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Abstract

This paper revisits multi-play multi-armed bandit with shareable arm capacities problem,
which is tailored for resource allocation problems arising from LLM inference serving, edge
intelligence, etc. We investigate the capacity-scarce setting, a common dilemma in resource
allocation problems. Existing works yield sub-optimal solutions under this setting, as
they rely heavily on the assumption of abundant capacities. This paper present a rather
complete solution to this setting and it makes three key contributions. We establish a
lower bound for the sample complexity of learning the arm capacities and propose an
algorithm that exactly matches this lower bound. We derive both instance-independent
and instance-dependent regret lower bounds for learning the optimal play assignment. We
introduce an efficient exploration algorithm named PC-CapUL for the capacity-scarce setting
and PC-CapUL matches the regret lower bounds up to an acceptable constant. PC-CapUL

features a novel index for coordinating the exploration of multiple plays. Experiments show
significant improvement over existing methods.

Keywords: Multi-play multi-armed bandit, scarce shareable arm capacity, regret bounds

1. Introduction

Multi-play multi-armed bandit (MP-MAB) is a natural and popular variant of the vanilla
multi-armed bandits framework (Anantharam et al. (1987a)). MP-MAB has various appli-
cations including online advertising (Lagrée et al. (2016); Komiyama et al. (2017); Yuan
et al. (2023)), power systems (Lesage-Landry and Taylor (2017)), mobile edge computing
(Chen and Xie (2022); Wang et al. (2022a); Xu et al. (2023)), etc. The canonical MP-MAB
model involves K ∈ N+ arms, where in each round, the learner assigns N ∈ N+ plays across
the arms. Each arm can be pulled by at most one play. When an arm is pulled, it generates
a reward modeled as a sample from a random variable with an unknown mean but a known
tail property, such as a standard sub-Gaussian tail. Research on MP-MAB remains highly
active, as evidenced by various recent generalizations (Chen and Xie (2022); Moulos (2020);
Xu et al. (2023); Wang et al. (2022a); Yuan et al. (2023)).

One notable generalization of MP-MAB is MP-MAB with shareable arm capacity(MP-
MAB-SAC)(Xu et al. (2023); Wang et al. (2022a,c)), which models each arm with a finite
capacity while allowing multiple plays to be assigned to the same arm. When the number
of plays exceeds the arm’s capacity, the utility generated by the arm is shared among these
plays, and the shared utility typically is the only observable value. This generalization
captures the resource-sharing nature of resource allocation problems arising from LLM
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inference serving, edge intelligence, etc Wang et al. (2022a). However, existing works differ
in the details of their models. Xu et al. (2023) considered the outcomes of individual plays in
a competitive environment. Wang et al. (2022c) examined a more cooperative environment
in a decentralized setting. Wang et al. (2022a) focused on a centralized and capacity-
abundant scenario. Despite these contributions, the theoretical guarantees in existing MP-
MAB-SAC works lack completeness, and their methods incur significant errors under the
capacity-scarce setting. To address this gap, we focus on the capacity-scarce setting, aiming
to establish comprehensive theoretical results and design an efficient algorithm.

To illustrate, our model considers a finite number ofK ∈ N+ arms and a finite number of
N ∈ N+ plays. Each arm k is characterized by a tuple (mk, µk, σ), where mk ∈ N+ models
the capacity limit and µk ∈ R+ models the unit-capacity reward mean. Both mk and µk

are unknown to the learner, with the arm capacity mk being deterministic. The reward
function of assigning ak ∈ N+ plays to arm k is modeled as: Rk(ak) = min{ak,mk}µk + ϵk
, where ϵk is a zero mean σ-sub-Gaussian random noise. Note that our reward model is
rooted in the reward structure of conventional linear bandits with one dimensional features
(Lattimore and Szepesvári (2020)). The capacity-scarce setting, defined by N ≥M (where
M :=

∑K
k=1mk), is more suitable for scenarios involving intense competition under limited

resources, which are frequently encountered in the real world. For example, the computing
resources of certain advanced servers are bound to be in high demand, resulting in resource
scarcity. Additionally, we take into account the movement cost of plays to further enhance
the practicality of our model. Assigning a play to an arm incurs a constant movement
cost c ∈ R+, which is assumed to satisfy c < mink µk. This movement cost introduces a
constraint for the exploration process.

