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ABSTRACT

Recent improvements in conditional generative modeling have made it possible
to generate high-quality images from language descriptions alone. We investigate
whether these methods can directly address the problem of sequential decision-
making. We view decision-making not through the lens of reinforcement learning
(RL), but rather through conditional generative modeling. To our surprise, we
find that our formulation leads to policies that can outperform existing offline
RL approaches across standard benchmarks. By modeling a policy as a return-
conditional generative model, we avoid the need for dynamic programming and
subsequently eliminate many of the complexities that come with traditional offline
RL. We further demonstrate the advantages of modeling policies as conditional
generative models by considering two other conditioning variables: constraints
and skills. Conditioning on a single constraint or skill during training leads to
behaviors at test-time that can satisfy several constraints together or demonstrate a
composition of skills. Our results illustrate that conditional generative modeling is
a powerful tool for decision-making.

1 INTRODUCTION

Over the last few years, there have been incredible advances in the field of conditional generative
modeling (Ramesh et al., 2022; Jumper et al., 2021; Brown et al., 2020; Saharia et al., 2022;
Lewkowycz et al., 2022). Image models like DALL-E (Ramesh et al., 2022) and ImageGen (Saharia
et al., 2022) can generate accurate high-resolution images from text descriptions alone. Language
models like GPT (Brown et al., 2020) can generate entire paragraphs and stories from short text
prompts. More recent models like Minerva (Lewkowycz et al., 2022) can generate complete, step-by-
step solutions to high-school math questions. The success of generative models in countless domains
motivates us to apply them to decision-making.

Directly applying generative modeling to decision-making is not so straightforward because data is
readily available from the internet in the former, but must be actively gathered from the environment
in the latter. Conveniently, there exists a wide body of work that has looked into recovering high-
performing policies from data logged by already operational systems (Kostrikov et al., 2022; Kumar
et al., 2020; Walke et al., 2022). This is particularly useful in real-world settings where interacting with
the environment is not always possible, and exploratory decisions can have fatal consequences (Dulac-
Arnold et al., 2021). With access to such offline datasets, the problem of decision-making becomes
similar to those where generative models have already found success.

Prior work in offline decision-making has primarily relied on tools from reinforcement learning (RL)
(Kumar et al., 2020; Kostrikov et al., 2022; Wu et al., 2019; Kostrikov et al., 2021; Dadashi et al.,
2021; Ajay et al., 2020; Ghosh et al., 2022). Although these ideas have found some success (Yala et al.,
2022; Jang et al., 2022; Mirhoseini et al., 2020), they are not without their flaws. Since they operate
in the same spirit as temporal difference (TD) learning, they are prone to many instabilities that
come with using function approximation, off-policy learning, and bootstrapping together, otherwise
known as the deadly triad (Sutton & Barto, 2018; Van Hasselt et al., 2018). Since they must also
operate with a limited amount of data, they rely on tricks and heuristics to keep the policy within the
distribution of the dataset. These challenges make it difficult to scale existing offline RL algorithms.

∗ denotes equal contribution. Correspondence to aajay@mit.edu, yilundu@mit.edu, abhig@mit.edu
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Figure 1: Decision Making using Conditional Generative Modeling. Framing decision making as a
conditional generative modeling problem allows us to maximize rewards, satisfy constraints and compose skills.

In this paper, we formulate the problem of offline decision-making from the perspective of conditional
generative modeling. Given a fixed dataset of reward-labeled trajectories, we adapt diffusion
models (Sohl-Dickstein et al., 2015) to learn a return-conditional model of the trajectory. During
inference, we use classifier-free guidance with low-temperature sampling to capture the best behaviors
in the dataset and glean return maximizing trajectories. Our straightforward conditional generative
modeling formulation outperforms existing approaches on standard D4RL tasks (Fu et al., 2020).

Viewing offline decision-making through the lens of conditional generative modeling allows going
beyond conditioning on returns (Figure 1). Consider an example (detailed in Appendix A) where a
robot with linear dynamics navigates an environment containing two concentric circles (Figure 2). We
are given a dataset of state-action trajectories of the robot, each satisfying one of two constraints: (i)
the final position of the robot is within the larger circle, and (ii) the final position of the robot is outside
the smaller circle. With conditional diffusion modeling, we can use the datasets to learn a constraint-
conditioned model that can generate trajectories satisfying any set of constraints. During inference,
the learned trajectory model can merge constraints from the dataset and generate trajectories that
satisfy the combined constraint. Figure 2 shows that the constraint-conditioned model can generate
trajectories such that the final position of the robot lies between the concentric circles.

Environment Training	Dataset Generation

(x,y) x2	+	y2	≤	R2 r2	≤	x2	+	y2	≤	R2x2	+	y2	≥	r2

Figure 2: Illustrative example. We visualize the 2d robot navigation environment and the constraints satisfied
by the trajectories in the dataset derived from the environment. We show the ability of the conditional diffusion
model to generate trajectories that satisfy the combined constraints.

