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Abstract: In many dynamic robotic tasks, such as striking pucks into a goal out-
side the reachable workspace, the robot must first identify the relevant physical
properties of the object for successful task execution, as it is unable to recover
from failure or retry without human intervention. To address this challenge, we
propose a task-informed exploration approach, based on reinforcement learning,
that trains an exploration policy using rewards automatically generated from the
sensitivity of a privileged task policy to errors in estimated properties. We also in-
troduce an uncertainty-based mechanism to determine when to transition from ex-
ploration to task execution, ensuring sufficient property estimation accuracy with
minimal exploration time. Our method achieves a 90% success rate on the striking
task with an average exploration time under 1.2 seconds—significantly outper-
forming baselines that achieve at most 40% success or require inefficient query-
ing and retraining in a simulator at test time. Additionally, we demonstrate that
our task-informed exploration rewards capture the relative importance of physical
properties in two manipulation tasks and the classical CartPole example. Finally,
we validate our approach by demonstrating its ability to identify object properties
and adjust task execution in a physical setup using the KUKA iiwa robot arm. The
project website is available at marina-aoyama.github.io/poke-and-strike/.

Keywords: Interactive Perception, Manipulation, Reinforcement Learning, Sys-
tem Identification

1 Introduction

Exploratory motions are essential for identifying system parameters and adjusting actions accord-
ingly when executing interactive tasks. Unlike visual properties, identifying physical properties—
such as friction, mass, weight distribution, and restitution—requires active interaction with objects.
For example, a robot might push an object to identify friction for striking [1], poke a sponge to
evaluate stiffness for wiping [2], or shake [3] or stir [4] liquids to determine viscosity for pouring.
While such exploratory behaviors naturally emerge in humans [5], enabling robots to autonomously
explore through physical interactions remains a significant challenge.

Task-informed exploration. A key challenge in achieving exploratory behaviors is coming up with
informative exploration strategies that identify task-relevant properties. Most existing approaches
rely on pre-defined, human-designed exploratory motions tailored to specific tasks [3, 4, 6, 2, 7, 8],
which can be suboptimal and cumbersome to obtain for every new task. Alternatively, Memmel
et al. [1] propose learning informative exploratory motions given a set of properties of interest,
while Liang et al. [9] introduce exploration policy learning guided by task information using rein-
forcement learning (RL), implicitly prioritizing the estimation of task-relevant properties. However,
both approaches [1, 9] require inefficient simulator queries and re-optimization of task motions for
each object with the identified properties at test time. Our approach, in contrast, enables immediate
task execution after exploration, in addition to learning exploratory motions to identify task-relevant
properties using rewards automatically generated from the task policy.

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.


https://marina-aoyama.github.io/poke-and-strike/

Uncertainty-based policy switching. Another challenge lies in the transition from exploration to
task execution. Prior approaches often rely on a fixed-length exploration phase [1, 9], which may
be either too short, leaving the robot with insufficient information, or excessively long, which is
inefficient. To autonomously switch from exploration to task execution, the robot needs sufficiently
accurate property estimates for a given task. However, the estimation accuracy is inaccessible out-
side of the simulated environment. Additionally, the robot must determine how accurately it needs
to estimate each property to ensure task success. To address this, our approach computes uncertainty
estimates and, in simulation, we determine the uncertainty thresholds based on task completion.

In summary, the contributions of this work are:
* We propose a task-informed exploration RL approach that trains an exploration policy us-

ing rewards automatically generated from the sensitivity of a privileged task policy to errors
in estimated properties, leading to the identification of task-relevant properties.

* We demonstrate that autonomously discovered exploration rewards lead to improved task
performance by more accurately identifying relevant properties.

* We introduce the simultaneous learning of an online estimator with the exploration policy,
enabling estimation within distribution of the exploratory observed states.

* We present a method that autonomously transitions from exploration to task execution us-
ing uncertainty in property estimates, with thresholds computed from task success.

* We validate our approach on a physical robotic setup, showing that it successfully adjusts
task motions for different object properties.

2 Problem Statement
We address the problem of performing one-

shot robotic tasks that involve interacting with
objects or environments with unknown phys-

ical properties, where the robot is unable to
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with varying friction to an unreachable goal,
tossing objects with different centers of mass,
or shooting a basketball with unknown resti- Figure 1: Task-informed exploration approach en-
tution. These tasks require identifying the ables the robot to autonomously learn how to explore
. . . and identify task-relevant properties by modeling task
physical properties of the manipulated ob- L .
. A . YR sensitivity to each property. For dynamic tasks such as
Ject prior to task executIQH, as initiating the striking, the robot must first identify the object’s prop-
task with incorrect assumptions about the prop- erties through exploratory motions to achieve the task
erties can lead to irreversible failure—making success, avoiding irreversible failure.

online adaptation or correction unsuitable.