Table 1: Summary of Main Theoretical Results

Lower Bound Upper Bound

Sample complexity
Ω

(
σ2

µ2
k

log δ−1

)
(Thm 2)

O

(
σ2

µ2
k

log δ−1

)
(Thm 5)

Instance-dependent regret
O

(∑
k

cσ2

µ2
k

log T

)
(Thm 10)

O

(∑
k

(
N

mk
c+K(µk − c)

)
σ2

µ2
k

log T

)
(Thm 14)

Instance-independent regret
O
(
σ
√
TK

)
(Thm 7)

O
(
Kσ
√
NT log T

)
(Thm 16)

1.1. Main Results and Contributions

In our MP-MAB-SAC problem setting, the theoretical conclusions are summarized in Table
1. Our contributions can be categorized into the following three aspects:

Sample complexity. We establish a lower bound Ω(σ
2

µ2
k
log δ−1) for the sample complexity

of learning the arm capacity, and propose an active inference algorithm named ActInfCap
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that achieves this lower bound exactly. The key finding is that the difficulty of learning
arm capacity is determined by the per-capacity reward mean. We introduce new uniform
confidence intervals for arm capacity estimation and a novel approach that actively probes
an arm using its capacity’s UCB or LCB for data-efficient learning. In the data-gathering
process,the UCB and LCB are adopted alternately. These findings provide new insights
into arm capacity estimation and provide foundational building blocks for designing data-
efficient exploration algorithms.

Regret lower bounds. We prove an instance-independent regret lower bound Ω(σ
√
TK)

and an instance-dependent regret lower bound Ω(
∑K

k=1
cσ2

µ2
k
log T ). Notably, these regret

lower bounds are independent of the arm capacity mk. At first glance, this may appear
counterintuitive; however, it aligns with our sample complexity lower bound, which also
demonstrates that sample complexity is independent of arm capacity. Additionally, the
dependence on the reward mean µk is consistent with dependence observed in the sample
complexity. This finding highlights that the difficulty of learning the optimal action is
primarily governed by the number of arms K and the per-unit capacity reward mean µk.
Increasing the number of arms or decreasing the reward mean would make the learning
process more challenging.

Data efficient exploration. We propose an adaptive algorithm named PC-CapUL, which
leverages prioritized coordination of arm capacity upper/lower confidence bounds (UCB/LCB)
to efficiently balance the exploration-exploitation trade-off. We prove both instance-dependent
and instance-independent upper bounds for PC-CapUL, which match the corresponding lower
bounds up to certain acceptable model-dependent factors. Numerical experiments validate
the data efficiency of PC-CapUL in the capacity-scarce setting. The main idea of PC-CapUL
consists of four key aspects: (1) Preventing excessive UEs. At each time slot, ensure that
the arms played by united explorations(UE) in the previous time slot are played by individ-
ual explorations(IE) in the current time slot. Here, UE/IE refers to explorations where the
number of plays assigned to an arm equals its capacity UCB/LCB. (2) Balancing UEs and
IEs. Excessive IEs on a single arm is also not advisable. (3) Favorable arms win UE first.
At each time slot, when multiple arms compete for UEs, we resolve this competition using
a carefully selected criterion defined as OrcIndk,t, which is determined based on insights
from the sample regret. (4) Stop learning when converges. At each time slot t, once the
upper and lower bounds of an arm’s capacity converge, no further exploration is performed
on that arm.

2. Related Work

Methodology perspective. To the best of our knowledge, MP-MAB was first studied by
Anantharam et al. (1987a), where an asymptotic regret lower bound was established and
an algorithm achieving the lower bound asymptotically was proposed. The regret lower
bound in the finite time is achieved by Komiyama et al. (2015) via Thompson sampling.
Markovian rewards variant of MP-MAB was studied in Anantharam et al. (1987b). Some
recent generalization of MP-MAB include: cascading MP-MAB where the order of plays is
captured into the reward function (Lagrée et al. (2016); Komiyama et al. (2017)), MP-MAB
with switching cost (Agrawal et al. (1990); Jun (2004)), MP-MAB with budget constraint
(Luedtke et al. (2019); Xia et al. (2016); Zhou and Tomlin (2018)) and MP-MAB with a
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stochastic number of plays in each round (Lesage-Landry and Taylor (2017)), sleeping MP-
MAB (Yuan et al. (2023)), MP-MAB with shareable arm capacities (Chen and Xie (2022);
Wang et al. (2022a); Xu et al. (2023)).