Here, we demonstrate the benefits of modeling policies as conditional generative models. First,
conditioning on constraints allows policies to not only generate behaviors satisfying individual
constraints but also generate novel behaviors by flexibly combining constraints at test time. Further,
conditioning on skills allows policies to not only imitate individual skills but also generate novel
behaviors by composing those skills. We instantiate this idea with a state-sequence based diffusion
probabilistic model (Ho et al., 2020) called Decision Diffuser, visualized in Figure 1. In summary,
our contributions include (i) illustrating conditional generative modeling as an effective tool in
offline decision making, (ii) using classifier-free guidance with low-temperature sampling, instead of
dynamic programming, to get return-maximizing trajectories and, (iii) leveraging the framework of
conditional generative modeling to combine constraints and compose skills during inference flexibly.
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2 BACKGROUND

2.1 REINFORCEMENT LEARNING

We formulate the sequential decision-making problem as a discounted Markov Decision Process
(MDP) defined by the tuple ⟨ρ0,S,A, T ,R, γ⟩, where ρ0 is the initial state distribution, S and A are
state and action spaces, T : S × A → S is the transition function, R : S × A × S → R gives the
reward at any transition and γ ∈ [0, 1) is a discount factor (Puterman, 1995). The agent acts with a
stochastic policy π : S → ∆A, generating a sequence of state-action-reward transitions or trajectory
τ := (sk, ak, rk)k≥0 with probability pπ(τ) and return R(τ) :=

∑
k≥0 γ

krk. The standard objective
in RL is to find a return-maximizing policy π∗ = argmaxπ Eτ∼pπ

[R(τ)].

Temporal Difference Learning TD methods (Fujimoto et al., 2018; Lillicrap et al., 2015) estimate
Q∗(s, a) := Eτ∼pπ∗ [R(τ)|s0 = s, a0 = a], the return achieved under the optimal policy π∗ when
starting in state s and taking action a, with a parameterized Q-function. This requires minimizing the
following TD loss:

LTD(θ) := E(s,a,r,s′)∈D[(r + γmax
a′∈A

Qθ(s
′, a′)−Qθ(s, a))

2] (1)

Continuous action spaces further require learning a parametric policy πϕ(a|s) that plays the role of
the maximizing action in equation 1. This results in a policy objective that must be maximized:

J (ϕ) := Es∈D,a∼πϕ(·|s)[Q(s, a)] (2)

Here, the dataset of transitions D evolves as the agent interacts with the environment and both Qθ

and πϕ are trained together. These methods make use of function approximation, off-policy learning,
and bootstrapping, leading to several instabilities in practice (Sutton, 1988; Van Hasselt et al., 2018).

Offline RL In this setting, we must find a return-maximizing policy from a fixed dataset of
transitions collected by an unknown behavior policy µ (Levine et al., 2020). Using TD-learning
naively causes the state visitation distribution dπϕ(s) to move away from the distribution of the
dataset dµ(s). In turn, the policy πϕ begins to take actions that are substantially different from
those already seen in the data. Offline RL algorithms resolve this distribution-shift by imposing a
constraint of the form D(dπϕ ||dµ), where D is some divergence metric, directly in the TD-learning
procedure. The constrained optimization problem now demands additional hyper-parameter tuning
and implementation heuristics to achieve any reasonable performance (Kumar et al., 2021). The
Decision Diffuser, in comparison, does not have any of these disadvantages. It does not require
estimating any kind of Q-function, thereby sidestepping TD methods altogether. It also does not
face the risk of distribution-shift because the generative model is trained with maximum-likelihood
estimation.

2.2 DIFFUSION PROBABILISTIC MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are a specific type of generative model
that learn the data distribution q(x) from a dataset D := {xi}0≤i<M . They have been used most
notably for synthesizing high-quality images from text descriptions (Saharia et al., 2022; Nichol
et al., 2021). Here, the data-generating procedure is modelled with a predefined forward noising
process q(xt+1|xt) := N (xt+1;

√
αtxt, (1− αt)I) and a trainable reverse process pθ(xt−1|xt) :=

N (xt−1|µθ(xt, t),Σt), whereN (µ,Σ) denotes a Gaussian distribution with mean µ and variance Σ,
αt ∈ R determines the variance schedule, x0 := x is a sample, x1,x2, ...,xN−1 are the latents, and
xN ∼ N (0, I) for carefully chosen αt and long enough T . Starting with Gaussian noise, samples
are then iteratively generated through a series of ”denoising” steps.

