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ABSTRACT

Quality-Diversity (QD) algorithms can discover large and complex behavioural
repertoires consisting of both diverse and high-performing skills. However, the
generation of behavioural repertoires has mainly been limited to simulation en-
vironments instead of real-world learning. This is because existing QD algo-
rithms need large numbers of evaluations as well as episodic resets, which require
manual human supervision and interventions. This paper proposes Reset-Free
Quality-Diversity (RF-QD) as a step towards autonomous learning for robotics
in open-ended environments. We build on Dynamics-Aware QD (DA-QD) and
introduce a behaviour selection policy that leverages the diversity of the imagined
repertoire and environmental information to intelligently select behaviours that can
act as automatic resets. We demonstrate this through a task of learning to walk
within defined training zones with obstacles. Our experiments show that we can
learn repertoires of legged locomotion controllers autonomously without manual
resets and with high sample efficiency in spite of harsh safety constraints. Finally,
using an ablation of different target objectives, we show that it is important for
RF-QD to have diverse types solutions available for the behaviour selection policy
over solutions optimised with a specific objective. Videos and code available at
https://sites.google.com/view/rf-qd.

1 INTRODUCTION

Despite the recent popularity of Quality-Diversity (QD) algorithms (Pugh et al., 2016; Cully &
Demiris, 2017), these algorithms have been limited to domains in which evaluations can be performed
in simulation. This is because QD algorithms need to perform evaluations in the order of millions
and where the outcomes are not safety critical or dangerous. Examples of these application domains
include robotics (Cully & Mouret, 2013; Cully et al., 2015; Chatzilygeroudis et al., 2018), video
games (Gravina et al., 2019; Fontaine et al., 2020a) and aerodynamics (Gaier et al., 2018). In the field
of robotics, physics simulators (Coumans & Bai, 2016–2020; Lee et al., 2018a; Todorov et al., 2012)
are commonly used and QD algorithms depend heavily on these to obtain abundant amounts of data
and evaluations to learn behavioural repertoires of robots. However, building fast and accurate physics
simulators to model the complex dynamics of robots and the wide variety of potential environments is
difficult. Furthermore, even with extensive modelling of different scenarios, there is still the difficult
problem of sim-to-real transfer (Zhao et al., 2020; Akkaya et al., 2019; Lee et al., 2020). To realize
the potential of QD algorithms for robotics and to have the real-world impact we want them to have,
we need algorithms which can effectively learn repertoires of skills autonomously and adapt directly
in the real world.

Another key reason we might want use QD algorithms directly in the real-world is in the pursuit
of more open-ended learning algorithms (Stanley et al., 2017; Stanley, 2019). QD algorithms have
already shown evidence of possessing characteristics of open-ended search (Stanley et al., 2017; Wang
et al., 2019; Clune, 2019). We propose a new perspective and that a promising path to open-ended
learning algorithms could be to build on existing QD algorithms to continuously interact directly in
the real world. The real world itself offers constantly evolving environments and agents with complex
diversity, open-ended challenges and almost endless possibilities. Given the right innovations, QD has
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the potential to continuously generate new skills by leveraging the already present open-endedness of
the real world.

There are some challenges in this paradigm, such as continuous representation of the diversity of
the real-world, autonomously learning behavioural descriptors (Cully, 2019; Paolo et al., 2020), and
more. In this work, as a step towards using QD algorithms in the real-world, we address two practical
issues that arise when attempting to learn behavioural repertoires in the real-world in an autonomous
manner: resets and safety. We then aim to maximise the sample efficiency of learning behavioural
repertoires while considering these constraints. We specifically focus on reset-free learning of robotic
locomotion skills to highlight these issues and our approach to solving them.

An often overlooked requirement of QD algorithms when used for Reinforcement Learning (RL)
is the episodic setting they function in. This requires the environment to be set to a fixed initial
state at the start of every episodic trial as the behavioural descriptor is measured as a function of the
trajectory of states from this initial state to the final state in the episode. In real-world settings, this
would correspond to humans manually resetting the robot and environment after every episode. This
is an impractical and expensive solution considering the number of evaluations that conventional QD
algorithms require are in the order of millions. With the considerable amount of human supervision
and instrumentation required for resets, this defeats the purpose of QD algorithms to autonomously
learn complex skills.

Real World 
Environment  

Safety Regions

Figure 1: Safe reset-free movement via diversity
of behavioural space in a real-world environment.