Our work falls into the research line of MP-MAB with shareable arm capacities (Chen
and Xie (2022); Wang et al. (2022a,b); Xu et al. (2023); Mo and Xie (2023)). The share-
able arm capacities models can be categorized into two types: (1) stochastic arm capacity
but with feedback on the realization of arm capacity (Chen and Xie (2022); Mo and Xie
(2023)); (2) deterministic capacity without any realization of the arm capacity (Wang et al.
(2022a,b); Xu et al. (2023)). Although the difference seems small, the two settings lead
to fundamentally different research problems and techniques for addressing it. For the
stochastic arm capacity line, Chen and Xie (2022) models the arm capacity as a random
variable, but in each round the sample of the arm capacities of all arms are revealed to the
decision, i.e., expert feedback on arm capacity. One can directly estimate the distribution
of arm capacity from the capacity samples. Mo and Xie (2023) generalizes this model to the
distributed setting, and uses the realization of the arm capacity as a signal for coordination.
However, the deterministic arm capacity is technically different. Though the capacity is de-
terministic, it is unknown and the decision maker can only access samples from the reward
function, while no samples on the arm capacity can be observed. Wang et al. (2022a,b); Xu
et al. (2023) consider the setting in which multiple strategic agents compete for the resource.
Nash equilibrium in the offline setting is established. Our work revisits this research line,
motivated by the lack of specific and detailed studies about the capacity-scarce setting, in
which existing MP-MAB-SAC methods yield sub-optimal regret levels.

Applications perspective. MP-MAB-SAC is a versatile model with numerous real-world
applications. As illustrated in Wang et al. (2022a), MP-MAB-SAC can be applied to edge
computing, cognitive ratio applications , online advertisement placement etc. To avoid rep-
etition, we present another instance of MP-MAB-SAC application. Here we elaborate on
how to map our model to LLM inference serving applications (Li et al. (2024)). In this
context, each arm corresponds to a deployment instance of an LLM. The arm capacity
models the number of queries that an LLM can process within a given time slot. Due to the
multiplexing behavior of computing systems, the capacity is unknown and the processing
is uncertain (Zhu et al. (2023)). An LLM deployed on more powerful computing facilities
would be modeled with larger capacity. The reward mean µk can be mapped to the ca-
pability of an LLM such as large, medium, or small LLM mixed inference serving. The
cost c can be interpreted as the communication cost incurred when transmitting queries to
a commercial LLM server. Running an LLM service involves various expenses, including
those for computing resources, IT operations, and system maintenance. Transmitting an
end user’s query to the server also incurs communication costs, especially when the query
includes a lengthy prompt. The cost c serves as an aggregate abstraction of these various
costs.

3. Model and problem Formulation

By default, for any integer N ∈ N+: [N ] := {1, . . . , N}. Consider K ∈ N+ arms indexed
by [K] and N ∈ N+ plays to be assigned to these arms. Each arm k ∈ [K] is characterized
by a tuple (mk, µk, σ), where mk ∈ [N ] and µk ∈ R and σ ∈ R. Here, mk models the
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capacity of arm k, µk models the per-unit reward mean of arm k, and σ ∈ R+ models tail
property of the reward, i.e., σ-sub-Gaussian. Both mk and µk are unknown to the learner,
and the capacity mk is deterministic. We consider the scarce arm capacity setting, such
that N ≥M , where M :=

∑K
k=1mk denotes the total amount of capacities across all arms.

For every play there is a constant movement cost c to an arm, which is known to the learner.
The movement cost can model the transmission cost in edge intelligence applications, etc.
From a learning perspective, it introduces a cost constraint to exploration. Let ak ∈ [N ]
denote the number of plays assigned to arm k ∈ [K]. The reward function associated with
ak is:

Rk(ak) = min{ak,mk}µk + ϵk.

Consider T ∈ N+ time slots. Let ak,t ∈ [N ] ∪ {0} denote the number of plays assigned
to the arm k at time slot t, and the action taken at time t is represented by the vector
at := (a1,t, a2,t, ..., aK,t). The action space A is:

A :=

{
(a1, a2, ..., aK) ∈ NK

∣∣∣∣∑k∈[K]
ak ≤ N

}
.

Let Uk,t denote the utility of the action at at time slot t on arm k , defined as the reward
minus the movement cost:

Uk,t := Rk(ak,t)− c · ak,t.

We then define the expected utility for action at as f (at):

f (at) : = E

[∑
k∈[K]

Uk,t

]
=
∑

k∈[K]
(min {ak,t,mk} · µk − c · ak,t) .

Let a∗ denote the optimal action a that maximizes the expected utility f (a),i,e.: a∗ :=
argmaxa f (a) . It is evident that the optimal action is a∗ = (m1,m2, ...,mK). The challenge
lies in distinguishing the capacities of all arms, where the order plays a crucial role in this
problem. The objective is to minimize the regret over T time slots, which is defined as
Reg (T ):

Reg (T ) := Tf (a∗)−E
[∑T

t=1
f (at)

]
.

The regret generated on the arm k is defined as Regk (T ):

Regk (T ) := T (mkµk − cmk)−E
[∑T

t=1
(min {ak,t,mk} · µk − c · ak,t)

]
.