Explore Uncertainty | Task Execution

In this work, we seek to develop a method that addresses the following questions: (1) how to au-
tomatically discover informative exploratory motions for identifying task-relevant properties, when
these motions differ from optimal task motion and vary depending on the task; (2) how to adaptively
determine the timing to transition from exploration to task execution, ensuring sufficient property
estimation accuracy for a given task while minimizing exploration time; and (3) how to execute the
task immediately after exploration, without additional simulation queries or retraining at test time.

3 Related Work

Domain randomization. Domain randomization [10, 11] is a powerful technique in RL for enhanc-
ing the robustness of machine learning models and policies by introducing variability in environ-
mental factors, such as the visual and physical properties of objects. While this approach improves



the robustness of learnt policies across diverse environmental conditions, it often results in policies
that exhibit average behavior [12, 1]. To adapt behavior based on the physical properties of objects,
Ramos et al. [12] propose non-uniform domain randomization. However, this method requires ob-
taining the posterior distribution of object properties and retraining the task policy for those specific
properties each time the robot executes the task. On the other hand, Peng et al. [13] use Recur-
rent Deterministic Policy Gradient (RDPG) in RL, aiming to infer dynamics by capturing temporal
dependencies. While inspired by these methods, we find that they alone are insufficient for tasks
requiring exploratory motions to identify physical properties prior to task execution.

System Identification. System identification [14] is crucial for modeling system dynamics from
observed data. A key challenge is generating exploratory motions that yield informative observations
for parameter identification. Many prior approaches rely on predefined motions [15, 7, 6, 8, 3, 4, 16].
Others iteratively update parameters through repeated task executions [17, 18]. However, optimal
task motions may differ from those most informative for parameter identification. To address this,
prior works optimize exploratory motions by minimizing property estimation errors [19], reducing
state transition prediction errors [20], or maximizing Fisher information to generate observations
that most effectively distinguish differences in properties [1]. However, these methods assume equal
importance of all given parameters and fail to identify task-relevant ones.

Liang et al. [9] introduce task-oriented exploration using RL, where task rewards implicitly
guide the exploration policy to focus on properties critical for task success. However, their ap-
proach incurs inefficient simulation queries and requires a fixed exploration duration to infer
parameters by matching simulated and real-world observations, aiming to mitigate the out-of-
distribution issue with learned estimators [19]. In contrast, our method trains the online prop-
erty estimator simultaneously with the exploration policy to align the training data distribution,
while enabling adaptive exploration length based on uncertainty estimates. Additionally, these
prior works [9, 1] require re-optimization of the task policy at test time. Our method enables
immediate task execution after exploration using an online property estimator and a privileged
task policy. Dass et al. [21] also propose a dual-policy framework for task and information-
seeking, but assume minimal action space overlap—precluding applicability in scenarios where
exploratory and task actions interfere, such as physical property identification. In contrast, as
summarized in Table 1, our method enables one-shot task execution immediately after explo-
ration, with automatically determined exploration time, and without constraints on action spaces.

Privileged learning for robot control Method One-sho  Immediate A‘i*‘P‘iYe Overlapping
P . . etho tas| exploration i
Privileged learning [22] leverages informa- task o ion ptime Space
tion inaccessible during real-world deploy- BayesSim [12] X X X
ment. This privileged information accel- AdaptSim [17] X X
erates the learning process by providing D?;PN[[‘E?]] ;‘ X "
. .. al pA
tI'le agent with critical knowledge, such as 1. 6riented o] X X
hidden states or ground truth parameters, ASID [1] X X
which would otherwise require extensive Ours

exploration to uncover. Chen et al. [23]and  aple 1: One-shot task must succeed in a single attempt.
subsequent works [24, 25, 26, 27] proposed  Immediate task execution after exploration, without sim-
training a student policy to imitate the be- ulator queries or policy retraining. Adaptive exploration
havior of a privileged teacher policy using time automatically adjusted for sufficient but minimal ex-
ploration. Overlapping action space shared between ex-

partial observations. Del Aguila Ferrandis ploration and task execution.

et al. [28] use a privileged policy to gener-

ate data for learning a state estimator, and Yu et al. [29] use for a property estimator; others incorpo-
rate privileged information into auxiliary losses [30, 31] or the critic network [32, 30]. While most
existing work in these settings focuses on identifying hidden states [28, 24, 25, 26, 27, 31] or pa-
rameters [25, 26, 29] from passive observation during task execution, our work is the first to address
the challenge of uncovering parameters, specifically physical property parameters in our case, that
require active exploration motions different from task motions.