Another key challenge of learning in the real-
world is safety. Actions taken must not be dan-
gerous to the robot and the environment. For
learning locomotion skills, this corresponds to
avoiding collisions with objects in the environ-
ment during learning. Achieving this while per-
forming QD would require both the capability
to predict the outcome of the execution of a new
behaviour as well as an understanding of its im-
plications with respect to its safety.

Finally, we want to learn skills efficiently with
efficiency being measured by the number of eval-
uations taken. In the real-world, this also di-
rectly corresponds to the learning time needed. The goal is to intelligently select behaviours that
would help improve the behavioural repertoire while minimizing unnecessary non-informative trials.

We introduce Reset-Free Quality Diversity (RF-QD) as a framework for the real-world execution
of QD algorithms (see Figure 1). In a nutshell, RF-QD is a Dynamics-Aware Quality-Diversity
(DA-QD) algorithm combined with a Behaviour Selection Policy to select only safe and valuable
behaviours for evaluation in the (potentially dangerous) real-world. We demonstrate an algorithm
which autonomously acquires a diverse repertoire of locomotion skills on a hexapod robot in safety-
constrained environments.

2 RELATED WORK

2.1 QUALITY-DIVERSITY AND BEHAVIOURAL REPERTOIRE LEARNING IN ROBOTICS

Quality-Diversity (QD) optimization is a class of algorithms that aims to generate a collection of both
diverse and high-performing solutions (Pugh et al., 2016; Cully & Demiris, 2017). In the context of
robotics, each solution can for instance, be a parametric policy which determines sequences of actions
to execute (i.e. motor commands), resulting in a behaviour. A behaviour can then be represented by
a numerical vector referred to as the Behavioural Descriptor (BD). The BD is a low-dimensional
representation of the trajectory of states the policy visited and is usually defined manually depending
on the tasks. However, the BD can also be learned in an unsupervised manner (Cully, 2019; Paolo
et al., 2020; Grillotti & Cully, 2021). The choice of the BD is important as it determines the novelty
of a solution and will be used to drive the exploration over the BD space (Lehman & Stanley, 2011a).

Conceptually, QD extends the single novelty-seeking objective introduced in the Novelty Search
algorithm (Lehman & Stanley, 2011a) with another measure of quality. MAP-Elites (Mouret & Clune,
2015) and Novelty Search with Local Competition (Lehman & Stanley, 2011b) are two commonly
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Figure 2: RF-QD performs QD in imagination (as in DA-QD) and uses a more intelligent behaviour
selection policy to keep the robot in the safe regions of its environment while maximising the value
gained by every real-world evaluation. See Pseudocode 1 in Appendix A.1.3 for more detail.

used and well-known QD algorithms. Cully and Demiris (Cully & Demiris, 2017) suggested that most
QD algorithms can be represented using a common framework consisting of two key components;
the archive and selector. Variants of QD algorithms develop around these components, all building
on the QD loop of selection, variation, evaluation and (tentative) addition to the archive. The archive
is used to store the highest performing solutions for each niche. Instead of a uniform grid used to
discretize the BD space, methods like CVT-MAP Elites (Vassiliades et al., 2017) or Sliding-Boundary
MAP-Elites (Fontaine et al., 2019) modify this to make the archive more flexible. More recently, there
has also been a body of work focused on using more complex selectors and efficient optimizers such
as evolutionary strategies (Colas et al., 2020; Fontaine et al., 2020b) and policy gradients (Nilsson &
Cully, 2021; Pierrot et al., 2021).

In the field of robotics, it was shown that the final archive of solutions discovered by QD algorithms
can be used as a behavioural repertoire to perform downstream tasks (Cully & Mouret, 2013). For
example, each solution is a controller which is represented by a set of parametric functions which
controls the robot’s joints. Coupled with Bayesian optimization, the controllers generated in the
archive can be used to quickly adapt to unforeseen mechanical damage, help with sim-to-real transfer
and solve long-horizon tasks using planning (Cully et al., 2015; Chatzilygeroudis et al., 2018).

2.2 MODEL-BASED QUALITY-DIVERSITY

One of the main bottlenecks of Quality-Diversity (QD) algorithms is the sample efficiency. QD
algorithms typically require on the order of millions of evaluations and rely on parallel computation
of these evaluations. This single factor alone usually make them unsuitable to be used directly in
the real-world. A line of work that attempts to address this problem, now referred to as model-based
quality-diversity methods, is through the use of models. Surrogate-Assisted Illumination (SAIL)
(Gaier et al., 2018) first introduced the use of surrogate models for QD algorithms. SAIL integrates
surrogate models, in the form of Gaussian Process (GP) models, to approximate the objective function
and reduce the number of evaluations for the computationally expensive application of aerodynamic
design. Another algorithm called M-QD (Keller et al., 2020) later follows up on this idea and used
neural network models that map the parameter space to the behaviour and fitness space as a surrogate
model. They demonstrate this on robotic pushing and placing tasks.

