
Published as a conference paper at ICLR 2025

DIFFERENTIATION AND SPECIALIZATION OF ATTEN-
TION HEADS VIA THE REFINED LOCAL LEARNING CO-
EFFICIENT

George Wang
Timaeus

Jesse Hoogland
Timaeus

Stan van Wingerden
Timaeus

Zach Furman
Timaeus

Daniel Murfet
School of Mathematics and Statistics
The University of Melbourne

ABSTRACT

We introduce refined variants of the Local Learning Coefficient (LLC), a measure
of model complexity grounded in singular learning theory, to study the development
of internal structure in transformer language models during training. By applying
these refined LLCs (rLLCs) to individual components of a two-layer attention-
only transformer, we gain novel insights into the progressive differentiation and
specialization of attention heads. Our methodology reveals how attention heads
differentiate into distinct functional roles over the course of training, analyzes
the types of data these heads specialize to process, and discovers a previously
unidentified multigram circuit. These findings demonstrate that rLLCs provide
a principled, quantitative toolkit for developmental interpretability, which aims
to understand models through their evolution across the learning process. More
broadly, this work takes a step towards establishing the correspondence between
data distributional structure, geometric properties of the loss landscape, learning
dynamics, and emergent computational structures in neural networks.

1 INTRODUCTION

Structure in the data distribution has long been recognized as central to the development of internal
structure in artificial and biological neural networks (Rumelhart et al., 1986; Olshausen & Field,
1996; Rogers & McClelland, 2004). Recent observations have renewed interest in this topic: language
models progress through distinct stages of development during training, acquiring increasingly
sophisticated linguistic and reasoning abilities in ways that seem to reflect the structure of the data
distribution (Olsson et al., 2022; Chen et al., 2024; Belrose et al., 2024; Tigges et al., 2024; Edelman
et al., 2024; Hoogland et al., 2024).

A deeper understanding of how structure in the data determines internal structure in trained models
requires tools that provide information about which components of a model are being shaped in
response to what structure in the data distribution. Our foundation for the study of such questions
begins with the local learning coefficient (LLC; Lau et al. 2023) from singular learning theory (SLT;
Watanabe 2009), which is a measure of model complexity. In this paper, we introduce the refined
local learning coefficient (rLLC), which measures the complexity of a component of the model (for
example an attention head or whole layer) with respect to a given data distribution, which may differ
from the training distribution. For example, we can measure the rLLC for a particular attention-head
in a transformer trained on the Pile (Gao et al., 2020; Xie et al., 2023) with respect to the distribution
which conditions on a token sequence representing code.

We focus mainly on the rLLCs of individual attention heads and demonstrate the utility of these
metrics in studying the progressive differentiation and specialization of heads. The diversity of
attention heads at the end of training has been established in recent years through mechanistic
interpretability, which has provided numerous examples of attention heads that appear to have
specialized functions, including previous-token heads (Voita et al., 2019; Clark et al., 2019) and

1

Published as a conference paper at ICLR 2025

Layer 1 attention heads

l:h = layer l, head h, starting at 0

Multigram Heads

Dyck Heads
Ex: (... “... → ”)

1:3 Split constructions
1:5 (Nested) Bracket-matching

1:7 Natural language
1:6 Punctuation/symbols

Induction heads
[A][B] ... [A] → [B]

N-gram & Skip n-gram Heads

1:4 News, verb-particle constructions
Historical, numbers, prices 1:0

1:1 Comparatives, whitespace
1:2 Whitespace, sentence start

[A][B] → [C]; [A]...[B] → [C]

Higher Complexity
(rLLC)

More
Memorization

More
Algorithmic /

Abstract

Lower Complexity

(rLLC)

t = 50k

R
ef

in
ed

 L
oc

al
 L

ea
rn

in
g

C
oe

ffi
ci

en
t (

rL
LC

)

Figure 1: The weight-refined local learning coefficient (wrLLC) measures the complexity of
model components (such as attention heads) over training. At the end of training, heads with lower
wrLLC can be described by simple algorithms (e.g., induction heads, bracket-matching), whereas
heads with higher wrLLC memorize n-grams and skip n-grams (“multigrams”). Shown on the left
are the wrLLC curves over training for layer 1 heads, automatically clustered by K-means (clusters
are indicated by a dominant color, within which individual heads are distinguished by shading). The
clusters match the head types (middle-right, classified in Appendix B). Final rLLC correlates with
the number of memorized multigrams for each multigram head (far-right).

induction heads (Olsson et al., 2022) among other kinds (Wang et al., 2023; Gould et al., 2024). In
this paper, we are interested in understanding how this diversity emerges over the course of training,
in a way that may eventually replace the need for detailed head-by-head mechanistic analysis.

Our methodology yields several novel insights. In the same two-layer attention-only transformers
studied in Hoogland et al. (2024) we show that:

• Weight-refined LLCs reveal how attention heads differentiate across training: although
initially the rLLC curves for heads across training are similar, they progressively diverge
with distinctive patterns for different types of heads (Figure 1 and Section 4.1).

• Data-refined LLCs reveal how attention heads specialize across training: a leading
hypothesis for the driver of specialization is structure in the data, which imprints order into
a neural network. We show that the data rLLC reflects this specialization, for example by
showing that one induction head appears partly specialized to code (Section 4.2).

These findings are validated using independent, established techniques, such as clustering algorithms
and ablations. We then demonstrate how to use these refined LLCs in combination, which results in
our third key contribution:

• The identification of a novel multigram circuit: refined LLCs reveal evidence of internal
structure related to multigram prediction, which we corroborate with other interpretability
techniques (Section 4.3).

The developmental perspective, where we pay attention to the transformer across the entire training
process, is crucial to this methodology. The internal structure of mature organisms is constrained
by the fact that they have to develop from embryos (Barresi & Gilbert, 2023). Similarly, the fact
that the structure of a neural network has to develop from initialization in a way that decreases the
loss at each stage should be a source of valuable insight into the trained model, but to date the field
of interpretability has not focused on this source of information. We view our results as helping to
establish the validity of a new field of developmental interpretability, which emphasizes the interplay
between distributional structure in the data, geometric structure of the loss landscape, structure in
learning dynamics, and resulting computational structure in the model.

2

Published as a conference paper at ICLR 2025

2 SETUP

Following Elhage et al. (2021), Olsson et al. (2022), and Hoogland et al. (2024), we study two-layer
attention-only (without MLP layers) transformers (architecture and training details in Appendix F)
trained on next-token prediction on a subset of the Pile (Gao et al., 2020; Xie et al., 2023). Throughout,
we refer to the attention head in layer l with head index h by the notation l:h (starting at 0). We also
contextualize the development of different components of this model by using the same macroscopic
stages LM1 through LM5 from Hoogland et al. (2024) as the backdrop for figures (see top of Figure 2).
These stages correspond to (LM1) learning bigrams, (LM2) learning n-grams and skip n-grams
(“multigrams”), (LM3) developing previous-token heads, and (LM4) developing induction heads
before (LM5) converging.

We denote an input context, a sequence of tokens tk, by SK = (t1, . . . , tK) where K is the context
length. We denote by S≤k the sub-sequence (t1, . . . , tk) of SK . Our data Dn is a collection of
length-K contexts, {Si

K}ni=1, from a data distribution q, indexed by the superscript i.

The empirical loss with respect to Dn is

ℓn(w; q) = − 1

n

n∑
i=1

1

K − 1

K−1∑
k=1

log
(
softmax(fw(S

i
≤k))[t

i
k+1]

)
, (1)

where for a probability distribution P over tokens we denote by P [t] the probability of token t, and fw
is the function from contexts to probability distributions of next tokens computed by the transformer.
The corresponding population loss ℓ(w; q) is defined by taking the expectation with respect to the
true distribution of contexts. When q is the pretraining distribution, we suppress q and write ℓn(w).

3 METHODOLOGY

The (global) learning coefficient λ is the central quantity in singular learning theory (Watanabe, 2009).
In this section we review the local learning coefficient (LLC) from Lau et al. (2023) before defining
the refined variants that are new to this paper. The LLC at a neural network parameter w∗, denoted
λ(w∗), is a positive scalar measuring the degeneracy of the geometry of the population loss ℓ near
w∗. The geometry is more degenerate (lower LLC) if there are more ways in which w can be varied
near w∗ such that ℓ(w) remains equal to ℓ(w∗).

3.1 LLC IN PRACTICE

In the setting of Section 2, where we have a compact parameter space W , a model with parameter w
of the conditional distribution of outputs y given inputs x (in our case a transformer neural network
with weights w parametrizes predictions of next-tokens y given contexts x), and samples Dn from a
true distribution with associated empirical loss ℓn, we define the estimated local learning coefficient
at a neural network parameter w∗ to be

λ̂(w∗) = nβ
[
Eβ
w|w∗,γ [ℓn(w)]− ℓn(w

∗)
]
, (2)

where Eβ
w|w∗,γ is the expectation with respect to the Gibbs posterior (Bissiri et al., 2016)

p(w;w∗, β, γ) ∝ exp
{
−nβℓn(w)−

γ

2
||w − w∗||22

}
. (3)

The hyperparameters are the sample size n, the inverse temperature β which controls the contribution
of the loss, and the localization strength γ which controls proximity to w∗. For a full explanation of
these hyperparameters the reader is referred to Watanabe (2013); Lau et al. (2023); Furman & Lau
(2024); Hoogland et al. (2024). Further, the expectation is approximated by using stochastic-gradient
Langevin dynamics (SGLD; Welling & Teh, 2011) which introduces additional hyperparameters such
as the step size; see Appendix F.2 for the settings used in this paper.

Intuitively, the quantity in (2) represents the typical deviation in empirical loss ℓn(w)− ℓn(w
∗) under

perturbations away from w∗ that are likely according to a local tempered posterior distribution. For
more theoretical insight into this intuition see Appendix A.

3

Published as a conference paper at ICLR 2025

3.2 REFINED LLC

The LLC λ(w∗) depends on the parameter space and the true distribution. If we view some directions
in parameter space at w∗ as fixed and view the model as a function of the remaining directions
we obtain the weight-refined LLC. If we instead allow the true distribution to vary we obtain the
data-refined LLC. We now explain both in more detail.

Weight- and data-refined LLC (wdrLLC). Let q′ be a data distribution, not necessarily the
training distribution q, and let ℓ′ and ℓ′n be the corresponding population and empirical loss. Given
a product decomposition W = U × V corresponding to choosing a set of weights V belonging
to a particular component of the model (with U denoting the rest of the weights), with associated
decomposition of the parameter w∗ = (u∗, v∗), we let B be a neighborhood of v∗ small enough that
ℓ′(u∗, v) ≥ ℓ′(u∗, v∗) for all v ∈ B and define

vol(ϵ, w∗, V, q′) =

∫
v∈B,|ℓ′(u∗,v)−ℓ′(u∗,v∗)|<ϵ

dv . (4)

The weight- and data-refined LLC is

λ(w∗;V, q′) = − lim
ϵ→0+

log2

[
vol(12ϵ, w

∗, V, q′)/vol(ϵ, w∗, V, q′)
]
. (5)

The associated estimator λ̂(w∗;V, q′) is defined by modifying (2) as follows: the expectation Eβ
w|w∗,γ

is replaced by the expectation with respect to a Gibbs posterior defined over V by

p(v; v∗, q′, β, γ) ∝ exp
{
−nβℓ′n(u

∗, v)− γ

2
||v − v∗||22

}
. (6)

In practice, the estimator is implemented by projecting the SGLD update steps used to produce
approximate posterior samples onto V and computing both SGLD updates and average posterior loss
using samples from q′. For further background on the theoretical definition in (5) see Appendix A.

When q′ = q, we suppress q and refer to this as the weight-refined LLC (wrLLC) λ̂(w∗;V), and
when V = W , we suppress V and refer to this as the data-refined LLC (drLLC) λ̂(w∗; q′). When
both q′ = q and V = W , we recover the original LLC λ̂(w∗).

3.3 LIMITATIONS

There are numerous limitations to LLC estimation in its present form, including:

• The justification of the LLC estimator λ̂(w∗) presumes that w∗ is a local minima of the
population loss but there is no clear way to ascertain this in practice, and we typically
perform LLC estimates during training where this is unlikely.

• Accurate estimates can be achieved in some cases where we know the true LLC (Furman &
Lau, 2024), but in general, the ground truth LLC is unknown. As such, we cannot guarantee
the accuracy of estimated LLC values in transformer models, but we do have reason to
believe that the ordinality is correct, e.g. that if the wrLLC estimates of two attention heads
are in a particular order, then this is also true of the underlying true wrLLCs.

We expect SGLD-based LLC estimation to mature as a technique. In the meantime, a series of papers
(Lau et al., 2023; Chen et al., 2023; Furman & Lau, 2024; Hoogland et al., 2024) have demonstrated
that despite these limitations, the estimated LLC does in practice seem to offer a useful signal for
studying neural network development. In the appendix, we compare our analysis using rLLCs against
Hessian-based methods (Appendix D) and ablation-based methods (Appendix E). Some analysis is
given for other seeds (Appendix G).

4 EMPIRICAL RESULTS

4.1 DIFFERENTIATION VIA WEIGHT-REFINED LLCS

The weight-refined LLC for an attention head is a measure of the amount of information needed to
specify a configuration of the weights in the head which achieves a certain relative improvement in

4

Published as a conference paper at ICLR 2025

W
ei

gh
t-

re
fin

ed
 L

LC

W
ei

gh
t-

re
fin

ed
 L

LC

LM1:

Bigrams

Layer 0 Layer 1

LM2:

Multigrams

LM3,4:

Induction

LM5:

Convergence

Layer 0 Head Types: Layer 1 Head Types:

LM1:

Bigrams

LM2:

Multigrams

LM3,4:

Induction

LM5:

Convergence

Figure 2: The weight-refined local learning coefficient (wrLLC) reveals how different types of
attention heads differentiate during training. The wrLLC curve for each head is shown colored
by its functional type (Appendix B). Remarkably, the partition of the heads by type coincides with
the clustering of their wrLLC curves, viewed as time series and clustered by Euclidean K-means
(Appendix F.5). This suggests that heads which compute differently, develop differently, as revealed
by the wrLLC. Throughout this paper, developmental stages LM1–LM5 are colored in the background
according to the classification of Hoogland et al. (2024).

the loss (see Section 3.2). Thus we should expect complexity to be the principal axis along which
the wrLLC differentiates attention heads. However, a priori it is not obvious how the complexity
as measured by the wrLLC should relate to other properties of the attention heads, such as the
classification of heads by their functional behavior or the number of multigrams that they memorize.
Our first key contribution, contained in Figure 1 and Figure 2, is to show that there is in fact a very
natural relation between the wrLLC and these other axes of differentiation.

As explained in detail in Appendix B, we classify attention heads as previous-token heads (resp.
current-token heads) if they strongly and systematically attend to the previous token (resp. current
token). Induction heads are identified as in Elhage et al. (2021). All other heads are referred to as
multigram heads, as ablating them tends to highly impact prediction of multigrams. These categories
give the type of an attention head.

Figure 2 shows that when the attention heads in both layers are colored by their type, it is immediately
visible that heads of the same type tend to cluster together not only in terms of their wrLLC at the end
of training but also in terms of the overall shape of the wrLLC curve across training. More precisely,
curves within a cluster share notable features such as scale, shape, and critical point locations. This
visual impression is backed up by the results of various clustering algorithms (Appendix F.5). As a
further test that the clusters are semantically meaningful, we examine the subdivisions that occur as
the number of clusters is increased in Appendix F.5.3.

In the case of the layer 1 heads, it is further the case that heads with higher wrLLC tend to memorize
more multigrams (see Figure 1 and Figure 11), and heads with lower wrLLC tend to be described
by simple algorithms like induction or bracket matching (see Figure 1). Thus, the differentiation of
attention heads by their wrLLC lines up with an intuitive sense of the description length of the head’s
computational behavior. For a more in-depth and quantitative treatment, see Appendix B.1.

In summary, the wrLLC reveals a differentiation of the attention heads across training that we can
independently verify is semantically meaningful.

4.2 SPECIALIZATION VIA DATA-REFINED LLCS

In the previous section we saw that the weight-refined LLC reveals the differentiation of heads into
functional types, which are useful for prediction on different kinds of patterns (e.g. induction patterns
vs. multigrams). We now demonstrate how further refining the LLC measurements by changing the
data distribution (such as to one more heavily featuring certain kinds of patterns) provides additional
information on model components specializing to particular patterns in the data.

5

Published as a conference paper at ICLR 2025

D
at

a-
re

fin
ed

 L
LC

R
el

at
iv

e
D

iff
er

en
ce

 (
%

)The Pile

(Pretraining dist.)

Github

Induction Heads Multigram HeadsLayer 1 Head Types:

*

*

*

Figure 3: The data-refined local learning coefficient (drLLC) reveals how attention heads
specialize to different types of data. The data-refined LLC for GitHub (middle, CodeParrot 2023)
indicates that on code samples, perturbations to the weights in the multigram heads in layer 1 have
significantly less impact on the loss than perturbations to the induction heads. Informally, the drLLC
suggests these heads are differentially more important for predicting code than natural language. This
distinction is especially pronounced for 1:6 .

If we think of the weight-refined LLC λ(w∗;V) as a measure of the information in V about all patterns
in the pre-training distribution, then the simultaneous weight- and data-refinement λ(w∗;V, q′)
measures the information about the subset of those patterns that occur in a subdistribution q′.

For example, when a head V is specialized to multigrams that are uncommon in code we predict
that λ(w∗;V, qGitHub) < λ(w∗;V) when q′ = qGitHub is a distribution of code (CodeParrot, 2023). In
the opposite direction, since induction patterns are frequent in code (e.g. repeated syntax, repeated
variable names), we expect that λ(w∗;V, qGitHub) > λ(w∗;V) when V is an induction head.

Both of these predictions are borne out in Figure 3. Further, we observe that the wrLLC values of
the two induction heads are nearly identical at the end of training, but they are pulled apart by the
data-refinement to code, with 1:6 having a significantly higher value. This leads to the prediction
that 1:6 is specialized further, within the set of induction patterns, to patterns common in code.

We verify this prediction in Figure 4 by examining some examples of contexts on which prediction is
most negatively affected by ablating 1:6 and 1:7 and see that, indeed, the former set of examples
tend to have a more syntactic or structural flavor relative to the latter, which is consistent with the
data-refined LLC for code of 1:6 having a higher value. In Appendix B, we cover more examples
validating this behavioral difference, including Figure 10, which shows that changes in rLLC curves
accurately reveal that in-context learning develops at different times for each head.

