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Abstract

Pathology reports are increasingly being used for development of vision-language models.
Because the reports often include information that cannot directly be derived from paired
images, careful selection of information is required to prevent hallucinations in tasks like
report generation. In this paper, we present a language model for subsentence segmentation
based on the information content, as part of a preprocessing workflow for 27,500 pathology
reports of cutaneous melanocytic lesions. After initial clean up, the reports were first
translated from Dutch to English and then segmented by separate language models. Both
models were developed using an iterative approach, in which the development dataset was
expanded with manually corrected model predictions for previously unannotated reports
before finetuning the next version of the models. Over the course of eight iterations, the
development dataset was in the end scaled up to 1,500 translated and annotated reports.
On the independent test set of 3,597 sentences from 150 reports, 219 translation errors
(6,1%) of different severities were counted. The subsentence segmentation model achieved
a strong predictive performance on the test set with a macro average F1-score of 0.921 (95%
CI, 0.890-0.940) and a weighted average F1-score of 0.952 (95% CI, 0.944-0.960) over 13
different classes. The remaining 25,850 unannotated reports were translated and segmented
using the final models to complete the dataset preprocessing. Differences in word count
and class distribution between section types of the reports were explored in preparation for
future vision-language modeling. The presented methodology is generic and can, therefore,
easily be extended to multiple or different pathology domains beyond melanocytic skin
lesions. Code and trained model parameters are made publicly available.
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Figure 1: Overview of the pathology report preprocessing workflow.

1 Introduction

Vision-language models in computational pathology have recently gained attention for tasks
like multimodal pre-training, image retrieval, and image captioning. (Huang et al., 2023;
Lu et al., 2024b; Vorontsov et al., 2024; Lu et al., 2024a) Some of the first models that
combined vision and language for histopathology, such as PLIP (Huang et al., 2023) and
CONCH (Lu et al., 2024b), were trained using histopathology images paired with captions,
primarily scraped from social media or scientific literature. However, for case-level tasks
like pathology report generation, which can potentially reduce the workload of pathologists,
digitally archived whole slide images and corresponding pathology reports likely form a more
suitable resource for vision-language model development. This is in line with more recent
models, such as PRISM (Vorontsov et al., 2024) and PathChat (Lu et al., 2024a).

Pathology reports are often diverse in content, including sentences about cell and tissue
appearance on hematoxylin and eosin (H&E)-stained slides, expression patterns in immuno-
histochemistry (IHC), results of molecular testing, clinical information, patient history, (dif-
ferential) diagnoses, and treatment recommendations. (Scolyer et al., 2013) Using sentences
with information that cannot be derived from the paired images during training can lead
to hallucinations (i.e., generated statements that contradict the source content) (Ji et al.,
2023), which can be dangerous for high-stakes applications such as in healthcare, motivat-
ing the need for careful selection of information from the reports. Whereas preprocessing
steps for whole slide images (e.g., tessellation, pen marking removal, and stain normal-
ization) are well-documented and extensively studied, pathology report preprocessing for
vision-language modeling is comparatively new and best-practices are still developing.

In this work, we present a language model for segmentation of subsentences based on
the information content as part of a preprocessing workflow for pathology reports. Af-
ter de-identification, removal of irrelevant sentences, and sectioning, the reports were first
translated from Dutch to English and then segmented by separate language models, both
developed using an iterative model development approach (Figure 1). While the results
shown in this paper are specific to reports of cutaneous melanocytic lesions, the presented
methodology is more general and can straightforwardly be extended to multiple or different
pathology domains. The code and trained model parameters are made publicly available1.

1. https://github.com/RTLucassen/report_preprocessing
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Class Related toDescription
Skin excision specimen reaching into the deep reticular dermis. In the dermis, there are 
superficial and deep nests of mainly large, epithelioid melanocytes with enlarged nuclei 
which mostly contain a prominent nucleolus. The nuclei are irregular. In I2, there are 
up to 5 mitoses per 1 mm2. Towards the base, no maturation is seen. The lesion extends 
into the basal margin. The distance to the nearest lateral margin is 0.9 mm. Additional 
stains and molecular diagnostics are requested. Additional immunohistochemistry: Melan-A 
is positive. The lesion is partly asymmetrical. No clear intraepidermal component. ALK 
is negative, ROS1 is negative, NTRK is negative, BAP1 is positive, HMB45 is negative, p16 
is negative, PRAME is positive.