Dynamics-Aware Quality-Diversity (DA-QD) (Lim et al., 2021) is another approach which instead
uses learnt dynamics models as a surrogate model. DA-QD introduced the concept of the imagined
repertoire which allows QD to be performed fully in imagination using the learnt dynamics models.
The dynamics models are trained incrementally and online as data is collected through evaluations.
DA-QD showed a significant (≈20 time) increase in sample-efficiency. Our work uses the DA-QD
framework to heavily reduce the number of evaluations needed making it feasible to be considered
for a real-world application. With RF-QD, we extend DA-QD to make better use of the imagined
repertoire to select behaviours more intelligently and in a sequential manner. While DA-QD only
uses variation operators for optimization in imagination, we also further study the effect of optimizing
for different objectives in imagination.

2.3 RESET-FREE LEARNING

Reset-free Learning has mainly been studied in gradient-based Deep Reinforcement Learning (DRL)
where the episodic setting is also usually a prerequisite of the Markov Decision Process (MDP)
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formulation of the problem. One approach taken to enable real-world RL is to automate resets using
other manually scripted robots to reset objects and the environment to the initial state distribution
required (Nagabandi et al., 2020). While this works well for resetting manipulation tasks in which the
workspace is relatively limited, this approach is difficult to apply for learning locomotion behaviours.

Most similar to our work and another promising method is to use a multi-task RL approach (Ha
et al., 2020; Gupta et al., 2021). The key idea behind this approach is to use a scheduler and the
different tasks present in the multi-task setup as resets for each other. Ha et al. (2020) showed this
in the context of learning simple locomotion policies while Gupta et al. (2021) demonstrated this
approach on more extensive multi-task setting to learn dexterous manipulation policies. Both these
works explicitly learn policies for tasks in a pre-defined distribution of tasks. Each policy is optimized
individually using an off-the-shelf deep RL algorithm and separate instances of networks and replay
buffers. Our work instead concurrently learns a repertoire of diverse policies using QD algorithms
and leverage the diversity of the behavioural repertoire as resets. In Multi-task MAP-Elites (Mouret
& Maguire, 2020), it is also showed that the behaviour space can also be viewed and formulated as a
task-space where each cell is a task.

In the context of QD algorithms and behavioural repertoire learning, the Reset-Free Trial and Error
(RTE) (Chatzilygeroudis et al., 2018) algorithm has also aimed to address the reset problem. RTE
demonstrated this for adaptation using the behavioural repertoire as a prior for Gaussian Process
models. This is a different setting from the work we present in this paper as the behavioural repertoire
generation process itself in RTE is performed fully in simulation using resets. The reset-free in RTE
refers to the reset-free adaptation when performing sim-to-real transfer or reset-free adaptation to
mechanical damage. In our work, we learn the behavioural repertoire itself in a reset-free manner.

3 BACKGROUND: DYNAMICS-AWARE QD
We build on the DA-QD framework proposed by Lim et al. (2021). We briefly summarize DA-QD
here and refer the reader to the full paper for further details. DA-QD is a model-based QD algorithm
which extends the conventional QD framework (Pugh et al., 2016; Cully & Demiris, 2017) discussed
in section 2.1 with three key components: a dynamics model, an imagined repertoire and a selector
from the imagined repertoire.

The learnt dynamics model is a forward dynamics model p̃θ⃗(s⃗t+1|s⃗t, a⃗t) and is represented by a
neural network parameterized by θ. To capture both aleatoric and epistemic uncertainties, an ensemble
of probabilistic models are used. Here, the disagreement between predictions of all models in the
ensemble captures the epistemic uncertainty, i.e. it indicates the uncertainty of the prediction due to a
lack of samples. The overall model disagreement µd can be calculated as the expected difference
between any two models in the ensemble fϕ for one state-action pair, averaged over all time step
predictions in one trajectory (i.e. one evaluated behaviour) of length T (Kidambi et al., 2020):

disag(s, a) = E
i ̸=j
∥fϕi(s, a)− fϕj (s, a)∥2

µd = 1
T

∑T
t=0 disag(st, at)

(1)

State transition data is collected and stored in a replay buffer B as evaluations of robot behaviour
are performed in the environment. The model is trained in a self-supervised manner to maximise
log-likelihood of the transitions sampled from replay buffer and is optimized via back-propagation.