Just as we can decompose a neural network into its architectural components (e.g. attention heads)
we can imagine decomposing the pre-training distribution into its structural components (e.g. dif-
ferent data sources). The development process sets up a rich interplay between these two types of
components, and the simultaneous weight- and data-refined LLCs quantitatively illustrate which
components of a model are being shaped in response to what structure in the data. For example, 1:6
may have been significantly influenced by code.

4.3 A NEW MULTIGRAM CIRCUIT

A multigram of length m is a common sequence of tokens t1, t2, . . . , tm in the data distribution, where
the tokens may appear non-contiguously in context (Shen et al., 2006). In this paper, multigrams are
typically of length 3 or 4 and often do involve consecutive tokens. It is well-known that transformers
can implement the prediction of bigrams (m = 2) using the embedding and unembedding layers,
and the prediction of skip-trigrams (a subset of m = 3 multigrams) using individual attention heads
(Elhage et al., 2021). However, the prediction of more complex multigrams may require coordination
between attention heads in different layers. In this section, we explain how we used refined LLCs to
investigate this coordination and provide evidence for a new circuit involved in multigram prediction.

As noted in Hoogland et al. (2024) and revisited in Figure 13, two-layer attention-only transformers
pass through consecutive developmental stages where they behave like zero- and one-layer transform-
ers. It is around stage LM3 that the behavior of the two-layer transformer starts to diverge from that

6

Published as a conference paper at ICLR 2025

(a) Induction head 1:6 (b) Induction head 1:7

(c) Multigram head (Dyck) 0:7 (d) Multigram head (Dyck) 1:5

Figure 4: Induction heads and multigram heads develop subspecializations. Compared to 1:7 ,
the induction head 1:6 is more involved in predicting induction patterns (Appendix B.2) that feature
punctuation and special characters. Multigram heads 0:7 and 1:5 learn skip n-grams involved in
bracket-matching (“Dyck patterns” Appendix B.3). Blue indicates the token to be predicted. Orange
indicates the strength of the attention pattern at the current token. Samples are selected by filtering
for tokens where ablating the given head leads to the largest increase in loss.

of a one-layer transformer. Thus, if it exists, coordination between heads for complex multigram
prediction is likely to emerge in LM3.

The development of such coordination might require “displacing” learned structure for the prediction
of simpler multigrams. To test this hypothesis, we investigated how the information in attention
heads about simple multigrams changes over training by using data-refined LLCs with a one-layer
transformer as the generating process for the data distribution (see Appendix F.3). These drLLCs are
shown in Figure 5 and compared with the wrLLCs for the full pre-training distribution. In line with
our expectations, we see that the two sets of LLCs are similar early in training and start to diverge
around LM3, which we interpret as a relative decrease across all attention heads of the information
about simple multigrams that can be predicted by the one-layer model.

If we examine the cluster of heads with the largest relative decrease, we see some examples (e.g.
the previous-token, current-token and induction heads, classified as such according to their behavior
at the end of training) for which the decrease is easily explained: they are involved in predicting
simple multigrams at t = 8.5k steps but acquire other roles by the end of training (see Figure 9
and Appendix B.6). However it is a priori surprising to find the layer 0 multigram heads in this
cluster, since ablation experiments indicate that they are primarily involved in multigram prediction
throughout training.

This suggests that it is in these layer 0 multigram heads that simpler multigrams are displaced by the
development of coordination for more complex multigram prediction. We use mean ablations to test
this theory. In Figure 4, we see that the head 1:5 seems to involve Dyck patterns (closing parentheses
and brackets, see Appendix B.3). Curiously, ablating 0:7 at the end of training heavily impacts the
same kinds of patterns. However, this is not the case earlier in training: at training step t = 8.5k, 0:7
is responsible for a different set of multigrams (Appendix B.6). Combined with the observation from
Figure 5, this leads to the hypothesis that this layer 0 multigram head may be going through some
transition that that causes it to switch to primarily passing information forward to layer 1 multigram
heads, including 1:5 .

7

Published as a conference paper at ICLR 2025

The Pile

(Pretraining dist.)

1-Layer

Outputs

Layer 0 Multigram Heads Layer 1 Multigram HeadsHead Types:

D
at

a-
re

fin
ed

 L
LC

R
el

at
iv

e
D

iff
er

en
ce

 (
%

)

Layer 1

Multigram

Layer 0

Multigram

+ others

Figure 5: Using a 1-layer (L1) model as the data distribution for data-refined LLCs helps
locate skip-trigram-related structure. During stage LM3, the drLLC begins decreasing for layer 0
multigram heads while increasing for layer 1 heads (middle). In stage LM5, when layer 1 drLLCs
also start decreasing, the decline is significantly less pronounced than in the layer 0 multigram heads
and the rest of the heads (right).

Unnested (...) Nested (“...”)

Lo
ss

 o
n

[)
]

Lo
ss

 o
n

[”
)]

Type of Loss:

Figure 6: The formation of the multigram circuit enables nested bracket-matching. Head 1:5
is a multigram head that specializes to matching brackets. On a synthetic dataset of sentences with
parentheses, mean-ablating this head causes loss to increase sharply (blue line to green line). With
nested brackets (right), this may require coordination with the layer 0 multigram heads; mean-ablating
the multigram heads and patching their activations just into the input of 1:5 (Appendix E.2) causes
an increase in loss (orange), precisely when we predict the shift in computational role occurs. With
unnested parentheses, 1:5 does not need the layer 0 multigram heads; the same procedure leads to a
decrease in performance during LM4, but by the end of LM5, the effect is small.

We validate this hypothesis with path patching (Wang et al., 2023) in Figure 6, where we note a
change in interaction between layer 0 multigram heads and 1:5 at the expected time. In Appendix B.6,
we present examples of multigrams migrating from layer 0 to layer 1 between t = 8.5k and t = 50k.

To further corroborate the hypothesis that layer 0 and layer 1 multigram heads are coordinating, we
check their K-composition scores, defined by Elhage et al. (2021). Informally, these measure how
much an attention head in a later layer reads from the write subspace of the residual stream of an
attention head in an earlier layer (for a more formal definition, see Appendix F.4). In Figure 7, we see
that the layer 0 multigram heads all undergo the same turnaround in K-composition scores with the
layer 1 multigram heads, including an unusually strong coupling of composition scores from a given
layer 0 head to each of the layer 1 multigram heads. We refer to this pattern of coordination between
layer 0 and layer 1 multigram heads as the multigram circuit.

In summary, these results suggest that layer 0 and layer 1 multigram heads independently memorize
simple multigrams until around the end of LM3. The layer 0 heads then begin forgetting some simple
multigrams as they transition to a supporting role within the multigram circuit. At the same time, the
layer 1 multigram heads specialize to more complex multigrams, such as nested Dyck patterns.

8

Published as a conference paper at ICLR 2025

102 103 104

0.02

0.04

0.06

0.08

K-
co

m
po

sit
io

n

Layer 0 Head 0

102 103 104

0.05

0.10

0.15
Layer 0 Head 1

102 103 104

0.02

0.04

0.06

0.08

Layer 0 Head 2

102 103 104

0.02

0.04

0.06

0.08

Layer 0 Head 3

102 103 104

Step, t

0.05

0.10

0.15

K-
co

m
po

sit
io

n

Layer 0 Head 4

102 103 104

Step, t

0.1

0.2

Layer 0 Head 5

102 103 104

Step, t

0.02

0.04

0.06

0.08

Layer 0 Head 6

102 103 104

Step, t

0.02

0.04

0.06

0.08

Layer 0 Head 7

Induction Head 1:6 Induction Head 1:7 Multigram Heads 1:*

Figure 7: K-composition scores between layer 0 multigram heads and layer 1 multigram heads
increase in tandem during stage LM4. After a decrease in LM2, K-composition between multigram
heads begins increasing during LM4, while composition between multigram and induction heads
begins decreasing. Subfigures correspond to heads in layer 0. Individual lines show K-compositions
over training between that head and a layer 1 head. Border color indicates head type: orange for
multigram heads, blue for previous-token heads, and green indicates for current-token head.

5 RELATED WORK

Data distributional structure. It is clear that structure in the data distribution plays a significant
role in the kinds of structures learned in neural networks and how they are learned (Rumelhart et al.,
1986; Olshausen & Field, 1996; Rogers & McClelland, 2004). For instance, properties of the data
distribution have been linked to the emergence of in-context learning by Chan et al. (2022b), and
Belrose et al. (2024) note that networks learn lower-order moments before higher-order ones.

In the experiments and accompanying theory of Rogers & McClelland (2004, p.103, p.169), “waves
of differentiation” are triggered by coherent covariation in the data distribution. They claim that
the “timing of different waves of variation, and the particular groupings of internal representations
that result, are governed by high-order patterns of property covariation in the training environment”
(Rogers & McClelland, 2004, p.103). Some of these ideas were given a theoretical basis in Saxe et al.
(2019) which contains a mathematical model of Rogers & McClelland (2004).

Specialization. Krizhevsky et al. (2012) observed that in the first layer of AlexNet, the two branches
specialized to different kinds of features. Voss et al. (2021) later hypothesized that this phenomenon
of branch specialization is driven ultimately by structure in the data. Some of the earliest work
in mechanistic interpretability (Cammarata et al., 2020) demonstrated interesting specialization in
convolutional neural networks. A more automated search for local specialization was pursued in
Filan et al. (2021); Hod et al. (2022); Casper et al. (2022).

6 DISCUSSION

In this paper we have introduced the refined LLCs (rLLCs) as a principled tool for understanding
internal structure in neural networks and shown that this tool can be used to study the differentiation
and specialization of attention heads over training. This builds on the theoretical foundations of
SLT(Watanabe, 2009), the introduction of the ordinary LLC (Lau et al., 2023) and recent results
showing that changes in the LLC over training reflect developmental stages Hoogland et al. (2024).

This section puts these contributions into the broader context of the science of deep learning and
interpretability. From a structural point of view, the problem of interpretability for neural networks is

9

Published as a conference paper at ICLR 2025

to understand internal structure and how it determines the map from inputs to outputs. We take the
point of view that this problem cannot be solved in a deep way without first addressing the question:
what is the true conception of internal structure in neural networks?

There is a long tradition in mathematics (Langlands, 1970), computer science (Howard et al., 1980)
and physics (Maldacena, 1999; Greene & Plesser, 1996) of understanding the nature of a mathematical
object or phenomena by putting it in correspondence or duality with other phenomena. It is therefore
interesting to note the literature (reviewed in Section 5) arguing that data distributional structure
is an important factor in shaping internal structure in neural networks, and that this structure is
further linked to structure in the learning process. To this we may add the singular learning theory
perspective, which relates geometric structure of the population loss landscape to the structure of the
(singular) learning process (Watanabe, 2009; Chen et al., 2023).

The synthesis of these perspectives suggests a novel approach to the problem of understanding the
fundamental nature of internal structure in neural networks, which is to place the problem in the
broader context of studying the correspondence between four categories of structure:

• Data distributional structure: the inherent patterns and regularities in the data which exist
independently of any model (Cristianini & Shawe-Taylor, 2004). In this paper: induction
patterns, Dyck patterns and multigrams (Appendix B.1).

• Geometric structure: the analytic and algebraic geometry of the level sets of the population
loss (Watanabe, 2009; Amari, 2016). In this paper: the learning coefficient (or real log
canonical threshold, as it is known in geometry).

• Learning process structure: developmental stages, critical periods, and the sequence in
which different capabilities or internal structures emerge (Rogers & McClelland, 2004). In
this paper: the overall developmental stages of (Hoogland et al., 2024) and the staggered
development of individual attention heads.

• Computational structure in the model: the functional organization within the neural
network itself and computational motifs that emerge during training. In this paper: attention
heads, the induction and multigram circuits.

Here by structure we loosely mean the “arrangement of and relation between parts or elements of
something complex” (McKean, 2005). Since there can be no structure without differentiation of the
whole into parts, the foundation of these correspondences is a relation between the “parts or elements”
in each of the four categories. From this perspective, the contribution of the present paper is to
begin establishing such a correspondence for two-layer attention-only transformers by using
refined LLCs to quantitatively track which components of the model are being shaped in response to
what structure in the data distribution. More precisely:

• In Section 4.1 we related computational structure (the behavioral type of attention heads) to
learning process structure and geometric structure as measured by the LLC, by showing that
the behavioral type can be recognized by clustering wrLLC curves (Figure 1 and Figure 2).

• In Section 4.2 we related data distributional structure (the difference between the frequency
of certain kinds of induction patterns in code versus natural language) to the differences in
geometry between particular induction heads (Figure 3).

• In Section 4.3 we related data distributional structure (nested brackets in Dyck patterns) to a
new multigram circuit whose emergence (a structure in the learning process) seems linked
to geometric changes in the layer 0 multigram heads (Figure 5).

Finally, we highlight that many of these results depend on a developmental perspective. We could not
cluster attention heads by their weight-refined LLCs without seeing their evolution during training,
nor could we clearly see the connection between induction patterns and performance on code samples
without observing changes in the data-refined LLC curves. Even the ablation and composition score
analyses of the multigram circuit depend on comparing results across training.

The techniques pioneered in this paper for understanding internal structure in two-layer attention-only
transformers can be applied to models at a larger scale or with different architecture. We refer to
this approach, which combines the refined LLCs from singular learning theory with an emphasis on
studying networks over the course of development, as developmental interpretability. Using this set
of ideas, we hope to open new paths towards a systematic understanding of advanced AI systems.

10

Published as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

Detailed descriptions of our experimental setup, including model architecture, training procedures,
and hyperparameters, are provided in Appendix F.

Our LLC estimation procedure is documented in Appendix F.2, which lists the SGLD hyperparameters
used for estimating the Local Learning Coefficient and references detailed resources for implementing
LLC estimation. Methodological details for implementing the various refinements are provided in
Section 3 and Appendix F.3.

Details for the procedure used to classify heads are provided in Appendix B.1. We also provide a
link to an anonymized repository that contains extended results of this analysis along with additional
figures. More implementation details for ablation-based analyses are provided in Appendix E.2.
Implementation details for the comparison with Hessian-based metrics (Appendix D) can be found in
the associated subsections.

CONTRIBUTION STATEMENT

The following is a non-exhaustive list of some particular areas of individual contribution.

• GW led the project, developed the methodology for LLC hyperparameter calibration, identi-
fied the multigram circuit, conducted experiments using other interpretability techniques,
contributed to the classification of attention heads, and made substantial contributions to
manuscript writing.

• JH contributed to engineering, led the classification of attention heads, performed clustering
analyses, designed figures, and made substantial contributions to manuscript writing.

• SvW led the engineering and conducted the LLC estimation experiments.

• ZF conducted the experiments comparing against Hessian-based methods, including design
of methodology and associated writing and figures.

• DM had the original idea for refined local learning coefficients, played a role in identifying
the multigram circuit, and contributed substantially to writing the main text.

ACKNOWLEDGEMENTS

We thank Matthew Farrugia-Roberts for his feedback on earlier drafts of this manuscript.

REFERENCES

Alessandro Achille and Stefano Soatto. Emergence of Invariance and Disentanglement in Deep
Representations. Journal of Machine Learning Research, 19(50):1–34, 2018.

Alessandro Achille, Matteo Rovere, and Stefano Soatto. Critical Learning Periods in Deep Networks.
In International Conference on Learning Representations, 2019.

Madhu S. Advani, Andrew M. Saxe, and Haim Sompolinsky. High-dimensional Dynamics of
Generalization Error in Neural Networks. Neural Networks, 132:428–446, 2020.

Shun-ichi Amari. Information Geometry and its Applications. Springer, 2016.

Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A Convergence Analysis of Gradient De-
scent for Deep Linear Neural Networks. In International Conference on Learning Representations,
2019.

Haim Avron and Sivan Toledo. Randomized algorithms for estimating the trace of an implicit
symmetric positive semi-definite matrix. Journal of the ACM (JACM), 58(2):1–34, 2011.

Michael Barresi and Scott F. Gilbert. Developmental Biology. Oxford University Press, thirteenth
edition, 2023.

11

Published as a conference paper at ICLR 2025

Nora Belrose, Quintin Pope, Lucia Quirke, Alex Troy Mallen, and Xiaoli Fern. Neural Networks
Learn Statistics of Increasing Complexity. In Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 3382–3409.
PMLR, 21–27 Jul 2024.

Leonard Bereska and Stratis Gavves. Mechanistic Interpretability for AI Safety - A Review. Transac-
tions on Machine Learning Research, 2024. ISSN 2835-8856. URL https://openreview.
net/forum?id=ePUVetPKu6. Survey Certification, Expert Certification.

Donald J Berndt and James Clifford. Using dynamic time warping to find patterns in time series.
In Proceedings of the 3rd international conference on knowledge discovery and data mining, pp.
359–370, 1994.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the Ability and Limitations of Transformers
to Recognize Formal Languages. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu
(eds.), Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 7096–7116, Online, November 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.emnlp-main.576.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Pier Giovanni Bissiri, Chris C Holmes, and Stephen G Walker. A general framework for updating
belief distributions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78
(5):1103–1130, 2016.

Tadeusz Caliński and Jerzy Harabasz. A dendrite method for cluster analysis. Communications in
Statistics-theory and Methods, 3(1):1–27, 1974.

Nick Cammarata, Shan Carter, Gabriel Goh, Chris Olah, Michael Petrov, Ludwig Schubert, Chelsea
Voss, Ben Egan, and Swee Kiat Lim. Thread: Circuits. Distill, 2020. doi: 10.23915/distill.00024.
https://distill.pub/2020/circuits.

Stephen Casper, Shlomi Hod, Daniel Filan, Cody Wild, Andrew Critch, and Stuart Russell. Graphical
clusterability and local specialization in deep neural networks. In ICLR 2022 Workshop on
PAIR^2Struct: Privacy, Accountability, Interpretability, Robustness, Reasoning on Structured Data,
2022.

Lawrence Chan, Adrià Garriga-Alonso, Nicholas Goldwosky-Dill, Ryan Greenblatt, Jenny Nitishin-
skaya, Ansh Radhakrishnan, Buck Shlegeris, and Nate Thomas. Causal scrubbing, a method for
rigorously testing interpretability hypotheses. AI Alignment Forum, 2022a.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learning
in transformers. Advances in Neural Information Processing Systems, 35:18878–18891, 2022b.

