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ABSTRACT

In this work, we develop DiRL, a Diversity-inducing Representation Learning
technique for histopathology image analysis. SSL techniques, such as contrastive
and non-contrastive approaches, have been shown to learn rich and effective rep-
resentations without any human supervision. Lately, computational pathology has
also benefited from the resounding success of SSL. In this work, we develop a
novel prior-guided pre-training strategy based on SSL to enhance representation
learning in digital pathology. Our analysis of vanilla SSL-pretrained models’ at-
tention distribution reveals an insightful observation: sparsity in attention, i.e,
models tends to localize most of their attention to some prominent patterns in the
image. Although attention sparsity can be beneficial in natural images due to these
prominent patterns being the object of interest itself, this can be sub-optimal in
digital pathology; this is because, unlike natural images, digital pathology scans
are not object-centric, but rather a complex phenotype of various spatially in-
termixed biological components. Inadequate diversification of attention in these
complex images could result in crucial information loss. To address this, we first
leverage cell segmentation to densely extract multiple histopathology-specific rep-
resentations. We then propose a prior-guided dense pretext task for SSL, designed
to match the multiple corresponding representations between the views. Through
this, the model learns to attend to various components more closely and evenly,
thus inducing adequate diversification in attention for capturing context rich rep-
resentations. Through quantitative and qualitative analysis on multiple slide-level
tasks across cancer types, and patch-level classification tasks, we demonstrate the
efficacy of our method and observe that the attention is more globally distributed.
Specifically, we obtain a relative improvement in accuracy of up to 6.9% in slide-
level and 2% in patch level classification tasks (corresponding AUC improvement
up to 7.9% and 0.7%, respectively) over a baseline SSL model.

1 INTRODUCTION

Computational pathology is a rapidly emerging field that aims at analyzing high resolution images
of biopsied or resected tissue samples. Advancements in computer vision and deep learning has
enabled learning of the rich phenotypic information from whole slides images (WSIs) to understand
mechanisms contributing to disease progression and patient outcomes. Acquiring crop-level local-
ized annotations for WSIs is expensive and often not feasible; only slide-level pathologist labels are
usually available. In such a scenario, weak supervision is a commonly utilized strategy, where crops
are embedded into representations in the first stage, followed by considering these WSI-crops’ repre-
sentation as a bag for multiple instance learning (MIL). Now the question remains, how do we learn a
model to effectively encode the crops into rich representations? Traditionally, ImageNet (Krizhevsky
et al., 2017) pre-trained neural networks are utilized to extract the representations (Lu et al., 2021b;
Lerousseau et al., 2021; Shao et al., 2021). However ImageNet and pathology datasets are composed
of different semantics; while the former contains object-centric natural images, the later consists of
images with spatially distributed biological components such as cells, glands, stroma, etc. There-
fore, to learn domain-specific features of WSI-crops in the absence of localized annotations, various
self-supervised learning (SSL) techniques are recently gaining traction (Ciga et al., 2022; Stacke
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Figure 1: Diversification of attention for encoding dense information in digital pathology. View
1 and View 2 are two augmented views of the input image. a) Illustration of attention map from
a model pre-trained on ImageNet using vanilla SSL. b) Attention map of model pre-trained on
histopathology dataset with vanilla SSL, and with our proposed pre-training strategy. In both nat-
ural imaging and digital pathology, vanilla SSL pre-training creates sparse attention maps, i.e., it
attends largely to only some prominent patterns. Although attention sparsification can be beneficial
in natural image tasks such as object classification, this could be sub-optimal for encoding represen-
tations in digital pathology as it leads to loss of important contextual information. Through a more
diversified attention mechanism, DiRL encodes dense information critical to non object-centric
tasks.

et al., 2021; Boyd et al., 2021). SSL models pre-trained on histopathology datasets have been shown
to be effective in downstream classification tasks when compared to those trained on ImageNet.

To further analyze the role of SSL in computational pathology, we pre-trained a vision transformer
(Dosovitskiy et al., 2020) on various WSI datasets using vanilla SSL (Caron et al., 2021). In-depth
analysis of the pre-trained models’ attention maps on WSI-crops led us to a striking observation:
sparsity in attention maps. The model tends to localize most of its attention to a small fraction
of regions, leading to sub-optimal representation learning. To further validate our observation, we
visualized the attention maps of a self-supervised ImageNet pre-trained model on natural images
(see Fig. 1). Similar observations led us to conclude that this is a property of SSL rather than of
data. We believe that sparsity in attention might potentially benefit the performance in some natural
imaging tasks such as object classification. This stems from the fact that during SSL, the model is
tasked to match the two views, optimizing which leads the model to focus on the prominent patterns.
For example, in Fig. 1(a), for an object-centric ImageNet example, since the prominent pattern is
the object (eg. bird) itself (Yun et al., 2022), the model tends to center its attention towards the
object, thus benefiting numerous downstream applications (for eg., bird classification). In contrast,
WSI-crops are not object-centric, rather they constitute a spatial distribution of complex structures
such as cells, glands, their clusters and organizations, etc, see Fig. 1(b). Encoding this dense
information available into a holistic representation demands the model to focus more diversely to
various histopathology primitives and not just to specific ones. Conversely, the vanilla SSL model
pre-trained on histopathology only sparsely attends to the important regions (Fig. 1(b)), i.e., there is
inadequate diversity in attention. We hypothesize that this sparsely attending model could result in
encoding sub-optimal representations, as fine-grained context-rich details are often ignored.

To address this issue of inadequate attention diversity, we propose DiRL, a diversity-inducing pre-
training technique, tailored to enhance representation learning in digital pathology. Each WSI-crop
consists of two regions: cellular regions (one containing cells) and non-cellular regions (containing
no cells). We leverage an off-the-shelf cell segmentation pipeline to identify these regions. This
domain-specific knowledge is then utilized to extract region-level representations separately for
the cellular and non-cellular regions. We further propose to encode the inter- and intra-spatial in-
terplay of two regions. This biologically-inspired step (Saltz et al., 2018; Fassler et al., 2022) is
achieved through a transformer-based disentangle block to encode the self-interaction within the re-
gions, and cross-interaction between both the regions, termed as disentangled representations. In
contrast to vanilla SSL frameworks that leverage one image-level representation for a WSI-crop, our
prior-guided representation learning framework leverages histology-specific domain knowledge to
densely extract a set of region-level and disentangled representations. We then task our framework to
match all the corresponding representations between the views. We hypothesize that optimizing this
dense matching objective between the views would encourage the model to diversify its attention to
various regions; matching assorted representations would then enforce the model to explore diverse
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image-regions relevant for each such representations. We validate this hypothesis through consis-
tent improvements in performance on multiple downstream tasks such as slide-level and patch-level
classifications. Our qualitative analysis on attention distribution of the pre-trained models reveals
that our DiRL framework can effectively de-sparsify attention, thereby learning global context-rich
representations, unlike existing methods.

To summarize our main contributions, we:

• Demonstrate that attention sparsification in self-supervised learning may lead to learning
sub-optimal representations in digital pathology classification tasks.

• Design a novel domain-aware pretext task to de-sparsify attention maps and achieve en-
hanced representations for digital pathology.

• Demonstrate the efficacy of our DiRL through slide-level and patch-level classification
tasks on four WSI datasets and two patch datasets.