The dynamics model p̃θ⃗ can be called recursively to evaluate policies in what is referred to as an
imagined roll-out. The expected fitness and BD can be obtained from this imagined roll-out as both
these quantities measured are a function of the state trajectory. DA-QD introduced the concept of an
imagined repertoire Ã to organise and maintain solutions that have been evaluated in imagination
using the dynamics model. The imagined repertoire Ã uses the the same addition conditions as
the repertoire A. The imagined repertoire Ã only allows solutions that have been evaluated in
imagination that are expected to be novel or better performing than existing solutions to be considered
for evaluation. This is where the sample-efficiency of this method is derived from. Additionally, this
allows QD to be performed fully in imagination. This means that the selection and mutation of the
QD algorithm can be continuously performed from the imagined archive for any desired number of
imagined generations without any samples or evaluations on the real system.

Finally, with the introduction of the imagined repertoire Ã, this necessitates selection of solutions
from Ã to be evaluated. As the original DA-QD algorithm does not consider the reset-free sequential
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evaluation setting, the authors select all the solutions that have been added to the imagined archive
to be evaluated in parallel. Our work extends DA-QD and proposes a more intelligent method
to select and manage the solutions in the imagined archive given the reset-free setting and safety
constraints from the environment. Additionally, DA-QD also does not explicitly use the resulting
model-disagreement. In this paper, the model-disagreement is used both as a heuristic to select
behaviours to execute more intelligently (Sec. 4.1) and as objective in imagination (Appendix A.2.2).

4 METHODS

We present Reset-Free Quality-Diversity (RF-QD) as a method to enable the application of QD’s
behavioral repertoire learning in non-episodic real-world environments (see Algorithm 1). We treat
the robot as an actor in its environment that performs a constant search for new and improved
behaviours and storing these in the archive. For this, we extend the classical QD loop by two steps.
Firstly, we build on the pre-evaluation of any new behaviour ”in imagination” by a dynamics model
(DA-QD). Secondly, we introduce a behaviour selection policy, that modulates the robot’s search
for novel and high-performing behaviours as to comply with the safety constraints given by the
environment (see Figure 2). In the following section, we first elaborate on the core of our method:
the behaviour selection policy. Then, we detail its main components: the safety evaluation, safety
constraints, the prioritisation metrics and the recovery policy.

4.1 RESET-FREE BEHAVIOUR SELECTION

To be able to stay safe while acting in its environment, we introduce a behaviour selection policy to
modulate the robot’s actions in the real world. This ”behaviour selection” ensures that every new
behaviour will only be performed if it is deemed safe for the robot. At every step, new behaviours
are selected from a candidate buffer C. The candidate buffer C is regularly filled with new policies
from the imagined repertoire Ã that are not already present in the repertoire A. Ã is a component
introduced in DA-QD that maintains solutions that were evaluated in imagination using the dynamics
model p̃θ⃗. Based on the robot’s current state in the environment, our policy then selects a subset
of candidate behaviours Csafe that have a low risk of violating the safety constraints given by the
environment. Out of these, the candidate behaviour with the highest prioritization score will be
evaluated in the real world. In the following sections, the core components are described in detail.

4.2 SAFETY EVALUATION

In this paper, we assume knowledge of the environment layout, represented by ’safety regions’ (see
Figure 1), that indicate the region of dangerous states Ω. In practice, this information could as well be
obtained using Simultaneous Localisation and Mapping (SLAM) methods with an on-board camera.

Derived from the robot’s state s, we define the exploration parameter ϵ(s), which indicates the relative
degree of safety in the current state. It is calculated as the smallest distance between s and Ω and
normalised by the maximum encountered distance value (see Equation 2). While inside the safe
region (i.e. s /∈ Ω→ ϵ(s) > 0), the robot must choose any potential solution to be evaluated in the
real world that is predicted to keep ϵ(s) > 0, i.e. does not enter any unsafe state. To lower the risk of
damage to the robot, an offset β can be added in the computation of ϵs as an increased threshold for
the minimum distance towards the border of the region of unsafe states within the state space.

