and input the query to the decoder. In
the decoder, we use a cross-attention module to extract information. After the cross-attention, we
use the same CNN architecture as the encoder.

4.2 ENCODER

In order to reduce the computation cost and speed up the training process, we combine the trans-
former and CNN in our encoder, which can be seen in Fig.5. We input multi-scale features F3 − F5

to our encoder to generate more informative features. Inspired by DETR (Carion et al. (2020)),
which adds a position embedding to the input feature, We first calculate the position embedding of
the input features and add the position embedding to the original features F3 − F5 and get new
features F3(1)−F5(1). Then we input the features to a self-attention module, which can capture the
local information and get F3(2) − F5(2). After the self-attention module, we use a CNN module to
increase the training process. We add the features F3(1) − F5(1) and F3(2) − F5(2); then we pass
the result of the self-attention module to a layer normalization, then we pass the result to a 3 × 3
convolution layer. After the convolution, we add a group normalization and a GELU activation.
Following the GELU activation, we add a 3 × 3 convolution layer. After the convolution layer, we
restore the outputs to multi-scale features T3 − T5. Then, we flatten the T3 − T5 to a sequence and
input them to the decoder. The process of the encoder can be written as

F
(2)
i = LN((Fi + Pi) + Att(Fi + Pi))

Ti = Conv3(GELU(GN(Conv3(F
(2)
i ))))

(1)

where Fi is the input feature, Pi is the position embedding, Att is the self-attention, LN is layer
normalization, Conv3 is 3× 3 convolution, GELU is GELU activation, GN is group normalization.
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4.3 DECODER

The decoder is the same as the encoder. We also combine the transformer and the convolution. We
follow the same operation for the input sequence as the encoder, which first calculates the location
embedding of the input features. After that, we grid the input sequence to the shape of S × S ×D,
then flatten them to query shapes L × D and produce a location-aware query that will provide the
location information for every token. After getting the location-aware query, we input the encoder
feature and location-aware query to a cross-attention layer. In the cross-attention layer, we use the
location-aware query as the query and use the encoder feature as the key and value. After the cross-
attention layer, we use the same normalization layer and convolution structure as the encoder to
produce the decoder embedding. The process of the decoder can be written as

G = LN((Q+ PQ) + Cross Att((Q+ PQ), (T, PT ))

R = Conv3(GELU(GN(Conv3(G))))
(2)

where T is the output feature of the encoder,PT is the location embedding of the feature T , Q is the
input query, PQ is the location embedding of the input query, and Cross Att is cross attention.

4.4 EDGE-AWARE FEATURE FUSION MODULE (EAF)

In order to improve the accuracy of boundary prediction, we added a module called edge-aware
feature fusion. This module uses the ground truth edge to combine two types of features: high-level
features from the backbone network (called F2) and low-level features from the encoder (called T3

to T5).

The edge-aware feature fusion module processes the low-level features T5 to T3 by first extracting
information with a convolution layer, then using a binary convolutional layer to extract local binary
features, which are then fed into a 1× 1 convolutional layer to predict edges (called E5).

Next, we up-sample the binary features to the same size as T4 and concatenate them, generating a
new input feature (I4). We repeat this process until we reach F2.

Using the edge-aware feature fusion module helps the model better recognize the boundaries of
objects, leading to more precise segmentation masks and avoiding the issue of predicting one object
as multiple objects. The formula for the edge-aware fusion model is given, and the output of the
final block O2 is sent to the mask prediction head.

Oi = BCNN(Convmulti(Ii))

Ei = Conv1(Oi)
Ii =

{
T5 i = 5

UP(Oi+1) + Ti i = 3, 4
UP(OI+1) + Fi i = 2

(3)

where BCNN is binary convolution layer, Convmulti is multi-scale convolution layer, Conv1 is
1 × 1 convolution layer, UP means up-sampling Oi is the output of ith block and Ii is the input of
ith block and Ei the the edge prediction of the ith block. We also output the result of the final block
O2 to the mask prediction head.
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Figure 6: Our edge-aware feature fusion module uses a pyramid
structure. The main component of our edge-aware feature fusion
module is an edge prediction block. Given the input feature, we
use a multi-size convolution following a BCNN layer to extract its
feature. Then, we up-sample the result to the same size as the next
input feature size. We use a 1 convolution layer to predict the edge
and use the ground truth edge as supervision.