Angelica Chen, Ravid Shwartz-Ziv, Kyunghyun Cho, Matthew L. Leavitt, and Naomi Saphra. Sudden
drops in the loss: Syntax acquisition, phase transitions, and simplicity bias in MLMs. In The
Twelfth International Conference on Learning Representations, 2024.

Zhongtian Chen, Edmund Lau, Jake Mendel, Susan Wei, and Daniel Murfet. Dynamical versus
Bayesian phase transitions in a toy model of superposition. Preprint arXiv:2310.06301 [cs.LG],
2023.

Noam Chomsky and Marcel P Schützenberger. The algebraic theory of context-free languages. In
Studies in Logic and the Foundations of Mathematics, volume 26, pp. 118–161. Elsevier, 1959.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D. Manning. What does BERT look
at? An analysis of BERT’s Attention. In Proceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP, pp. 276–286. Association for Computational
Linguistics, 2019.

12

https://openreview.net/forum?id=ePUVetPKu6
https://openreview.net/forum?id=ePUVetPKu6

Published as a conference paper at ICLR 2025

CodeParrot. codeparrot/github-code · Datasets at Hugging Face, October 2023. URL https:
//huggingface.co/datasets/codeparrot/github-code.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Fran-
cisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Unsupervised
cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pp. 8440–8451. Association for Computational
Linguistics, 2020.

Nello Cristianini and John Shawe-Taylor. Kernel Methods for Pattern Analysis, volume 173. Cam-
bridge University Press, 2004.

David L Davies and Donald W Bouldin. A cluster separation measure. IEEE transactions on pattern
analysis and machine intelligence, (2):224–227, 1979.

Nicole Dehé. Particle verbs in english. 2002.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp Minima Can Generalize
For Deep Nets. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
1019–1028. PMLR, 06–11 Aug 2017.

Javid Ebrahimi, Dhruv Gelda, and Wei Zhang. How can self-attention networks recognize Dyck-n
languages? In Findings of the Association for Computational Linguistics: EMNLP 2020, pp.
4301–4306. Association for Computational Linguistics, 2020.

Benjamin L. Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis. The evolution
of statistical induction heads: In-context learning markov chains. Preprint arXiv:2402:11004
[cs.LG], 2024.

Bradley Efron and Trevor Hastie. Computer age statistical inference, student edition: algorithms,
evidence, and data science, volume 6. Cambridge University Press, 2021.

Armin Eftekhari. Training linear neural networks: Non-local convergence and complexity results. In
International Conference on Machine Learning, pp. 2836–2847. PMLR, 2020.

Ronen Eldan and Yuanzhi Li. TinyStories: How small can language models be and still speak
coherent English? Preprint arXiv:2305.07759 [cs.CL], 2023.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli, Zac
Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal Ndousse,
Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris Olah. A
mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.

Daniel Filan, Stephen Casper, Shlomi Hod, Cody Wild, Andrew Critch, and Stuart Russell. Cluster-
ability in neural networks. Preprint arXiv:2103.03386 [cs.NE], 2021.

Zach Furman and Edmund Lau. Estimating the Local Learning Coefficient at Scale. Preprint
arXiv:2402.03698 [cs.LG], 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile: an 800GB
dataset of diverse text for language modeling. Preprint arXiv:2101.00027 [cs.CL], 2020.

Daniel Gissin, Shai Shalev-Shwartz, and Amit Daniely. The implicit bias of depth: How incremental
learning drives generalization. Preprint arXiv:1909.12051, 2019.

Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing Model
Behavior with Path Patching. Preprint arXiv:2304.05969 [cs], May 2023.

Rhys Gould, Euan Ong, George Ogden, and Arthur Conmy. Successor heads: Recurring, interpretable
attention heads in the wild. In The Twelfth International Conference on Learning Representations,
2024.

13

https://huggingface.co/datasets/codeparrot/github-code
https://huggingface.co/datasets/codeparrot/github-code

Published as a conference paper at ICLR 2025

Brian R Greene and M Ronen Plesser. Mirror symmetry in algebraic geometry. Bulletin of the
American Mathematical Society, 33(1):1–44, 1996.

Peter D Grünwald. The Minimum Description Length Principle. MIT press, 2007.

Michael Hahn. Theoretical Limitations of Self-Attention in Neural Sequence Models. Transactions
of the Association for Computational Linguistics, 8:156–171, 01 2020.

Chris Hamblin, Talia Konkle, and George Alvarez. Pruning for Feature-Preserving Circuits in CNNs,
April 2023.

Michael Hanna, Ollie Liu, and Alexandre Variengien. How does GPT-2 compute greater-than?: Inter-
preting mathematical abilities in a pre-trained language model. Advances in Neural Information
Processing Systems, 36:76033–76060, December 2023.

John Hewitt and Christopher D. Manning. A structural probe for finding syntax in word representa-
tions. In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 4129–4138. Association for Computational Linguistics, 2019.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 9(1):1–42, 1997.

Shlomi Hod, Daniel Filan, Stephen Casper, Andrew Critch, and Stuart Russell. Quantifying local
specialization in deep neural networks. Preprint arXiv:2110.08058 [cs.LG], 2022.

J. Hoogland, G. Wang, M. Farrugia-Roberts, L. Carroll, S. Wei, and D. Murfet. The developmental
landscape of in-context learning. arXiv preprint arXiv:2402.02364, 2024.

William A Howard et al. The formulae-as-types notion of construction. To HB Curry: essays on
combinatory logic, lambda calculus and formalism, 44:479–490, 1980.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076,
1989.

Mark H Johnson and Michelle DH de Haan. Developmental Cognitive Neuroscience: An introduction.
John Wiley & Sons, 2015.

Eric R Kandel, James H Schwartz, Thomas M Jessell, Steven Siegelbaum, and A James Hudspeth.
Principles of Neural Science. McGraw-Hill New York, 5th edition, 2013.

Stefan J Kiebel and Karl J Friston. Free energy and dendritic self-organization. Frontiers in systems
neuroscience, 5:80, 2011.

Michael Kleinman, Alessandro Achille, and Stefano Soatto. Critical learning periods for multisensory
integration in deep networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 24296–24305, 2023.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification with Deep
Convolutional Neural Networks. Advances in neural information processing systems, 25, 2012.

Robert P Langlands. Problems in the theory of automorphic forms. Lectures in modern analysis and
applications III, pp. 18–61, 1970.

E. Lau, S. Wei, and D. Murfet. Quantifying degeneracy in singular models via the learning coefficient.
Preprint arXiv:2308.12108, 2023.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent
for matrix factorization: Greedy low-rank learning. Preprint arXiv:2012.09839, 2020.

14

Published as a conference paper at ICLR 2025

Tom Lieberum, Matthew Rahtz, János Kramár, Neel Nanda, Geoffrey Irving, Rohin Shah, and
Vladimir Mikulik. Does Circuit Analysis Interpretability Scale? Evidence from Multiple Choice
Capabilities in Chinchilla, July 2023.

J Macqueen. Some methods for classification and analysis of multivariate observations. In Pro-
ceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability/University of
California Press, 1967.

Juan Maldacena. The large N limit of superconformal field theories and supergravity. International
journal of theoretical physics, 38(4):1113–1133, 1999.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1–76, 2020.

Massive Text Embedding Benchmark. mteb/raw_arxiv · Datasets at Hugging Face, July 2024. URL
https://huggingface.co/datasets/mteb/raw_arxiv.

Erin McKean (ed.). New Oxford American Dictionary. Oxford University Press, New York, 2 edition,
May 2005. ISBN 978-0195170771. Second Edition. Includes nearly 3,000 new words, senses, and
phrases. Large format, 8½" by 11". Accompanied by a CD-ROM with full text for Palm OS devices.
Used as the built-in dictionary for Mac OS X, Amazon Kindle, and later published electronically
at OxfordAmericanDictionary.com in 2006 and as part of Oxford Dictionaries Online in 2010.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. Preprint arXiv:1609.07843 [cs.CL], 2016.

Richard Meyes, Constantin Waubert de Puiseau, Andres Posada-Moreno, and Tobias Meisen. Under
the Hood of Neural Networks: Characterizing Learned Representations by Functional Neuron
Populations and Network Ablations. Preprint arxiv:2004.01254 [cs, q-bio], May 2020.

Ari S. Morcos, David G.T. Barrett, Neil C. Rabinowitz, and Matthew Botvinick. On the importance
of single directions for generalization. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=r1iuQjxCZ.

Neel Nanda and Joseph Bloom. TransformerLens, 2022. URL https://github.com/
neelnanda-io/TransformerLens.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress measures for
grokking via mechanistic interpretability. In The Eleventh International Conference on Learning
Representations, 2023.

Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381(6583):607–609, 1996.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context Learning and Induction Heads. Transformer Circuits Thread, 2022.

Ioannis Paparrizos. Fast, Scalable, and Accurate Algorithms for Time-Series Analysis. PhD thesis,
Columbia University, USA, 2018.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gener-
alization beyond overfitting on small algorithmic datasets. Preprint arXiv:2211.00593 [cs.LG],
2022.

Paul C Quinn and Mark H Johnson. The emergence of perceptual category representations in young
infants: A connectionist analysis. Journal of experimental child psychology, 66(2):236–263, 1997.

15

https://huggingface.co/datasets/mteb/raw_arxiv
https://openreview.net/forum?id=r1iuQjxCZ
https://github.com/neelnanda-io/TransformerLens
https://github.com/neelnanda-io/TransformerLens

Published as a conference paper at ICLR 2025

T. Rauker, A. Ho, S. Casper, and D. Hadfield-Menell. Toward Transparent AI: A Survey on
Interpreting the Inner Structures of Deep Neural Networks. In 2023 IEEE Conference on Secure
and Trustworthy Machine Learning (SaTML), pp. 464–483, Los Alamitos, CA, USA, 2023. IEEE
Computer Society.

Timothy T Rogers and James L McClelland. Semantic Cognition: A Parallel Distributed Processing
Approach. MIT Press, 2004.

Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics, 20:53–65, 1987.

David E Rumelhart, James L McClelland, PDP Research Group, et al. Parallel distributed processing,
volume 1: Explorations in the microstructure of cognition: Foundations. The MIT press, 1986.

Jill Sakai. How synaptic pruning shapes neural wiring during development and, possibly, in disease.
Proceedings of the National Academy of Sciences, 117(28):16096–16099, 2020.

Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken word
recognition. IEEE transactions on acoustics, speech, and signal processing, 26(1):43–49, 1978.

Andrew M Saxe, James L McClelland, and Surya Ganguli. A mathematical theory of semantic
development in deep neural networks. Proceedings of the National Academy of Sciences, 116(23):
11537–11546, 2019.

Dou Shen, Jian-Tao Sun, Qiang Yang, and Zheng Chen. Text classification improved through
multigram models. In Proceedings of the 15th ACM international conference on Information and
knowledge management, pp. 672–681, 2006.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information.
Preprint arXiv:1703.00810, 2017.

Romain Tavenard, Johann Faouzi, Gilles Vandewiele, Felix Divo, Guillaume Androz, Chester Holtz,
Marie Payne, Roman Yurchak, Marc Rußwurm, Kushal Kolar, and Eli Woods. Tslearn, a machine
learning toolkit for time series data. Journal of Machine Learning Research, 21(118):1–6, 2020.
URL http://jmlr.org/papers/v21/20-091.html.

Curt Tigges, Michael Hanna, Qinan Yu, and Stella Biderman. LLM circuit analyses are consistent
across training and scale. Preprint arXiv:2407.10827, 2024.

Shashanka Ubaru and Yousef Saad. Fast methods for estimating the numerical rank of large matrices.
In International Conference on Machine Learning, pp. 468–477. PMLR, 2016.

Stan van Wingerden, Jesse Hoogland, George Wang, and William Zhou. Devinterp. https:
//github.com/timaeus-research/devinterp, 2024.

Roberto Viviani and Manfred Spitzer. Developmental pruning of synapses and category learning. In
ESANN, pp. 287–294, 2003.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 5797–5808.
Association for Computational Linguistics, 2019.

Chelsea Voss, Gabriel Goh, Nick Cammarata, Michael Petrov, Ludwig Schubert, and Chris Olah.
Branch specialization. Distill, 2021. doi: 10.23915/distill.00024.008.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In The
Eleventh International Conference on Learning Representations, 2023.

Joe H Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the American
statistical association, 58(301):236–244, 1963.

Sumio Watanabe. Algebraic Geometry and Statistical Learning Theory. Cambridge University Press,
USA, 2009.

16

http://jmlr.org/papers/v21/20-091.html
https://github.com/timaeus-research/devinterp
https://github.com/timaeus-research/devinterp

Published as a conference paper at ICLR 2025

Sumio Watanabe. A Widely Applicable Bayesian Information Criterion. Journal of Machine Learning
Research, 14:867–897, 2013.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In International Conference
on Machine Learning, pp. 11080–11090. PMLR, 2021.

M. Welling and Y. W. Teh. Bayesian Learning via Stochastic Gradient Langevin Dynamics. In
Proceedings of the 28th International Conference on Machine Learning, 2011.

Kaiyue Wen, Yuchen Li, Bingbin Liu, and Andrej Risteski. Transformers are uninterpretable with
myopic methods: a case study with bounded dyck grammars. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems,
volume 36, pp. 38723–38766. Curran Associates, Inc., 2023.

Guillaume Wenzek, Marie-Anne Lachaux, Alexis Conneau, Vishrav Chaudhary, Francisco Guzmán,
Armand Joulin, and Edouard Grave. CCNet: Extracting high quality monolingual datasets from web
crawl data. In Nicoletta Calzolari, Frédéric Béchet, Philippe Blache, Khalid Choukri, Christopher
Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène
Mazo, Asuncion Moreno, Jan Odijk, and Stelios Piperidis (eds.), Proceedings of the Twelfth
Language Resources and Evaluation Conference, pp. 4003–4012, Marseille, France, May 2020.
European Language Resources Association. ISBN 979-10-95546-34-4.

Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data selection for language
models via importance resampling. Preprint arXiv:2302.03169 [cs.CL], 2023.

Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. Revisiting the Importance of Individual
Units in CNNs via Ablation. Preprint arXiv:1806.02891 [cs], June 2018.

17

Published as a conference paper at ICLR 2025

APPENDIX

Appendix A provides theoretical background on the local learning coefficient.

Appendix B provides further details on the head classification. We describe the methodology we
followed to manually classified each head, and offer more explanation and examples of each head’s
classification and specializations.

Appendix C discusses the significance of critical points, increases, and decreases in the (r)LLC in
relation to stagewise development in artificial and biological neural networks. We provide additional
results for the full-weights data-refined LLC for a variety of common datasets.

Appendix D compares the rLLC to the Hessian trace, Fisher Information Matrix (FIM) trace, and
Hessian rank. We show that the LLC consistently outperforms these other techniques.

Appendix E compares the rLLC against ablation-based metrics that are common to mechanistic
interpretability (zero ablations, mean ablations, and resample ablations). We discuss the strengths
and weaknesses of each of these methods in relation to the rLLC.

Appendix F provides more experimental details on the architecture, training setup, LLC hyper-
parameters, expected cost of scaling the methodology, using models as the generating process for
data-refined LLCs, composition scores, and automated clustering analysis.

Appendix G examines the consistency of our findings across different random initializations, support-
ing the generality of our conclusions. This analysis further supports the robustness of our observations
across various model components.

Appendix H examines consistency across models scales, rerunning the analysis of the induction
circuit for Pythia-70m (Biderman et al., 2023).

Additional figures & data can be found at the following anonymized repository:
anonymous.4open.science/r/paper-rllcs-2024-BE57.

102 103 104

0

20

40

60

80

La
ye

r 0
rL

LC

Refined LLC

102 103 104

Step t

0

10

20

30

40

50

La
ye

r 1
rL

LC

102 103 104

0

20

40

60

80
Github (data)-refined LLC

102 103 104

0

20

40

60

80
L1 (model)-refined LLC

Layer 0 Heads
Multigram 0:0
Prev. Token 0:1
Multigram 0:2
Multigram 0:3
Prev. Token 0:4
Curr. Token 0:5
Multigram 0:6
Multigram 0:7

102 103 104

Step t

0

10

20

30

40

50

102 103 104

Step t

0

10

20

30

40

50

Layer 1 Heads
Multigram 1:0
Multigram 1:1
Multigram 1:2
Multigram 1:3
Multigram 1:4
Multigram 1:5
Induction 1:6
Induction 1:7

Figure 8: Detailed reference for per-head rLLCs. This figure combines data from figures Figure 2,
Figure 3, and Figure 5 for detailed cross-referencing.

18

https://anonymous.4open.science/r/paper-rllcs-2024-BE57

Published as a conference paper at ICLR 2025

A LLC IN THEORY

What is not necessarily clear from (2) is that this is an estimator for a theoretical quantity λ(w∗)
which is an invariant of the geometry of the population loss. To explain we recall one form of the
definition of the learning coefficient from Watanabe (2009). For a triple (p, q, φ) consisting of a
parameter space W with model p(y|x,w), truth q(y|x) and prior φ on W we consider the volume

vol(ϵ) =
∫
K(w)<ϵ

φ(w)dw

where K(w) =
∫
DKL(q(y|x)||p(y|x,w))q(x)dx. Under some conditions (Watanabe, 2009, Theo-

rem 7.1) the learning coefficient is given by

λ = − lim
ϵ→0

log2

[
vol(12ϵ)/vol(ϵ)

]
. (7)

The local learning coefficient λ(w∗) at a local minima w∗ of K(w) is defined by restricting the
volume integral to a neighborhood B of w∗ where K(w) ≥ K(w∗)

vol(ϵ, w∗) =

∫
w∈B,|K(w)−K(w∗)|<t

φ(w)dw (8)

and then defining (Lau et al., 2023; Furman & Lau, 2024)

λ(w∗) = − lim
ϵ→0

log2

[
vol(12ϵ, w

∗)/vol(ϵ, w∗)
]
. (9)

This is the asymptotic number of bits necessary to specify a parameter near w∗ which is half again
closer to the truth. This has some relation to intuitive notions of “flatness” (Hochreiter & Schmidhuber,
1997) or description length (Grünwald, 2007).