ϵ(s) =
dist(s,Ω)− β

max
si

dist(si,Ω)− β
(2)

From the dynamics model, we can obtain the predicted next state s′ after the execution of a candidate
behaviour and compute ϵ(s′). s′ corresponds to the state st+T after T timesteps, where T is the
length of one behaviour. Generally, we seek the robot to stay as close as possible to the safest point/s
in the environment, i.e. maintain maximal distance to the region of dangerous states (ϵ(s) ≈ 1).

4.3 SAFETY CONSTRAINTS

For every behaviour selection performed by our policy, we first employ a safety constraint to determine
the safe subset Csafe of all available candidate behaviours with respect to the robot’s current state. We
can use different constraints depending on our knowledge of the environment and the intended risk
aversion of our exploration. In the experiment section below, we evaluate the following constraints,
all of which are based on the predicted robot state s′ after the execution of each imagined behaviour
(given the current robot state s):

5



Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

• As a minimal constraint we consider only candidate behaviours with ϵ(s′) > 0 to ensure we never
execute a behaviour that was already expected to be unsafe.

• Alternatively, a contextual constraint carries weight only if the current robot state is near the border
of the region of unsafe states (ϵ(s) ≈ 0), but enables free exploration if it is far away from potential
danger (ϵ(s) ≈ 1):

ϵ(s′) > ϵ(s) · (1− ϵ(s)) (3)

• If we have access to the gradient of the epsilon function, the direction of maximal improvement of
safety with respect to the next state can be computed as ∇sϵ(s). The gradient-minimal constraint
considers only solutions moving in the general direction of the gradient. Based on the dot product
of the unit vectors of the gradient of the epsilon function (∇sϵ(s)) and the projected movement in
state space (s′ − s), we formulate a lower bound for deviation from the direction of the gradient as:

s′ − s

||s′ − s||
· ∇sϵ(s)

||∇sϵ(s)||
≥ 0 (4)

Geometrically, this is equal to a maximum deviation of 90° in 2D space (Figure 7 - green semicircle).

• Again, we can modify this into a more strict gradient-contextual constraint by using the value of
epsilon at the current state of the robot to modulate the constraint. This way, the constraint is more
relaxed towards the centre of the region of safe states but only accepts small deviations from the
direction of the safety gradient close to the border of the region of unsafe states:

s′ − s

||s′ − s||
· ∇sϵ(s)

||∇sϵ(s)||
≥ ϵ(s) · (1− ϵ(s)) (5)

Geometrically, this is equal to a deviation from the gradient proportional to ϵ(s) (see yellow region
in Figure 7 (Appendix 4.3 for ϵ(s) = 0.5).

• Finally, safety can also be enforced not by a hard constraint, but as a component of the prioritization
measures. This can be useful as a supplement to gradient-free constraints in complex environments.

4.4 PRIORITIZATION METRICS

After the safe subset of candidate behaviours Csafe has been selected based on the safety constraint,
the remaining candidates are ranked according to a prioritization measure as the second step in
behaviour selection. This gives priority to the evaluation of candidate behaviours which have the
highest value for the overall QD algorithm performance, as real-world samples are expensive. Finally,
the candidate with the highest prioritization score is selected. The composition of prioritization
measures can be adapted depending on the task at hand. We can either use a single prioritization
measure or a (weighed) sum of multiple values.

Firstly, the robot’s safety can be considered again as a prioritization measure through the dynamic
exploration parameter ϵ(s′) as outlined above. Generally, this approach will be used in combination
with another metric to enable the behaviour policy to tolerate a possible safety violation in favor
of a higher score. Another key measure to score a candidate behaviour is the dynamics model
disagreement (Equation 1). Further details on the use of this metric can be found in Appendix
A.1.2 We also consider the classical metrics used to quantify behaviours in QD, especially the
novelty of a candidate behaviour as the distance to the k nearest solutions already in the archive
(ν1, ..., νk) (Lehman & Stanley, 2011a).

4.5 RECOVERY POLICY

Figure 3: Example trajectories of DA-QD, Vanilla-
QD and RF-QD in flat environment with safe re-
gion (green) and dangerous region (red).

As a final safeguard to keep the robot in the
safe region of the environment, we introduce a
recovery policy to return the robot to safety if
it ever violates any of the environment’s safety
constraints. These constraints can be derived
from the environment in various ways, e.g. as a
minimum distance to obstacles represented by
’safety regions’ as in this work. Should the robot
ever leave the safe region, the discovery of new
behaviours will be halted. A greedy behaviour selection policy will be employed over the archive of
behaviours that were already evaluated instead of the imagined buffer of candidate behaviours. Here,
we pick the single behaviour that is projected to effect the greatest improvement in safety.
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Table 1: Safety metrics for all variants, averaged over 10 runs (mean ± std).