As mentioned above, the movement cost c can model the transmission cost in edge
intelligence application. It is reasonable to set c > 0, as the transmission cost is usually
non-zero. Moreover, there is a significant distinction between the cases of c > 0 and c = 0.
When c > 0, the optimal action is unique, and the primary objective becomes learning the
capacities of all arms. However, when c = 0, the optimal actions are no longer unique. For
any action a satisfying ak ≥ mk for all k ∈ [K], no regret is generated. This shifts the goal
from learning the arm capacities to finding such actions a. This idea contrasts with that
in Wang et al. (2022a), where learning the capacities of the optimal arms is essential. To
maintain practicality and consistency with prior work, we do not consider the case when
c = 0.
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4. Sample Complexity of Estimating Arm Capacity

4.1. Sample Complexity Lower Bound

We focus on understanding the complexity of inferring the arm capacities, as this directly
determines the optimal allocation of plays. Specifically, we consider the scenario where, for
a fixed arm k, an inference algorithm πInf generates samples by assigning ak,t ∈ [N ] plays
to the arm.”

Definition 1 ((Wang et al. (2022a))) An action ak,t is United Exploration (UE) if ak,t >
mk. An action ak,t is individual exploration (IE) if ak,t ≤ mk.

Note that 1 ≤ mk < N is assumed as a prior, making both UEs and IEs feasible for πInf.
We consider a space of all inference algorithm πInf that can adaptively adjust the numbers
of both UEs and IEs.

Theorem 2 For any inference algorithm πInf, there exists an instance of arm k such that:

P
[
m̂k,t ̸= mk|t ≤

2σ2

µ2
k

log

(
1

4δ

)]
≥ 1− δ,

where m̂k,t denotes the estimator produced by πInf.

Remark 3 Theorem 2 establishes a lower bound of Ω( log δ
−1

µ2
k

) for the sample complexity of

estimating arm capacity. This lower bound is independent of the arm’s capacity but solely
depends on µk.

4.2. Sample Efficient Algorithm

Uniform confidence interval for arm capacity. First we formally define τk,t and ιk,t
as the number of IEs and UEs on arm k up to time slot t:

τk,t =
∑t

s=1
1{ak,s ≤ mk}, ιk,t =

∑t

s=1
1{ak,s > mk}.

Since the real capacity mk is unknown during the training process, we should use the
confidence interval [ml

k,t,m
u
k,t] rather than the capacity mk itself to calculate an empirical

version of τk,t and ιk,t. We define the empirical versions of τk,t and ιk,t as τ̂k,t and ι̂k,t,
respectively:

τ̂k,t =
∑t

s=1
1{ak,s ≤ ml

k,s−1},

ι̂k,t =
∑t

s=1
1{ak,s ≥ mu

k,s−1}.

Another term we require is the cumulative squared sum of plays in IEs.

V̂k,t =
∑t

s=1
a2k,s · 1{ak,s ≤ ml

k,s−1}.
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The estimator of µk up to time slot t is denoted as µ̂k,t. Let υk := mkµk and the
estimator of mkµk up to time slot t is denoted as υ̂k,t:

µ̂k,t =
(∑t

s=1
ak,s (Uk,s + c · ak,s) · 1

{
ak,s ≤ ml

k,s−1

})/
V̂k,t, (1)

υ̂k,t =
(∑t

s=1
(Uk,s + c · ak,s) · 1

{
ak,s ≥ mu

k,s−1

})/
ι̂k,t. (2)

To simplify the notation, we define the function :

ϕ (x, δ) :=

√(
1 +

1

x

)
2 log

(
2
√
x+ 1/δ

)
x

.

Lemma 4 The confidence intervals of the estimators µ̂k,t and υ̂k,t can be calculated as:

µ̂k,t ∈ [µk − σϕ(V̂k,t, δ), µk + σϕ(V̂k,t, δ)], (3)

υ̂k,t ∈ [υk − σϕ (ι̂k,t, δ) , υk + σϕ (ι̂k,t, δ)]. (4)

For any adaptive algorithm using the first K time slots for initialization, when σϕ(V̂k,t, δ) <
µ̂k,t, define event Ak :

Ak :=

{
∀t ∈ [T ] , t > K, (3)(4) is correct,mk ∈

[
υ̂k,t − σϕ (ι̂k,t, δ)

µ̂k,t + σϕ(V̂k,t, δ)
,
υ̂k,t + σϕ (ι̂k,t, δ)

µ̂k,t − σϕ(V̂k,t, δ)

]}
.

Then for fixed k, the probability that Ak holds is at least 1− δ.