In practice we do not have access to the function K since it depends on the true distribution.
Nonetheless there are several methods available to estimate these quantities empirically (Watanabe,
2013; 2009), using the negative log-likelihood of a set of samples Dn. In practice we substitute
the population loss ℓ for the KL divergence K and use (2) to approximate the LLC, rather than
try to directly approximate (9). Nonetheless this formula offers a valuable information-theoretic
interpretation of the LLC that we employ in this paper.

B CLASSIFICATION OF ATTENTION HEADS

In this section, we classify attention heads by their behavior. At a high level, the attention heads can
be thought of as being a part of one of four groups, illustrated in Table 1. Unless specified otherwise,
all description of attention heads refers to behavior at the end of training.

B.1 METHODOLOGY: TOKENS IN CONTEXT

Identifying tokens in context. To identify which patterns in data each attention head is associated
to (independently of rLLCs), we mean-ablate that head (Appendix E), then filter a subset of 100k
samples from the training dataset for the 1k most affected “tokens in context” (i.e., a sample index
combined with a position index), as measured by the increase in the per-token loss. This results in
pairs of a token in context and local attention pattern for the ablated attention head that generated that
sample.

Classifying tokens in context. We attempt to classify each (token in context, attention pattern) pair
as belonging to one of the following “patterns:”

• Induction patterns (Appendix B.2)

• Dyck patterns (Appendix B.3)

• Skip n-grams (Appendix B.4)

• n-grams (Appendix B.5)

19

Published as a conference paper at ICLR 2025

Head Classification Comments Section
0 : 0 Multigram n-grams esp. prepositional phrases B.5
0 : 1 Previous-token Esp. Proper nouns B.2
0 : 2 Multigram n-grams; Post-parenthetical tokens B.5
0 : 3 Multigram n-grams B.5
0 : 4 Previous-token Esp. dates and multiple spaces B.2
0 : 5 Current-token B.6
0 : 6 Multigram n-grams; Post-quotation tokens B.5
0 : 7 Multigram (Dyck) (Nested) bracket-matching; Double spaces / start

of sentences
B.3

1 : 0 Multigram n-grams, esp. numbers & prices (thousands place),
hyphenated phrases (“first-ever", “year-ago"), "[#]
[timespan] ago"

B.5

1 : 1 Multigram n-grams, esp. proper nouns; double spaces, com-
parison completion (more...th -> an)

B.5

1 : 2 Multigram n-grams, esp. dates & start of sentence B.5
1 : 3 Multigram (Dyck) Correlative conjunctions (“neither”...“nor”),

Abbreviations (“N.A.S.A.”), Superlatives
(“most”...“ever”), Questions (“Why”...“?”),
“...’ -> ’

B.3

1 : 4 Multigram n-grams, esp. news-related (date ranges, “As-
sociated press”, “copyright”, “spokeswoman,”);
phrasal verbs (“prevent...from”, “keep...safe”),
post-quotation tokens (“... ‘...’ said”).

B.5

1 : 5 Multigram (Dyck) [...], (...), (..."...") {...}, "...", ‘...’, **...** B.3
1 : 6 Induction (Code) [A][B]...[A] -> [B] B.2
1 : 7 Induction [A][B]...[A] -> [B] B.2

Table 1: Attention Head Taxonomy

This classification is automated and serial: if a token in context cannot be classified as an induction
pattern, we subsequently check if it can be described as a Dyck pattern, then a skip n-gram, then
an n-gram. The criterion for inclusion varies for each pattern (and is described in the associated
subsection) but typically consists of checking whether the token receiving maximum attention (“max-
attention token”), current token, and next token match a particular template. If a pattern matches, we
say that pattern “explains” the token in context.

Classifying heads by tokens in context. We classify each head by whichever pattern explains the
most of its tokens in context, in a relative sense, rather than an absolute sense (so 30% Dyck patterns,
10% skip n-grams, 20% n-grams, 40% unexplained is enough to classify a head as a Dyck head).
This has obvious limitations: there could be another missing pattern that explains the remaining
unexplained patterns. We therefore supplement this classification with manual inspection of both
explained and unexplained tokens in context (see Figure 9).

We begin by identifying previous-token and induction heads (0:1 , 0:4 , 1:6 , and 1:7), which we then
subdivide based on their previous-token and induction scores. The remaining heads are classified as
multigram heads that memorize Dyck patterns, skip n-grams, and contiguous n-grams. Notably, by
the end of training, all heads have almost all of their tokens in context explained by these classifications
(in some cases only after additional manual inspection). The results of this classification process
are displayed in Table 1. For full analyses and datasets of tokens in context, we refer readers to our
anonymized repository: https://anonymous.4open.science/r/paper-rllcs-2024-BE57.

Counting multigrams. To count the “# Multigrams” in Figure 1 and Figure 11, we add up the
unique number of Dyck patterns, skip n-grams, and n-grams associated to each head. These unique
counts are defined in their respective sections.

20

Published as a conference paper at ICLR 2025

26.5%
22.6%

37.8%

20.2%
24.5% 24.6% 21.6%

17.5%

11.4%

53.4%
70.1% 48.3%

74.6% 69.1% 69.5%
68.8%

63.5%

8.7%
13.8%

6.0% 5.7%
9.3%

18.4%

0:1 0:7 0:0 0:6 0:4 0:2 0:3 0:5
0

20

40

60

80

100

Remaining Multigrams Skipgrams Dyck Induction

Attention Head

P
er

ce
nt

 E
xp

la
in

ed

18.9%

55.3%

12.1%
19.0%

10.5%
6.1%

71.4%

7.6%

54.5%

35.8%

23.0%

12.4%

57.5%

75.4%
86.1%

23.8%

93.1%

10.6%

42.7%

29.8%

5.6%

26.7%

1:5 1:6 1:3 1:7 1:2 1:1 1:0 1:4
0

20

40

60

80

100

Remaining Multigrams Skipgrams Dyck Induction

Attention Head

P
er

ce
nt

 E
xp

la
in

ed

(a) 8.5k steps

85.8%

58.7%

25.9%

5.9% 5.5%

23.4%

5.7%

5.0%

42.9%

62.3%

82.5% 79.4%

9.9%

76.5%

13.7%

34.5%
27.7% 26.1%

11.5% 13.7%

61.0%

18.4%

0:1 0:4 0:5 0:6 0:3 0:2 0:7 0:0
0

20

40

60

80

100

Remaining Multigrams Skipgrams Dyck Induction

Attention Head

P
er

ce
nt

 E
xp

la
in

ed

Loading [MathJax]/extensions/MathMenu.js

48.1% 48.1%

6.0%

98.0%

43.2%

32.6%

43.6%

37.5%

5.2%

84.9%

22.6%
50.2%

83.7%

44.9% 47.3%

16.7%

7.9%

24.7%

8.3% 11.4%

1:6 1:5 1:7 1:3 1:2 1:4 1:1 1:0
0

20

40

60

80

100

Remaining Multigrams Skipgrams Dyck Induction

Attention Head

P
er

ce
nt

 E
xp

la
in

ed

Loading [MathJax]/extensions/MathMenu.js

(b) 50k steps (Final Checkpoint)

Figure 9: Token-in-context attributions for each head at 8.5k steps (top row) and at 50k steps
(bottom row). Each column corresponds to a single head: the bars (left axis) show the percentage
of tokens in context that are explained by either induction patterns, Dyck patterns, skip n-grams, or
n-grams (as described in Appendix B.1). The heads are ordered by the number of unique multigrams
for each head.

21

Published as a conference paper at ICLR 2025

B.2 INDUCTION PATTERNS

An induction pattern is a sequence of tokens that repeats within a given context, where the model
learns to predict the continuation of the repeated sequence. The simplest form of an induction
pattern is an in-context bigram, [A][B] ... [A] → [B], where [A] and [B] are arbitrary
placeholder tokens. In this pattern, after seeing the sequence [A][B] once, the model learns to
predict [B] when it encounters [A] again later in the context. In our analysis, we extend the
definition of induction patterns to include arbitrary in-context n-grams of the form ([1]...[N])
... ([1]...[N-1]) → [N].

B.2.1 CLASSIFICATION

Olsson et al. (2022) showed that two-layer attention-only transformers can develop an induction
circuit which completes such patterns, predicting the second [N] from the second [N-1]. This
circuit involves two components:

1. A previous-token head in layer 0, which attends to the second [N-1].

2. An induction head in layer 1, which attends to the first [N].

We classify a token in context as part of an induction pattern if it fits this form: if (1) the next token is
the second [B]) and (2) the max-attention token is the second [A] (previous-token head) or the first
[B] (induction head).

B.2.2 RESULTS

Hoogland et al. (2024) identified heads 0:1 and 0:4 as previous-token heads and 1:6 and 1:7 as
induction heads, using the previous-token score and induction score introduced in Olsson et al. (2022).
These heads can also be identified as such by their tokens in context, as illustrated by the selection in
Figure 4 and the automated classification in Figure 9.

Bonus: The rLLC reveals staggered development of induction heads. The Github drLLC reveals
not only that the heads specialize to different data, but also that they form at different times: Figure 10
shows that the inflection point and peak in the rLLC is several thousand steps later for head 1:6 than
head 1:7 . To validate this, we consider the in-context learning (ICL) score from Olsson et al. (2022),
which takes the average loss at the 500th token minus the average loss at the 50th token.

0.1

0.0

1:
7

Ab
la

te
d

IC
L

Sc
or

e

102 103 104

Step t

0.1

0.0

1:
6

Ab
la

te
d

IC
L

Sc
or

e

102 103 104

Step t

0.20

0.15

0.10

0.05

Fu
ll

(U
na

bl
at

ed
)

IC
L

Sc
or

e0

20

1:
6

wr
LL

C

0

20

1:
7

wr
LL

C

10

20

30

40

50

1:
6

+
1:

7
wr

LL
C

ICL Score Pile Github

Figure 10: Induction head development correlates with critical points in the Github drLLC.
The two induction heads do not form at the same time; 1:7 precedes 1:6 by several thousand steps,
as is visible in the inflection points of both the Github drLLC for these heads and the per-head ICL
score (obtained by mean-ablating the opposite induction head, left column). When restricting to both
heads’ weights at the same time, the critical point in the Github drLLC coincides with the end of
the ICL score drop (right column). This suggests (critical points in) rLLCs can be used to study the
development of model components.

22

Published as a conference paper at ICLR 2025

We plot the ICL score upon mean ablating either of the two heads: we see that the drop in the ICL
score upon mean ablating head 1:7 coincides with the peak in the 1:6 Github drLLC, and vice-versa.
Likewise, the peak in the rLLC restricted to both heads’ weights at the same time coincides with the
standard ICL score.

B.3 DYCK PATTERNS

In predicting the next token in natural language, some of the most explicit occurrences of hierarchy
come in the form of nested brackets and punctuation. This is formalized in the context-free gram-
mars Dyck-k (“deek”), which involve sequences with matching brackets of k kinds (Chomsky &
Schützenberger, 1959).

We take a wide definition of bracket, including:

• Delimiters:

– Traditional brackets/braces/parentheses: (...), [...], {...}, <...>,

– Quotation marks: "...", ‘...’, “...”, as well as mistokenized ■? ■? ... ■? ■? ,
– Markdown formatting symbols: _..._, **...**,

• Split constructions:

– Correlative conjunctions: “both...and”, “not only...but also”, “neither...nor”, “ei-
ther...or”,

– Correlative Comparatives: “more...th”, “less...th”, “better...th”,
– Correlative Superlatives: “most...ever”, “least...ever”,
– Questions: “Why...?”, “What...?”, “How...?”.

There are similar constructions that we did not analyze but that would make natural candidates for
follow-up analysis, such as additional correlative comparatives (“as ... as”) conditional statements
(“if ... then”), cleft sentences (“it is ... who”), comparative correlatives (“the [more you practice], the
[better you get]”), result clauses (“[it was] so [cold] that [the lake froze]”),

The number of unique Dyck patterns for each head is the size of the set of unique (opening token,
closing token) pairs for each token in context that is classified as a Dyck pattern.

B.3.1 CLASSIFICATION

We classify a token in context as part of a Dyck pattern if (1) the next token contains a closing bracket
corresponding to an earlier opening bracket, and (2) the subsequence spanned between those two
brackets has valid nesting.

Often, we find that the max-attention token is the corresponding opening bracket, especially for layer
1 Dyck heads. However, we do not require this to be true to classify a token in context as a Dyck
pattern.

B.3.2 RESULTS

Figure 9 shows that automated classification identifies three heads as Dyck heads: 1:5 (98% ex-
plained), 1:3 (43.2%), and 0:7 (23.4%). Manual inspection of their tokens in context confirms these
diagnoses and reveals further subspecializations.

1:5 Delimiter-matching head. Head 1:5 is specialized to traditional brackets/braces/parentheses,
quotation marks, and other symbolic delimiters.

1:3 Split-construction-matching head. Head 1:3 is specialized to the natural language Dyck
patterns, and one variant of quotation marks.

0:7 Dyck-support head. Head 0:7 is specialized to similar tokens in context as 1:5 . However,
only about a quarter of 0:7 ’s tokens in context are recognized by our automatic procedure as Dyck
patterns. Manual inspection reveals that many remaining unexplained tokens in context are either

23

Published as a conference paper at ICLR 2025

misclassified as non-Dyck (e.g., because we identify whether quotation marks are opening or closing
by checking whether the previous/subsequent character is not a letter, which is sometimes too
restrictive) or Dyck-like (e.g., all-caps text surrounded by multiple spaces, where the spaces serving
as delimiters). Most of this head’s other remaining tokens in context seem to be involved in skip
n-grams (analyzed in the next subsection).

One additional way in which these heads are different is their max-attention tokens: the layer 1 Dyck
heads both primarily attend to the opening token corresponding to the closing token being predicted.
Head 0:7 casts a more diffuse attention pattern.

B.3.3 DISCUSSION

The ability to correctly close brackets underlies all nonregular context-free languages, in the formal
sense that by the Chomsky-Schützenberger theorem, any context-free language arises from a variant
of Dyck-2 through intersection with a regular language and homomorphisms (Chomsky & Schützen-
berger, 1959). For this reason the ability of transformers to recognise Dyck languages has been
studied at some length (Hahn, 2020; Bhattamishra et al., 2020; Ebrahimi et al., 2020). In Weiss et al.
(2021) an algorithm in RASP is given which compiles to a transformer which recognises Dyck-k
languages for any k. We did not examine how this relates to the heads investigated here. It is unclear
whether transformers actually learn similar algorithms to these in practice (Wen et al., 2023).

As far as we know this paper is the first time that a circuit recognizing a nested Dyck language has
been found “in the wild”, that is, in a transformer trained on natural language. This seems interesting
in connection with the ability of transformers to learn the hierarchical and recursive structure in
natural language. It is however well-known that, in general, syntactic structure in natural language is
represented within transformers (Hewitt & Manning, 2019).

B.4 SKIP n-GRAMS

The simplest form of a skip n-gram is a skip trigram of the form [A]...[B] -> [C], where
the distance between tokens [A] and [B] is variable. We consider more general skip n-grams of
the form [1]...([2]...[N-1]) -> [N], as well as skip n-grams involving multiple steps
[1]...[2]...[N-1] -> [N].

The Dyck patterns considered in the previous setting are a special case of skip n-grams.

B.4.1 CLASSIFICATION

We match tokens in context against a preset list of skip n-grams, including:

• Post-quotations: e.g., "..." said, “...” ... says, ■? ■? ... ■? ■? wrote,
and ■? ■? ... ■? ■? of (for use with mistokenized scare quotes rather than direct quota-
tions),

• Post-parentheticals: e.g., (@...) October,

• Post-correlative comparative: Finishing a comparative of the form “more...th” or predicting
what comes after “than.”

• Abbreviations (Acronyms/Initialisms): “N.A.S.A.”, “N.C.”, “D.C.”, etc.

• Phrasal verbs / verb-particle constructions (with object insertion) like “prevent ... from”,
“keep ... safe”, “let ... go”. These were compiled by manually inspecting tokens in context.

The unique number of skip n-grams for each head is the size of the set of unique ([1], [2],
..., [N]) tuples for each token in context that is classified as a skip n-gram. There are likely
quite a few other skip n-grams that our search neglected.

Though phrasal verbs fall under the category of (natural language) “split constructions”, we choose
to analyze these separately from the split constructions listed as Dyck patterns for two reasons.
First, Dyck patterns typically have obligatory closing elements (like matching brackets or question
marks), the particle in phrasal verbs is often optional or can be omitted without rendering the sentence
ungrammatical (though correlative comparatives and superlatives are sometimes an exception to this

24

Published as a conference paper at ICLR 2025

rule). Second, the Dyck patterns are primarily syntactic while phrasal verbs are more lexical in nature,
meaning their behavior and interpretation are more closely tied to specific lexical items and idiomatic
meanings rather than general syntactic rules (Dehé, 2002).

B.4.2 RESULTS

One of the remaining heads appear to be primarily involved in skip n-grams: 1:4 (43.6%). Heads 1:1
(37.5%) and 1:3 (32.6%) are close to being classified as skip-n-gram heads but are more involved in
n-grams and Dyck patterns, respectively. A few other heads are marginally involved: 0:2 (3.2%),
0:6 (5.7%).

0:2 , 0:6 , 1:1 , 1:4 Post-Dyck patterns. Heads 0:2 , 0:6 , and 1:4 are not themselves Dyck heads.
Instead, they are involved in predicting tokens that follow closing parentheticals and two variants of
closing quotation marks, respectively. Head 1:1 is responsible for finishing correlative comparisons
such as “more...th” -> “an”. This is not itself a pure Dyck pattern, since the preceding token has
already started to close the opening bracket. Head 1:4 specializes in post quotation-marks, such as
“... ‘...’ says ...”

1:3 Abbreviation head. In addition to its role in predicting split-construction Dyck patterns, head
0:3 is also specialized to predicting skip n-grams of periods in acronyms and initialisms.

1:4 Verb-particle phrases & other set phrases. Head 1:4 seems to specialize in verb-particle
phrases and other set phrases, including examples such as prevent ... from, keep ... safe, let ... die,
let ... go, meet ... require(ments), remove ... from, accused ... of, asked ... whether, and turn ... into.
Additionally, this head appears to handle other types of set phrases or common patterns, such as ://...
followed by / (for URLs), email followed by @, and at followed by @. This head is also involved in
recognizing common verb-object pairs such as solve ... problems, and violated ... laws.

B.5 n-GRAMS

An n-gram is a commonly occurring contiguous sequence of n tokens, e.g., a bigram is [A] ->
[B], a trigram is [A][B] -> [C], and so on.