Variant Resets Steps outside safety Recovery steps

Vanilla-QD 54.0 ± 4.2 908.0 ± 74.1 n/a
DA-QD 114.0 ± 17.8 1039.5 ± 51.0 n/a
RF-QD 0.0 ± 0.0 1.0 ± 2.8 3.5 ± 9.9

5 EXPERIMENTS

We evaluate our method with an 18 DoF hexapod robot on an adapted version of the omni-directional
locomotion task Cully & Mouret (2013). In this task, the robot learns behaviours to walk in every
direction from an initial position. For the controllers, we evolve parameters of a sinusoidal control
signal that is sent to each motor. This sinusoidal signal acts as a prior towards periodic movement.
As we focus on a reset-free setting, all evaluations of new behaviours have to be done sequentially
and cannot be parallelised. All simulations are performed in RobotDART building on the Dynamics
Animation and Robotics Tookit (DART) simulator (Lee et al., 2018b). To simulate a practical number
of trials that would be performed in the real-world, the number of evaluations performed in any single
run of the algorithm are limited to 10,000.

5.1 BASELINE COMPARISON

Figure 4: QD-Score and coverage of RF-QD and
baselines on the circular safe area environment.
The graphs represent the median as a coloured
bold line, while the shaded area extends to the first
and the third quartiles over 10 runs.

Firstly, we evaluate the general capability of the
RF-QD method. For this, we compare against
”vanilla” QD and DA-QD (Lim et al., 2021) as
baselines. As in DA-QD, we use the unstruc-
tured archive (Cully & Demiris, 2017) and Iso-
dd Vassiliades & Mouret (2018) variation op-
erator. implementation in all our experiments
and baselines. We use a simple flat environ-
ment with a circular region of safety with radius
r = 2.0m. Figure 3 shows example trajectories
of the baselines compared to RF-QD. The base-
lines’ random selection of behaviours causes the robot to trail off deeply into the dangerous region,
while RF-QD performs its exploration almost entirely within the safe region. The depicted RF-QD
run leaves the safe region once, but then deploys the recovery policy (blue line) to return to safety.

Figure 5: Increasingly complex environments: QD-
Scores vs number of obstacles. The bold line is the
mean while the shaded area extends to the standard
deviations over 10 runs for each environment.

As the baseline methods are not made for a reset-
free environment, for all further comparisons we
perform manual resets to the starting position if
the robot leaves the safe region by more than 50
cm. This is similar to what is done when per-
forming QD on a real-world robot today. For the
baseline comparisons, RF-QD was run with a
gradient-contextual safety constraint and encour-
aging maximal novelty through the prioritization
strategy. This configuration has proven power-
ful in our evaluation of different constraints and
prioritization measures. Table 1 quantifies the
safety of the three algorithms averaged over 10 replications of each. We can see, that RF-QD achieves
almost perfect safety - never once requiring a safety reset as described above and only rarely taking a
single step outside the safe region.

Additionally, RF-QD slightly outperforms its direct baseline DA-QD in terms of both QD-score and
coverage as shown in Figure 4. While the distance to vanilla QD is due to DA-QD’s increased sample
efficiency, RF-QD’s behaviour selection policy does not sacrifice performance for safety, but even
improves performance by its candidate prioritization strategy (i.e. novelty in this case).

5.2 ROBUSTNESS TO ENVIRONMENT COMPLEXITY

To evaluate RF-QD’s performance in increasingly complex environments, we exchange the previous
circular environment for a closed 4x4m room with a number of column-shaped obstacles. Figure 6
shows examples of such environments including RF-QD’s trajectories in them (top row). We can
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Figure 6: Complex environments with 0, 5, 10 and 15 obstacles. Top: Sample trajectories of hexapod
moving with RF-QD. Middle: Example archives by RF-QD. Bottom: Example archives by DA-QD.

observe that the robot acting under RF-QD keeps its distance from the obstacles, while building
archives of behaviours (middle row) that are radically less affected by the environment complexity
than those created by DA-QD (bottom row).