4.5 MASK PREDICTION HEAD

We use the same structure as OSFormer (Pei et al. (2022)). More detail can be seen in the supple-
ment.
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4.6 LOSS FUNCTION

Our loss function contains three parts, edge loss, location loss, and mask loss. We use dice loss for
the edge loss and location loss; for mask loss, we use focal loss. Hence, our final loss function can
be written as

L = λedgeLedge + λlocationLlocation + λmaskLmask

In our experiments, λedge and λlocation is set to 1 while λmask is set to 3 to balance different loss.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

datasets Our experiments use two benchmark datasets: COD10K (Fan et al. (2020)) and NC4K (Lv
et al. (2021)). The COD10K datasets include 3040 training images with instance-level annotations
and 2026 for testing. The NC4K datasets contain 4121 images with instance-level labels. We use
the COD10K training set to train our model and test our dataset on the COD10K testing set and
NC4K dataset. In order to provide more training samples for the model, we resize the input images
to multiple sizes. We guarantee that the size of the shorter side is between 480 and 800, and the
longer side of the input image is less than 1333 after resizing.
evaluation metrics Our experiments use COCO-style evaluation metrics, including AP,AP50 and
AP75, but our experiments have slight differences. The original COCO evaluation metrics use mAP,
which will calculate the mean AP for every category. However, our camouflaged datasets are class-
agnostic. Hence, we only need to calculate the AP for the whole dataset while ignoring the category.
implement details We implemented our α-Former using PyTorch and trained it on a single V100-
sxm2. To build our model, we utilized ResNet-50 (He et al. (2016)) as the backbone, which had
been pre-trained with the ImageNet (Deng et al. (2009)) dataset. We trained our model for 90K
iterations with a batch size of 2 during our experiments. The optimizer we used was SGD, with an
initial learning rate of 2.5e−4, and we reduced the learning rate by a factor of 0.1 when the number
of iterations reached 60K and 80K. The weight decay parameter was set to 1e− 4.

5.2 COMPARISON WITH THE STATE-OF-THE-ARTS

We compare our model with current State-of-the-art models. Because there are not many camou-
flaged instance segmentation models, we also use several generic instance segmentation models and
limit these models to train and test on the camouflaged datasets. In order to have fair comparisons,
we use pre-trained ResNet-50 as the backbone for all models. The results are shown in Table.1

Table 1: Quantitative results of the α-Former, the best results are highlighted in bold.
method COD10K NC4K

AP AP50 AP75 AP AP50 AP75

Mask-RCNN (He et al. (2017)) 25.0 55.5 20.4 27.7 58.6 22.7
MS-RCNN (Huang et al. (2019)) 30.1 57.5 25.7 36.1 68.9 33.5

Cascade RCNN (Cai & Vasconcelos (2019)) 25.3 56.1 21.3 29.5 60.8 24.8
HTC (Chen et al. (2019)) 28.1 56.3 25.1 29.8 59.0 26.6

Mask Transfiner (Ke et al. (2022)) 28.7 56.3 26.4 29.4 56.7 27.2
YOLACT (Bolya et al. (2019)) 24.3 53.3 19.7 32.1 65.3 27.9
CondInst (Tian et al. (2020)) 30.6 63.6 26.1 33.4 67.4 29.4

QueryInst (Fang et al. (2021)) 28.5 60.1 23.1 33.0 66.7 29.4
SOTR (Guo et al. (2021)) 27.9 58.7 24.1 29.3 61.0 25.6

SOLOv2 (Wang et al. (2020)) 32.5 63.2 29.9 34.4 65.9 31.9
OSFormer (Pei et al. (2022)) 41.0 71.1 40.8 42.5 72.5 42.3