2 RELATED WORK

In this section, we briefly discuss vision transformers, SSL and its dense counterpart, and their ap-
plication in computational pathology.
Vision transformers. Inspired by the success of self-attention modules in language models
(Vaswani et al., 2017), vision transformers (ViTs) Dosovitskiy et al. (2020); Liu et al. (2021); Tou-
vron et al. (2021); Xu et al. (2022); Ali et al. (2021); Tu et al. (2022) have been have been pro-
posed to exploit non-local spatial dependencies in the imaging domain. Recent studies Wang et al.
(2021b); Chen & Krishnan (2022); Chen et al. (2022); Stegmüller et al. (2022); Gao et al. (2021);
Chen et al. (2021) have demonstrated the promise of transformer-based architectures in modeling
histopathology imaging for cancer diagnosis and prognosis. However, to the best of our knowledge,
no existing work has leveraged the flexibility of attention mechanism in transformers to instill the
biology-relevant domain knowledge into vision transformers. For example, interaction between con-
cepts/primitives such as tumor nuclei and stroma or between lymphocytic cells plays an important
role in disease pathophysiology and treatment outcome. Our proposed method takes a step in this
direction through a domain-driven pretext task.
Image-level SSL aims at learning visual representations through different pretext tasks. Contrastive
and non-contrastive methods such as Chen et al. (2020); He et al. (2020); Caron et al. (2021), have
shown tremendous potential in learning robust and rich representation in natural imaging. Building
upon them, studies such as Ciga et al. (2022); Stacke et al. (2021); Li et al. (2021a); Kapse et al.
(2022); Boyd et al. (2021); Chen & Krishnan (2022); Kurian et al. (2022) have explored SSL pre-
training in histopathlogy image analysis.
Region-level SSL aims to further boost information encoding through dense pre-training techniques
such as Li et al. (2021b); Yun et al. (2022); Wang et al. (2021a). These techniques impose addi-
tional constraints to match 1) region-level correspondences across the two views of the data or 2)
neighbor-level intra-view correspondences within the data. Studies such as Wen et al. (2022); Yang
et al. (2022); Hénaff et al. (2021) have explored utilizing segmentation-based or clustering-based
regions in self-supervision to enhance representation learning. However, the goal of these studies
is to mainly improve the transfer performance for dense-prediction tasks such as object detection
and segmentation. In contrast, we tailored a dense pre-training strategy in histopathology to enforce
the model to focus on diverse-regions thus diversifying model’s attention. This diversified atten-
tion encourages the model in effectively encoding the complex information about various histology
components, thereby augmenting classification performance.

3 PROPOSED METHOD

In this section, we first describe a naı̈ve vision transformer framework for Whole Slide Images
(WSIs). This is followed by explaining how cell segmentation can be used as a prior in pre-training
for WSIs. Next, we present the extraction of region-specific representations using our proposed cell-
back pooling and disentangle block. Finally, we present DiRL, our diversity-inducing pre-training
technique, to learn discriminative features for WSI patches which are subsequently leveraged by a
multiple instance learning (MIL) framework for downstream classification tasks. An overview of
the proposed architecture is shown in Fig. 2(a).
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Figure 2: Overview of the proposed DiRL framework: a) A WSI-crop is patchified and fed into
a linear projection layer followed by a transformer encoder. The output is fed to a Prior-block and
to a Disentangle block. The Prior-block pools region-level representations separately for cellular
and non-cellular regions. The Disentangle block encodes spatial interplay between the two regions
followed by prior-block to extract region-level disentangled representations. b) Cell priors Pc and
1−Pc pool the tokens associated with the cellular and the non-cellular regions, respectively, followed
by average pooling to extract region-level features. c) Cell segmentation from WSI-crop followed
by extraction of cell centroid map. Cell prior mask is generated by discretizing the cell centroid map
into patches. A Cell prior vector Pc is then produced from the cell prior mask. After pre-training,
modules above the red dashed line are discarded in the inference stage.

Preliminaries. For an understanding of the primary components in a transformer such as MSA
(Multi-head Self-Attention), LN (Layer Normalization), and MLP (Multi-Layer Perceptron), we
refer the readers to Vaswani et al. (2017).

3.1 VISION TRANSFORMER FOR WSI

From each WSI, W , w1, w2, . . .wN crops are extracted, where N is variable for each W . Each wi

is then decomposed into n patches X = [X1, X2, ..., Xn] ∈ Rn×p×p×3, where (p, p) is the spatial
size of each patch. Each patch is transformed into a token using a shared linear projection layer,

T0 = [X1E;X2E; ..., XnE] (1)

where E are convolutional filters operating on each patch with d number of p × p size filters, thus
extracting a d dimensional feature vector for patch. This is followed by adding 1D learnable position
embedding as in Vaswani et al. (2017). The transformer block models the relationship between the
tokens using a multi-head self-attention block:

T
′

l = Tl−1 +MSA(LN(Tl−1)); Tl = T
′

l +MLP(LN(T
′

l )) (2)

where l is index of the lth block of transformer encoder, composed of L stacked transformer blocks.
Thus in each block, these tokens interact with each other to learn representations for each wi. The
resulting TL of dimension (n, d) is average pooled across all the n tokens to compute the image-level
representation f of dimension (1, d) as shown in Fig. 3(a).

3.2 CELL SEGMENTATION AS DOMAIN PRIOR

Each WSI-crop wi consists of two regions, one containing cells and the other without cells. There
has been substantial advancements in deep learning research pertaining to cell segmentation; this
stems from the important role of image analysis and machine learning algorithms in visual inter-
pretation of cellular biology (morphology and spatial arrangement) in digitized pathology scans (Lu
et al., 2021a; Shaban et al., 2022; Ding et al., 2022). Identifying the cellular and non-cellular regions
in wi can be achieved by exploiting the cell segmentation output as prior via techniques such as Sa-
hasrabudhe et al. (2020); Hou et al. (2020); Vahadane & Sethi (2013). Following cell segmentation,
the centroids are extracted to yield the cell centroid map, a binary map (C) of values zeros and ones,
with Ci,j = 1 if centroid of any cell is present at (i, j) pixel in WSI-crop. We term this as cell prior
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Figure 3: a) Illustration of the n× n attention matrix from the last layer of the transformer encoder,
where q, k, v are projections of tokens in transformer block. Matrix multiplication of attention ma-
trix with value v, followed by average pooling across all the tokens generates the representation
(f ) for wi. b) Cell prior Pc is utilized to separately pool cell tokens and back tokens to extract
region-level representations. c) Tokens from the Lth layer are interacted in the transformer-based
disentangle block, forming the attention matrix. Attention masks Mself and Mcross are added with
the attention matrix, generating desired matrices for disentanglement. Note that sf denotes softmax
activation. Matrices are then multiplied with v followed by prior-based pooling, thus extracting four
representations encoding spatial interplay in wi. For clarity, the cellular and non-cellular region
patches (nc and nb respectively) are arranged in separate groups.

mask as shown in Fig. 2(c). Since cell segmentation is routinely used in computational pathology,
we use off-the-shelf, well established cell segmentation pipelines instead of training a new model.
To be coherent with ViT, C is decomposed into n patches C = [C1, C2, ..., Cn] of size (p, p). Each
patch is transformed as follows: Ci = MaxPool(Ci), i.e., if the patch Ci contains one or more
centroids, it becomes one, else it remains zero. Thus, the cell prior mask is downsampled into a
binary vector of dimension (n, 1), denoting the presence of cells in each patch of wi. We term this
vector as cell prior (Pc), which is invoked to extract the region-specific representations for each wi.

3.3 PRIOR-BLOCK FOR CELL-BACK POOLING

Following L stacks of transformer blocks, a set of tokens TL ∈ Rn×d is fed to a prior-block. In this
block, the tokens can be categorized into (a) cell tokens, implying the tokens whose input patches
contain at least a cell and (b) background or back tokens, whose input patches do not capture any
cells. The cell and back tokens are separately encoded to represent region-level features from the
cell prior Pc as follows:

fc =
PT
c TL∑
Pc

; fb =
(1− Pc)

TTL∑
1− Pc

(3)

fc is the average pooled representation of all the cell tokens, i.e. representation of the cellular
region. fb is the average pooled representation of all the back tokens, representing non-cellular
regions. In the process, Cell-Back Pooling is exploited in the prior-block to extract two region-level
representations as shown in Fig. 3(b).