Although a tractable variational lower-bound on log pθ can be optimized to train diffusion models,
Ho et al. (2020) propose a simplified surrogate loss:

Ldenoise(θ) := Et∼[1,N ],x0∼q,ϵ∼N (0,I)[||ϵ− ϵθ(xt, t)||2] (3)

The predicted noise ϵθ(xt, t), parameterized with a deep neural network, estimates the noise ϵ ∼
N (0, I) added to the dataset sample x0 to produce noisy xt. This is equivalent to predicting the
mean of pθ(xt−1|xt) since µθ(xt, t) can be calculated as a function of ϵθ(xt, t) (Ho et al., 2020).
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Figure 3: Planning with Decision Diffuser. Given the current state st and conditioning, Decision Diffuser
uses classifier-free guidance with low-temperature sampling to generate a sequence of future states. It then uses
inverse dynamics to extract and execute the action at that leads to the immediate future state st+1.

Guided Diffusion Modelling the conditional data distribution q(x|y) makes it possible to generate
samples with attributes of the label y. The equivalence between diffusion models and score-
matching (Song et al., 2021), which shows ϵθ(xt, t) ∝ ∇xt log p(xt), naturally leads to two kinds
of methods for conditioning: classifier-guided (Nichol & Dhariwal, 2021) and classifier-free (Ho &
Salimans, 2022). The former requires training an additional classifier pϕ(y|xt) on noisy data so that
samples may be generated at test-time with the perturbed noise ϵθ(xt, t)−s

√
1− ᾱt∇xt

log p(y|xt),
where s is referred to as the guidance scale. The latter does not separately train a classifier but modifies
the original training setup to learn both a conditional ϵθ(xt,y, t) and an unconditional ϵθ(xt, t) model
for the noise. The unconditional noise is represented, in practice, as the conditional noise ϵθ(xt,Ø, t)
where a dummy value Ø takes the place of y. The perturbed noise ϵθ(xt, t)+s(ϵθ(xt,y, t)−ϵθ(xt, t))
is used to later generate samples.

3 GENERATIVE MODELING WITH THE DECISION DIFFUSER

It is useful to solve RL from offline data, both without relying on TD-learning and without risking
distribution-shift. To this end, we formulate sequential decision-making as the standard problem of
conditional generative modeling:

max
θ

Eτ∼D[log pθ(x0(τ)|y(τ))] (4)

Our goal is to estimate the conditional data distribution with pθ so we can later generate portions of a
trajectory x0(τ) from information y(τ) about it. Examples of y could include the return under the
trajectory, the constraints satisfied by the trajectory, or the skill demonstrated in the trajectory. We
construct our generative model according to the conditional diffusion process:

q(xt+1(τ)|xt(τ)), pθ(xt−1(τ)|xt(τ),y(τ)) (5)

As usual, q represents the forward noising process while pθ the reverse denoising process. In the
following, we discuss how we may use diffusion for decision making. First, we discuss the modeling
choices fof diffusion in Section 3.1. Next, we discuss how we may utilize classifier-free guidance to
capture the best aspects of trajectories in Section 3.2. We then discuss the different behaviors that
may be implemented with conditional diffusion models in Section 3.3. Finally, we discuss practical
training details of our approach in Section 3.4.

3.1 DIFFUSING OVER STATES

In images, the diffusion process is applied across all pixel values in an image. Naı̈vely, it would
therefore be natural to apply a similar process to model the state and actions of a trajectory. However,
in the reinforcement learning setting, directly modeling actions using a diffusion process has several
practical issues. First, while states are typically continuous in nature in RL, actions are more varied,
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and are often discrete in nature. Furthermore, sequences over actions, which are often represented as
joint torques, tend to be more high-frequency and less smooth, making them much harder to predict
and model (Tedrake, 2022). Due to these practical issues, we choose to diffuse only over states, as
defined below:

xt(τ) := (sk, sk+1, ..., sk+H−1)t (6)

Here, t denotes the timestep in the forward process and k denotes the time at which a state was visited
in trajectory τ . Moving forward, we will view xt(τ) as a noisy sequence of states from a trajectory
of length H . We represent xt(τ) as a two-dimensional array with one column for each timestep of
the sequence.

Acting with Inverse-Dynamics. Sampling states from a diffusion model is not enough for defining
a controller. A policy can, however, be inferred from estimating the action ak that led the state sk to
sk+1 for any timestep k in x0(τ). Given two consecutive states, we generate an action according to
the inverse dynamics model (Agrawal et al., 2016; Pathak et al., 2018):

ak := fϕ(sk, sk+1) (7)

Note that the same offline data used to train the reverse process pθ can also be used to learn fϕ.

We illustrate in Table 2 how the design choice of directly diffusing state distributions, with an inverse
dynamics model to predict action, significantly improves performance over diffusing across both
states and actions jointly.