Discussion
It concerns an atypical, epithelioid melanocytic lesion, somewhat Spitzoid-looking. The 
lesion has a macroscopic diameter of 5 mm. Based on additional immunohistochemistry, a 
Spitzoid signature could not be confirmed (ALK, ROS1, and NTRK all negative). NGS shows 
a mutation in NRAS. The SNP array shows 3 CNV. Often, a total of 3 or more CNVs is 
regarded as indicative of malignancy. The lesion is, given the morphological and 
molecular findings, classified as nodular melanoma.

Conclusion
Skin shave excision specimen from the jawline on the right: atypical, epithelioid 
melanocytic lesion, best to be classified as nodular melanoma. The Breslow thickness is 
at least 1.6 mm. A cutaneous metastasis cannot be excluded for certain, but there is no 
history of prior melanoma. No ulceration, no regression, no satellites. pTNM 8th edition 
2017: pT2a melanoma. Local re-excision with a margin of 1 cm is advised.

Figure 2: Example of an annotated pathology report describing a cutaneous melanocytic
lesion (left) with the corresponding class definitions (right).

2 Materials and Methods

2.1 Dataset

The dataset used in this work consists of 27,500 pathology reports describing skin biopsy
and excision specimens with melanocytic lesions, accessioned between January 1, 2013 and
December 31, 2020, and obtained from the digital archive of the Department of Pathol-
ogy at the University Medical Center Utrecht, the Netherlands. The reports were made
as part of routine clinical practice by different general pathologists and more specialized
dermatopathologists. The study was conducted in compliance with the hospital’s research
ethics committee guidelines. Reports for patients who opted out of the use of their data for
research purposes were excluded.

Several manual preprocessing steps were performed at the start to clean up the pathology
reports. All reports were de-identified by removing names or abbreviations of pathologists
and hospitals, as well as dates and case numbers. Identifying patient information was never
included in the reports, with the exception of sex and age at accession. Irrelevant sentences
were also removed. If multiple unique specimens were originally combined into a single
report, the original report was divided into a separate report for every specimen. Each
report can include four sections: (1) a structured report; (2) a free-text description of all
observations and results of diagnostic testing; (3) a free-text discussion of the findings and
the interpretation thereof; (4) a structured or free-text conclusion with key findings, the
(differential) diagnosis, and treatment recommendations. Not all sections are present in
each report.

Separate language models were used for the translation and segmentation task. Both
models were iteratively improved over the course of eight iterations by expanding the de-
velopment dataset with manually corrected model predictions for previously unannotated

3
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Table 1: Dataset statistics.

Set Reports Sentences Words

Training 1,350 20,563 235,194
Validation 150 2,398 27,593
Test 150 3,597 37,465
Unannotated 25,850 179,358 1,980,246

Total 27,500 205,916 2,280,498

reports before finetuning the next version of the models, starting each training run from
the original model parameters. The number of reports, sentences, and words per subset of
the dataset are shown in Table 1. The development set (i.e., training and validation) was
in the end scaled up to 1,500 reports, which were in part randomly selected and in part
selected to enrich for rare melanocytic lesion subtypes, specimens with a melanocytic lesion
in combination with non-melanocytic skin pathologies, as well as reports with previously
unseen words for the translation model and uncommon classes for the segmentation model.
The number of reports and selection strategy per iteration are shown in Table 3 in the Sup-
plementary Material. The reports were translated and corrected by two translators (R.L.,
T.L.), annotated and corrected by three annotators (R.L., T.L., S.M.), all under supervi-
sion of a pathologist (W.B.). Additionally, a test set of 150 reports, selected similarly from
different patients, was annotated independently (i.e., not starting from model predictions)
by a single annotator (R.L.) and verified by a pathologist (W.B.) for evaluation of the mod-
els. An example of an annotated report with the 13 defined classes is shown in Figure 2.
Punctuation marks were included in the annotations in such a way that a sentence remains
coherent as much as possible when classes would be filtered out. Annotation and correction
of model predictions was performed using the open-source Label Studio software2. The
remaining 25,850 reports were translated using the final translation model and identified
translation errors that remained were corrected before subsentence segmentation by the
final segmentation model.