3.4 DISENTANGLE BLOCK

We take a step towards obtaining region-level representation by proposing a transformer block for
disentangling the cellular and non-cellular regions. This disentanglement is performed to encode
self-interaction in each region and cross-interaction between the two regions. To accomplish this
disentanglement, we devise two attention masks, Mself and Mcross, each of dimension (n × n) as
shown in Fig. 3(c). The goal of Mself is to only allow token interaction between the same regions,
i.e., cell-cell and back-back. In contrast, Mcross allows tokens to interact between the different
regions (cell-back). The masks Mself and Mcross are computed as:

Mself (i, j) =

{
0, if Pc(i) = Pc(j)

−∞, otherwise
; Mcross(i, j) =

{
0, if Pc(i) ̸= Pc(j) or i = j

−∞, otherwise
(4)

where indices i, j ∈ {1, 2, ...n}. Recall that in transformers, tokens are projected into three embed-
dings q, k, v and the output of a MSA block is computed as a weighted sum of the values v, where
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the weight assigned to each value is determined by a self-attention operation softmax(qkT ). Unlike
standard MSA in wi, where all the tokens from cellular and non-cellular regions interact with each
other through self-attention (see Fig. 3(a)), we propose to disentangle the interactions between the
regions. Mself and Mcross are linearly combined with the attention matrix to obtain disentangled
self-attention matrices as follows:

MSAself = softmax(qkT +Mself ); MSAcross = softmax(qkT +Mcross) (5)
Note that attention masks Mself and Mcross are linearly combined before the softmax activation

to ensure that the sum of each row in the self-attention matrix remains one. The disentangle block
operates at the output of the transformer encoder TL as:

T
′

self = TL +MSAself (LN(TL)); Tself = T
′

self +MLP(LN(T
′

self )) (6)

T
′

cross = TL +MSAcross(LN(TL)); Tcross = T
′

cross +MLP(LN(T
′

cross)) (7)

Finally, similar to 3.3, the region-level features are encoded using the cell prior Pc using:

fcc =
PT
c Tself∑

Pc
; fbb =

(1− Pc)
TTself∑

1− Pc
; fcb =

PT
c Tcross∑

Pc
; fbc =

(1− Pc)
TTcross∑

1− Pc
(8)

Thus, the prior-based pooling on Tself and Tcross results in four disentangled representations
fcc, fbb, fcb, and fbc, encoding the spatial interplay between the cellular and non-cellular regions.
Thus, for each WSI-crop wi we encode six representations: two region-level representations using
cell-back pooling, and four disentangled representations using disentangle block. Our prior-guided
pre-training framework operates on these six representations to pre-train the model.

3.5 DIVERSITY-INDUCING PRE-TRAINING FOR WSI

In this section, we formulate our diversity-inducing representation learning (DiRL) using a widely
used SSL framework for pre-training on histopathology data: DINO (Caron et al., 2021). However,
in practice, our pre-training technique can be integrated with any pairwise SSL framework (Li et al.,
2022), as demonstrated in Appendix A.3. DINO consists of a student and teacher branch, where the
teacher is a momentum updated version of the student, thus both having same architecture (models).
Different views of the input image are fed to both the branches to encode them into image-level
representations. A projection head is applied on top of these representations with softmax activation.
SSL is performed by matching the student’s output with the teacher’s probability distribution through
cross-entropy loss, LCE . In contrast to vanilla DINO, DiRL yields six feature vectors from each
branch (see Fig. 2). Therefore, the loss function is modified as:

LCE = λ1 × (LCE
c + LCE

b ) + λ2 × (LCE
cc + LCE

bb + LCE
cb + LCE

bc ) (9)
where LCE

c is the cross-entropy loss between projection of representation fc of student and that of
teacher branch. Likewise, the projected distribution of all other corresponding representations from
student and teacher are matched. This linear combination of losses encourages the framework to
perform a dense matching of the region-level and disentangled representations of the augmented
views. Consequently, the dense matching promotes the model to globally diversify the attention
map (refer to Fig 1, Fig 12).

We propose another variant of DiRL, without the disentangle block, i.e. similarities of only projec-
tion distribution of fc and fb are maximized between the views. We name this variant as Cellback.
Following the pre-training, only linear projection layer, position embedding, and the transformer
encoder of the teacher are retained. This pre-trained ViT extracts the average pooled feature repre-
sentation for all wi belonging to WSI W , to generate feature matrix of dimension (N , d), where N
is variable number of WSI-crops for each W . Note that the prior is used only at pre-training. Finally,
MIL operates over this matrix for WSI slide-level analysis, as discussed next.

3.6 MULTIPLE INSTANCE LEARNING FOR SLIDE-LEVEL TASKS

Multiple instance learning (MIL) is widely used method in WSI slide level analysis. We refer the
readers to Ilse et al. (2018); Lerousseau et al. (2021); Shao et al. (2021); Lu et al. (2021b) for an
overview. We adopted DSMIL (Li et al., 2021a) framework for this work. Following pre-training,
the pre-trained model is used to extract features for WSI-crops in W . The MIL model takes these
features as input bag, optimizing the model weights through slide-level label supervision.
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4 EXPERIMENTS AND RESULTS

Our pre-trained models are evaluated for both slide-level and patch-level classification tasks. As
a Baseline, we pre-trained a vision transformer with DINO (Caron et al., 2021), a vanilla self-
supervised framework, which optimizes the similarities between two views through just one image-
level representation per view. This is compared to pre-training with our proposed DiRL and Cellback
frameworks. The encoders in our frameworks are implemented with both ViT-Tiny (ViT-T, d = 192)
and ViT-Small (ViT-S, d = 384) consisting of 5M and 22M parameters, respectively.

Dataset and tasks: For slide-level classification, we use the following datasets: 1) TCGA-Lung (Al-
bertina et al., 2016; Kirk et al., 2016) at 5×, 2) TCGA-BRCA (Lingle et al., 2016) at 5×, 3) TCGA-
PAAD (Raphael et al., 2017) at 5×, and 4) BRIGHT (Brancati et al., 2021a) at 10×. Note that
our proposed pre-training is performed separately for each dataset followed by evaluating them
for slide-level classification. This classification task comprises 1) TCGA-Lung: Lung Adenocar-
cinoma (LUAD) versus Lung Squamous Carcinoma (LUSC), 2) TCGA-BRCA: Invasive Ductal
(IDC) verses Invasive Lobular Breast Carcinoma (ILC), 3) TCGA-PAAD: Basal versus Classical
Pancreatic Ductal Adenocarcinoma, 4) two sub-tasks in BRIGHT: 3-class WSI-classification (non-
cancerous, precancerous, and cancerous), and 6-class WSI-classification, termed as BRIGHT (3)
and BRIGHT (6), respectively.

For patch-level classification, evaluations are performed on Chaoyang (Zhu et al., 2021) and MHIST
(Wei et al., 2021) datasets, which contain localized annotation at crop-level. MHIST consists of two
classes of colon cancer, whereas Chaoyang contains four classes of colon cancer.

Note that, for generating cell prior Pc, we employed HoVer-Net for TCGA-Lung (Graham et al.,
2019) and due to computational limitations we employed Cellpose (Stringer et al., 2021) for the
other three WSI datasets. Further details on implementation and dataset splits are provided in A.1.