3.2 PLANNING WITH CLASSIFIER-FREE GUIDANCE

Given a diffusion model representing the different trajectories in a dataset, we next discuss how
we may utilize the diffusion model for planning. To use the model for planning, it is necessary
to additionally condition the diffusion process on characteristics y(τ). One approach could be to
train a classifier pϕ(y(τ)|xt(τ)) to predict y(τ) from noisy trajectories xt(τ). In the case that y(τ)
represents the return under a trajectory, this would require estimating a Q-function in the same way
as Janner et al. (2022), which requires a separate, complex dynamic programming procedure.

One approach to avoid dynamic programming is to directly train a conditional diffusion model
conditioned on the returns y(τ) in the offline dataset. However, as our dataset consists of a set
of sub-optimal trajectories, the conditional diffusion model will be polluted by such sub-optimal
behaviors. To circumvent this issue, we utilize classifier-free guidance (Ho & Salimans, 2022) with
low-temperature sampling, to extract high-likelihood trajectories in the dataset. We find that such
trajectories correspond to the best set of behaviors in the dataset. Formally, to implement classifier
free guidance, a x0(τ) is sampled by starting with Gaussian noise xT (τ) and refining xt(τ) into
xt−1(τ) at each intermediate timestep with the perturbed noise:

ϵ̂ := ϵθ(xt(τ),Ø, t) + s(ϵθ(xt(τ),y(τ), t)− ϵθ(xt(τ),Ø, t)), (8)

where the scalar s applied to (ϵθ(xt(τ),y(τ), t)− ϵθ(xt(τ),Ø, t)) seeks to augment and extract the
best portions of trajectories in the dataset that exhibit y(τ).

With these ingredients, sampling from the Decision Diffuser becomes similar to planning in RL.
First, we observe a state in the environment. Next, we sample states later into the horizon with our
diffusion process conditioned on y and history of last K states observed. Finally, we identify the
action that should be taken to reach the most immediate predicted state with our inverse dynamics
model. This procedure repeats in a standard receding-horizon control loop described in Algorithm 1
and visualized in Figure 3.

3.3 CONDITIONING BEYOND RETURNS

So far we have not explicitly defined the conditioning variable y(τ). Though we have mentioned that
it can be the return under a trajectory, we may also consider guiding our diffusion process towards
sequences of states that satisfy relevant constraints or demonstrate specific behavior. We describe
these scenarios in greater detail below.

Maximizing Returns To generate trajectories that maximize return, we condition the noise model
on the return of a trajectory so ϵθ(xt(τ),y(τ), t) := ϵθ(xt(τ), R(τ), t). These returns are normalized
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Algorithm 1 Conditional Planning with the Decision Diffuser
1: Input: Noise model ϵθ, inverse dynamics fϕ, guidance scale s, history length K, condition y
2: Initialize h← Queue(length = K), k ← 0 // Maintain a history of length K
3: while not done do
4: Observe state s; h.insert(s); Initialize xT (τ) ∼ N (0, αI)
5: for t = T . . . 1 do
6: xt(τ)[: length(h)]← h // Constrain plan to be consistent with history
7: ϵ̂← ϵθ(xt(τ), t) + s(ϵθ(xt(τ),y, t)− ϵθ(xt(τ), i)) // Classifier-free guidance
8: (µt−1,Σt−1)← Denoise(xt(τ), ϵ̂)
9: xt−1 ∼ N (µt−1, αΣt−1)

10: end for
11: Extract (sk, sk+1) from x0(τ)
12: Execute ak = fϕ(st, sk+1); k ← k + 1
13: end while

to keep R(τ) ∈ [0, 1]. Sampling a high return trajectory amounts to conditioning on R(τ) = 1. Note
that we do not make use of any Q-values, which would then require dynamic programming.

Satisfying Constraints Trajectories may satisfy a variety of constraints, each represented by the
set Ci, such as reaching a specific goal, visiting states in a particular order, or avoiding parts of the
state space. To generate trajectories satisfying a given constraint Ci, we condition the noise model on
a one-hot encoding so that ϵθ(xt(τ),y(τ), t) := ϵθ(xt(τ),1(τ ∈ Ci), t). Although we train with an
offline dataset in which trajectories satisfy only one of the available constraints, at inference we can
satisfy several constraints together.

Composing Skills A skill i can be specified from a set of demonstrations Bi. To generate
trajectories that demonstrate a given skill, we condition the noise model on a one-hot encoding so
that ϵθ(xt(τ),y(τ), t) := ϵθ(xt(τ),1(τ ∈ Bi), t). Although we train with individual skills, we may
further compose these skills together during inference.

Assuming we have learned the data distributions q(x0(τ)|y1(τ)), . . . , q(x0(τ)|yn(τ)) for
n different conditioning variables, we can sample from the composed data distribution
q(x0(τ)|y1(τ), . . . ,yn(τ)) using the perturbed noise (Liu et al., 2022):

ϵ̂ := ϵθ(xt(τ),Ø, t) + s

n∑
i=1

(ϵθ(xt(τ),y
i(τ), t)− ϵθ(xt(τ),Ø, t)) (9)

We use this property to compose more than one constraint or skill together at test-time.