In these complex environments, we employed RF-QD with a safety-focused configuration. This uses
a minimal (hard) safety constraint combined with two equally weighed prioritization measures to
select behaviours that maximise safety (through ϵ) and have low model disagreement. As a benchmark
for QD performance, we again add a version of DA-QD that uses safety resets, now triggered on any
collision with an obstacle. We also keep a ’naive’ version of DA-QD, that is not reset upon collision
(same as RF-QD). These algorithms were compared in rooms with 0 to 15 obstacles (see Figure 5).
While in an empty room, all algorithms perform similarly well, the naive DA-QD variant quickly
drops in performance with a growing number of obstacles through a large number of collisions
(which render the corresponding evaluations invalid). At the same time, RF-QD manages to fully
keep up with the upper baseline of DA-QD (using safety resets). While a more performance-focused
prioritization strategy (i.e. novelty as in Section 5.1) for RF-QD might have increased QD-scores
slightly (as in Section 5.1), this would have sacrificed the safety of the robot in more challenging
environments. Finally, additional experiments performed to study the effect of different objectives in
imagination on RF-QD can be found in Appendix A.2.2.

6 DISCUSSION

In this paper, we have presented RF-QD, a method to learn behavioural repertoires autonomously
without resets in realistic environments. We demonstrate how an intelligent behaviour selection
policy can be used with QD in imagination to learn safely and efficiently. We first test RF-QD to learn
while remaining within a designated area and show that the behaviour selection policy is necessary to
prevent the need for resets and to stay within the safe training area. We then show how RF-QD can
also operate in more complex environments with many obstacles and minimal room for error. Our
results also show that we can acquire full repertoires despite increasing environment complexity while
the performance of DA-QD and Vanilla QD baselines deteriorate with the increase in complexity.
Lastly, we conduct an ablation to investigate the effect of the type of solutions present in the candidate
buffer on the performance of RF-QD. We demonstrate that using targeted optimization objectives
when performing QD in imagination can bias the distribution of solutions presented to the behaviour
selection policy. Our results show that it is important to keep the diverse types of solutions in the
candidate buffer over just specialised solutions biased towards a single metric. For future work, we
hope to show RF-QD learning directly on a real world system, with no dependence on simulators.
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A APPENDIX

A.1 METHOD DETAILS

This section of the appendix provides more detailed description of of parts of the methods presented
in this paper to provide more clarity.

A.1.1 SAFETY CONSTRAINTS

This figure provides a more visual explanation of the safety constraints described and referenced in
Section 4.3

Figure 7: Sketch of the gradient-based safety constraints in a simple circular 2D-environment.

A.1.2 DYNAMICS MODEL DISAGREEMENT

The dynamics model used in DA-QD consists of an ensemble of models to capture the epistemic
uncertainty via disagreement between the predictions of the models (see Section 3 and Equation
1). The epistemic uncertainty can also be interpreted and formalised as an information theoretic
measure of the expected information gain (Pathak et al., 2019; Sekar et al., 2020). Maximising the
model-disagreement has been used as a self-supervised intrinsic reward for exploration in Deep
RL literature (Pathak et al., 2019; Sekar et al., 2020). The key idea behind this measure is to
prioritise policies that are most informative based on our current knowledge which is represented
via the ensemble of dynamics models (i.e. epistemic uncertainty). Selecting policies with high-
model disagreement would mean visiting states that have been less explored than others. As we
incrementally train the dynamics model on incoming data, policies that visit states that have been
seen will no longer have a large model disagreement which will allow this measure to continuously
be used to explore. Depending on the state of the robot in the environment, we can prioritize high
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and low model disagreement behaviours. Conversely, policies with low disagreement should be
prioritized in safety-critical situations. Solutions with low expected model disagreement are likely to
resemble the expected outcome and indicates the model’s confidence.

A.1.3 PSEUDOCODE

Algorithm 1 Reset-free Quality-Diversity (RF-QD)
Input: archive A = ∅, candidate buffer C = ∅,
dynamics model p̃θ⃗, experience replay buffer B

A,B ← random archive initialization()
p̃θ⃗ ← train model(B)

for max iterations do
if C == ∅ then ▷ Fill the candidate buffer
Ã ← generate candidates(A, p̃θ⃗) ▷ Using imagination
C ← Ã\A

s← get robot state() ▷ Get state to evaluate safety
if s is safe then ▷ Apply candidate selection policy
Csafe ← apply safety constraint(C)
x← argmax(prioritize candidates(Csafe))
bx, fx ← execute behaviour(x)
A ← add to archive(x, bx, fx)

else ▷ Apply recovery policy to return to safety
x← recovery policy(A)
execute behaviour(x)

B ← add to replay buffer()
p̃θ⃗ ← train model(B)

A.2 SUPPLEMENTARY RESULTS

This section provides extended results and experiments performed on DA-QD. In Appendix A.2.1,
we ablate the different prioritization metrics and safety constraints. In Appendix A.2.2, we study the
effect of different objectives in imagination and its effect on the behaviour selection policy used in
RF-QD.