B.5.1 CLASSIFICATION

For all remaining tokens in context, we classify the sample as an n-gram if the subsequence starting
at the token the receives maximum attention up to and including the next token occurs in at least two
different tokens in context. We enforce no restrictions on the attention threshold or the length of the
n-gram.

B.5.2 RESULTS

All multigram heads memorize some number of n-grams, but there is clearly an ordering, where
Dyck heads memorize the fewest, the skip n-gram-specialized heads slightly more, and the remainder
(0:0 , 0:2 , 0:3 , 0:6 , 1:0 , 1:4) are almost entirely focused on n-grams.

1:1 , 1:2 Start-of-sentence heads. Both 1:1 and 1:2 are responsible for predicting multiple
contiguous spaces/newlines and tokens that follow these spaces, in contexts where periods are
followed by a double space.

0:0 , 1:4 Prepositional phrases. In addition to learning miscellaneous n-grams, head 0:0 spe-
cializes to prepositional phrases. Many of its tokens in context are prepositions (“of”, “by”, “with”,
“to”, “from”, “with”) that appear in set phrases, like “Chamber of Commerce”, “plenty of room”, “by
email”, “went to college”, “prevented from doing.” 1:4 is also involved in some of these. “at”, “on a
<blank> basis”, “as time goes”,

1:0 Numbers, hyphens, periods of time. Head 1:0 specializes to predicting numbers and prices,
especially following the thousands place, hyphenated phrases such as “first-ever” and “year-ago”,

25

Published as a conference paper at ICLR 2025

0 20 40 60 80 100 120 140 160
Multigrams

20

30

40

50
Fi

na
l w

rL
LC

l:

h(
t=

50
k)

r2
0 = 0.78, r2

1 = 0.81

0:0

0:1

0:20:3

0:4

0:5

0:6

0:7

1:0
1:1 1:2

1:3

1:4

1:5

1:61:7

Head Type
L0 Multigram
L0 Previous-token
L0 Current-token
L1 Multigram
L1 Induction

Figure 11: The # of n-grams memorized by each multigram head correlates with the final
weight-refined LLC. By counting the number of unique n-grams associated to each head after the
head-attribution procedure outlined in Appendix B.1, we find a correlation with the wrLLC.

as well as a period of time ending in “ago” (“years ago”, “month ago”, “day ago”). It seems to be
involved more generally in predicting n-grams that are common in a historical or legal context, e.g.,
“defamation”, “disengagement”, “argues”.

1:4 News head. Head 1:4 is especially relevant for predicting n-grams that show up in news
articles. This includes words like “Associated Press”, “spokeswoman” as well as date ranges and
post-quotation tokens. It’s also involved in several shorter skipgrams involving citations (“- <Name>
(@<citekey>) <date>”), attributions (“copyright <Source> image”).

B.6 OTHER OBSERVATIONS

0:5 Current-token head. We classify the current-token head 0:5 separately from the above tokens-
in-context analysis. This head has two main distinguishing features: it attends almost entirely to the
current token, and its composition with the layer 1 multigram heads increases dramatically towards
the end of LM4 before decreasing equally dramatically early in LM5.

We do not yet fully understand this head’s role. From looking at its tokens in context, this head
appears to be involved in predicting several n-grams, and potentially also in predicting Dyck patterns
(though its attention is concentrated on the current-token and not the opening bracket/quotation
mark/etc.).

0:0 Space head. Head 0:0 appears to initially become a “space head.” At 8.5k steps, its attention
pattern tends to distribute itself across all the single-space tokens over the preceding context. This
seems to largely revert by the end of training, where it becomes a standard multigram head. This
behavior may be linked to why the 0:0 -rLLC diverges from the other multigram heads during stages
LM1-LM3.

Migration of the ago n-gram. Early in training, at around 8.5k steps, head 0:0 seems to be
responsible for predicting time spans ending in “ago,” e.g. “ years ago” and “one year ago.” By the
end of training, head 1:0 takes over this role, even though it did not appear to have any involvement
at the earlier timestep. Head 0:0 retains only the role of predicting ago when it completes a word
(as in “Santiago” or “archipelago”).

Migration away from multigram heads. Heads 0:1 , 0:4 , 0:7 ultimately become the two previous-
token heads and (layer 0) Dyck head respectively. However, these heads appear to start out as simple
n-gram heads. For example, at 8.5k steps 0:7 (Figure 9) initially learns trigrams like “Fitzgerald”,
“transient”, “transactions”, and “transformation” (by running the same procedure to detect tokens in
context). At the end of training, these trigrams do not feature among any of 0:7 ’s maximally affected
tokens in context. Head 0:7 is also initially involved in predicting the completion of comparative
skip-trigrams (“more...th” -> “an”), a role that gets overtaken by 1:1 .

26

Published as a conference paper at ICLR 2025

C INTERPRETING CHANGES IN THE (R)LLC

C.1 INTERPRETING CRITICAL POINTS IN THE (DATA-REFINED) LLC

Hoogland et al. (2024) studied the (non-refined) LLC as a tool for analyzing stagewise development in
neural networks. The authors show that critical points in the LLC correspond to boundaries between
distinct developmental stages (see Figure 13).

In Figure 12, we show that the full-weights data-refined LLC respects the stage boundaries discovered
with the non-refined LLC, for a variety of datasets:

1. Common training & evaluation corpora: The Pile (Gao et al., 2020; Xie et al., 2023),
TinyStories (Eldan & Li, 2023), and Wikitext (Merity et al., 2016).

2. Scientific domains for which we create datasets by filtering Arxiv abstracts by
category (Massive Text Embedding Benchmark, 2024): math (math.*), physics
(astro-ph.*, cond-mat.*, gr-qc, hep-*, math-ph, nlin., nucl-*,
physics.*, quant-ph), computer science (cs.*), and economics (econ.*).

3. Human languages for which datasets sampled from the CC-100 (restricted to languages
with a Latin alphabet because the 5k vocabulary size has poor support for other languages).
(Conneau et al., 2020; Wenzek et al., 2020)

4. Programming languages for which datasets are subsampled from Github (CodeParrot,
2023).

With the exception of the programming languages datasets (discussed in Section 4.2), the drLLCs
resemble vertically shifted copies of the original LLC (evaluated on a subset of the Pile). In the
scientific domains, the decrease during LM3 is especially pronounced and extends further into LM4
than in the original trajectory. We are not surprised to see that λMath > λCS > λPhysics > λEcon.

There are some slight changes in the locations of the boundaries: the decrease in (r)LLC during LM3
flattens out for many of the datasets (TinyStories, natural & programming languages), and it shifts
slightly earlier (5.5k-8k steps rather than 6.5k-8.5k steps) for the other datasets. We believe that these
changes are more likely to be due to changes in the hyperparameters used for LLC estimation (a
slight increase in nβ from 23 to 30) than related to these particular datasets, see Appendix F.2.

C.2 INTERPRETING INCREASES IN THE (MODEL-)REFINED LLC

Many works have observed that the training process of small neural networks can have a step-like
appearance, with the loss decreasing between plateaus at the same time as a complexity measure

102 103 104

4

6

D

Corpora

102 103 104

4

6

Domains

102 103 104

4

6

Human Languages

102 103 104

4

6

Programming Languages

102 103 104

Step t

0

50

100

150

D

Pile TinyStories WikiText

102 103 104

Step t

0

50

100

150

Math Physics CS Econ

102 103 104

Step t

0

50

100

150

English French Spanish

102 103 104

Step t

0

50

100

150

Python C HTML

Figure 12: Data-refined LLC retain coarse developmental stages. Except for the Github drLLC,
the data-refined LLC on its own (without additional weight refinement) yields curves that are close to
the original unrefined LLC.

27

Published as a conference paper at ICLR 2025

102 103 104

4

6

D

D = Pile
D = Github

102 103 104

0.5

1.0

1.5

M

M = L0
M = L1

102 103 104

Step t

50
100
150

D

D = Pile
D = Github

102 103 104

Step t

0

100

M

M = L0
M = L1

Figure 13: Two-layer attention-only transformers undergo stagewise development, learning
(LM1) bigrams, (LM2) multigrams, and (LM3 & LM4) the induction circuit, before (LM5) converging
(Hoogland et al., 2024). This development may be “hidden” from the training loss (top right, blue
line), but discovered by looking for plateaus in the (data-refined) LLC (bottom left, blue line).
Alternatively, certain datasets highlight particular developmental stages, e.g., Github (left, orange,
CodeParrot 2023) accentuates the development of induction. Likewise, evaluating the model against
the outputs of a reference zero-layer (right, green) or single-layer (right, red) model highlights the
bigram and multigram stages, respectively. Shown in the bottom right are the data-refined LLCs
using zero and one-layer trained transformers as the data generating process (Appendix F.3).

(e.g. rank) increases between plateaus (Arora et al., 2019; Li et al., 2020; Eftekhari, 2020; Advani
et al., 2020; Saxe et al., 2019). Indeed, by viewing training as starting at a point of low complexity,
this monotonic increase in complexity in simple systems has been put forward as an explanation for
the generalization performance of neural networks (Gissin et al., 2019). Similar explanations for
generalization performance of infants have appeared in child psychology (Quinn & Johnson, 1997).

In Chen et al. (2023); Furman & Lau (2024) this phenomenon was put into the context of the singular
learning process. In this vein, Hoogland et al. (2024) and Figure 12 show that, in simple language
models, developmental stages appear to typically (though not always) involve increases in model
complexity (as measured by the LLC), with critical points corresponding to some structure or behavior
finishing development.

C.3 INTERPRETING DECREASES IN THE REFINED LLC

The picture of development of neural networks (biological or artificial) in which complexity monotoni-
cally increases is incorrect, and thus cannot be a complete explanation for generalization performance.
In neuroscience it conflicts with the phenomena of critical periods and synaptic pruning (Kandel et al.,
2013; Viviani & Spitzer, 2003), and in neural networks the experiments in Hoogland et al. (2024)
show that it is common for developmental stages to involve decreasing complexity (as measured by
the LLC and mechanistic analysis). This is entirely consistent with the singular learning process.

Memorization and forgetting. Intuitively, decreases in the LLC represent an increase in the rigidity
of the network’s computation (at constant loss) with a corresponding decrease in the LLC, which we
can interpret as either increasing geometric degeneracy or decreasing model complexity.

Some of the dyads used to describe similar phenomena in the literature include:

• Memorization and forgetting / reorganization (Achille et al., 2019) in vision networks.
• Memorization / compression (Chen et al., 2024, Appendix G) in language model training.
• Memorization and circuit-formation / cleanup (Nanda et al., 2023) in the setting of grokking

(Power et al., 2022).

According to the natural information theoretic interpretation of the LLC (Watanabe 2009, §7.1,
Furman & Lau 2024, see also Appendix A) when this quantity is increasing more bits are required

28

Published as a conference paper at ICLR 2025

to specify a neighbourhood of a low loss parameter: the amount of information in the weights is
increasing. This information could include “memorization” of the inputs. The reverse is true when
the LLC decreases, so this is consistent with “forgetting”.

However we prefer to avoid these terms since their precise meaning is unclear. A more principled
perspective follows from noticing that quantities like the LLC provide upper bounds on both the
mutual information between inputs and activations within the network, and the total variation of those
activations (Achille & Soatto, 2018, Proposition 5.2). It is consistent with these results that decreasing
LLC could be related to a process whereby the representations “discard” extraneous information
about the input, and become disentangled; it would be interesting to extend the results of (Achille &
Soatto, 2018) using singular learning theory.

Critical periods. In the development of biological neural networks there are periods where tem-
porary “sensory deficits” (interpreted as a shift in data distribution) can lead to permanent skill
impairment; these are called critical periods (Kandel et al., 2013). It was argued in Achille et al.
(2019) that this phenomena is linked to the existence of a “memorization phase” in which the infor-
mation in the weights increases followed by a “reorganization phase” or “forgetting phase” in which
the amount of information is reduced without negatively affecting performance; interventions in the
learning process during the memorization phase disproportionately affect the final performance on
the test set (making these analogous to the critical periods studied in neuroscience).

In Achille et al. (2019) these two phases were related to increasing and decreasing trace of the
Fisher Information Matrix (FIM), respectively. In our small attention-only language model attention
heads undergo periods of rapid specialization followed by periods of refinement, linked respectively
to increasing and decreasing weight rLLC; this closely mirrors the concept of critical periods in
developmental neuroscience explored in Achille et al. (2019); Kleinman et al. (2023) for vision
networks.

In Appendix D.1, we show increases and decreases in the rLLC are correlated with changes in
the Hessian trace (a quantity closely related to the FIM trace) during stage LM1, LM2, and LM5,
but that they are less reliably correlated for the intermediate stages. In Appendix D.2, we show
similar behavior in the FIM trace though this is noisier than the Hessian trace due to methodological
limitations.

In Chen et al. (2024) it was observed that an increase and decrease in complexity (measured by e.g.
the intrinsic dimension) coincided with an apparent phase transition in the model; this was related to
the model of the training process explained in Shwartz-Ziv & Tishby (2017).

Pruning in neuroscience. In developmental neuroscience it is understood that after an initial phase
of proliferation during childhood, synapses (the points where signals are exchanged between neurons)
are then pruned, in a process that accelerates during adolescence and stabilises in adulthood (Johnson
& de Haan, 2015, §4.3). The apparent plasticity of the young brain is often attributed to the initial
overproduction of synapses and so synaptic pruning is closely related to critical periods.

There are several aspects of pruning that are particularly relevant to the present paper:

• Synapses are kept or pruned based on activity (Johnson & de Haan 2015, §4.3, for a survey
see Sakai 2020). This data dependence of pruning has led some to claim that “to learn is to
eliminate”. Functional structure in the brain is constructed through growth and elimination,
with both being required.

• Some have argued that the differentiation of the brain into separate processing streams and
specialized regions is related to synaptic pruning (Johnson & de Haan, 2015, §12.4). A
famous example is the emergence of ocular dominance columns (and thus the separation of
input from the eyes to facilitate binocular vision) and more general separation of modalities.

• Different regions of the brain have different timings for the reduction of synaptic density.
For example the primary sensory areas of cortex show faster growth and decay curves than
the prefrontal cortex (Johnson & de Haan, 2015, §4.3).

• It has been suggested that pruning is the biological basis of online Bayesian model selection
(Kiebel & Friston, 2011). This is particularly interesting in connection with Watanabe’s

29

Published as a conference paper at ICLR 2025

discovery (Watanabe 2009, §7.6, see also Chen et al. 2023) that in singular models, internal
model selection happens automatically as a consequence of free energy minimization.

D COMPARISON AGAINST HESSIAN-BASED ANALYSIS

In addition to the LLC, we explore several other geometric measures based on the Hessian of the loss,
and evaluate their ability to capture structural development and differentiation over training time. The
Hessian, which represents the second-order derivatives of the loss function with respect to model
parameters, has been widely used in machine learning to analyze model complexity, optimization
dynamics, and generalization properties (LeCun et al., 1989; Dinh et al., 2017).

It is worth noting that the LLC has stronger theoretical foundations as a model complexity measure
compared to Hessian-based methods. Unlike Hessian-based methods, the LLC captures higher-order
information about the loss landscape, and is not susceptible to high-frequency noise in the empirical
loss.

In this section, we investigate three Hessian-based measures:

• Hessian trace (Appendix D.1)

• Fisher information matrix (FIM) trace (Appendix D.2)

• Hessian rank (Appendix D.3)

The Hessian trace shows the greatest empirical success, identifying similar developmental stages
as the LLC, albeit with some differences in interpretation. The FIM trace largely agrees with the
Hessian trace but introduces additional noise due to estimation methodology. The Hessian rank,
while theoretically appealing, proves challenging to estimate reliably and does not clearly reflect the
structural development observed through other methods.

Overall, these Hessian-based measures offer complementary perspectives to the LLC analysis, both
independently supporting the findings of the LLC, while also highlighting the advantages and
disadvantages of the LLC in comparison. The following subsections detail our methodology, results,
and discussions for each of these measures.

D.1 HESSIAN TRACE

We measure the trace of the Hessian of the loss function over the course of training. We measure this
for the entire model on the original training distribution, as well as for subsets of the parameters and
for different data distributions, similar to what was done for the LLC in Section 4.

The Hessian trace results (Figure 14) show both similarities and differences compared to rLLC
findings. It detects some stage transitions and, when weight-refined, differentiates attention head
clusters. While the Hessian trace provides valuable insights into model development, its interpretation
can be less straightforward than rLLCs in some cases.

D.1.1 METHODOLOGY

For large models, the Hessian trace can be too expensive to compute explicitly; we use the Hutchinson
trace estimator (Hutchinson, 1989; Avron & Toledo, 2011) to efficiently estimate the Hessian trace
using Hessian-vector products. This has computational cost comparable to that of the LLC (a constant
multiple higher than that of a single SGD step).

The Hutchinson trace estimator relies on the fact that

Tr(H) = E[vTHv] (10)

for any matrix H and v with entries drawn IID from the Rademacher distribution (Avron & Toledo,
2011). When H is the Hessian matrix, we may efficiently compute the product Hv using standard
automatic differentiation techniques, even in cases where explicit computation of H itself is pro-
hibitively expensive. The two hyperparameters of this method are the number of dataset samples to
use in calculating the Hessian, and the number of samples used to compute the expectation in Eq 10.

30

Published as a conference paper at ICLR 2025

102 103 104

103

104

105

Tr
(H

Pi
le

)

Full Model

102 103 104

102

103

Layer 0

102 103 104

102

103
Layer 1

102 103 104

Step t

50k

100k

150k

200k

Tr
(H

Gi
th

ub
)

Full
WE & WU

Attn. Layers
Layer 1

Layer 2

102 103 104

Step t

-500

500

1k

2k

Head 0
Head 1

Head 2
Head 3

Head 4
Head 5

Head 6
Head 7

102 103 104

Step t

-300
-200
-100

100
200
300
400

Head 0
Head 1

Head 2
Head 3

Head 4
Head 5

Head 6
Head 7

Previous Token Current Token Multigram Previous Token Multigram

Figure 14: Estimated Hessian traces for Pile-13m (top row) and for Github (bottom row). Compare
with rLLCs in Figure 2.

For all the results in the paper, we used a value of 100 for the former and 50 for the latter. However,
we have found little dependence of the results on the values of these hyperparameters, beyond the
fact that lower values lead to more noisy estimates. This is in contrast to the LLC, where we have
found that hyperparameter tuning is important for the final results.