3.4 TRAINING THE DECISION DIFFUSER

The Decision Diffuser, our conditional generative model for decision-making, is trained in a
supervised manner. Given a dataset D of trajectories, each labeled with the return it achieves,
the constraint that it satisfies, or the skill that it demonstrates, we simultaneously train the reverse
diffusion process pθ, parameterized through the noise model ϵθ, and the inverse dynamics model fϕ
with the following loss:

L(θ, ϕ) := Et,τ∈D,β∼Bern(p)[||ϵ−ϵθ(xt(τ), (1−β)y(τ)+βØ, t)||2]+E(s,a,s′)∈D[||a−fϕ(s, s
′)||2]

For each trajectory τ , we first sample noise ϵ ∼ N (0, I) and a timestep t ∼ U{1, . . . , T}. Then, we
construct a noisy array of states xt(τ) and finally predict the noise as ϵ̂θ := ϵθ(xt(τ),y(τ), t). Note
that with probability p we ignore the conditioning information and the inverse dynamics is trained
with individual transitions rather than trajectories.

Architecture We parameterize ϵθ with a temporal U-Net architecture, a neural network consisting
of repeated convolutional residual blocks (Janner et al., 2022). This effectively treats a sequence of
states xt(τ) as an image where the height represents the dimension of a single state and the width
denotes the length of the trajectory. We encode the conditioning information y(τ) as either a scalar
or a one-hot vector and project it into a latent variable z ∈ Rh with a multi-layer perceptron (MLP).
When y(τ) = Ø, we zero out the entries of z. We also parameterize the inverse dynamics fϕ with an
MLP. For implementation details, please refer to the Appendix B.
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Figure 4: Results Overview. Decision Diffuser performs better than both TD learning (CQL) and Behavorial
Cloning (BC) across D4RL locomotion tasks, D4RL Kitchen tasks and Kuka Block Stacking tasks (single
constraint) using only a conditional generative modeling objective.

Low-temperature Sampling In the denoising step of Algorithm 1, we compute µt−1 and Σt−1

from a noisy sequence of states and a predicted noise. We find that sampling xt−1 ∼ N (µt−1, αΣt−1)
where the variance is scaled by α ∈ [0, 1) leads to better quality sequences (corresponding to sampling
lower temperature samples). For a proper ablation study, please refer to Appendix C.

4 EXPERIMENTS

In our experiments section, we explore the efficacy of the Decision Diffuser on a variety of different
decision making tasks (performance illustrated in Figure 4). In particular, we evaluate (1) the ability
to recover effective RL policies from offline data, (2) the ability to generate behavior that satisfies
multiple sets of constraints, (3) the ability compose multiple different skills together.

4.1 OFFLINE REINFORCEMENT LEARNING

Setup We first test whether the Decision Diffuser can generate return-maximizing trajectories.
To test this, we train a state diffusion process and inverse dynamics model on publicly available
D4RL datasets (Fu et al., 2020). We compare with existing offline RL methods, including model-
free algorithms like CQL (Kumar et al., 2020) and IQL (Kostrikov et al., 2022), and model-based
algorithms such as trajectory transformer (TT, Janner et al. (2021)) and MoReL (Kidambi et al., 2020).
We also compare with sequence-models like the Decision Transformer (DT) (Chen et al. (2021) and
diffusion models like Diffuser (Janner et al., 2022).

Dataset Environment BC CQL IQL DT TT MOReL Diffuser DD

Med-Expert HalfCheetah 55.2 91.6 86.7 86.8 95 53.3 79.8 90.6 ±1.3

Med-Expert Hopper 52.5 105.4 91.5 107.6 110.0 108.7 107.2 111.8 ±1.8

Med-Expert Walker2d 107.5 108.8 109.6 108.1 101.9 95.6 108.4 108.8 ±1.7

Medium HalfCheetah 42.6 44.0 47.4 42.6 46.9 42.1 44.2 49.1 ±1.0

Medium Hopper 52.9 58.5 66.3 67.6 61.1 95.4 58.5 79.3 ±3.6

Medium Walker2d 75.3 72.5 78.3 74.0 79 77.8 79.7 82.5 ±1.4

Med-Replay HalfCheetah 36.6 45.5 44.2 36.6 41.9 40.2 42.2 39.3 ±4.1

Med-Replay Hopper 18.1 95 94.7 82.7 91.5 93.6 96.8 100 ±0.7

Med-Replay Walker2d 26.0 77.2 73.9 66.6 82.6 49.8 61.2 75 ±4.3

Average 51.9 77.6 77 74.7 78.9 72.9 75.3 81.8

Mixed Kitchen 51.5 52.4 51 - - - - 65 ±2.8

Partial Kitchen 38 50.1 46.3 - - - - 57 ±2.5

Average 44.8 51.2 48.7 - - - - 61

Table 1: Offline Reinforcement Learning Performance. We show that Decision Diffuser (DD) either matches
or outperforms current offline RL approaches on D4RL tasks in terms of normalized average returns (Fu et al.,
2020). We report the mean and the standard error over 5 random seeds.