This lemma ensures that our confidence intervals are accurate with high probability
during the learning process. Let A :=

⋂K
k=1Ak. One straightforward application of the

union bound inequality shows that A holds with a probability of at least 1 − Kδ. When
event A occurs, the confidence bounds for all estimators are correct, and the capacity
confidence bounds are accurate for all k ∈ [K] and t ∈ [T ]. Consequently, the capacity of
any arm should not exceed the sum of the lower bounds of the capacities of the other arms.
We now can define the capacity confidence lower bound ml

k,t and the upper bound mu
k,t as

the end points of the capacity confidence interval of mk, and we refine the bounds under
the assumption that event A occurs as follows:

ml
k,t:=max

{⌈
υ̂k,t−σϕ(ι̂k,t, δ)
µ̂k,t+σϕ(V̂k,t, δ)

⌉
, 1

}
, (5)

mu
k,t:=min


⌊
υ̂k,t + σϕ (ι̂k,t, δ)

µ̂k,t − σϕ(V̂k,t, δ)

⌋
, N−

K∑
i ̸=k

ml
i,t

 . (6)

Now we compare the arm capacity confidence intervals with those in Wang et al. (2022a):

ml
k,t = max

{⌈
υ̂k,t

µ̂k,t + σϕ (τ̂k,t, δ) + σϕ (ι̂k,t, δ)

⌉
, 1

}
,

mu
k,t = min

{⌊
υ̂k,t

µ̂k,t − σϕ (τ̂k,t, δ)− σϕ (ι̂k,t, δ)

⌋
, N

}
.
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The similarity in the capacity confidence intervals stems from adopting the same ap-
proach as in Wang et al. (2022a), where UEs and IEs are treated separately for capacity
estimation. In both Wang et al. (2022a) and our work, the UCB and LCB of the ca-
pacity mk are derived solely from the empirical mean values of µk and υk. However, the
key distinction lies in how the estimation error of UE, represented by the term σϕ (ι̂k,t, δ),
is handled. While Wang et al. (2022a) place this term in the denominator, we place it
above the denominator. This modification results in our UCB being smaller and our LCB
being larger than theirs for the same UEs and IEs. Consequently, their method requires
more rounds of UEs and IEs for the confidence intervals to converge. This is substantiated
through experiments, and the results are presented in the supplementary materials.

ml
k,t = max

{⌈
υ̂k,t

µ̂k,t + σϕ(V̂k,t, δ) + σϕ (ι̂k,t, δ)

⌉
, 1

}
,

mu
k,t = min

{⌊
υ̂k,t

µ̂k,t − σϕ(V̂k,t, δ)− σϕ (ι̂k,t, δ)

⌋
, N

}
.

Algorithm 1 states ActInfCap, which estimates the arm capacity by adaptively probing
the arm with varying numbers of plays to generate samples. Specifically, ActInfCap lever-
ages the UCB and LCB to guide sample generation for each arm. At the core of ActInfCap
lies the newly proposed confidence intervals of the arm capacity. In ActInfCap, the UEs and
IEs are assigned alternately, allowing the UCB and LCB of the arm capacity to approach
each other as more utilities are observed.

Algorithm 1 ActInfCap(k, T )

1: Initialize: t← 0, ml
k,0 ← 1, mu

k,0 ← N .
2: Do one UE and one IE respectively.
3: Observe Uk,1 and Uk,2. m

u
k,2 ← N,ml

k,2 ← 1, t← 2.

4: while t < T and ml
k,t−1 < mu

k,t−1 do
5: t← t+ 1
6: if t is an odd number then
7: ak,t ← ml

k,t−1 plays to arm k, observe Uk,t.

8: Update ml
k,t,m

u
k,t via Equation (5) and (6)

9: else
10: ak,t ← mu

k,t−1 plays to arm k, observe Uk,t.

11: Update ml
k,t,m

u
k,t via Equation (5) and (6)

12: end if
13: end while
14: Return mu

k,t

Theorem 5 The output of Algorithm 1, i.e., mu
k,t satisfies:

P
[
m̂u

k,t = mk|t ≥ 10240
σ2

µ2
k

log

(
2

δ

)
+ 2

]
≥ 1− δ.
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Remark 6 Theorem 5 states that Algorithm 1 achieves a sample complexity that exactly
matches the lower bound. This closes the sample complexity gap. Furthermore, this theorem
implies that the number of explorations required to determine the capacity mk is unrelated
to mk itself.

5. Regret Lower Bounds and Sample Efficient Algorithms

5.1. Regret Lower Bounds

Theorem 7 Given K and M , for any learning algorithm π, its instance-independent min-
imax regret lower bound is:

E [Reg (T, π)] ≥ σ

64e
√
2

√
TK.

Remark 8 This theorem indicates that the regret lower bound depends on
√
K for the

number of arms K and
√
T for the learning horizon T . Notably, there is no dependence on

the arm capacity mk, which is consistent with the sample complexity bound stated in Theorem
2 and Theorem 5. Although Theorem 7 follows the conventional paradigm (Lattimore and
Szepesvári (2020)), it is technically non-trivial. The key idea lies in carefully balancing the
trade-off between the per-time-slot regret and the challenge of learning the arm capacities.
When the utility is small, the per-time-slot regret is also small. However, distinguishing
the capacities becomes more difficult since the gaps in expected utilities are small when the
capacity gaps are the same.