4.1 SLIDE-LEVEL AND PATCH-LEVEL CLASSIFICATION

Slide-level classification: In Table 1, we show the slide-level classification results on the four
datasets with tiny and small ViT models pre-trained using Baseline, Cellback (DiRL without dis-
entangle block), and DiRL frameworks. It may be observed that for the Lung, BRCA, and PAAD
datasets, DiRL consistently surpasses the Baseline (up to 6.9% relative accuracy gain) and Cellback
(up to 3.3% relative accuracy gain) models for both ViT-T and ViT-S architectures. In all cases,
both DiRL and Cellback considerably outperform the vanilla-DINO Baseline (accuracy and AUC).
Interestingly, DiRL-T performs even better than Baseline-S in BRCA and PAAD, substantiating
the importance of efficiently encoding diversified information even in smaller feature embedding
(d = 192) in DiRL-T against inefficiently and sparsely encoding into a larger feature embedding
(d = 384) in ViT-S. This paves the direction for efficiently encoding domain-information in smaller
models. In the BRIGHT dataset, it is observed that Cellback-S achieves the best performance for
both the sub-tasks. We anticipate this might be due to the higher magnification (10×) of this dataset
as compared to the others (5×). Consequently there is much less contextual information in WSI-
crops for BRIGHT dataset, resulting in most regions being either cell-dominant or non-cell dominant
(see Fig. 14 in the Appendix). This potentially makes encoding spatial interplay especially noisy
due to lower co-occurence of the different concepts in a WSI-crop, thus hurting pre-training with
disentangle block in DiRL (discussed in more detail in Appendix A.5). Additional comparisons with
SOTA SSL methods are provided in the Appendix A.2.

Table 1: Results for slide-level classification tasks. T denotes
ViT-Tiny, and S denotes ViT-Small.

Dataset Lung BRCA PAAD BRIGHT (3) BRIGHT (6)
Metric Acc, AUC Acc, AUC Acc, AUC Acc, AUC Acc, AUC

Baseline-T 0.895, 0.959 0.896, 0.944 0.768, 0.661 0.625, 0.841 0.512, 0.764
Cellback-T 0.906, 0.964 0.896, 0.938 0.803, 0.713 0.650, 0.848 0.512, 0.793

DiRL-T 0.906, 0.965 0.927, 0.957 0.821, 0.708 0.650, 0.859 0.500, 0.812

Baseline-S 0.911, 0.967 0.896, 0.947 0.821, 0.704 0.637, 0.835 0.475, 0.787
Cellback-S 0.921, 0.966 0.927, 0.955 0.821, 0.719 0.675, 0.854 0.525, 0.813

DiRL-S 0.927, 0.973 0.927, 0.950 0.839, 0.733 0.650, 0.852 0.500, 0.799

Patch-level classification: For
evaluating the generalizability
of the learned representations,
we use BRCA pre-trained
models and fine-tune them on
MHIST (Wei et al., 2021) and
Chaoyang (Zhu et al., 2021)
datasets (because of visual
similarities between breast
and colon cancers (Bremond
et al., 1984)). In Table 2, we
report the 5-fold cross valida-
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tion accuracy and AUC on the official test set. We observed that both our models (Cellback
and DiRL) outperform the Baseline on the two datasets using ViT-T and ViT-S backbones.
Relative to the Baseline, DiRL improves the accuracy by 1.4 − 2% on MHIST and 0.8 − 1.1%
on the Chaoyang dataset. Similarly, it also improves the corresponding AUCs by 0.4 − 0.7% and
0.3− 0.4%, respectively.

Table 2: Results for crop-level
classification tasks.

Dataset MHIST Chaoyang
Metric Acc, AUC Acc, AUC

Baseline-T 0.867, 0.935 0.819, 0.942
Cellback-T 0.868, 0.934 0.823, 0.942

DiRL-T 0.884, 0.942 0.828, 0.945

Baseline-S 0.885, 0.945 0.830, 0.946
Cellback-S 0.896, 0.952 0.831, 0.950

DiRL-S 0.897, 0.949 0.837, 0.950

Comparison of DiRL with other dense pre-training methods:
Note that our pre-training aligns with dense pre-training literature
as we perform dense matching across two views through region-
level and disentangled representations instead of just matching
through one image-level representation. For fair comparison, we
re-implement dense pre-training methods closely related to our
research: 1) SelfPatch (Yun et al., 2022) and 2) EsViT (Li et al.,
2021b). In addition to image-level matching as in DINO, Self-
Patch enforces invariance against each patch/token and its neigh-
bors, whereas EsViT enforces matching between all the corre-
sponding patch-based tokens across views. Note that we use ViT-S
as the encoder for both the techniques. In Table 3, we showcase the results for SelfPatch and EsViT
for slide-level classification tasks on all four datasets.

Table 3: Comparison of DiRL with existing dense pre-training
SSL methods (SelfPatch and EsViT).

Dataset Lung BRCA PAAD BRIGHT (3) BRIGHT (6)
Metric Acc, AUC Acc, AUC Acc, AUC Acc, AUC Acc, AUC

Baseline-S 0.911, 0.967 0.896, 0.947 0.821, 0.704 0.637, 0.835 0.475, 0.787
SelfPatch-S 0.724, 0.784 0.886, 0.926 0.821, 0.728 0.512, 0.683 0.362, 0.636

EsViT-S 0.916, 0.967 0.927, 0.954 0.768, 0.431 0.675, 0.857 0.525, 0.790

Cellback-S 0.921, 0.966 0.927, 0.955 0.821, 0.719 0.675, 0.854 0.525, 0.813
DiRL-S 0.927, 0.973 0.927, 0.950 0.839, 0.733 0.650, 0.852 0.500, 0.799

We find that our DiRL-based
models perform on par with Es-
ViT on BRIGHT and BRCA
dataset, and significantly outper-
form on the Lung and PAAD
datasets. Whereas SelfPatch per-
forms significantly worse in most
tasks, possibly because neigh-
borhood token invariance hardly
exists in pathology images unlike
for well-defined objects in natu-
ral images. Thus, our domain-inspired dense matching in DiRL shows consistent improvements for
slide-level classification compared to the other densely pre-trained models.

4.2 ANALYSIS OF LEARNED ATTENTION

Here we demonstrate the de-sparsification of the learned attention of our DiRL pre-trained
models. Recall that the aggregated attention associated with a token is represented by
the sum of all values across its corresponding column in the n × n self-attention matrix.

Lung BRCA 

Figure 4: Attention distribution plot. The second bin (0.5-
2) is the desired one. Here, the percentage values show the
fraction of tokens with attention values in the desired range.
The baseline method has a higher fraction of tokens in lower
range and higher range sparse bins, which is not ideal for
digital pathology applications.

The sum of the aggregated attention
values of all tokens (n) should be
n. Due to this constraint, if the
model attends to some tokens with
high attention values, then the atten-
tion value associated with other to-
kens are reduced significantly. In Fig.
4, we plot the distribution of aggre-
gated attention values of tokens from
the last layer of the transformer en-
coder pre-trained by Baseline (vanilla
DINO), Cellback, DiRL, EsViT, and
SelfPatch. We then split the aggre-
gated attention values in three bins:
0-0.5, 0.5-2, >2. The 0-0.5 and >2
bins indicate sparse attention learned
through low and high concentrated attention values, respectively. Whereas the 0.5-2 range is the
desired bin with moderate attention values that would lead to a de-sparsified attention map (and
hence, optimal encoding of context-rich information). Plots of attention distribution of the tokens
are illustrated individually on the test sets for Lung and BRCA. Plots for PAAD and BRIGHT are
illustrated in Appendix A.6.
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The plots show that Baseline trained with vanilla DINO has around 20-30% tokens in the lower range
sparse bin (0-0.5) and around 8-10% in higher range sparse bin (>2). Whereas for our Cellback and
DiRL models, fewer than 5% tokens lie in the lower range sparse bin, while 3-5% lie in higher range
sparse bin. Importantly, our models yield significantly more diversified attention with more than
90% tokens in the desired bin (0.5-2) compared to that of 65% tokens for the Baseline. Interestingly,
SelfPatch is able to diversify the transformer attention well, avoiding the sparse bins. However it still
performs 2-20% lower than our models on various slide-level classification tasks . This might be due
to the neighbor invariant self-supervision (refer to Yun et al. (2022)) being noisy in histopathology
domain (as discussed in 4.1). EsViT consistently contains 10-15% more tokens compared to the
Baseline in the desired bin. However it still contains much more tokens in the sparse bins compared
to DiRL and Cellback. These observations justify our premise that dense matching could diversify
the attention, which is crucial for learning representations for histopathology.