Results Across a broad suite of different offline reinforcement learning tasks, we find that the
Decision Diffuser is either competitive or outperforms many of our offline RL baselines (Table 1). It
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Hopper-* Diffuser CondDiffuser CondMLPDiffuser Decision Diffuser

Med-Expert 107.6 111.3 105.6 111.8 ±1.6

Medium 58.5 66.3 54.1 79.3 ±3.6

Med-Replay 96.8 76.5 66.5 100 ±0.7

Table 2: Ablations. Using classifier-free guidance with Diffuser, resulting in CondDiffuser, improves
performance in 2 (out of 3) environments. Additionally, using inverse dynamics for action prediction in Decision
Diffuser improves performance in all 3 environments. CondMLPDiffuser, that diffuses over current action
given the current state and the target return, doesn’t perform as well.

Figure 5: Kuka Block
Stacking task.

Environment Diffuser DD

Single Constraint - Stacking 45.6 ±3.1 58.0 ±3.1

Single Constraint - Rearrangement 58.9 ±3.4 62.7 ±3.1

Single Constraint Average 52.3 60.4

Multiple Constraints - Stacking - 60.3 ±3.1

Multiple Constraints - Rearrangement - 67.2 ±3.1

Multiple Constraints Average - 63.8

Table 3: Block Stacking through Constraint Minimization. Decision
Diffuser (DD) improves over Diffuser in generating trajectories satisfying
a set of block stacking constraints. It can also flexibly combine multiple
constraints during test time.

also outperforms Diffuser and sequence modeling approaches, such as Decision Transformer and
Trajectory Transformer. The difference between Decision Diffuser and other methods becomes even
more significant on harder D4RL Kitchen tasks which require long-term credit assignment.

To convey the importance of classifier-free guidance, we also compare with the baseline
CondDiffuser, which diffuses over both state and action sequences as in Diffuser without classifier-
guidance. In Table 2, we observe that CondDiffuser improves over Diffuser in 2 out of 3
environments. Decision Diffuser further improves over CondDiffuser, performing better across all
3 environments. We conclude that learning the inverse dynamics is a good alternative to diffusing
over actions. Finally, we compare against CondMLPDiffuser, a policy where the current action
is denoised according to a diffusion process conditioned on both the state and return. We see that
CondMLPDiffuser performs the worst amongst diffusion models.

4.2 CONSTRAINT SATISFACTION

Setup We next evaluate how well we can generate trajectories that satisfy a set of constraints using
the Kuka Block Stacking environment (Janner et al., 2022) visualized in Figure 5. In this domain,
there are four blocks which can be stacked as a single tower or rearranged into several towers. A
constraint like BlockHeight(i) > BlockHeight(j) requires that block i be placed above block
j. We train the Decision Diffuser from 10, 000 expert demonstrations each satisfying one of these
constraints. We randomize the positions of these blocks and consider two tasks at inference: sampling
trajectories that satisfy a single constraint seen before in the dataset or satisfy a group of constraints
for which demonstrations were never provided. In the latter, we ask the Decision Diffuser to generate
trajectories so BlockHeight(i) > BlockHeight(j) > BlockHeight(k) for three of the four
blocks i, j, k. For more details, please refer to Appendix D.

Results In both the stacking and rearrangement settings, Decision Diffuser satisfies single
constraints with greater success rate than Diffuser (Table 3). We also compare with BCQ (Fujimoto
et al., 2019) and CQL (Kumar et al., 2020), but they consistently fail to stack or rearrange the blocks
and get a success rate of 0.0. Unlike these baselines, our method can just as effectively satisfy several
constraints together according to Equation 9. For a visualization of these generated trajectories,
please see the website https://sites.google.com/view/decisiondiffuser/.
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Trott Pace

Trott	+	Pace

Figure 6: Composing Movement Skills. Decision Diffuser is not only able to imitate individual running gaits
using expert demonstrations but also compose multiple different skills together during test time. The results are
best illustrated by videos viewable at https://sites.google.com/view/decisiondiffuser/.

4.3 SKILL COMPOSITION

Setup Finally, we explore how will we may compose different skills together. We consider the
Unitree-go-running environment (Margolis & Agrawal, 2022), where a quadruped robot can be found
running with various gaits, like bounding, pacing, and trotting. We explore if it is possible to generate
trajectories that transition between these gaits after only training on individual gaits separately. For
each gait, we collect a dataset of 2500 demonstrations. Then, we train the Decision Diffuser to imitate
each of these these trajectories.