Theorem 9 For any consistent learning strategy π, the regret generated on the arm k is
lower-bounded as:

lim inf
T→∞

E [Regk (T, π)]

log (T )
≥ 2

cσ2

µ2
k

.

Following the naming convention in the sample complexity section, we refer to the regret
generated on an arm, where there are always sufficient plays for UEs and IEs, as “sample”
regret. The sample regret lower bound is presented above. This lower bound is derived
by analyzing the expected number of UEs where ak,t > mk during the learning process. A
direct corollary for bounding the total regret can then be obtained by summing the sample
regret across all K arms:

Theorem 10 Given K, {mk}k∈[K], and {µk}k∈[K], for any consistent learning strategy π,
it holds

lim inf
T→∞

E [Reg (T, π)]

log (T )
≥ 2

K∑
k=1

cσ2

µ2
k

.

Remark 11 Theorem 9 and 10 state that the instance-dependent regret lower bound de-
pends on µ−2

k . This indicates that smaller values of µk make it more challenging to learn
the optimal action. Additionally, there is no dependence on the arm capacity mk. The key
idea in our proof of Theorem 9 and 10 is to derive a lower bound for the expected number
of suboptimal actions over the entire T time slots.
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5.2. Efficient Exploration Algorithm

Motivated by the strong performance of the algorithm 1 in sample complexity upper bound
proof, we now turn our attention to its sample regret upper bound. It should be noted
that with alternating UEs and IEs, ml

k,t and mu
k,t converge to mk, as demonstrated in the

expressions (5) and (6). Consequently, subsequent UEs and IEs generate less regret, given
that we assign ml

k,t or m
u
k,t plays to arm k for IE or UE, respectively.

Theorem 12 The regret generated by Algorithm 1 can be upper-bounded as:

E[Regk (T )]

≤
(
2048c+

512π2 (µk − c)

3

(
1024π2

3
+

2048

mk

)
· N
mk

c

)
σ2

µ2
k

log (T ) + 2max (mkµk, Nc)

=O

((
N

mk
c+ (µk − c)

)
σ2

µ2
k

log (T )

)
.

Remark 13 This regret bound serves as a relatively tight upper bound when N and mk do
not differ significantly, and when the µk and c are close in value. Under these assumptions,

the upper bound can be expressed as O
(
cσ2

µ2
k
log (T )

)
. The N in the numerator of the regret

upper bound originates from the UEs during the initial time slots, when the mu
k,t is not yet

well-learned. The number of such suboptimal UEs is positively correlated with log(T ), as it
is derived from the confidence interval, which is also correlated with log(T ). This indicates
that the sample regret lower bound presented in Theorem 9 is relatively tight. Importantly,
this sample regret upper bound offers valuable insights for designing efficient algorithms
under the capacity-scarce setting.

Efficient exploration algorithm. Algorithm 2 outlines PC-CapUL, an abbreviation of
Prioritized Coordination of Capacities’ UCB and LCB.

(1) Preventing excessive UEs(Line 10). At each time slot, we ensure that the arms
played by UEs in the previous time slot are not played by UEs again in the current time slot.
Compared to IEs, UEs are play-consuming, especially during the early time slots when the
capacity confidence intervals are not yet well learned. Overloading a particular arm with
UEs can hinder the learning process for other arms that also require UEs to refine their
capacity intervals. This occurs because there are often insufficient plays for all arms to
be explored with UEs simultaneously. Furthermore, alternating exploration between UEs
and IEs is, to some extent, an optimal strategy, as proven in Theorem 12. This approach
ensures that the regret generated by UEs is minimized.

(2)Balancing UEs and IEs(Line 12). Excessive IEs on a single arm is also not advis-
able, as an increase in V̂k,t alone cannot efficiently improve ml

k,t without a corresponding
increase in ι̂k,t. Therefore, it is reasonable to balance the number of UEs and IEs. One
approach to maintain this balance is using OrcIndk,t as a criterion, defined as

OrcIndk,t := ϕ(V̂k,t, δ) + ϕ (ι̂k,t, δ) .