2.2 Translation Model

The vast majority of the pathology reports in the dataset were originally written in Dutch
(99.7% in Dutch, 0.3% in English). We decided to translate the reports from Dutch to
English, as most of the publicly available, pre-trained language models have English as
primary language, which can potentially be useful in the downstream development of vision-
language models for computational pathology.

We built upon a pre-trained Dutch-to-English translation model, opus-mt-nl-en3, from
the OPUS-MT project (Tiedemann and Thottingal, 2020), which is a Transformer model
(Vaswani et al., 2017) with an encoder-decoder architecture of 182 million parameters,
using SentencePiece (Kudo and Richardson, 2018) for subword tokenization. The model
was finetuned on Dutch sentences as input with the English translation as output for 100
epochs with a batch size of 32 and a starting learning rate of 1 · 10 -4. Data augmentation

2. https://labelstud.io
3. https://huggingface.co/Helsinki-NLP/opus-mt-nl-en
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consisted of the introduction of spelling errors in the input sentence, changing the input
and output sentences to upper, lower, or title case, adding parentheses around all words or
the full sentence, and using the output sentence also as input. To reduce translation errors
with respect to numbers or abbreviations (e.g., age, measured distances, percentages, and
names of genes), we additionally included a set of template sentence pairs with a range of
possible values inserted during training. The HuggingFace framework was used for model
training and inference. (Wolf et al., 2020)

2.3 Segmentation Model

For segmenting subsentences in the translated pathology reports based on the information
content, we built upon FLAN-t5-large4 (Chung et al., 2024), which is an instruction-
finetuned Transformer model (Vaswani et al., 2017) with an encoder-decoder architecture
of 783 million parameters, pre-trained on numerous language tasks. Custom tokens were
added to the default SentencePiece tokenizer (Kudo and Richardson, 2018), primarily for
the class labels. The model was finetuned on input-output pairs to learn the pathology
report-specific subsentence segmentation task for 10 epochs with a batch size of 12 and a
learning rate of 1 · 10 -4 at the start. Input prompts consisted of a single sentence to be
segmented, in combination with a context window of sentences that precede and follow it.
The output format includes the single sentence again, where now each subsentence segment
is concluded by the corresponding class token and delimited by a newline token except at
the end. An example input-output pair with a context window size of 1 can be seen below:

Input: "segment pathology sentence:‘A cutaneous metastasis cannot be excluded

for certain, but there is no history of prior melanoma.’ Context:‘The Breslow

thickness is at least 1.6 mm. <SENTENCE> No ulceration, no regression, no

satellites.’"

Output: "A cutaneous metastasis cannot be excluded for certain,<CON><Nline>but

there is no history of prior melanoma.<HIS>"

Based on a hyperparameter search, evaluated on the validation set, we selected a context
window of 7 (from a range of 0-10) and oversampled sentences with annotations of medical
history (HIS) and/or calculations and counts (CAL) (i.e., the two smallest classes) by a
factor of 5 during training. The FLAN-t5-large variant of the model showed slightly better
performance than smaller variants. In addition, we investigated including the section name
in the input prompt, which improved the performance when using a small context window
size, but did not show benefit for larger context windows. The HuggingFace framework was
used for model training and inference. (Wolf et al., 2020)

3 Results

3.1 Translation Performance

The predictive performance of the translation model was evaluated on the independent test
set of 3,597 sentences from 150 reports by counting and categorizing the type of errors.

4. https://huggingface.co/google/flan-t5-large
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Table 2: Segmentation model performance on the test set.