We also compute the Hessian trace for subsets of parameters, and for different datasets, in a similar
manner to the LLC. Weight refinement is performed by considering the loss as a function of only
the selected parameters rather than all parameters, and taking the Hessian of that function. Data
refinement is performed by using a different dataset for computing the loss. We measure the same
parameter subsets and datasets as for the LLC (Section 4).

D.1.2 RESULTS

The Hessian trace results are plotted in Figure 14, which we compare to the rLLC results in Figure 2.
We immediately see both similarities and differences between these curves and the rLLCs, both
supporting the validity of the information provided by the rLLCs while also providing tentative
evidence that the rLLCs do not merely recapitulate the information contained the Hessian trace.

The unrefined, full-model Hessian trace does appear to detect the transition between LM1 and LM2
and between LM3 and LM4, but fails to distinguish between LM2 and LM3. Additionally, the Hessian
and the LLC disagree on what happens after LM4 – from the LLC’s perspective, the complexity of
the model mostly stops increasing, whereas the Hessian trace continues to rise.

Zooming into specific components by weight-refining the Hessian shows a number of connections to
the structural changes that were investigated earlier. The first notable similarity of the Hessian trace
is its ability to (partially) distinguish the differentiation that different clusters of attention heads go
through.

In layer 0, we see that the previous token heads, 0:1 and 0:4 , extend their middle-of-training plateau
region up until their composition scores with the induction heads are maximized. We also see the
layer 0 multigram heads sharing a peak in value around the end of LM2 or LM3, which approximately
matches the timing of a critical point in their K-composition scores (cf. Figures 7, 5). Finally, 0:5 is
visually separated from the rest of the heads just by its magnitude, and the end of its plateau region
approximately matches the time when it has its spike in K-composition scores (cf. Figure 7).

31

Published as a conference paper at ICLR 2025

In layer 1, the clustering seems more ambiguous. Most of the multigram heads seem to have a similar
shape, but it also seems plausible to include one of the induction heads, 1:6 , with the rest of the layer
1 multigram heads. The other induction head, 1:7 , is differentiated from other heads by a later peak.

Overall, we do see non-trival developmental signals from the weight-refined Hessian traces. However,
there are also significant drawbacks, such as the apparent instability. As a result, it is clear where
the critical points are for wrLLCs, but this is often not the case for the Hessian trace. For example,
heads like 0:1 , 0:4 , and 0:5 appear to have noisy plateaus as opposed to obvious peaks. One might
be tempted to adopt a heuristic that the end of a plateau is what matters, but this heuristic becomes
problematic for heads like 1:6 . A priori, there is no way to distinguish the second peak of 1:6
between a real, distinct critical point, the end of a plateau starting from its first peak, and simply an
artifact due to the instability of the trace.

We may also examine the data-refined Hessian trace, specifically on the GitHub dataset. This appears
substantially harder to interpret than the Hessian trace on the original Pile dataset: the data is much
more noisy, does not appear to respond to most developmental stage boundaries, and does not appear
to add information beyond that of the original weight-refined Hessian traces. However, it does remain
possible that this is a methodological issue — some earlier runs with less compute yielded less noisy
data. Therefore, we believe the data-refined Hessian trace yields inconclusive results.

D.1.3 DISCUSSION

Given that the Hessian trace appears to find developmental information related to that found by the
LLC, it is worth comparing the two. Compared to the LLC, the Hessian trace has both advantages
and disadvantages. The Hessian trace is more popular in the literature, and is easier to tune hyperpa-
rameters for. On the other hand, the Hessian trace has less theoretical support compared to measures
like the Hessian rank or LLC, and (unlike the LLC) the Hessian trace cannot measure the behavior of
the loss function beyond second order, by definition. Empirically, for the language model we studied,
the LLC appears to present a clearer picture of the model’s development than the Hessian trace.

As a separate point, it is worth emphasizing that the Hessian trace is measured in a substantially
different manner to the LLC: the Hessian trace uses second order information at a single parameter,
whereas LLC estimation uses first order information at many parameters near the original parameter.
This decreases the likelihood of correlated mistakes between the two methods, and makes any
agreement between them non-trivial.

D.2 FIM TRACE

The Fisher information matrix (FIM) can be seen as a particular kind of Hessian matrix (Martens,
2020), making the FIM trace closely related to the Hessian trace discussed in Appendix D.1. Com-
pared to the Hessian, the FIM has the advantage of always being positive semi-definite, as well
as having deeper information-theoretic roots (Amari, 2016). We find that the results of the FIM
trace are qualitatively similar to that of the Hessian trace, but with more noise due to the estimation
methodology.

D.2.1 METHODOLOGY

The Fisher information matrix (FIM) is given by

Ijk = Ex∼p(x|w)

[(
∂

∂wj
log p(x|w)

)(
∂

∂wk
log p(x|w)

)]
where p(x|w) gives the model’s probabilities over data samples x given a parameter w (Efron &
Hastie, 2021). Implicitly, the use of p(x|w) requires our model to be a probabilistic one; for models
which are not immediately probabilistic, this step may require some interpretation.

For language models, we choose to interpret the data samples x as strings of tokens of context-window
length, and given such a string x (for a fixed parameter w), the language model outputs the probability
of this string, p(x|w). Note that this differs from a more “literal" probabilistic interpretation of the
model, where the model is treated as a supervised model p(y|x,w), and yields next-token predictions
over next-tokens y given input previous-tokens x.

32

Published as a conference paper at ICLR 2025

We prefer the former for two reasons: the p(x|w) representation directly encodes the fact that a
language model is really about natural language sequences (rather than next-tokens), and inference is
more natural and direct from p(x|w) (whereas inference from p(y|x,w) requires multiple evaluations
to string next tokens together).

In order to estimate the FIM trace, we first note that the FIM at a parameter w∗ coincides with the
Hessian of the population loss at w∗ if the true distribution of the training data is given by p(x|w∗),
the model at w∗ (Martens, 2020). Via this relationship, we may reuse the methodology for Hessian
trace estimation.

Then, in order to estimate the FIM trace, we need only replace the training data with samples from
p(x|w∗) (i.e., generated by the model itself), and repeat the Hessian trace methodology from Appendix
D.1. For hyperparameters, we used 30 for the dataset sample count, and 5 for the Hutchinson sample
count. All other methodology is identical to Appendix D.1.

Note as the parameter w∗ changes over training, new samples need to be drawn from p(x|w∗) at
each training checkpoint where we wish to estimate FIM trace — this introduces additional noise and
computation cost into the estimation process.

It is possible to estimate the FIM trace in weight-refined manner similar to the LLC and Hessian trace
(on the other hand, data refinement would need to be done differently), but we only estimate the FIM
trace for the entire model.

D.2.2 RESULTS

102 103 104

Step t

0

10000

20000

30000

40000

50000

FI
M

 tr
ac

e

Figure 15: The trace of the Fisher information matrix (FIM) plotted over the course of training,
with stages colored. Note the similarity to the Hessian trace from Figure 14.

The FIM trace is plotted over the course of training in Fig 15. The shape of the FIM trace appears to
largely agree with the shape of the Hessian trace observed in Appendix D.1.

The extra noise is due to the fact that we must sample from p(x|w∗) at each training step. This
variance could possibly be reduced by e.g. keeping samples the same over all training steps, and just
adjusting importance weights for the samples.

D.2.3 DISCUSSION

Given that the FIM trace appears to largely match the Hessian trace, while being significantly noisier
for a given amount of compute, we chose not to pursue it further.

D.3 HESSIAN RANK

We also measure the (approximate) Hessian rank. From the perspective of singular learning theory,
the Hessian rank is more principled than the Hessian trace, because it lower bounds the LLC1.

1This can be concluded by applying the Thom splitting lemma to the population loss function K(w), which
changes variables so that K(w) may be written a sum of a quadratic function K1(w1) = w1

THw1 and an

33

Published as a conference paper at ICLR 2025

However, empirically, we find that compared to the Hessian trace, our estimation of the Hessian rank
is more computationally intensive, depends more on hyperparameter choice, and does not reflect
structural development in the model as well. We consider these results inconclusive, as it is unclear
if our methodology is measuring Hessian rank accurately; better estimation methodology could
potentially avoid these problems.

D.3.1 METHODOLOGY

The approximate rank of a square matrix A can be defined as the number of eigenvalues of A above
some threshold τ . Note the choice of this threshold can be a nontrivial hyperparameter in practice,
and this was a significant difficulty for us.

Efficiently estimating the approximate rank of large matrices requires more sophisticated techniques
and approximation than the typical algorithms used for smaller matrices. We use the technique
described in Ubaru & Saad (2016), which we summarize here.

The rank estimation algorithm exploits the following facts:

• Spectral mapping theorem: if p is a polynomial, A is a square matrix, and λ is an eigenvalue
of A, then p(λ) is an eigenvalue of p(A).

• A step function is not a polynomial, but it may be approximated by one; in particular by
Chebyshev polynomials, which are easy to compute efficiently.

• The trace of a matrix may be computed efficiently via matrix-vector products (see Appendix
D.1), and if p is a Chebyshev polynomial, the matrix-vector product p(A)v is easy to
compute efficiently.

• Combining all of the previous facts: if A is a square matrix, and p is a polynomial approximat-
ing a unit step function about a threshold τ , then Tr(p(A)) efficiently yields approximately
the number of eigenvalues above τ (the approximate rank with threshold τ).

The details of this algorithm may be found in Ubaru & Saad (2016). As Hessian-vector products may
be computed efficiently via autodifferentiation, we may use this algorithm to efficiently compute the
approximate rank of the Hessian.

Because this method is equivalent to the Hessian trace estimator applied to p(H), where p is the
polynomial from above and H is the Hessian, the computational cost of this method is determined by
the cost of computing the product p(H)v. Each one of these matrix-vector products requires some
constant number of Hessian-vector products, determined by the degree of p, making the Hessian rank
require a constant multiple more compute than the Hessian trace.

As this method relies on the trace estimation algorithm, it shares the two hyperparameters from that
algorithm (the dataset sample count and Hutchinson sample count). It also has several additional
hyperparameters: the degree of the polynomial p, the range of values for which we require p to
accurately approximate a step function, and the desired eigenvalue threshold τ .

A higher degree for p gives a more accurate approximation to the step function, allowing p to rise
faster and giving a more fine-grained rank approximation, but requires more compute. The larger the
range we require the polynomial p to be a good step function approximation, the slower p will rise at
the threshold value; however, the valid approximation range must at a minimum include the entire
eigenvalue spectrum of the Hessian, or risk nonsensical results2. The threshold τ determines which
eigenvalues are considered “zero" for the purposes of the approximate rank.

The degree of p can be chosen based on required accuracy, or computational resources available. The
range can be either set manually, or chosen automatically based on the min/max Hessian eigenvalues.
The value for the threshold τ is harder to choose; there is often no clear eigenvalue gap or other
indicator for where to set τ , so we set it arbitrarily.

arbitrary function K2(w2). Then Remark 7.2.3 from (Watanabe, 2009) tells us that the learning coefficient of
K(w) is equal to that of K1(w1) plus that of K2(w2), and because the learning coefficient of K1(w1) is r

2
where r is the rank of H , then the learning coefficient of K(w) must be at least r

2
.

2This is because the value of a Chebyshev polynomial outside its approximation range typically explodes
to positive or negative infinity, so if any eigenvalue is outside the approximation range, the resulting trace also
explodes.

34

Published as a conference paper at ICLR 2025

There is another complication for the latter two hyperparameters: we are trying to estimate the
Hessian rank over the course of training, not for a single training step. But the Hessian eigenvalue
spectrum changes significantly over training; it is not clear if, or how, the approximation range and
threshold should change over the course of training.

We try two strategies to set these hyperparameters, which we call the fixed method and the adaptive
method.

Fixed method. Keep the approximation range and threshold the same over training. This means
we are applying a consistent function to the eigenvalues over training, which is desirable. On the
other hand, we need to set the approximation range large enough to deal with the largest eigenvalue
seen over all of training (≈ 5000), even if most of the time the eigenvalues are much smaller. So we
probably are not getting a good resolution estimate of the rank, especially early in training where the
Hessian eigenvalues are smaller.

Adaptive method. Adjust the approximation range and threshold over training. We adapt the
approximation range to the maximum and minimum eigenvalue at each training step, and set the
threshold to a constant fraction of this range. This means we get better resolution when the eigenvalue
spectrum is smaller, which is desirable. On the other hand, the function of the eigenvalues we measure
will change at each training step, and this may confound the results.

For both strategies, we set the remaining hyperparameters to the same values: 3 for the dataset sample
count, 1 for the Hutchinson sample count, and 100 for the degree of p. For the fixed method, we
set the approximation range to (-1000, 6000), and the threshold τ to 500. For the adaptive method,
we set the approximation range to (−1.2|λ|, 1.2|λ|), and the threshold τ to 0.07λ, where |λ| is the
largest eigenvalue of the Hessian in absolute value (estimated by power iteration).

While possible to measure weight-refined or data-refined Hessian rank, we did not measure this, given
the difficulty we faced with estimating the Hessian rank for the full model on the original dataset.

D.3.2 RESULTS

The Hessian rank over the course of training is plotted in Fig 16, for both hyperparameter selection
methods discussed in the prior section. The fixed method appears to somewhat resemble the Hessian
trace curve, but it barely changes early in training, and even when it does change later in training, it
changes a relatively small amount in proportion to the overall value. The curve from the adaptive
method has similarly low variance in comparison to its value, but in addition, does not appear
interpretable.

D.3.3 DISCUSSION

We believe these results are preliminary and inconclusive. Our assessment that this methodology
is not producing good results stems from two main observations: (1) the failure to detect stage
boundaries that are consistently identified by other methods (e.g., LLC, ED, Hessian trace, and
behavioral metrics), and (2) the high sensitivity to estimation methodology, as evidenced by the
discrepancy between fixed and adaptive methods and the dependence on numerous hyperparameters.

102 103 104

Step t

8310

8320

8330

8340

8350

Ap
pr

ox
. r

k(
H

) (
fix

ed
 m

et
ho

d)

102 103 104

Step t

21700

21750

21800

21850

21900

21950

22000

22050

Ap
pr

ox
. r

k(
H

) (
ad

ap
tiv

e
m

et
ho

d)

Figure 16: The approximate rank of the Hessian plotted over the course of training, estimated
using the fixed method (left) and the adaptive method (right), with stages colored. Note y-axis scale
in both charts: while both curves appear to show large changes in relative terms, they have little
variation in absolute value.

35

Published as a conference paper at ICLR 2025

These issues cast doubt on whether our estimated Hessian rank accurately captures the structural
development in the model.

It remains unclear whether the problem lies in the theoretical underpinnings of the Hessian rank
approach (e.g., its potential inability to capture higher-order degeneracy), in the practical implementa-
tion (due to flawed estimation methodology), or both. Given the apparent limitations of the current
estimation methodology, we are unable to draw further conclusions at this time.

However, it does seem possible to improve the Hessian rank estimation methodology to deal with the
issues we have highlighted. We suggest a few ideas for future work:

• To determine if the Hessian rank could even work well in principle, measure it in some toy
model small enough to compute the Hessian eigenspectrum exactly (but still large enough
to exhibit nontrivial stagewise development).

• Attempt something in between the fixed and adaptive methods: perhaps fixing the approxi-
mation range and threshold for each period of model training where the Hessian spectrum
does not change significantly, or for each developmental stage.

• Fix noise in the adaptive method caused by noise in the max eigenvalue, by e.g. filtering the
value of the max eigenvalue over time.

• Find a principled way to set the threshold τ based on some desired loss after dropping all
eigenvalues below τ . In turn, the desired loss could be set to a desired “effective compute"
value via scaling laws.

E COMPARISON AGAINST ABLATION ANALYSIS

E.1 BACKGROUND

Ablation techniques are widely used in mechanistic interpretability to test hypotheses about the
importance of specific components or activations in neural networks (Chan et al., 2022a; Wang et al.,
2023; Rauker et al., 2023; Bereska & Gavves, 2024). By selectively removing or modifying parts of
a model and observing the impact on performance, researchers aim to identify critical elements of the
model’s computation.

In this analysis, we compare three common ablation methods: zero ablation (Meyes et al., 2020;
Hamblin et al., 2023; Nanda et al., 2023; Morcos et al., 2018; Zhou et al., 2018), mean ablations
(Bereska & Gavves, 2024), and resampling ablations (Chan et al., 2022a; Hanna et al., 2023;
Goldowsky-Dill et al., 2023; Lieberum et al., 2023). Our goal is to understand the relative strengths
and weaknesses of each approach in comparison to the weight-refined LLC.

E.2 METHODOLOGY

We compared the following ablation techniques:

• Zero ablation: Setting the targeted activations to zero.

• Mean ablation: Replacing the targeted activations with their mean value across the dataset.

• Resampling ablation: Replacing the targeted activations with those from a randomly
selected different input (Chan et al., 2022a). In practice, we rolled the activations forward
over the batch index (Chan et al., 2022a).

The ablation score is the difference between the loss before and after the ablation (computed over the
same dataset over which we average the activations for the mean ablations).

Besides treating ablations as a baseline to compare rLLCs against in this section, we use ablations at
several points throughout the rest of the paper (Figure 6 and Appendix B.1) to complement the other
analyses. This requires introducing one additional technique:

• Path patching (Wang et al., 2023; Goldowsky-Dill et al., 2023): Path patching involves
first running two forward passes: one on uncorrupted inputs/activations, and one involving a

36

Published as a conference paper at ICLR 2025

corrupted inputs/ablations. Then, one runs a final forward pass, patching in the uncorrupted
& corrupted activations so as to isolate the role of a specific computational path.

For example, for the path ablation in Figure 6, we mean-ablate the layer 0 multigram heads, then save
the outputs of head 1:5 , then we run another (clean) forward pass and patch in 1:5 ’s activations before
the layer 1 readout layer. This lets us determine the particular influence of the layer 0 multigram
heads on head 1:5 , without having to worry about layer 0 heads’ other roles.

E.3 RESULTS

Figure 17 displays the results of the different kinds of ablation over training time.

Ablations differentiate heads. As with the rLLC, we can use these ablation scores to distinguish
several types of heads:

• The previous-token heads 0:1 and 0:4 can be identified by an increase in the ablation
scores during stage LM4.