α-Former(Ours) 42.5 72.8 41.8 42.9 72.9 43.3

5.3 ABLATION STUDY

5.3.1 ADAPTER

In this section, we show the improvement of adding the feature aggregation adapter to our feature
extractor. The target for our adapter is to provide the extra local feature to our encoder. If we directly
delete the adapter, the input domain will be different, and the pre-trained backbone cannot deal with
the input with the local feature. However, to provide a fair comparison, we still need to provide the
local feature to the encoder-decoder and the edge-aware fusion module. Hence, we concatenate our
local features to the ResNet extracted features and change the input channel numbers of the encoder
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and edge-aware fusion module. In this way, we can still provide the local features to the encoder
and edge-aware fusion module and provide a fair comparison. Also, we tried a different setting
that modified the first layer of the pre-trained backbone and randomly initialized (RI) this layer to
demonstrate the efficiency of our adapter. To better demonstrate the efficiency of our adapter, We
also test the adapter on the traditional descriptor. The results are shown in Table.2. The results show
that our adapter is helpful for the binary filter and can improve the performance of the traditional
descriptor.

Table 2: Ablations for the existence of feature
aggregation adapter.

method COD10K NC4K
AP AP50 AP75 AP AP50 AP75

HOG + RI 36.785 63.585 37.906 35.474 64.150 37.246
HOG w/o adapter 40.801 70.435 41.407 42.682 72.647 43.154
HOG w/ adapter 40.934 70.887 40.285 42.765 71.988 44.226

LBP + RI 33.562 61.623 34.732 35.631 64.463 35.462
LBP w/o adapter 39.530 69.419 39.331 42.288 71.077 42.162
LBP w/ adapter 40.410 70.323 40.184 41.794 71.313 42.484

Circle-LBP + RI 35.246 66.352 36.462 36.853 67.432 35.241
Circle-LBP w/o adapter 40.270 70.550 40.257 42.668 73.669 42.172
Circle-LBP w/ adapter 40.424 69.622 40.764 41.921 71.661 42.133

Binary filter + RI 36.415 64.151 35.414 33.541 67.252 34.532
Binary filter w/o adapter 41.427 71.247 40.984 42.610 71.517 42.985
Binary filter w/ adapter 42.453 72.735 41.758 42.936 72.905 43.278

Table 3: Ablations for the existence of edge-
aware feature fusion module.

method
COD10K NC4K

AP AP50 AP75 AP AP50 AP75

HOG w/o EAF 37.658 66.584 35.984 39.252 67.971 38.756
HOG w/ EAF 40.934 70.887 40.285 42.765 71.988 44.226

LBP w/o EAF 36.128 67.197 36.725 36.375 68.258 37.813
LBP w/ EAF 40.410 70.323 40.184 41.794 71.313 42.484

Circle-LBP w/o EAF 35.254 64.741 36.194 36.581 66.943 36.135
Circle-LBP w/ EAF 40.424 69.622 40.764 41.921 71.661 42.133

Binary filter w/o EAF 38.019 69.765 36.813 37.083 68.672 38.731
Binary filter w/ EAF 42.453 72.735 41.758 42.936 72.905 43.278

5.3.2 EDGE-AWARE FEATURE FUSION MODULE

This section provides the ablation study of our edge-aware fusion module. Our edge-aware fusion
module can provide precise boundary prediction information to the final prediction heads. Similar
to the adapter, we show the results using different descriptors, including traditional descriptors and
our binary filter. The results are shown in Table.3. The results show that our proposed edge-aware
feature fusion module can improve the performance for about 4 AP higher than the model that does
not have an edge-aware feature fusion module. It shows the efficiency of our edge-aware feature
fusion module and proves that edge prediction is crucial in camouflaged instance segmentation. The
qualitative results of our edge-aware feature fusion module can be seen in Fig.7, which shows that
our edge-aware feature fusion module can deal with different scenarios and precisely predict the
edge of the target object.

5.3.3 COMPARISON WITH THE TRADITIONAL DESCRIPTOR

As shown in Table.4, we compare the performance of our binary filter and the traditional descriptor.
Here, Baseline means no descriptors are added. Because SIFT cannot generate a feature map that has
the same size as the original images, in order to use the same architecture and have a fair comparison,
we mainly focus on the HOG (Dalal & Triggs (2005)), LBP (Ojala et al. (1994)), circle-LBP (Ojala
et al. (2002)) descriptor in our experiments. Except for the local feature extractor, our experiments’
other settings are the same. We can see that some of the traditional descriptors can outperform
the model that does not include any local feature extractor. However, our learnable binary filter
can perform better than the traditional descriptor. This experiment demonstrates our binary filter’s
efficiency and ability to provide powerful local features to improve the performance of the model.