Class Words Precision (95% CI) Recall (95% CI) F1-score (95% CI)

H&E 16,575 0.976 (0.965-0.984) 0.959 (0.946-0.971) 0.967 (0.959-0.975)

IHC 4,959 0.958 (0.939-0.975) 0.968 (0.955-0.980) 0.963 (0.951-0.974)

IHC+ 977 0.732 (0.636-0.834) 0.854 (0.768-0.929) 0.788 (0.719-0.855)

MOL 1,132 0.929 (0.870-0.976) 0.947 (0.915-0.976) 0.938 (0.901-0.966)

CLN 1,515 0.987 (0.973-0.999) 0.962 (0.936-0.983) 0.974 (0.960-0.986)

HIS 84 0.879 (0.529-1.000) 0.690 (0.283-1.000) 0.773 (0.400-0.976)

CON 5,326 0.922 (0.895-0.946) 0.934 (0.904-0.959) 0.928 (0.908-0.946)

RAD 3,387 0.965 (0.947-0.983) 0.965 (0.946-0.981) 0.965 (0.949-0.979)

BRS 913 0.981 (0.958-0.999) 0.955 (0.915-0.989) 0.968 (0.945-0.987)

CAL 164 0.968 (0.935-1.000) 0.921 (0.786-0.980) 0.944 (0.864-0.972)

ADV 854 0.935 (0.883-0.976) 0.956 (0.864-1.000) 0.945 (0.885-0.985)

SID 691 0.924 (0.884-0.960) 0.918 (0.879-0.953) 0.921 (0.894-0.945)

UNR 888 0.882 (0.809-0.948) 0.927 (0.888-0.960) 0.904 (0.860-0.941)

Macro avg. 0.926 (0.896-0.943) 0.920 (0.884-0.948) 0.921 (0.890-0.940)

Weighted avg. 0.953 (0.946-0.961) 0.952 (0.944-0.960) 0.952 (0.944-0.960)

Translation errors that changed the meaning of a sentence and were undetectable without
knowing the input sentence were counted 21 times (0.6%), which mostly concerned (decimal)
numbers, anatomical locations, and missed or introduced negation. Spelling and grammar
errors were counted 69 times (1.9%). Incorrect translations that were detectable without
knowing the input sentence or missing words that did not considerably change the meaning
of the sentence were counted 129 times (3.6%).

3.2 Segmentation Performance

The predictive performance of the segmentation model was evaluated on the independent
test set at word level using the precision, recall, and F1-score for each class. The overall
performance was calculated by macro averaging (i.e., using equal class weights) and weighted
averaging (i.e., using proportional class weights) the class scores. Bootstrapping (R = 10,000
samples) was used to calculate 95% confidence intervals (CIs). Out of the 4,660 subsentences
in the test set, the model incorrectly reproduced the original subsentence 30 times (0.6%)
in the output. These reproduction errors, which did not affect the predicted class tokens,
were manually corrected before the evaluation.

The results of the segmentation model evaluation are shown in Table 2. The F1-scores
per class ranged between 0.773-0.974, with a macro average F1-score of 0.921 (95% CI,
0.890-0.940) and a weighted average F1-score of 0.952 (95% CI, 0.944-0.960). The model
performance was substantially lower for the HIS and IHC+ classes in comparison to the
other classes. For words annotated but not predicted as part of the HIS-class, CON and
IHC were the most frequent alternatively predicted classes. For words annotated but not
predicted as part of the IHC+-class, the most frequently predicted alternative classes were
H&E and IHC.
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Figure 3: Dataset statistics for the 27,500 melanocytic lesion pathology reports, including
histograms with the number of words per report (top row) and bar charts with
the number of words per class (bottom row), separated by section type (columns).
N indicates the number of reports for which the corresponding section was not
empty. Annotations were used for class-specific word counts if available. Model
predictions were used for the remaining reports without available annotations. A
logarithmic scale was used for the number of words per class.