• The current-token head 0:5 is also distinguishable by its increase across the ablation
scores starting towards the end of LM2 until it reaches a peak during LM4, after which it
decreases. This is especially pronounced in the resampling ablation scores.

• The induction head 1:7 is clearly distinguished by the increase of the ablation scores in
LM4. The other induction head 1:6 is less clearly distinct, though its ablation scores do
have a different shape from the multigram heads.

• The multigram head 0:0 has similar rLLC curves to the other layer 0 multigram heads
(though it is relatively larger, see Figure 2). The ablation scores suggest that 0:0 is a distinct
type of head throughout much of training, with substantially higher values and a qualitatively
distinct shape. It is not until LM5 that this heads ablation scores settle to a value comparable
to the other layer 0 multigram heads. This complements the analysis in Appendix B.6 that
suggests 0:0 starts out as a “space” head that attends to whitespace tokens.

The shape of ablation scores is mostly conserved across the different types of ablations, with one
exception: 1:3 , which reaches a local maximum at the LM2-LM3 boundary for the zero ablation
score that is not visible in the other ablation scores. There are other more minor differences for 0:5
(described above).

Intriguingly, the ordering of the final resampling ablation scores is very close to the ordering of the
final rLLCs. These are both also similar to the ordering of the final Hessian traces (Figure 14).

E.4 DISCUSSION

Weights vs. activations. The most pronounced difference between the wrLLC and the ablations
considered here is that the wrLLC operates in weight space, while ablation methods work in activation
space. In practice, the two approaches seem to be complementary. Indeed, the LLC can be interpreted
as a kind of ablation: it measures the expected change in behavior (as measured by the loss) under
“typical” perturbations to weights, where “typical” means the perturbation is drawn from the local
posterior.

Discrepancies between the wrLLC and ablations. Both approaches identify key developmen-
tal stages and specialized heads, such as previous-token and induction heads. However, notable
discrepancies exist:

• The ablation scores are better at identifying a discrepancy in 0:0 . On the other hand, the
wrLLC is better at identifying that this head ultimately matures into multigram head (which
we confirm separately).

• Some heads (e.g., induction head 1:6 and the current-token head 0:5) are more distinguish-
able in the wrLLC than in ablations.

37

Published as a conference paper at ICLR 2025

• Ablation methods are generally computationally more efficient. However, they lack the
theoretical grounding of the wrLLC (which is reflected in the existence of many different
possible choices of ablation).

Overall, the resampling ablation score most clearly differentiates the different kinds of heads, which
we take as positive evidence in favor of the method (Chan et al., 2022a). However, the practical
distinctions are small enough that we default to using mean ablations.

F ADDITIONAL EXPERIMENTAL DETAILS

F.1 TRAINING & MODEL DETAILS

Model architecture: We considered the same model architecture as in Hoogland et al. (2024);
Olsson et al. (2022): a two-layer attention-only transformer, with the following specifications:

• Context length: 1024 tokens

• Residual stream dimension: 256

• Number of attention heads per layer: 8

• Layer normalization: Included

• Positional embedding: Learnable Shortformer-style

The resulting models contained approximately 3 million parameters. We implemented these models
using the TransformerLens library (Nanda & Bloom, 2022).

For tokenization, we employed a modified version of the GPT-2 tokenizer, reducing the vocabulary
size from 50,000 to 5,000 tokens. This adjustment allowed us to decrease the overall model size.

103 104
0.0

0.1

0.2

0.3

0.4

0.5

Ze
ro

 A
bl

at
io

n
Sc

or
e

Layer 0 Heads

103 104

0.00

0.05

0.10

0.15

0.20
Layer 1 Heads

103 104

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n
Ab

la
tio

n
Sc

or
e

103 104

0.00

0.05

0.10

0.15

0.20

103 104

Step t

0.0

0.2

0.4

Re
sa

m
pl

in
g

Ab
la

tio
n

Sc
or

e

Head 0
Head 1

Head 2
Head 3

Head 4
Head 5

Head 6
Head 7

103 104

Step t

0.0

0.1

0.2

0.3

Head 0
Head 1

Head 2
Head 3

Head 4
Head 5

Head 6
Head 7

Figure 17: Comparison of attention-head ablations over training time. This figure shows the
results of three different ablation techniques (zero ablation (top), mean ablation (middle), and
resampling ablation (bottom)) applied to attention heads from layer 0 (left) and layer 1 (right). The
y-axis shows the ablation score (difference in loss before and after ablation).

38

Published as a conference paper at ICLR 2025

Training: The model and training run considered in the main body is the same as in Hoogland et al.
(2024). This was trained on a subset of the DSIR-filtered Pile (Gao et al., 2020; Xie et al., 2023) for a
total of around 50, 000 steps, with a batch size of 100.

F.2 LLC ESTIMATION DETAILS

For estimating the Local Learning Coefficient (LLC), we employed Stochastic Gradient Langevin
Dynamics (SGLD) with the following hyperparameters:

• The SGLD step size η = 1e−3

• The inverse temperature β = 30/n

• The localization strength γ = 200

• Number of independent chains: 4

• Burn-in steps: 0

• Draws per chain: 200

The procedure is the same as described in Hoogland et al. (2024) using code from van Wingerden
et al. (2024). The cost per SGLD-update is comparable to SGD with a linear increase in memory
requirements.

We estimate that the computational cost of producing rLLC curves like those in Figure 1 for all heads
scales like CHT log(N), where C is a roughly constant O(100) number of SGLD samples, H is the
number of heads, N is the total number of training steps, and T is the cost of a single training pass.

F.3 DATA-REFINED LLCS USING OTHER MODELS AS THE GENERATING PROCESS

In Section 4.3 we make use of a data-refined LLC where a particular trained one-layer attention-only
transformer is used to provide the data distribution. For computational reasons, we make use of a
modified form

ℓn(w;M) = − 1

n

n∑
i=1

1

K − 1

K−1∑
k=1

DKL

(
M(Si

≤k)||fw(Si
≤k)

)
(11)

of the empirical loss (1) where M denotes the one-layer (L1) transformer.

L0 and L1 models: The L0 and L1 models used for these data-refined LLCs were trained analo-
gously to the model considered in the main text and described in Appendix F.1

F.4 COMPOSITION SCORES

Let Wh
Q,W

h
K ,Wh

V be the query, key, and value weights of attention head h respectively. There are
three types of composition between attention heads in transformer models in Elhage et al. (2021):

• Q-Composition: the query matrix Wh
Q of an attention head reads in a subspace affected by a

previous head

• K-Composition: the key matrix Wh
K of an attention head reads in a subspace affected by a

previous head

• V-Composition: the value matrix Wh
V of an attention head reads in a subspace affected by a

previous head

If Wh
O is the output matrix of an attention head, then Wh

QK = Wh T
Q Wh

K and Wh
OV = Wh

OW
h
V . The

composition scores are
||MWh1

OV ||F /(||M ||F ||Wh1

OV ||F) (12)

Where M = Wh2 T
QK , M = Wh2

QK , and M = Wh2

OV for Q-, K-, and V-Composition respectively.

39

Published as a conference paper at ICLR 2025

F.5 CLUSTERING RLLCS

To better understand the patterns and relationships among the attention heads based on their rLLC
trajectories, we applied various clustering algorithms to the rLLC data. This analysis aims to
quantitatively group attention heads with similar developmental patterns.

F.5.1 CLUSTERING ALGORITHMS

We employed four different clustering algorithms to ensure a comprehensive analysis, using imple-
mentations provided by sklearn (Pedregosa et al., 2011) and tslearn (Tavenard et al., 2020):

1. Euclidean K-means: A centroid-based algorithm that partitions n observations into k clus-
ters, minimizing the within-cluster sum of squares based on Euclidean distance (Macqueen,
1967).

2. DTW K-means: A variation of K-means that uses Dynamic Time Warping (DTW) as the
distance measure, which is particularly suitable for time series data as it allows for non-linear
alignment of sequences (Berndt & Clifford, 1994; Sakoe & Chiba, 1978).

3. Hierarchical Agglomerative Clustering (HAC): A bottom-up approach that starts with
each observation as a separate cluster and merges them iteratively based on a chosen linkage
criterion (in this case the minimum variance criterion of Ward Jr 1963).

4. Shape-Based K-means: A custom implementation of K-means that uses Shape-Based
Distance (SBD) as the distance measure. SBD is designed to capture similarities in the
shape of time series, regardless of differences in scale or offset (Paparrizos, 2018).

In particular, we apply the clustering algorithms to the per-head Pile drLLCs and per-head Github dr-
LLCs concatenated together. That is, the space in which we perform our clustering is 2T -dimensional,
where T is the number of checkpoints. We found it unnecessary to apply standardization techniques
to the trajectories before clustering as this led to marginal changes in the learned clustering.

F.5.2 EVALUATION METRICS

To assess the quality of the clustering results, we used the following metrics:

1. Silhouette Score: Measures how similar an object is to its own cluster compared to other
clusters. The score ranges from -1 to 1, where a higher score indicates better-defined clusters
(Rousseeuw, 1987).

2. Calinski-Harabasz (CH) Index: Also known as the Variance Ratio Criterion, this index is
the ratio of the sum of between-cluster dispersion and of within-cluster dispersion. A higher
score indicates better-defined clusters (Caliński & Harabasz, 1974).

3. Davies-Bouldin (DB) Index: Calculates the average similarity between each cluster and its
most similar cluster. A lower score indicates better clustering (Davies & Bouldin, 1979).

F.5.3 RESULTS

Clustering Layer 0 heads. Figure 18 shows that as the number of clusters c increases, the first
distinction that emerges (for c = 2) within layer 0 is between the current-token head, previous-token
heads, and multigram head 0:0 and the remaining multigram heads. Subsequently (c = 3), the first
cluster splits apart: either the current-token head 0:5 or 0:0 breaks off from the rest, depending on
the exact choice of clustering algorithm. The next distinction to emerge is between 0:7 and the bulk
of the layer 0 attention heads.

As analyzed in Appendix B, heads 0:0 and 0:7 are, in fact, special kinds of multigram heads.
Head 0:7 specializes to Dyck pattern (see Appendix B.3), and head 0:0 initially specializes to long
skip-grams of spaces (see Appendix B.6; the exact function remains unknown).

40

Published as a conference paper at ICLR 2025

10

20

30

40

50

60

70

Eu
cli

de
an

 K
-m

ea
ns

D
=

Pi
le

CH: 19.07
DB: 0.48
Sil: 0.58

Number of clusters c = 2

Clusters
Cluster 0: 0:0, 0:2, 0:3, 0:6, 0:7
Cluster 1: 0:1, 0:4, 0:5

CH: 10.52
DB: 0.39
Sil: 0.43

Number of clusters c = 3

Clusters
Cluster 0: 0:0, 0:2, 0:3, 0:6, 0:7
Cluster 1: 0:5
Cluster 2: 0:1, 0:4

CH: 20.21
DB: 0.46
Sil: 0.38

Number of clusters c = 4

Clusters
Cluster 0: 0:0, 0:2, 0:3
Cluster 1: 0:5
Cluster 2: 0:1, 0:4
Cluster 3: 0:6, 0:7

CH: 15.60
DB: 0.34
Sil: 0.20

Number of clusters c = 5

Clusters
Cluster 0: 0:0, 0:2, 0:3
Cluster 1: 0:5
Cluster 2: 0:1, 0:4
Cluster 3: 0:7
Cluster 4: 0:6

10

20

30

40

50

60

70

DT
W

 K
-m

ea
ns

D
=

Pi
le

CH: 19.07
DB: 0.48
Sil: 0.58

Clusters
Cluster 0: 0:0, 0:2, 0:3, 0:6, 0:7
Cluster 1: 0:1, 0:4, 0:5

CH: 20.38
DB: 0.54
Sil: 0.48

Clusters
Cluster 0: 0:6, 0:7
Cluster 1: 0:1, 0:4, 0:5
Cluster 2: 0:0, 0:2, 0:3

CH: 15.11
DB: 0.60
Sil: 0.24

Clusters
Cluster 0: 0:6, 0:7
Cluster 1: 0:1, 0:5
Cluster 2: 0:0, 0:2, 0:3
Cluster 3: 0:4

CH: 15.06
DB: 0.34
Sil: 0.27

Clusters
Cluster 0: 0:6, 0:7
Cluster 1: 0:1
Cluster 2: 0:0, 0:2, 0:3
Cluster 3: 0:4
Cluster 4: 0:5

10

20

30

40

50

60

70

Hi
er

ar
ch

ica
l C

lu
st

er
in

g
D

=
Pi

le

CH: 19.07
DB: 0.48
Sil: 0.58

Clusters
Cluster 0: 0:0, 0:2, 0:3, 0:6, 0:7
Cluster 1: 0:1, 0:4, 0:5

CH: 20.38
DB: 0.54
Sil: 0.48

Clusters
Cluster 0: 0:1, 0:4, 0:5
Cluster 1: 0:0, 0:2, 0:3
Cluster 2: 0:6, 0:7

CH: 20.21
DB: 0.46
Sil: 0.38

Clusters
Cluster 0: 0:0, 0:2, 0:3
Cluster 1: 0:1, 0:4
Cluster 2: 0:6, 0:7
Cluster 3: 0:5

CH: 19.75
DB: 0.39
Sil: 0.28

Clusters
Cluster 0: 0:6, 0:7
Cluster 1: 0:1, 0:4
Cluster 2: 0:2, 0:3
Cluster 3: 0:5
Cluster 4: 0:0

103 104

Steps t

10

20

30

40

50

60

70

Sh
ap

e-
Ba

se
d

K-
m

ea
ns

D
=

Pi
le

CH: 19.07
DB: 0.48
Sil: 0.58

Clusters
Cluster 0: 0:1, 0:4, 0:5
Cluster 1: 0:0, 0:2, 0:3, 0:6, 0:7

103 104

Steps t

CH: 10.52
DB: 0.39
Sil: 0.43

Clusters
Cluster 0: 0:1, 0:4
Cluster 1: 0:5
Cluster 2: 0:0, 0:2, 0:3, 0:6, 0:7

103 104

Steps t

CH: 12.70
DB: 0.37
Sil: 0.23

Clusters
Cluster 0: 0:1, 0:4
Cluster 1: 0:5
Cluster 2: 0:0, 0:2, 0:3, 0:6
Cluster 3: 0:7

103 104

Steps t

CH: 7.91
DB: 0.74
Sil: -0.05

Clusters
Cluster 0: 0:1, 0:4
Cluster 1: 0:5
Cluster 2: 0:0, 0:3, 0:6
Cluster 3: 0:7
Cluster 4: 0:2

Figure 18: Clustering results for Layer 0 rLLC trajectories using various algorithms (rows) and
number of clusters (columns). The x-axis represents training steps, and the y-axis shows the rLLC
values. Each line represents an attention head, colored by its assigned cluster. As the number of
clusters increases, we observe a clear separation between the current-token head, previous-token
heads, and multigram heads. These clusters are fit on a concatenation of Pile drLLCs and Github
drLLCs, but only the Pile drLLC component is displayed.

Clustering Layer 1 heads. Figure 19 shows that the clustering is extremely consistent within
layer 1. The two induction heads are clearly distinguished from the bulk of the layer 1 heads. Upon
increasing the number of clusters, the bulk of layer 1 multigram heads splits into pairs (see column
3 for c = 4 in Figure 19). Additionally, given enough clusters, the two induction heads become
separated from one another.

As in the case of the layer 0 heads, these finer distinctions are meaningful: heads 1:5 and 1:3 are
specialized to Dyck patterns (Appendix B.3), and the remaining heads are involved in more prosaic
(skip) n-grams. This clustering is not perfect: in particular, clustering suggests a distinction between
pairs 1:1 /1:2 and 1:4 /1:0 , which is not obvious in the analysis by tokens in context (Appendix B).

41

Published as a conference paper at ICLR 2025

10

20

30

40

50

Eu
cli

de
an

 K
-m

ea
ns

D
=

Pi
le

CH: 13.97
DB: 0.47
Sil: 0.57

Number of clusters c = 2

Clusters
Cluster 0: 1:0, 1:1, 1:2, 1:3, 1:4, 1:5
Cluster 1: 1:6, 1:7

CH: 19.28
DB: 0.50
Sil: 0.49

Number of clusters c = 3

Clusters
Cluster 0: 1:1, 1:2, 1:3, 1:5
Cluster 1: 1:6, 1:7
Cluster 2: 1:0, 1:4

CH: 22.82
DB: 0.47
Sil: 0.49

Number of clusters c = 4

Clusters
Cluster 0: 1:1, 1:2
Cluster 1: 1:6, 1:7
Cluster 2: 1:0, 1:4
Cluster 3: 1:3, 1:5

CH: 31.91
DB: 0.35
Sil: 0.37

Number of clusters c = 5

Clusters
Cluster 0: 1:1, 1:2
Cluster 1: 1:6
Cluster 2: 1:0, 1:4
Cluster 3: 1:3, 1:5
Cluster 4: 1:7

10

20

30

40

50

DT
W

 K
-m

ea
ns

D
=

Pi
le

CH: 11.13
DB: 0.69
Sil: 0.43

Clusters
Cluster 0: 1:3, 1:5, 1:6, 1:7
Cluster 1: 1:0, 1:1, 1:2, 1:4

CH: 20.55
DB: 0.55
Sil: 0.46

Clusters
Cluster 0: 1:6, 1:7
Cluster 1: 1:0, 1:1, 1:4
Cluster 2: 1:2, 1:3, 1:5

CH: 22.82
DB: 0.47
Sil: 0.49

Clusters
Cluster 0: 1:6, 1:7
Cluster 1: 1:0, 1:4
Cluster 2: 1:3, 1:5
Cluster 3: 1:1, 1:2

CH: 31.91
DB: 0.35
Sil: 0.37

Clusters
Cluster 0: 1:6
Cluster 1: 1:0, 1:4
Cluster 2: 1:3, 1:5
Cluster 3: 1:1, 1:2
Cluster 4: 1:7

10

20

30

40

50

Hi
er

ar
ch

ica
l C

lu
st

er
in

g
D

=
Pi

le

CH: 13.97
DB: 0.47
Sil: 0.57

Clusters
Cluster 0: 1:0, 1:1, 1:2, 1:3, 1:4, 1:5
Cluster 1: 1:6, 1:7

CH: 19.28
DB: 0.50
Sil: 0.49

Clusters
Cluster 0: 1:1, 1:2, 1:3, 1:5
Cluster 1: 1:6, 1:7
Cluster 2: 1:0, 1:4

CH: 22.82
DB: 0.47
Sil: 0.49

Clusters
Cluster 0: 1:6, 1:7
Cluster 1: 1:1, 1:2
Cluster 2: 1:0, 1:4
Cluster 3: 1:3, 1:5

CH: 31.91
DB: 0.35
Sil: 0.37

Clusters
Cluster 0: 1:0, 1:4
Cluster 1: 1:1, 1:2
Cluster 2: 1:7
Cluster 3: 1:3, 1:5
Cluster 4: 1:6

103 104

Steps t

10

20

30

40

50

Sh
ap

e-
Ba

se
d

K-
m

ea
ns

D
=

Pi
le

CH: 13.97
DB: 0.47
Sil: 0.57

Clusters
Cluster 0: 1:0, 1:1, 1:2, 1:3, 1:4, 1:5
Cluster 1: 1:6, 1:7

103 104

Steps t

CH: 19.28
DB: 0.50
Sil: 0.49

Clusters
Cluster 0: 1:1, 1:2, 1:3, 1:5
Cluster 1: 1:6, 1:7
Cluster 2: 1:0, 1:4

103 104

Steps t

CH: 14.56
DB: 0.51
Sil: 0.25

Clusters
Cluster 0: 1:1, 1:2, 1:3
Cluster 1: 1:5
Cluster 2: 1:0, 1:4
Cluster 3: 1:6, 1:7

103 104

Steps t

CH: 8.68
DB: 1.04
Sil: 0.11

Clusters
Cluster 0: 1:1, 1:3
Cluster 1: 1:5
Cluster 2: 1:0, 1:4
Cluster 3: 1:6, 1:7
Cluster 4: 1:2

Figure 19: Clustering results for Layer 1 rLLC trajectories using various algorithms (rows) and
number of clusters (columns). The x-axis represents training steps, and the y-axis shows the rLLC
values. Each line represents an attention head, colored by its assigned cluster. The results consistently
show a clear distinction between induction heads and other heads across all methods. These clusters
are fit on a concatenation of Pile drLLCs and Github drLLCs, but only the Pile drLLC component is
displayed.