A.2.1 COMPARISON OF POLICY CONFIGURATIONS

Additionally, we evaluated the various configurations of the Behaviour Selection Policy as introduced
in Section 4.1. Figure 8 shows an overview over the different combinations of safety constraints and
prioritization measures. Here, the policy configurations are evaluated by performance (represented
by their final coverage) and safety (represented by the number of recovery steps), both from runs of
10,000 steps over 10 replications. In short, Figure 8 shows strong separation between the relatively
unsafe minimal and contextual constraints (both gradient-free) and all remaining constraints. The
strongest performance is exhibited by variants combining the novelty or disagreement maximising
prioritization measures with a gradient contextual constraint. Out of the naive gradient-free constraints,
which must be used if there is no single ’safest’ direction of movement (as e.g. in more complex
environments such as the one following in Section 5.2), only the soft constraints achieves comparable
safety scores and performances as the gradient-based configurations. Which exact configuration
should be chosen will however always depend on the exact task at hand.

A.2.2 EFFECT OF OBJECTIVES IN IMAGINATION

We also study the effect of the type of solutions available in the candidate buffer that the behaviour
selection policy chooses from. To study this, we investigate the influence of different optimisation
objectives for the generation of the candidate buffer during the QD in imagination. When using
Iso-DD (Vassiliades & Mouret, 2018), the solutions are relatively generic and objective-agnostic,
i.e., not optimised to fulfil a specific objective. Alternatively, we can use different types of emitters
(introduced by CMA-ME (Fontaine et al., 2020b)) to produce solutions that maximise a specific
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Figure 8: Comparison of different Behaviour Selection Policy configurations on both performance
(coverage) and safety (recovery steps) on the circular safe area environment.

objective. We perform experiments using three different optimization objectives: maximising model
disagreement, minimising model disagreement, and a random direction objective as a surrogate
objective for novelty. We compare this to the standard Iso-dd variations used in all our experiments
as a baseline. We perform an ablation of these three different objectives with their corresponding
prioritization measures used in the behaviour selection policy. We report results across 10 replications.

First, we evaluate the effect of more targeted objectives by analysing the model disagreement associ-
ated with the individuals selected by the behaviour selection policy (Figure 9). The key take-away
from Figure 9 (top) is that the optimisation objectives used when running QD in imagination can
strongly influence the behaviours that are finally selected. We can see that regardless of the prioriti-
zation metric used by the behaviour selection policy, the same overall trends are always observed:
The minimising disagreement optimization objective (yellow) always results in low disagreement
individuals being selected by the behaviour selection policy regardless of the prioritization metrics.
The same observation applied to the maximising disagreement objective (green). This observation
corresponds to our initial hypothesis where targeted optimization objectives can skew the distribution
of solutions generated towards the target objective. This results in a higher probability for the
solutions with the desired metric being selected.

Given that biased/specialised sets of solutions can be generated in the candidate buffer using more
targeted objectives, we evaluate the effect of the composition of this candidate buffer on the perfor-
mance of RF-QD. Figure 9 (middle and bottom) show that the objective-agnostic Iso-DD operator
outperforms all the targeted optimization objectives both in terms of coverage and safety (number
of resets) across all prioritization measures used by the behaviour selection policy. This is an inter-
esting result as one could expect the variants with aligned prioritization measures and optimization
objectives to perform better. We hypothesize that the buffer of candidate solutions being generated
by targeted objectives become too specialised while the objective-agnostic Iso-DD can generate a
diverse buffer of solutions to choose from. This is not such a surprising observation as Multi-Emitter
MAP-Elites (Cully, 2020) had previously also shown that when using simultaneously multiple emitter
types, the random emitter (based on Iso-dd) remains the most fruitful through the entire process
compared to other objective-driven emitters.
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Figure 9: Study of different optimization objectives and prioritization metric configurations. Each
panel considers a different prioritisation metric. Top: Disagreement of selected behaviours by RF-QD.
The bold lines and shaded areas represent the median and interquartile range over 10 replications
respectively. Middle: Progression of the archive size over the number of selected behaviours for
each optimization objective. Bottom: Distribution of the total number of recovery steps for each
optimization objective.
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