4 Method

We propose a task-informed exploration approach. The core idea is to leverage the privileged task
policy to automatically generate rewards based on its sensitivity to errors in estimated properties.
These rewards guide the training of the exploration policy to identify task-relevant properties, while
simultaneously training the online property and uncertainty estimator. At deployment, the robot
begins with the exploration policy, uses uncertainty estimates to transition to task execution, and im-
mediately executes the task policy after exploration, adjusting its motion based on the final property
estimates from the exploration. Appx. A.l outlines a detailed overview of the proposed method.

4.1 Problem Formulation

We formulate the problem as a family of Markov Decision Processes (MDPs) where the dynamics
of the environment depends on the physical properties ¢ € ¢ of the manipulated object. We assume
that ¢ remains constant throughout the episode. Each instance takes the form of the tuple M (¢) =
(S, A, Py, R, ), with a finite horizon H, where S is the state space, A is the action space, Py is the
transition model conditioned on ¢, R is the reward function and € [0,1) is the discount factor.
The objective is to learn a policy 7 that maximizes the expected discounted return across different

values of the physical properties ¢: maxs Egp(g),r, P, [Ei;l Y R(s¢, ay, st+1)] The physical
properties ¢ of the object are hidden, and the robot must infer them for successful task execution.

Since the one-shot nature of the task precludes online adaptation or retrying the task, the robot must
first explore the object to infer these properties and then adjust its task execution accordingly.

4.2 Privileged Task Policy Learning

We first train a privileged task policy 7, using RL with access to ground truth physical property
parameters ¢* in simulation. We hypothesize that leveraging this privileged information reduces the
need for extensive exploration and prevents convergence to suboptimal policies, leading to a higher
success rate by adapting to different properties.

Task policy. During training, the task policy receives the ground truth physical property values ¢*
as input, along with the current state observation s; and the goal g in goal-conditioned settings, and
computes actions a; at each timestep. We define the task policy reward, rg, based on the task’s
objectives, with positive rewards for achieving desired behaviors, such as reaching a target, and
negative rewards for undesirable ones, such as violating constraints or workspace boundaries. We
randomize the initial state to enable safe task execution in scenes perturbed by exploration.

4.3 Learning of Exploration and Property Estimation

While privileged access to ground truth physical property values aids task policy training, these
values are unavailable in real-world settings. To address this, we simultaneously train (1) an ex-
ploration policy 7., to perform motions that are informative for estimating the physical properties
@ prior to task policy execution, and (2) an online property estimator fy to infer these properties
from state observations during exploration. This estimator allows immediate task execution after
exploration—unlike prior works [9, 1] that require querying a simulator for offline inference.

Exploration policy. Next, we train an exploration policy 7.y, that computes actions a; to obtain
observations informative for identifying the physical properties of the manipulated object, given the
current states s; of the robot and the object through RL. We define the exploration policy reward as
__J Testimation if Vj Eestimation, j < Ethreshold, j

Texp = . s (D
Tfailure otherwise

where €cgtimation,; Tepresents the estimation error for the j-th physical property, and €yreshold,; 1S the
threshold for the j-th property. The robot receives a positive reward 7eggimation if the estimation errors
of all properties are below their respective thresholds. We obtain the estimation errors Eegtimation DY



computing the difference between the ground truth physical property values ¢* and the estimated
physical property values ¢ estimated by the physical property estimator fy, as

2

Eestimation,j — ‘(b;k - ¢j .

We adopt on-policy RL for stable training under non-stationary rewards caused by dependence on
the simultaneously trained estimator. The robot receives a negative reward 7, for violating the
workspace boundaries, ensuring feasible task execution after exploration, without manual reset.

Online physical property estimator. For online physical property estimation during exploration,
we employ a Long Short-Term Memory (LSTM) [33], as temporal information is essential for cap-
turing object dynamics (see Appx. C.1 for alternative approaches, e.g., a Transformer-based esti-
mator). Between each training update, the exploration policy collects a new dataset D of rollouts,
consisting of states s; and the corresponding ground truth physical property values ¢*. At each
update of the exploration policy, we also update the estimator by minimizing the estimation loss
Lst (see Appx. A.2 for details) using the dataset D. This simultaneous training of the estimator on
observations from the most recent exploration policy mitigates out-of-distribution issues, a known
challenge in learned estimators [19] and forward models [1, 34].

4.4 Task-Informed Exploration Reward Design

The exploration policy reward function in Eq. (1) requires specifying the estimation error thresh-
0ldS Ereshold,j- While humans can leverage intuition and physics knowledge to identify which pa-
rameters are relevant to the target task, manually specifying optimal threshold values for multiple
properties is non-intuitive. Moreover, tuning these thresholds for each task is cumbersome, as the
relevance of each physical property varies across tasks. To address this, we propose a method to
automatically generate these estimation thresholds by modeling task performance sensitivity to esti-
mation error in each property. Since we compute these thresholds from task performance sensitivity,
these exploration rewards serve as a surrogate for the task reward. This reward design enables the
robot to learn exploratory motions that lead to high task performance, prioritizing the identification
of task-relevant properties—without executing the task policy during exploration policy training.