Results During testing, we compose the noise model of our reverse diffusion process according to
equation 9. This allows us to sample trajectories of the quadruped robot with entirely new running
behavior. Figure 6 shows a trajectory that begins with trotting but ends with pacing. Please see the
Appendix E for more visualizations of composing running gaits together.

5 RELATED WORK

Diffusion Models Diffusion Models have shown great promise in learning generative models of
image and text data (Saharia et al., 2022; Nichol et al., 2021; Nichol & Dhariwal, 2021). It formulates
the data sampling process as an iterative denoising procedure (Sohl-Dickstein et al., 2015; Ho et al.,
2020). The denoising procedure can be alternatively interpreted as parameterizing the gradients
of the data distribution (Song et al., 2021) optimizing the score matching objective (Hyvärinen,
2005) and Energy-Based Models (Du & Mordatch, 2019; Nijkamp et al., 2019; Grathwohl et al.,
2020). To generate data samples (eg: images) conditioned on some additional information (eg:text),
prior works (Nichol & Dhariwal, 2021) have learned a classifier to facilitate the conditional
sampling. More recent works (Ho & Salimans, 2022) have argued to leverage gradients of an
implicit classifier, formed by the difference in score functions of a conditional and an unconditional
model, to facilitate conditional sampling. The resulting classifier-free guidance has been shown to
generate better conditional samples than classifier-based guidance. All these above mentioned works
have mostly focused on generation of text or images. Janner et al. (2022) used diffusion models
to learn a generative model of trajectories (consisting of states and actions) for decision-making.
However, Janner et al. (2022) relies on learning a Q-function to guide the trajectory model towards
high-return trajectories, thereby still retaining the instabilities and the complexities of offline RL
pipeline. In contrast, Decision Diffuser learns a conditional diffusion model over state sequences and
uses classifier-free guidance for sampling high-return state sequences, thereby side-stepping learning
of Q-function and avoiding any complexities of offline RL.

Reward Conditioned Policies Prior works (Kumar et al., 2019; Schmidhuber, 2019; Srivastava
et al., 2019; Emmons et al., 2021; Chen et al., 2021) have studied learning of reward conditioned
policies via reward conditioned behavioral cloning. Chen et al. (2021) used a transformer (Vaswani
et al., 2017) to model the reward conditioned policies and obtained a performance competitive with
offline RL approaches. Emmons et al. (2021) obtained similar performance as Chen et al. (2021)
without using a transformer policy but relied on careful capacity tuning of MLP policy. In contrast to
these works, in addition to modeling returns, Decision Diffuser can also model constraints or skills
and generate novel behaviors by flexibly combining multiple constraints or skills during test time.
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6 DISCUSSION

We propose Decision Diffuser, a conditional generative model for sequential decision making. It
frames offline sequential decision making as conditional generative modeling and sidesteps the
need of reinforcement learning, thereby making the decision making pipeline simpler. By sampling
for high returns, it is able to capture the best behaviors in the dataset and outperforms existing
offline RL approaches on standard benchmarks (such as D4RL). In addition to returns, it can also
be conditioned on constraints or skills and can generate novel behaviors by flexibly combining
constraints or composing skills during test time.

In this work, we focused on offline sequential decision making, thus circumventing the need for
exploration. Using ideas from Zheng et al. (2022), future works could look into online fine-tuning of
Decision Diffuser by leveraging entropy of the state-sequence model for exploration. While our work
focused on state based environments, it can be extended to image based environments by performing
the diffusion in latent space, rather than observation space, as done in Rombach et al. (2022).
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Appendix
In this appendix, we discuss details of the illustrative example in Section A. Next, we discuss
hyperparameters and architectural details in Section B. We analyze the importance of low temperature
sampling in Section C. Finally, we provide details of the Kuka Block Stacking environment in
Section D and the Unitree environment in Section E.

A ILLUSTRATIVE EXAMPLE

Setup In linear system robot navigation, Decision Diffuser is trained on 1000 expert trajectories
either satisfying the constraint ∥sT ∥ ≤ R (R = 1) or the constraint ∥sT ∥ ≥ r (r = 0.7). Here,
sT = [xT , yT ] represents the final robot state in a trajectory, specifying its final 2d position. The
maximum trajectory length is 50. During test time, Decision Diffuser is asked to generate trajectories
satisfying ∥sT ∥ ≤ R and ∥sT ∥ ≥ r to test its ability to satisfy single constraints. Furthermore,
Decision Diffuser is also asked to generate trajectories satisfying r ≤ ∥sT ∥ ≤ R to test its ability to
satisfy combined constraints.

Results Figure 2 shows that Decision Diffuser learns to generate trajectories perfectly (i.e. with
100% success rate) satisfying single constraints in linear system robot navigation. Furthermore, it
learns to generate trajectories satisfying the composed constraint in linear system robot navigation
with 91.3%(±2.6%) accuracy where the standard error is calculated over 5 random seeds.