Table 4: Comparison with the traditional de-
scriptor, the best results are highlighted in
bold.

method COD10K NC4K
AP AP50 AP75 AP AP50 AP75

Baseline 40.244 69.875 39.422 41.718 71.640 41.179
HOG 40.934 70.887 40.285 42.765 71.988 44.226
LBP 40.410 70.323 40.184 41.794 71.313 42.484

Circle-LBP 40.424 69.622 40.764 41.921 71.661 42.133
Binary filter 42.453 72.735 41.758 42.936 72.905 43.278

Table 5: Performance of α-Former with differ-
ent kernel size in the binary filter, the best re-
sults are highlighted in bold.

method COD10K NC4K
AP AP50 AP75 AP AP50 AP75

3 × 3 42.453 72.735 41.758 42.936 72.905 43.278
5 × 5 41.308 70.624 41.707 42.567 72.075 43.198
7 × 7 40.476 70.047 40.790 42.136 71.895 42.698
9 × 9 40.691 70.116 40.810 41.164 71.043 42.580

5.3.4 INFLUENCE OF DIFFERENT KERNEL SIZE IN BCNN

This section explores the influence of different kernel sizes in our binary filter. Different kernel
sizes will have different receptive fields, and a larger receptive field will provide more pixels in
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one convolution operation. In our binary filter, it will affect the final local binary feature of the
binary filter. Our results are shown in Table.5. It shows that a smaller kernel size can have better
performance. The reason that small kernel sizes have better performance may be that camouflaged
objects have similar pixel values as the background. The larger kernel may increase the influence of
the background and result in final performance drops.

5.4 VISUALIZATIONS

This section presents the qualitative results of the α-Former, including the edge prediction achieved
by our edge-aware fusion module. The results demonstrate the effectiveness of our approach, as
our module can predict precise boundaries, as shown in the second row’s first column, where it
accurately identifies the feet of a challenging target object. Additionally, our α-Former can success-
fully handle different backgrounds, such as branches, land, or aquatic plants, and precisely segment
different target objects, including birds, fishes, and terrestrial animals. Moreover, our model can
generate accurate edges even when the target object is partially occluded, as seen in the last row’s
first column. This suggests that our approach can extract semantic information from the backbone’s
features and recognize the object as the same entity, even if it is not continuous. Overall, these
results demonstrate the robustness and effectiveness of our α-Former in challenging scenarios.

Input Predicted mask Predicted edge Ground truth Input Predicted mask Predicted edge Ground truth

Figure 7: The results of our α-Former’s qualitative evaluation demonstrate its ability to extract
precise boundaries and its strong performance in a range of challenging scenarios. These findings
suggest that our proposed approach can effectively address the complexities of real-world image
segmentation tasks.

6 CONCLUSION

In conclusion, we contribute a novel local feature-aware transformer framework called α-Former
targeting on camouflaged instance segmentation. Observing the camouflaged objects’ characteris-
tics, we find that traditional descriptors are sensitive to the camouflaged objects. Inspired by the
traditional descriptor, we design a novel binary filter to extract the camouflaged image’s local fea-
tures. To provide the local features to the encoder, we design a feature aggregation adapter to fuse
the pre-trained backbone and the local features input. Besides, we design an edge-aware feature
fusion module to improve the boundary prediction of the camouflaged object by combining multi-
level features and utilizing the ground truth edge as the supervision. Moreover, we design multiple
ablation studies to show the effectiveness of our proposed binary filter, feature aggregation adapter,
and edge-aware feature fusion module. We also provide the qualitative results of our α-Former to
show our robustness to different backgrounds. Moreover, α-Former is very easy to train; we only
need about 3000 training images, and it takes about one day to finish the training process. We be-
lieve the α-Former is a new state-of-the-art for camouflaged instance segmentation, and it can be
transferred to applications like medical diagnosis, photo-realistic blending, etc.
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