The OrcIndk,t stands for ”orchestra index”. Here, σϕV̂k,t, δ) and σϕ (ι̂k,t, δ) measure the
length of the confidence intervals for υk and µk respectively. The sum of these values
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Algorithm 2 PC-CapUL

1: Notation: ml
t := (ml

k,t : k ∈ [K]),mu
t := (mu

k,t : k ∈ [K]),Ut := (Uk,t : k ∈ [K]), τ̂t :=

(τ̂k,t : k ∈ [K]), V̂t := (V̂k,t : k ∈ [K]), ι̂t := (ι̂k,t : k ∈ [K]), µ̂t := (µ̂k,t : k ∈ [K]), υ̂t :=
(υ̂k,t : k ∈ [K]).
Cndt := (Cndtk : k ∈ [K]) is a binary vector indicating continue exploration (1) or not
(0).
w := (wk, k ∈ [K]) is a binary vector with entry 1 indicating do IE and 0 indicating do
UE.
⊙ denotes the Hadamard product, ek denotes a unit vector with k-th entry being 1.

2: Initialization: ml
0 ← 1,mu

0 ← (N −K + 1)1, τ̂0 ← 0, V̂0 ← 0, ι̂0 ← 0,Cndt← 1.
3: for 1 ≤ t ≤ K do
4: The t-th arm do UE and all others do IE: w ← 1− et.
5: Arm assignment: at ← (1−w)⊙mu

t−1 +w ⊙ml
t−1. Observe Ut, m

l
t←ml

t−1.

6: ml
t←ml

t−1,m
u
t←mu

t−1, τ̂t←τ̂t−1 +w, V̂t←V̂t−1 +w ⊙ at ⊙ at, ι̂t←ι̂t−1 + 1 −w, µ̂t

with (1), υ̂t with (2).
7: end for
8: while K + 1 ≤ t ≤ T do
9: if Cndt ̸= 0 then

10: Record the arms whose actions are UEs at last time slot: wk←I{at−1,k ≥ mu
k,t}, ∀k.

11: Converged arms: wk ← I{Cndtk = 0},∀k., Update capacity needs: Mneeds ←
(1−w) ·mu

t−1 +w ·ml
t−1.

12: ℓ← sort arms based on OrcIndk,t = ϕ(V̂k,t, δ) + ϕ (ι̂k,t, δ) in descending order with
Cndtk ̸= 0.

13: for k = 1, . . . ,K do
14: if Mneeds > N then
15: The ranked k-th arm (with index ℓk) do IE, and update it to the vector w ←

w + eℓk .
16: Update capacity needs: Mneeds ← (1−w) ·mu

t−1 +w ·ml
t−1.

17: end if
18: end for
19: at ← (1−w)⊙mu

t−1 +w ⊙ml
t−1. Observe Ut.

20: τ̂t ← τ̂t−1 +w, V̂t←V̂t−1 +w⊙ at ⊙ at, ι̂t ← ι̂t−1 + 1−w, Update µ̂t with (1), υ̂t

with (2), ml
t with (5), mu

t with (6), Cndtk ← I{ml
k,t < mu

k,t}, ∀k.
21: else
22: Observe Ut, at←ml

t−1,m
l
t←ml

t−1,m
u
t←mu

t−1.
23: end if
24: end while

provides a comprehensive measure of how well the confidence intervals of υk and µk are
learned. Assigning too many UEs or IEs to arm k will result in a relatively larger OrcIndk,t
compared to arms with more balanced assignments.

(3) Favorable arms win UE first(Line 12-18). The criterion OrcIndk,t also measures
the regret generated by IEs on arm k. A larger OrcIndk,t value corresponds to greater
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per-round regret caused by IEs on arm k. Since the regret generated by UEs can be upper-
bounded by preventing consecutive UEs on the same arm, we can focus primarily on the
regret generated by IEs. A larger OrcIndk,t value indicates that the capacity interval for
arm k is not well learned, suggesting that UEs should be assigned to this arm to reduce the
IE regret in subsequent rounds.

(4) Stop learning when converges (Line 11, and Line 21-23). At each time slot t,
once the upper and lower bounds of an arm’s capacity converge, no further exploration is
required for that arm. The correctness of the estimated capacity is guaranteed by Lemma
4. Furthermore, this allows more flexible explorations on other arms, as UEs are no longer
required on arms that have been sufficiently learned. Consequently, this accelerates the
convergence of confidence intervals for all arms.

Regret upper bounds. The following theorems state the regret upper bounds of
Algorithm 2.

Theorem 14 The instance-dependent regret upper bound for Algorithm 2 is:

E[Reg (T )]

≤
K∑
k=1

(
2048c+

4096π2 (µk − c)

3
·K +

(
1024π2

3
+

2048

mk

)
· N
mk

c

)
σ2

µ2
k

log (T )

+
K∑
k=1

2Kmax (µkmk, Nc)

=O

(
K∑
k=1

(
N

mk
c+K (µk − c)

)
σ2

µ2
k

log (T )

)
.