In Fig. 5, we visualize the attention overlay from models pre-trained using Baseline vanilla DINO,
and our proposed DiRL and Cellback. The regions containing tumor cells are outlined in white, while
those with necrosis and immune cells are outlined in yellow and green, respectively. It is evident that
the Baseline model is sparsely attending the WSI crop, often ignoring crucial tumor cell-dominant
regions. In contrast, our models are able to globally diversify attention. Bar plots show that almost
all tokens have moderate attention values ranging from 0.5 to 2 in DiRL. In contrast, Baseline has a
large number of tokens having very low attention (<0.5). Note that all the attention values > 1 are
clipped to 1 for visualization. Additional visualizations are provided in A.6.

WSI Crop Baseline Cellback DiRL Attention distribution

Cellback
Baseline

DiRL

Figure 5: Attention visualization. Depicts the sparse attention by Baseline, and its subsequent de-
sparsification by our methods on a representative lung cancer patch (detailed in A.6). Bar plot shows
the percentage of tokens in the three bins. Baseline contains greater than 30% of tokens’ attention
values in the sparse bins; comparatively our method contains fewer than 10%.

4.3 ABLATION STUDIES
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Figure 6: Data efficiency study. Illustrates the effect of
pre-training with different amount of training data.

Here we study the utility of various
components proposed in our frame-
work. We perform our ablations on the
Lung cancer dataset.

Data efficiency: We investigate the
effect of pre-training with different
fractions (20-100%) of total training
data. As seen in Fig. 6, the gain
in both AUC and accuracy is around
6% when DiRL-based models are pre-
trained with significantly less data
(20% data). These empirical findings show the importance of DiRL especially in low data regimes,
for e.g. rare cancers. Other ablations including: 1) Baseline with an additional layer, 2) Effect of
cell segmentation pipeline, and 3) Adaptation of DiRL with SimCLR SSL, are discussed in A.3.

5 CONCLUSION

In this work, we present a crucial requirement of tailoring SSL techniques for digital pathology
through our insightful observation about the sparsity of attention. We proposed DiRL, a framework
that densely encodes pathology characteristics and uses them in a dense matching objective for
prior-guided pre-training. Through qualitative analysis, we showed that DiRL de-sparsifies the at-
tention map, thus boosting the capabilities to encode diverse information in complex histopathology
imaging. This was corroborated by consistent performance improvement on multiple slide-level
and patch-level classification tasks by DiRL. We believe our work opens exciting avenues toward
utilizing domain-specific concepts and instilling this domain knowledge in neural networks.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Yousef Al-Kofahi, Wiem Lassoued, William Lee, and Badrinath Roysam. Improved automatic de-
tection and segmentation of cell nuclei in histopathology images. IEEE Transactions on Biomed-
ical Engineering, 57(4):841–852, 2009.

B Albertina, M Watson, C Holback, R Jarosz, S Kirk, Y Lee, and J Lemmerman. Radiology data
from the cancer genome atlas lung adenocarcinoma [tcga-luad] collection. The Cancer Imaging
Archive, 2016.

Alaaeldin Ali, Hugo Touvron, Mathilde Caron, Piotr Bojanowski, Matthijs Douze, Armand Joulin,
Ivan Laptev, Natalia Neverova, Gabriel Synnaeve, Jakob Verbeek, et al. Xcit: Cross-covariance
image transformers. Advances in neural information processing systems, 34:20014–20027, 2021.

Anil Bhattacharyya. On a measure of divergence between two statistical populations defined by
their probability distributions. Bull. Calcutta Math. Soc., 35:99–109, 1943.

Joseph Boyd, Mykola Liashuha, Eric Deutsch, Nikos Paragios, Stergios Christodoulidis, and Maria
Vakalopoulou. Self-supervised representation learning using visual field expansion on digital
pathology. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
639–647, 2021.

Nadia Brancati, Anna Maria Anniciello, Pushpak Pati, Daniel Riccio, Giosuè Scognamiglio, Guil-
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A APPENDIX

We provide additional details regarding the following in this section:

• Dataset and Implementation details A.1
• Additional experiments and results A.2
• Additional ablation studies A.3
• Effect of WSI magnification on DiRL A.5
• Token-level analysis A.4
• Additional attention distributions and visualization A.6
• Disentangled block from pathological point of view A.7

A.1 DATASET AND IMPLEMENTATION DETAILS

A.1.1 DATASETS

WSI Datasets: 1) TCGA-Lung: This dataset consists of 940 diagnostic digital slides from two sub-
types of Lung cancer - Lung adenocarcinoma (LUAD) and Lung Squamous cell carcinoma (LUSC).
We split the data into 748 training (391 LUAD, 357 LUSC) and 192 (96 LUAD, 96 LUSC) testing
samples randomly. The WSI-crops (670K train, 150K test) are extracted at 5× magnification. 2)
TCGA-BRCA: This dataset consists 1034 diagnostic digital slides of two subtypes of Breast cancer
- Invasive ductal carcinoma (IDC) and Invasive lobular carcinoma (ILC). We split the data into 937
training (747 IDC, 190 ILC) and 97 (77 IDC, 20 ILC) testing samples randomly. The WSI-crops
(790K train, 90K test) are extracted at 5× magnification. 3) TCGA-PAAD: This dataset consists
of 168 diagnostic digital slides of two subtypes of Pancreatic cancer - Classical and Basal. We
split the data into 112 training (93 Classical, 19 Basal) and 56 (43 Classical, 13 Basal) testing
samples randomly. The WSI-crops (113K train, 60K test) are extracted at 5× magnification. 4)
BRIGHT: Comprises 703 (423 training, 80 validation, 200 testing) diagnostic digital slides. This
dataset contains two sub-tasks: 3-class WSI classification and 6-class WSI classification tasks. For
the first sub-task, the 3 classes are as follows - Non cancerous (PB+UDH), Pre-cancerous or Atypi-
cal (ADH+FEA), and Cancerous (DCIS+IC). For the second sub-task, the 6 classes are as follows -
Pathological Benign (PB), Usual Ductal Hyperplasia (UDH), Flat Epithelia Atypia (FEA), Atypical
Ductal Hyperplasia (ADH), Ductal Carcinoma in Situ (DCIS), and Invasive Carcinoma (IC). The
BRIGHT challenge contains train, validation, and test splits. Since the challenge is not active now,
labels for the test set are not available. Therefore, we reported our results for this dataset on its
validation set as our test set. Class-wise data split can be found here 1. The WSI-crops (1.24M train,
0.2M test) are extracted at 10× magnification.

Patch Datasets: 1) MHIST (Wei et al., 2021): Consists of 3152 images of colon with tasks to
classify the type of colorectal polyps into two types, benign and pre-cancerous. All the image
resolutions are of 224 × 224 pixels. 2) Chaoyang (Zhu et al., 2021): Consists of 6160 patches of size
512 × 512 pixels from Colon cancer divided into four classes - normal, serrated, adenocarcinoma,
and adenoma. These patches are resized to 224 × 224 pixels in our experiments.