B HYPERPARAMETER AND ARCHITECTURAL DETAILS

In this section, we describe various architectural and hyperparameter details:

• We represent the noise model ϵθ with a temporal U-Net (Janner et al., 2022), consisting of a U-Net
structure with 6 repeated residual blocks. Each block consisted of two temporal convolutions, each
followed by group norm (Wu & He, 2018), and a final Mish nonlinearity (Misra, 2019). Timestep
and condition embeddings, both 128-dimensional vectors, are produced by separate 2-layered MLP
(with 256 hidden units and Mish nonlinearity) and are concatenated together before getting added
to the activations of the first temporal convolution within each block. We borrow the code for
temporal U-Net from https://github.com/jannerm/diffuser.

• We represent the inverse dynamics fϕ with a 2-layered MLP with 512 hidden units and ReLU
activations.

• We train ϵθ and fϕ using the Adam optimizer (Kingma & Ba, 2015) with a learning rate of 2e− 4
and batch size of 32 for 1e6 train steps.

• We choose the probability p of removing the conditioning information to be 0.25.

• We use T = 100 diffusion steps.

• We use a planning horizon H of 100 in all the D4RL locomotion tasks, 56 in D4RL kitchen tasks,
128 in Kuka block stacking, 56 in unitree-go-running tasks and 50 in the illustrative example.

• We use a guidance scale s ∈ {1.2, 1.4, 1.6, 1.8} but the exact choice varies by task.

• We choose α = 0.5 for low temperature sampling.

• We choose context length K = 20.

C IMPORTANCE OF LOW TEMPERATURE SAMPLING

In Algorithm 1, we compute µt−1 and Σt−1 from a noisy sequence of states and predicted noise. We
find that sampling xt−1 ∼ N (µt−1, αΣt−1) (where α ∈ [0, 1)) with a reduced variance produces
high-likelihood state sequences. We refer to this as low-temperature sampling. To empirically show
its importance, we compare performances of Decision Diffuser with different values of α (Table A1).
We show that low temperature sampling (α = 0.5) gives the best average returns. However, reducing
the α to 0 eliminates the entropy in sampling and leads to lower returns. On the other hand, α = 1.0
leads to a higher variance in terms of returns of the trajectories.
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Decision Diffuser Hopper-Medium-Expert

α = 0 104.3± 0.7
α = 0.5 111.8 ±1.6
α = 1.0 107.1± 3.5

Table A1: Low-temperature sampling (α = 0.5) allows us to get high return trajectories consistently.
While α = 1.0 leads to a higher variance in returns of the trajectories, α = 0.0 eliminates entropy in
the sampling and leads to lower returns.

D KUKA BLOCK STACKING

In the Kuka blocking stacking environment, the underlying goal is to stack a set of blocks on top
of each other. Models have trained on a set of demonstration data, where a set of 4 blocks are
sequentially stacked on top of each other to form a block tower.

We construct state-space plans of length 128. Following (Janner et al., 2022), we utilize a close-loop
controller to generate actions for each state in our state-space plan (controlling the 7 degrees of
freedom in joints). The total maximum trajectory length plan in Kuka block stacking is 384. We
detail differences between the two consider conditional stacking environments below:

• Stacking In the stacking environment, at test time we wish to again construct a tower of four
blocks.

• Rearrangement In the rearrangement environment, at test time wish to stack blocks in a
configuration where a set of blocks are above a second set. This set of stack-place relations
may not precisely correspond to a single block tower (can instead construct two block towers),
making this environment an out-of-distribution challenge.

In addition to Diffuser (Janner et al., 2022), we used goal-conditioned variants of CQL (Kumar et al.,
2020) and BCQ (Fujimoto et al., 2019) as baselines for the block stacking and rearrangement with
single constraint. However, they get a success rate of 0.0.

E UNITREE GO RUNNING

We consider Unitree-go-running environment (Margolis & Agrawal, 2022) where a quadruped robot
runs in 3 different gaits: bounding, pacing, and trotting. The state space is 56 dimensional, the action
space is 12 dimensional, and the maximum trajectory length is 250.

As described in Section 4.3, we train Decision Diffuser on expert trajectories demonstrating individual
gaits. Figure A1 shows the ability of Decision Diffuser to imitate bounding, trotting and pacing and
their combinations.
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Trott Pace

Trott	+	Pace

Trott Bound

Trott	+	Bound

Bound Pace

Bound	+	Pace
	

Figure A1: Composing Movement Skills. Decision Diffuser is not only able to imitate individual running
gaits using expert demonstrations but also compose multiple different skills together during test time. The results
are best illustrated by videos viewable at https://sites.google.com/view/decisiondiffuser/.
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