We note that the clusters are largely unaffected when first standardizing the trajectories (by subtracting
the mean and dividing by the standard deviation computed across steps and possibly heads).

Generalization to other seeds. In Appendix G, we show that these clusters appear to be universal
across training runs: clusters fit to this seed generalize to different training runs.

F.5.4 DISCUSSION

Capturing shape similarities: We chose to use the Euclidean K-means algorithm for our ultimate
classification, with c = 3, 4 for layer 0 and c = 2, 4 for layer 1. We manually chose the number of
clusters based on visual inspection.

Generally, the different clustering algorithms were in tight agreement. However, the Shape-Based
K-means algorithm performed best when the clusters were fit to just the Pile drLLC data and not the
Github drLLC data. This technique also transfers better to other seeds (Appendix G) and is closer to
the results of clustering by eye. However, shape-based clustering performs worse when we increase
the cluster count to attempt to resolve finer distinctions within the layer 1 multigram heads (Figure 1).
In practice, we recommend taking a majority vote approach, with shape-based clustering getting
additional weighting.

Limitations of evaluation metrics: It’s important to note that the standard evaluation metrics
(Silhouette Score, Calinski-Harabasz Index, and Davies-Bouldin Index) did not appear to work well

42

Published as a conference paper at ICLR 2025

in our context. This is likely due to the low-sample setting of our analysis, with only 8 trajectories per
layer, and due to the fact that Euclidean-distance-based diagnostic metrics may not be appropriate
when the shape appears to be the more salient feature for clustering. These metrics are designed for
larger datasets and may not provide reliable guidance in our case.

G COMPARISON WITH OTHER SEEDS

We trained three additional seeds identically to the original setup described in Appendix F and
Hoogland et al. (2024). Applying weight- and data-refined LLCs to these training runs yields the
figures in Figure 23.

The different training runs are very similar (Figure 23) but there are some differences:

1. Some models develop only a single induction head and previous-token head. Two of the
runs have two heads each. Two of the runs have a single head each. Other than this, each run
has a single current-token head, and the remainder of the heads seem to be multigram heads.

2. In some runs, there is no LM3 stage (in which the full-model LLC is decreasing). However,
it is always the case that the multigram-head rLLCs begin decreasing after LM2.

Remarkably, despite these differences, clusters that are fit to the original seed generalize to per-head
rLLCs from different training runs. Figure 20, Figure 21 and Figure 22 show the results of applying
the shape-based clusters fit to seed 1 (Figure 18 and Figure 19, bottom rows) to different training runs.
There are exceptions: e.g., for seed 2, layer 0 with c = 3 clusters, one of the previous-token heads is
identified as a current-token head, and for seed 3 the current-token head does not get distinguished
from the other heads by any crossing.

103 104

Steps t

20

40

60

Sh
ap

e-
Ba

se
d

K-
m

ea
ns

D
=

Pi
le

CH: 18.19
DB: 0.48
Sil: 0.62

Number of clusters c = 2

Clusters
Cluster 0: 0:1, 0:6
Cluster 1: 0:0, 0:2, 0:3, 0:4, 0:5, 0:7

103 104

Steps t

CH: 6.26
DB: 0.86
Sil: 0.12

Number of clusters c = 3

Clusters
Cluster 0: 0:1
Cluster 1: 0:4, 0:6
Cluster 2: 0:0, 0:2, 0:3, 0:5, 0:7

103 104

Steps t

CH: 12.61
DB: 0.27
Sil: 0.21

Number of clusters c = 4

Clusters
Cluster 0: 0:1
Cluster 1: 0:6
Cluster 2: 0:0, 0:2, 0:3, 0:4, 0:7
Cluster 3: 0:5

103 104

Steps t

CH: 7.96
DB: 1.02
Sil: -0.04

Number of clusters c = 5

Clusters
Cluster 0: 0:1
Cluster 1: 0:6
Cluster 2: 0:0, 0:3, 0:7
Cluster 3: 0:5
Cluster 4: 0:2, 0:4

103 104

Steps t

10

20

30

40

Sh
ap

e-
Ba

se
d

K-
m

ea
ns

D
=

Pi
le

CH: 4.29
DB: 0.37
Sil: 0.40

Number of clusters c = 2

Clusters
Cluster 0: 1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7
Cluster 1: 1:0

103 104

Steps t

CH: 3.14
DB: 0.95
Sil: -0.03

Number of clusters c = 3

Clusters
Cluster 0: 1:1, 1:2, 1:5, 1:6, 1:7
Cluster 1: 1:0
Cluster 2: 1:3, 1:4

103 104

Steps t

CH: 10.50
DB: 1.29
Sil: 0.04

Number of clusters c = 4

Clusters
Cluster 0: 1:1, 1:5, 1:7
Cluster 1: 1:2, 1:6
Cluster 2: 1:3, 1:4
Cluster 3: 1:0

103 104

Steps t

CH: 9.72
DB: 0.87
Sil: 0.05

Number of clusters c = 5

Clusters
Cluster 1: 1:2, 1:6
Cluster 2: 1:4
Cluster 3: 1:0
Cluster 4: 1:1, 1:3, 1:5, 1:7

Figure 20: Clustering validation on seed 2 for layer 0 (top row) and layer 1 (bottom row). Applying
shape-based clusterings fit to the original seed Pile drLLC and Github drLLC generalize to held out
seeds (Figure 18 and Figure 19, bottom rows). Here, the current-token head is 0:6 , the previous-token
head is 0:1 , and the induction head is 1:0 .

43

Published as a conference paper at ICLR 2025

103 104

Steps t

20

40

60

Sh
ap

e-
Ba

se
d

K-
m

ea
ns

D
=

Pi
le

CH: 2.51
DB: 1.35
Sil: 0.04

Number of clusters c = 2

Clusters
Cluster 0: 0:2, 0:4, 0:5, 0:6, 0:7
Cluster 1: 0:0, 0:1, 0:3

103 104

Steps t

CH: 6.01
DB: 0.51
Sil: 0.23

Number of clusters c = 3

Clusters
Cluster 0: 0:4
Cluster 1: 0:2, 0:3, 0:5, 0:6, 0:7
Cluster 2: 0:0, 0:1

103 104

Steps t

CH: 3.39
DB: 0.43
Sil: -0.02

Number of clusters c = 4

Clusters
Cluster 0: 0:4
Cluster 1: 0:2, 0:3, 0:5, 0:6, 0:7
Cluster 2: 0:1
Cluster 3: 0:0

103 104

Steps t

CH: 2.37
DB: 1.14
Sil: -0.26

Number of clusters c = 5

Clusters
Cluster 0: 0:4
Cluster 1: 0:2, 0:5, 0:6
Cluster 2: 0:1
Cluster 3: 0:0
Cluster 4: 0:3, 0:7

103 104

Steps t

10

20

30

40

Sh
ap

e-
Ba

se
d

K-
m

ea
ns

D
=

Pi
le

CH: 7.14
DB: 0.28
Sil: 0.50

Number of clusters c = 2

Clusters
Cluster 0: 1:0, 1:1, 1:2, 1:3, 1:4, 1:5, 1:7
Cluster 1: 1:6

103 104

Steps t

CH: 3.25
DB: 2.84
Sil: 0.13

Number of clusters c = 3

Clusters
Cluster 0: 1:0, 1:2, 1:3, 1:5
Cluster 1: 1:6
Cluster 2: 1:1, 1:4, 1:7

103 104

Steps t

CH: 3.18
DB: 2.95
Sil: 0.00

Number of clusters c = 4

Clusters
Cluster 0: 1:0, 1:2, 1:5
Cluster 2: 1:1, 1:3, 1:4, 1:7
Cluster 3: 1:6

103 104

Steps t

CH: 1.97
DB: 3.00
Sil: -0.06

Number of clusters c = 5

Clusters
Cluster 0: 1:2, 1:3, 1:5
Cluster 2: 1:1, 1:4, 1:7
Cluster 3: 1:6
Cluster 4: 1:0

Figure 21: Clustering validation on seed 3 for layer 0 (top row) and layer 1 (bottom row). Applying
shape-based clusterings fit to the original seed Pile drLLC and Github drLLC generalize to held out
seeds (Figure 18 and Figure 19, bottom rows). Here, the current-token head is 0:2 , the previous-token
head is 0:4 , and the induction head is 1:6 .

103 104

Steps t

10

20

30

40

50

60

Sh
ap

e-
Ba

se
d

K-
m

ea
ns

D
=

Pi
le

CH: 10.79
DB: 0.69
Sil: 0.50

Number of clusters c = 2

Clusters
Cluster 0: 0:0, 0:3, 0:6
Cluster 1: 0:1, 0:2, 0:4, 0:5, 0:7

103 104

Steps t

CH: 6.08
DB: 0.89
Sil: 0.33

Number of clusters c = 3

Clusters
Cluster 0: 0:0, 0:3
Cluster 1: 0:6
Cluster 2: 0:1, 0:2, 0:4, 0:5, 0:7

103 104

Steps t

CH: 4.93
DB: 0.75
Sil: 0.29

Number of clusters c = 4

Clusters
Cluster 0: 0:0, 0:3
Cluster 1: 0:6
Cluster 2: 0:1, 0:2, 0:5, 0:7
Cluster 3: 0:4

103 104

Steps t

CH: 2.88
DB: 0.83
Sil: 0.02

Number of clusters c = 5

Clusters
Cluster 0: 0:0, 0:3
Cluster 1: 0:6
Cluster 2: 0:1, 0:7
Cluster 3: 0:4
Cluster 4: 0:2, 0:5

103 104

Steps t

10

20

30

40

50

Sh
ap

e-
Ba

se
d

K-
m

ea
ns

D
=

Pi
le

CH: 17.14
DB: 0.40
Sil: 0.63

Number of clusters c = 2

Clusters
Cluster 0: 1:0, 1:2, 1:4, 1:5, 1:6, 1:7
Cluster 1: 1:1, 1:3

103 104

Steps t

CH: 9.38
DB: 1.24
Sil: 0.19

Number of clusters c = 3

Clusters
Cluster 0: 1:4, 1:5, 1:6, 1:7
Cluster 1: 1:1, 1:3
Cluster 2: 1:0, 1:2

103 104

Steps t

CH: 8.42
DB: 1.81
Sil: 0.07

Number of clusters c = 4

Clusters
Cluster 0: 1:5, 1:6
Cluster 1: 1:4, 1:7
Cluster 2: 1:0, 1:2
Cluster 3: 1:1, 1:3

103 104

Steps t

CH: 10.01
DB: 0.67
Sil: 0.22

Number of clusters c = 5

Clusters
Cluster 1: 1:4, 1:7
Cluster 2: 1:2
Cluster 3: 1:1, 1:3
Cluster 4: 1:0, 1:5, 1:6

Figure 22: Clustering validation on seed 4 for layer 0 (top row) and layer 1 (bottom row). Applying
shape-based clusterings fit to the original seed Pile drLLC and Github drLLC generalize to held out
seeds (Figure 18 and Figure 19, bottom rows). Here, the current-token head is 0:6 , the previous-token
heads are 0:0 and 0:3 , and the induction heads are 1:1 and 1:3 .

H COMPARISON WITH LARGER MODELS

In Figure 24, we show that the refined LLC generalizes to larger model settings. In particular, for
Pythia-70m (Biderman et al., 2023), the Github wdrLLC (cf. Figure 3, right) distinguishes the
previous-token heads and induction heads (that together make up the induction circuit) from other
types of heads. To verify the identity of these heads, we use the previous-token and prefix-matching
scores following Olsson et al. (2022).

44

Published as a conference paper at ICLR 2025

102 103 104

25

50

75

100

125

150

175

wr
LL

C
l:

h

Full Model

102 103 104

10

20

30

40

50

60

70

Layer 0

102 103 104

10

20

30

40

Layer 1

102 103 104

Step t

25

50

75

100

125

150

175

Gi
th

ub

Full
WE & WU

Attn. Layers
Layer 1

Layer 2

102 103 104

Step t

20

40

60

80

Head 0
Head 1

Head 2
Head 3

Head 4
Head 5

Head 6
Head 7

102 103 104

Step t

10

20

30

40

Head 0
Head 1

Head 2
Head 3

Head 4
Head 5

Head 6
Head 7

102 103 104

25

50

75

100

125

150

175

wr
LL

C
l:

h

Full Model

102 103 104

10

20

30

40

50

60

70

Layer 0

102 103 104

10

20

30

40

Layer 1

102 103 104

Step t

25

50

75

100

125

150

175

Gi
th

ub

Full
WE & WU

Attn. Layers
Layer 1

Layer 2

102 103 104

Step t

20

40

60

80

Head 0
Head 1

Head 2
Head 3

Head 4
Head 5

Head 6
Head 7

102 103 104

Step t

10

20

30

40

Head 0
Head 1

Head 2
Head 3

Head 4
Head 5

Head 6
Head 7

102 103 104

20
40
60
80

100
120
140
160
180

wr
LL

C
l:

h

Full Model

102 103 104

10

20

30

40

50

60
Layer 0

102 103 104

10

20

30

40

50
Layer 1

102 103 104

Step t

25

50

75

100

125

150

175

Gi
th

ub

Full
WE & WU

Attn. Layers
Layer 1

Layer 2

102 103 104

Step t

20

40

60

80

Head 0
Head 1

Head 2
Head 3

Head 4
Head 5

Head 6
Head 7

102 103 104

Step t

-5

5
10
15
20
25
30
35

Head 0
Head 1

Head 2
Head 3

Head 4
Head 5

Head 6
Head 7

Figure 23: Additional seeds show similar per-head rLLCs to the original training run. Every
seed has a current-token head. Every seed has at least one previous-token head and one induction head
(the top two seeds only have a single one each). All of the remaining heads appear to be multigram
heads.

45

Published as a conference paper at ICLR 2025

102 103 104

Step

100

50

0

50

100

150

La
ye

r 2
 -

Re
la

tiv
e

Di
ffe

re
nc

e
(%

)

102 103 104

Step

0.0

0.2

0.4

0.6

0.8

1.0

Al
l h

ea
ds

 -
Pr

ev
io

us
 To

ke
n

Sc
or

e

102 103 104

Step

100

50

0

50

100

150

La
ye

r 3
 -

Re
la

tiv
e

Di
ffe

re
nc

e
(%

)

102 103 104

Step

10 4

10 3

10 2

10 1

100

Al
l h

ea
ds

 -
Pr

ef
ix

 S
co

re

Heads
2:1
3:0
3:1
3:5
3:6

Figure 24: The induction circuit in Pythia 70M revealed through data-refined LLCs. The panels
show different metrics tracking the development of the induction circuit: (Left) Relative difference
between Pile and GitHub LLCs for Layer 2 heads with the outlier identified as the model’s sole
previous-token head. (Center-left) Previous-token scores across all heads confirm this identification.
(Center-right) Relative LLC differences for Layer 3 heads reveal two clusters at the end of training:
candidate induction heads and non-induction heads. (Right) Prefix scores confirms the cluster of
layer 3 heads with higher relative rLLCs as the induction heads, with head 3:2 being an exception.

46

	Introduction
	Setup
	Methodology
	LLC In Practice
	Refined LLC
	Limitations

	Empirical Results
	Differentiation via weight-refined LLCs
	Specialization via data-refined LLCs
	A new multigram circuit

	Related Work
	Discussion
	LLC In Theory
	Classification of Attention Heads
	Methodology: Tokens in context
	Induction patterns
	Classification
	Results

	Dyck patterns
	Classification
	Results
	Discussion

	Skip n-grams
	Classification
	Results

	n-grams
	Classification
	Results

	Other observations

	Interpreting changes in the (r)LLC
	Interpreting critical points in the (data-refined) LLC
	Interpreting increases in the (model-)refined LLC
	Interpreting decreases in the refined LLC

	Comparison against Hessian-based analysis
	Hessian trace
	Methodology
	Results
	Discussion

	FIM trace
	Methodology
	Results
	Discussion

	Hessian rank
	Methodology
	Results
	Discussion

	Comparison against ablation analysis
	Background
	Methodology
	Results
	Discussion

	Additional experimental details
	Training & model details
	LLC estimation details
	Data-refined LLCs using other models as the generating process
	Composition scores
	Clustering rLLCs
	Clustering Algorithms
	Evaluation Metrics
	Results
	Discussion

	Comparison with other seeds
	Comparison with larger models