For these two patch datasets, we split their official training sets into a 5 fold cross validation sets.
We train on 4 folds, validate on 1 fold and test on their official test sets. Thus, we report our results
(accuracy and AUC) as a mean of 5 fold cross validation trials.

A.1.2 IMPLEMENTATION DETAILS.

For all our experiments, 224 × 224 sized crops are extracted from WSIs. We set the patch size for
vision transformer input to p = 16. Therefore, the number of tokens per WSI crop are n = 196. For
ViT-Tiny (ViT-T), the embedding dimension d = 192, whereas for ViT-small (ViT-S), d = 384.

Pre-training: For pre-training with DINO, we follow the hyper-parameter initialization from their
source code (Caron et al., 2021). We use a batch size of 256. In pre-training DiRL, we set the loss
weighting factors λ1 = 0.5 and λ2 = 0.1

4 , whereas for DiRL without disentangle block (Cellback),

1https://research.ibm.com/haifa/Workshops/BRIGHT/
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we set λ1 = 0.5. We use two different projection heads of default output sizes (65536) (Caron
et al., 2021) for region representations fc and fb, and four different projection heads of smaller
output size (4096) for disentangled spatial interplay features. For pre-training with i) SimCLR, we
adopted the implementation from Li et al. (2021a) with a batch size 512, ii) EsViT, implementation
is adopted from Li et al. (2021b), and iii) SelfPatch, implementation is adopted from Yun et al.
(2022). Note that pre-training is only performed on training samples of WSI datasets. For slide-
level classification tasks, all models are pre-trained for 100 epochs on Lung and PAAD datasets, for
50 epochs on BRIGHT, and 30 epochs on BRCA. To study data-efficiency plot in Fig. 6, all the
models are pre-trained for 50 epochs on the Lung dataset.

Multiple instance learning: We use DSMIL (Li et al., 2021a) for slide-level classification throughout
this study. For training DSMIL, we use a learning rate of 2e−4, and weight decay of 5e−2. Batch size
is set to 1 to handle variable bag size for each WSI W . Other hyper-parameters such as number of
epochs, and train-validation split ratio are kept consistent with Li et al. (2021a). Note that training
samples from the WSI datasets are split into train and validation for MIL training. We hope to
explore the impact of other MIL frameworks such as Ilse et al. (2018); Shao et al. (2021); Lu et al.
(2021b); Lerousseau et al. (2021); Chen et al. (2022); Zhang et al. (2022); Pinckaers et al. (2020) on
our DiRL learned features in future.

Patch classification: In our experiments of fine-tuning for patch classification, an average pooling
layer (for averaging the tokens) followed by a fully connected layer is placed on top of the pre-
trained transformer-encoder backbone. For all experiments on MHIST dataset, we use a learning
rate of 3e−4, weight decay of 1e−2, and batch size of 128. We train the network for 40 epochs
and decay the learning rate by 0.1 at epoch 20 and epoch 30. For all experiments on the Chaoyang
dataset, we use a learning rate of 1e−4, weight decay of 1e−2, and batch size of 128. We train the
network for 45 epochs and decay the learning rate by 0.1 at epoch 20, 30 and 40.

A.2 ADDITIONAL EXPERIMENTS AND RESULTS

Comparison with HIPT. HIPT (Chen et al., 2022) is a recently proposed SSL framework tailored
for digital pathology. We compare the performance of our DiRL-based models with HIPT on the
datasets common to both studies, i.e, Lung and BRCA. HIPT consists of eight transformer blocks of
ViT-S followed by four blocks of ViT-tiny. For the model size to be comparable to HIPT parameter
size, we adopted a similar model architecture as HIPT, termed with notation -H. Note that the two
set of blocks in HIPT are trained in a hierarchical way, whereas we simply train all the 12 blocks
together in an end-to-end manner. We remain consistent with their data split for prior-guided pre-
training and MIL training. On Lung datasets, Cellback shows relative improvement of 3% in both
accuracy and AUC compared to HIPT. Whereas on BRCA, Cellback significantly outperforms HIPT
with relative improvement of more than 9% in accuracy and 6% in AUC. Note that HIPT is pre-
trained on whole The Genome Cancer Atlas (TCGA), consisting of 10678 WSIs from 33 cancer
types. In contrast, we just pre-trained for each dataset separately, thus using 10 times less WSIs.

Table 4: Comparison with HIPT (Chen et al., 2022)

Dataset Lung BRCA
Metric Acc AUC Acc AUC

HIPT 0.862 0.942 0.839 0.901
Cellback-H 0.888 0.971 0.917 0.958

Comparison with other methods in BRIGHT challenge: Here we compare F1-scores of our
models with a few papers published as part of the BRIGHT challenge (Wentai et al. (2022); Zhan
et al. (2022); Marini et al. (2022)), termed as Method - 1, Method - 2, and Method - 3 respectively,
and the BRIGHT baseline presented by the challenge organizers in Brancati et al. (2021b). Note that
BRIGHT challenge consists of WSI-level labels, as well as 3000+ annotated ROIs with an average
size 2000 × 2000 pixels. Using them for supervision can naturally boost the performance. BRIGHT
baseline doesn’t use annotated ROIs. Method - 2 and Method - 3 utilized the ROIs for training
their feature encoder. In contrast, Method - 1 presents two experiments, one with SSL on WSIs for
feature encoder, and one with fully supervised training (FS) for training feature encoder. Following
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this, for MIL, they experimented with both CLAM and Reformer for slide-level classification. For
MIL framework in our experiments we adopted DSMIL througout this study for slide-level tasks,
and as DSMIL is more similar to CLAM than a transformer-based Reformer, for fair comparison
we included their experiments with CLAM. It can be observed that for methods not supervised with
localized annotation at ROI-level, Cellback performs best for both 3-class and 6-class classification
tasks in terms of F1-score. Compared to supervised counterpart, our Cellback still performs best for
6-class task, whereas just slightly lower than Method - 2 and Method - 3.

Table 5: F1-score on BRIGHT validation set.

Dataset BRIGHT (3) BRIGHT (6) ROIsMetric F1-score F1-score

BRIGHT baseline (Brancati et al., 2021b) 0.580 0.390 ✗
Method - 1 (SSL + CLAM) (Wentai et al., 2022) 0.642 0.412 ✗

Baseline-S 0.632 0.467 ✗
Cellback-S 0.663 0.494 ✗

DiRL-S 0.625 0.467 ✗

Method - 1 (FS + CLAM) (Wentai et al., 2022) 0.691 0.453 ✓
Method - 2 (Zhan et al., 2022) 0.680 0.440 ✓

Method - 3 (Marini et al., 2022) 0.650 0.450 ✓

A.3 ADDITIONAL ABLATION STUDIES

Baseline with an additional layer. For a fair comparison with DiRL pre-training which contains
additional disentangle transformer block, we implement the Baseline ViT-S with an additional layer,
i.e. a model with 13 transformer blocks. We explored two versions of this model: 1) only one DINO
projection head from the 13th layer (Baseline-S -13), 2) two DINO projection heads, one from the
12th layer and another from the 13th layer (Baseline-S -13∗). In Table 6, both these models perform
sub-par to our proposed pre-training, confirming the importance of our domain-aware design choice
in Cellback and DiRL over just adding more model parameters.