3.3 Dataset Statistics

Statistics for the complete dataset of 27,500 pathology reports for downstream vision-
language modeling, extracted after preprocessing of the unannotated reports, are shown
in Figure 3. Substantial differences are seen between the sections in terms of the presence,
the words per section, and words per class. Almost all reports have a conclusion section
(99.9%), which tends to be shorts with a median of 13 words and mostly related to con-
clusions, clinical information, and the radicality. The majority of the reports also have a
description section (71.8%) with a median of 70 words. The descriptions mainly contain
observations based on H&E-stained slides, followed by information related to IHC expres-
sion patterns and the radicality. The discussion section is much less common (2.5%) and
has the largest median length of 128 words. Results of molecular testing and treatment
advice are more frequently included in the discussion section compared to the description
section. Structured report sections, typically only used for melanomas, are the least com-
mon (1.3%) and have a median length of 78 words. In contrast to the other sections, the
distribution of the word count for the structured reports does not have a single, clear mode.
The class distribution is fairly mixed, with H&E-stained slide observations, clinical informa-
tion, conclusions, and unrelated information contributing close to equally as largest classes.
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IHC-stained slides are not mentioned in the structured reports. Subsentences related to
patient history, as well as calculations and counts, are uncommon across all sections.

4 Discussion and Conclusion

As part of a preprocessing workflow for pathology reports of melanocytic lesions, we de-
veloped separate language models for translation from Dutch to English and subsentence
segmentation based on information content. This enables selective use of text data from the
reports for vision-language modeling, which can prevent hallucinations in tasks like report
generation by training only on information that can be derived from the paired images.

After initial preprocessing, the reports were first translated from Dutch to English us-
ing the language model for translation. Before finetuning this model on text from the
melanocytic lesion reports, many translation errors were seen with respect to pathology-
specific words. The number of errors greatly reduced during the iterative model development
as the dataset for finetuning increased in size. In addition, the model was found to be more
robust to spelling errors in the input sentences when these errors were also introduced during
finetuning as a form of data augmentation. Despite the improvements, words and (decimal)
numbers in the input sentences that were not seen during training remained as a source of
error and were corrected before segmentation. Hence, we expect the generalizability of the
current translation model to other pathology domains to be limited.

The language model for subsentence segmentation showed a strong predictive perfor-
mance on the independent test set with a macro average F1-score of 0.921 (95% CI, 0.890-
0.940) and a weighted average F1-score of 0.952 (95% CI, 0.944-0.960). The model reached
a F1-score of above 0.90 for 11 out of the 13 classes, with only a lower performance for
the HIS and IHC+ classes. Patient history is only present in a relatively small subset of
reports and can be fairly diverse, likely affecting both the model performance and represen-
tativeness of the evaluation for the HIS-class. The IHC+-class concerns subsentences with
observations based on IHC-stained slides, which are also visible in the H&E-stained slides.
Ambiguity regarding some subsentences and possibly also the strong context-dependence
could explain the lower segmentation performance for the IHC+-class. A limitation of the
presented approach for text segmentation is the possibility of incorrect reproduction of the
original sentence in the input. Although this occurred rarely, corrections to the model
output were required. A benefit of segmentation for structured reports, which are already
intended to ease information retrieval, is robustness to changes in the report format over
time.

The developed language models were used to translate and segment the unannotated
reports to complete the preprocessing of the entire dataset of 27,500 pathology reports. In
future work, we plan to use the preprocessed dataset in combination with the corresponding
whole slide images to investigate vision-language modeling for tasks like multimodal pre-
training and report generation in the domain of cutaneous melanocytic lesions.
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Table 3: Number of reports and selection strategy used per iteration in the iterative devel-
opment approach for the language models.

Iteration Selection Reports
Cumulative

Reports

Initial Random from long reports 30 30
1 Random from all reports 100 130
2 Random from all reports 225 355
3 Random from all reports accessioned in 2020 250 605
4 Random from all reports accessioned in 2020 250 855
5 Random from reports with coincidental findings 79 934
6 Random from reports with molecular testing 194 1,128
7 Reports with most new Dutch words 122 1,250
8 Reports with most new Dutch words 250 1,500
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