Remark 15 The N in the numerator of the regret upper bound arises from the early UEs,
when the mu

k,t values are not well learned and all plays are assigned to ensure a valid UE on
that arm. The K in the regret upper bound mainly results from compulsory IEs when there
are insufficient plays for all arms to freely choose UEs or IEs. Consider the scenario where
the UCBs of the capacities are well-learned, such that

∑K
k=1m

u
k,t ≤ N . In this scenario, each

arm can be explored with alternating IEs and UEs. This eliminates the need for compulsory
IEs and removes the dependence of the regret upper bound on K. However, the primary
challenge lies in limiting the number of such IEs before

∑K
k=1m

u
k,t ≤ N . An improved bound

for the regret caused by these IEs could potentially be achieved by introducing factors like
the magnitude of N/M , alongside a more detailed analysis.

Theorem 16 The instance-independent regret upper bound for Algorithm 2 is:

E [Reg(T )]

≤σ

√(
2048M+

4096π2

3
KM+5500NK

)
K (T log (T )) +

K∑
k=1

2Kmax (µkmk, Nc)

=O
(
Kσ
√
NT log(T )

)
.
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Remark 17 The arm capacity M appears in this instance-independent regret upper bound,
suggesting that regret is positively related to the capacity. However, there is another dom-
inant term NK2, since N ≥ M . As explained in the previous section, N arises from
poor-performing UEs in the early time slots, while K reflects the competition for resources
among UEs. Therefore, a trade-off should exist between these two terms in the regret bound.
With more plays, it takes fewer time slots for

∑K
k=1m

u
k,t ≤ N . Characterizing this rela-

tionship could potentially reduce N to a sublinear factor in the regret upper bound, which
we leave for future investigation. Furthermore, our experimental results provide supporting
evidence that such sublinear dependence is likely to hold in practice.

6. Experiments

6.1. Experiment Setting

This section states the experiment setting, including the number of plays, arms, comparison
baselines and parameter settings, etc. The capacity of each arm setting: mk = 10 + [ℓ ×
Rand(0, 1)],where ℓ = 5, 10, 15, 20. Number of arms: K = 10, 20, 30, 40. Number of plays:
N = M,M + 0.1M,M + 0.2M,M + 0.4M . Movement cost: c = 0.2, 0.1, 0.01, We consider
the default parameters unless we mention to vary them explicitly ℓ = 10,K = 20, N =
M + 0.1M, c = 0.1. We conduct simulations to validate the performance of our algorithm
and compare it to other algorithms adapted from MAB. We consider three baselines: MP-
SE-SA, Orch proposed in Wang et al. (2022a), and a variant of our proposed algorithm
PC-CapUL-old, which replaces the our arm capacity estimator with that of Wang et al.
(2022a). Other details are shown in the the supplementary materials

6.2. Impact of Number of Arms

In Figures 1, we set K as 10, 20, 30, 40, respectively. It is evident that as the number of
arms increases, all algorithms require more exploration to identify the true capacities of
each arm, as shown in both the lower and upper bound theorems. For all values of K,
our algorithms outperform the two baseline algorithms, and the one with better estimators
converges much faster. In our simulation of 2000 time slots, the regret of Orch in 1(a)
converges to around 4.5 × 105 after 1700 time slots, which is much slower than ours. The
difference in convergence speed can be attributed to two main factors. First, Orch has
far fewer attempts for UEs in the same time slot due to its parsimonious and maladaptive
strategy. The UEs are only allowed in even rounds in Orch. In contrast, PC-CapUL-old
assigns UEs or IEs to arm k depending on how well the µk and mk are learned. Second,
our confidence intervals are more precise, and converge with fewer explorations. Additional
experiments were conducted to verify this, with the results presented in the supplementary
materials. It is noteworthy that across all parameter settings, the standard deviations of the
regret for Orch and MP-SE-SA are significantly larger than that of PC-CapUL. The primary
reason is that the former two algorithms assign UEs and IEs in a more random manner
compared to PC-CapUL.
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Figure 1: Impact of number of Arms. (a) K = 10, (b) K = 20, (c) K = 30, (d) K = 40.

7. Conclusion

This paper revisits the multi-play multi-armed bandit problem with shareable arm capacities
in the capacity-scarce setting, a scenario absent from existing MP-MAB-SAC research. In
this paper, we establish more complete theoretical results compared to those discussed in
other settings in prior works. We close the sample complexity gap, and derive both instance-
dependent and instance-independent lower bounds for this setting. We design an algorithm
named PC-CapUL, in which we use prioritized coordination of arm capacities upper/lower
confidence bound (UCB/LCB) to efficiently balance the exploration-exploitation trade-off.
We prove both instance-dependent and instance-independent upper bounds for PC-CapUL,
which match the lower bounds up to some acceptable model-dependent factors. Numerical
experiments validate the data efficiency of PC-CapUL.
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