Table 6: Effect of additional layer in Baseline

Dataset Lung BRIGHT (3) BRIGHT (6)
Metric Acc AUC Acc AUC Acc AUC

Baseline-S 0.911 0.967 0.637 0.835 0.475 0.787
Baseline-S - 13 0.916 0.963 0.625 0.808 0.462 0.766
Baseline-S - 13* 0.916 0.966 0.637 0.850 0.462 0.762

Cellback-S 0.921 0.966 0.675 0.854 0.525 0.813
DiRL-S 0.927 0.973 0.650 0.852 0.500 0.799

Effect of cell segmentation pipelines: We evaluate DiRL framework with cell prior Pc generated
from three different cell segmentation pipelines namely HistomicsTK, Cellpose, and HoVer-Net on
Lung cancer subtyping task in Table 7. HistomicTK is a python API which provides a handcrafted
approach for cell segmentation based on Wu et al. (2004); Lowe (2004); Al-Kofahi et al. (2009).
The other two pipelines constitute powerful deep learning based models. Among the three, HoVer-
Net > Cellpose > HistomicTK in terms of segmentation performance (see Fig. 15, 16). It can be
observed that models trained with the near-perfect segmentation pipeline (HoVer-Net) performs the
best in slide-level classification compared to HistomicTK and Cellpose. It is noteworthy that for
other two segmentation pipelines, our method still performs on par with the vanilla DINO Baseline,
except for Cellback model using HistomicTK for cell prior. This exception is attributed to the poor
segmentation quality by HistomicTK, thus infusing noise in matching regions between the views in
pre-training. We believe that using HoVer-Net on other datasets will further boost their performance
compared to using Cellpose in Table 1. In Fig. 7, we show the effect of cell segmentation pipelines
on the de-sparsification of attention. Consistently across all the three segmentation pipelines, Cell-
back and DiRL achieve better de-sparsification compared to the Baseline.
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Table 7: Effect of cell segmentation pipelines

Dataset Lung
Segmentation HistomicsTK HoVer-Net Cellpose

Metric Acc AUC Acc AUC Acc AUC

Cellback-T 0.890 0.960 0.906 0.964 0.901 0.960
DiRL-T 0.906 0.964 0.906 0.965 0.901 0.957

Cellback-S 0.901 0.971 0.921 0.966 0.911 0.969
DiRL-S 0.916 0.967 0.927 0.973 0.911 0.964

HoVer-Net Cellpose HistomicTK

Figure 7: Attention distribution plot. Vertical lines separate the three defined bins. The percentage
values show the percentage of tokens with attention values in the desired bin (0.5-2) for Baseline,
Cellback, and DiRL.

Adaptation of DiRL with other SSL frameworks: In this study so far we adopted DINO frame-
work for the self-supervision of the WSIs. However, DiRL framework can be incorporated with any
self-supervised learning strategies. In Table 8, we demonstrate the performance of our proposed
Cellback and DiRL representations pre-trained with either BYOL (Grill et al., 2020) or SimCLR
(Chen et al., 2020) pipeline on the Lung dataset. We compare this adapted framework with Base-
line models pre-trained with vanilla BYOL and vanilla SimCLR. Irrespective of SSL framework,
Cellback and DiRL consistently outperform the Baseline in both Accuracy and AUC.

Table 8: Pre-training DiRL with other SSL frameworks. All the results are reported for models
pre-trained for 20 epochs.

SSL framework Dataset Lung
Metric Acc AUC

Baseline-S 0.744 0.822
BYOL Cellback-S 0.796 0.858

DiRL-S 0.802 0.866
Baseline-S 0.791 0.869

SimCLR Cellback-S 0.807 0.893
DiRL-S 0.802 0.894

Baseline-S 0.802 0.891
DINO Cellback-S 0.812 0.904

DiRL-S 0.823 0.904

Effect of MixUp in vanilla SSL: Another alternative to diversifying model attention would be to
use stronger augmentation techniques. To test this, we evaluate the effect of MixUp in pre-training
a ViT with SSL. For applying MixUp in self-supervision, we adopted i-mix (Lee et al., 2020) in the
DINO framework. In Table 9, it can be observed, that this MixUp strategy improves the performance
of the vanilla SSL due to its regularizing effects. However, this improvement is not attributed to the
de-sparsification of the transformer attention weights (see Fig. 8). The complementary nature of our
proposed approach and stronger augmentation techniques will be explored in future work.
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Table 9: Pre-training DINO with MixUp

Dataset Lung
Metric Acc AUC

Baseline-S 0.911 0.967
Baseline-S w/ MixUp 0.916 0.972

Cellback-S 0.921 0.967
DiRL-S 0.927 0.973
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Figure 8: Attention distribution plot. Vertical lines separate the three defined bins. The percentage
values show the percentage of tokens with attention values in the desired bin (0.5-2) for Baseline,
Baseline w/ MixUp, Cellback, and DiRL.

Multi-task adaptation of vanilla SSL: An alternative approach of using cell segmentation as a
prior could be to use the segmentation as an auxiliary task in self-supervised pre-training strategy.
Consequently, in this section, we evaluate the impact of pre-training ViT with vanilla SSL jointly
with a segmentation related auxiliary task. In order to avoid the use of a heavy decoder for segmen-
tation, we instead design a new ‘cell prediction task’ to predict the number of cells present in each
p× p patch of WSI-crop. A linear layer is applied on top of the ViT encoder for this task.

The joint optimization of vanilla SSL with the cell prediction task could hypothetically force the
model to learn discriminative features from SSL and capture de-sparsification effects from the su-
pervised loss (Lsup). We adopted the cell prediction supervised loss Lsup with the Baseline. We
find that the model with Lsup could outperform the baseline model at early epochs (accuracy of
0.828 vs. 0.802 in baseline, AUC of 0.920 vs. 0.891 in baseline). However, with later training
epochs, the supervised loss does not augment the vanilla SSL pre-training (accuracy of 0.911 vs.
0.911 in baseline, AUC of 0.967 vs. 0.967 in baseline). Thus, the multi-task adaptation leads to
better convergence at lower epochs but under-performs our DiRL pre-training strategy when trained
for a longer training schedule (100 epochs).

We analyzed the effect of Lsup on the attention distribution in Fig. 9. It reveals that although
the supervised loss helps to de-sparsify attention to an extent, the de-sparsification is still sub-par
compared to Cellback and DiRL.

A.4 TOKEN-LEVEL ANALYSIS

Disentanglement of cellular and non-cellular regions. To investigate whether DiRL implicitly
distills the information regarding cell and back tokens into pre-trained model, we generate t-SNE
plot from cell tokens and back tokens before their average pooling in the transformer encoder. For
both token types, 30K tokens are randomly sampled from WSI-crops in the test set. We then fit sep-
arate 2-D Gaussians on the t-SNE points of cell tokens and back tokens (see Fig. 10), and measure
the Jensen–Shannon divergence (JS) (Lin, 1991) and Bhattacharya distance (BD) (Bhattacharyya,
1943) between the two distributions. It can be observed in Table 10 that DiRL > Cellback > Base-
line, in both JS and BD, which implies that DiRL can better separate the cell tokens from the back
tokens, followed by Cellback, while the Baseline performs worst. This analysis provides us fur-
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Figure 9: Attention distribution plot. Vertical lines separate the three defined bins. The percentage
values show the percentage of tokens with attention values in the desired bin (0.5-2) for Baseline,
Baseline w/ Lsup, Cellback, and DiRL.

ther insights that a model pre-trained with DiRL retains domain-specific information on cellular vs.
non-cellular regions.

Baseline Cellback DiRL

Figure 10: t-SNE plot of cell and back tokens.

Table 10: Separability of cell-back tokens. Jensen–Shannon divergence (JS) and Bhattacharya
distance (BD) metrics are employed to measure the overlap of distribution of cell and back tokens
mapped on t-SNE plot in Fig. 10. Higher values mean better separability.

JS BD

Baseline-S 1.04 0.26
Cellback-S 1.20 0.36

DiRL-S 1.30 0.43

A.5 EFFECT OF MAGNIFICATION

Fig. 14 illustrates WSI-crops extracted at 5×, and it’s magnified view at 10× magnification tiled
into four crops with same image size. The crops extracted at 5× contains four times more visual
field compared to that of the crops extracted at 10×, though with less resolution. From Fig. 14, it is
evident that the crops from 5× contain visually diverse information, consisting of various structures
such as glands and cell clusters. Whereas crops from 10× are much less diverse, with crops domi-
nantly consisting of either cellular or non-cellular regions. Consequently, co-occurence of both the
regions is limited in same size WSI-crops at higher magnification like 10× compared to the ones
at 5×. Limited co-occurrence of both regions in a satisfactory quantity, could potentially lead to
sub-optimal representation learning of spatial interplay patterns between different regions. We at-
tribute Cellback’s superior performance on BRIGHT dataset to this observation (more details rather
than context). Hence, we conclude that utilizing the disentangle block is more favorable when op-
erating at lower magnification like 5×. Thus DiRL is suitable when downstream tasks require lower
magnification to focus at diverse spatial structures such as glands, tumor infiltrating lymphocytes
(TILs), and their spatial interplay in the tumor microenvironment. This could be a possible reason
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for DiRL being best for datasets processed at lower magnification (Lung, BRCA, PAAD, MHIST,
Chaoyang) (see Table 1).

A.6 ADDITIONAL ATTENTION DISTRIBUTIONS AND VISUALIZATIONS

In Fig. 11, we illustrates the distribution of learned attention as discussed in 4.2, for PAAD and
BRIGHT datasets. Baseline model has around 35-40% tokens in lower range (0-0.5) and higher
range (>2) sparse bins, while DiRL and Cellback contain less than 10% tokens in sparse bins. There
observations on PAAD and BRIGHT are consistent with our observation of attention distribution on
Lung and BRCA (refer to 4.2). Surprisingly, though the model pre-trained with EsViT on PAAD
dataset contains all the tokens in the desired bin with uniform attention values close to one, it per-
forms worse for slide-level classification task compared to DiRL, Cellback, and even Baseline (see
Table 1). This shows that although maximum encapsulation of tokens in the desired bin is helpful,
to achieve optimum performance they still need to be well distributed across the desired bin which
is achieved by our DiRL models.

PAAD BRIGHT 

Figure 11: Attention distribution plot on PAAD and BRIGHT dataset. The second bin (0.5-2)
is the desired one. Here, the percentage values show the fraction of tokens with attention values in
the desired range. Similar to the plots in fig. 4, the baseline method has a higher fraction of tokens
in lower range and higher range sparse bins, which is not ideal for digital pathology applications.

In Fig. 12, we visualize the attention overlay from models pre-trained using Baseline vanilla DINO,
and our proposed DiRL and Cellback. We mark various regions such as region dominated by tumor
cell, immune cells. It can be observed that for Lung cancer, model predominantly focus on immune
cell region, while ignoring much of the tumor cells region. Oppositely in BRCA samples, model
attends to tumor cells region mainly, while ignoring the immune cells. This could result in loss of
crucial information in encoding the representation by Baseline. In contrast, Cellback and DiRL are
able to adequately attend to each such region, thus encoding more informative representations.

So far, in qualitative attention analysis (see Fig. 5 and Fig. 12), we visualized the aggregated
attention being given to the tokens at WSI-crop level. In Fig. 13, we now visualize the interaction
relationship between a given query token with other tokens in the WSI-crop. We illustrated how
a given query (marked with a yellow bounding box) interacts with (attends to) other tokens by
visualizing the row of an attention matrix corresponding to the query. Our findings in query-level
interaction analysis is consistent with that of previously shown WSI-crop level attention analysis,
i.e, the query token sparsely attends to different tokens in baseline (vanilla SSL). In contrast, our
pretraining alleviates this problem and densely interacts the query token with other tokens in the
image.

A.7 DISENTANGLED BLOCK FROM PATHOLOGICAL POINT OF VIEW

In this study, we aim to model the interaction between the cellular (comprising various types of
cells) and non-cellular regions (comprising stroma, smooth muscle region, fat, etc). In pathology,
the interaction between various entities (nuclei, stroma, glands, etc.) has been found to have clini-
cal significance (Saltz et al., 2018; Diao et al., 2021; Zormpas-Petridis et al., 2021). For modeling
the interaction between cellular and non-cellular regions, we believe that disentangling both the
regions followed by explicitly encoding the inter-intra region interaction is necessary. Otherwise
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without disentanglement, encoding the inter-intra region interaction would not be precisely achiev-
able, pertaining to the fact that average pooling in vision transformers could potentially dilute these
token-level crucial signals. Future directions could delve into utilizing more refined entities (such
as immune cells region, tumor regions, glands, necrotic region, and stroma) and quantifying their
mutual interactions, thus better guiding the neural network to learn intricacies of digital pathology.
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Figure 12: Attention visualization. a and b shows an example 5× patches (size 224 × 224) from
lung cancer, c and d shows an example 5× patch (size 224 × 224) from breast carcinoma BRCA,
e shows an example 5× patch (size 224 × 224) of a normal region from the pancreatic adenocarci-
noma dataset. In column 2, (*.1) shows the Baseline model attention maps of the patches in column
1. In column 3, (*.2) shows the Cellback model attention maps of the patches in column 1. In
column 4, (*.3) shows the DiRL attention maps of the patches in column 1. In a, b, c, and d, the
tumor regions have been annotated in white, lymphocytic regions in green and necrosis in yellow. In
the first and second rows, the arrows indicate the tumor regions which were sparsely attended to by
the baseline as compared to our models. Though the baseline model attends well to the lymphocytic
regions in a, it fails to densely attend to the important tumor areas. In the third and fourth row, the
arrows indicate the lymphocytic regions which were sparsely attended to by the baseline as com-
pared to our models. The tumor regions, however, exhibit high attention for all the models. In the
fifth row, the baseline models sparsely attend to many of the acinar tissue regions (blue regions). In
contrast, our model diversifies the attention over all the acinar regions.
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Baseline Cellback DiRL

Figure 13: Tokens Interaction Visualization. Query token is marked in yellow bounding box.
The interaction of the query token with all other tokens in the WSI-crop is illustrated for Baseline,
Cellback, and DiRL . It can be observed that, in Cellback and DiRL, the query token interacts more
densely to various tokens in the image compared to the Baseline.

24



Under review as a conference paper at ICLR 2023

5X

10X

10X

10X

10X

5X

10X

10X

10X

10X

Figure 14: Illustration of WSI-crops extracted at 5× and their magnified view at 10× magnification
tiled into four images with same size as of WSI-crops at 5×. The crops at 5× contain diverse
phenotypic information such as cluster of cells, glands, and stroma. In contrast, the crops at 10× are
often limited in phenotypic diversity of these structures.
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Figure 15: Cell segmentation performance. Illustrations of WSI-crops, and the output of
cell segmentation from HistomicsTK, Cellpose, and HoVer-Net. Black arrows denote normal
cells/lymphocytes, and yellow arrows denote large tumorous cells. HistomicsTK misses numer-
ous tumorous cells, while adequately detecting the normal ones. The more powerful deep-learning
pipelines, Cellpose and HoVer-Net, are able to capture both type of cells with greater precision.
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Figure 16: Illustrations of WSI-crops, and the output of cell segmentation from HistomicsTK, Cell-
pose, and HoVer-Net. Green arrow denotes blood cells, and yellow arrow denotes large tumorous
cells. Note that the arrangement/distribution of blood cells is not implicated in tumor phenotyping.
Both HistomicsTK and Cellpose segment the blood cells, while HoVer-Net avoids them to a large
extent. This example shows that HoVer-Net is preferable.
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