Modeling task performance sensitivity. For each physical property, we assume a uni-modal re-
lationship between the task success rate y and the estimation error ¢, where task performance is
highest when the estimation is accurate and decreases as the error increases. The rate at which task
success deteriorates with increasing error reflects the sensitivity of the task to each property.

To model this relationship, we fit a parametric uni-modal function g;(¢) to empirical data D, ; for
each j-th physical property, where g represents any uni-modal function. The dataset D, ; consists
of pairs of estimation error levels € and the corresponding task success rates y achieved by the task
policy. During data collection, we roll out the privileged task policy, systematically replacing the
ground truth value of the j-th physical property with perturbed values at varying levels of estimation
error. We model the sensitivity of each property individually by introducing errors into one property
at a time while keeping all others unperturbed, assuming that the impact of each property on task
performance is independent of the others.

Computing task-informed exploration rewards. From the fitted uni-modal function g;, we com-
pute a set of estimation error thresholds egyeshola,; for each physical property j, such that the task
success rate remains above a proportion p of the maximum success rate achieved by the privileged
task policy. Specifically, we solve:

gj (Elhreshold,j) > p- mgx gj (E) (3)
for each property. These estimation error thresholds define the success criteria in the exploration re-

ward in Eq. (1). Properties that are more relevant to the task result in tighter thresholds, encouraging
the exploration policy to estimate those properties with higher accuracy.



4.5 Uncertainty-Based Policy Switching

In the training phase, we define exploration success using estimation error, as in Eq. (1). However,
this error is inaccessible at test time on a physical setup. To transition from exploration to task
execution once the property estimates are sufficiently accurate, we 1) estimate the uncertainty of
the property estimates, and 2) determine the uncertainty thresholds required for successful task
execution by modeling the relationship between each property’s uncertainty and the task outcome.

Uncertainty estimator. We estimate the predictive uncertainty of the physical property estimator f,
using an ensemble approach that captures both aleatoric uncertainty (from data noise) and epistemic
uncertainty (from model limitations) [35]. We define f, as an ensemble of M neural networks,
indexed by ¢, each comprising two heads: one for the predicted mean q@i(st) (denoted qgi’t) and
another for the predicted covariance f)l(st) (denoted ZAJM) [36, 37, 38]. Assuming a heteroscedastic
setting, i.e. the uncertainty depends on the models’ input, where p(¢|s;) = N (.1, 2i1), we train
each model ¢ to minimize the negative log-likelihood. The ensemble consists of an equally weighted
mixture of Gaussians which, for simplicity, we approximate with a single Gaussian distribution,
such that p(¢|s;) = N(¢y, ), where the mean and covariance are those of the mixture [37]:

N = 1 ¢ LS~ (5 4 04
b= b Si= Y St S (udll) — bl
i=1 i=1 v

i—1

__ mean of the covariance of the
individual covariances mixture means

We use the mean gﬁt as the predicted physical property values, and the covariance 3, as the measure
for predictive uncertainty, where the mean of the individual covariances captures aleatoric uncer-
tainty, while the covariance of the mixture means captures epistemic uncertainty.

Computing uncertainty thresholds. Finally, we compute the uncertainty thresholds required for
successful task execution. We roll out the exploration and task policies to collect uncertainty data
labeled with task outcomes (success or failure). Then, we calculate the p-th percentile of the un-
certainty values for each property from successful task trials (i.e., ¢% of successful trials have un-
certainty values lower than this threshold). Therefore, the task policy is likely to succeed when the
uncertainty values are below these thresholds. These thresholds enable the robot to assess explo-
ration success and switch to the task policy without direct access to estimation error during testing.

5 Experiments

We evaluate our task-informed exploration approach Striking Edge Pushing

in simulation and on a physical robot. We provide Ball ﬂ \‘ .ﬁ
\
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Tasks. We evaluate our method on three tasks:
Striking a puck with unknown physical properties
toward an unreachable goal; Edge Pushing a box

Aluminum é S
with unknown contents to the table edge, where incor- (®) @ ;
X . . & N |
rect property estimates cause it to fall; and the classic -
CartPole task. Task details are in Appx. B.1. Figure 2: Manipulation tasks.

Baselines. We compare our method with the following baselines: Domain Randomization
(DR) [10], which randomizes physical properties for generalization; DR+Stack, which augments
DR with stacked observations to capture the temporal dynamics of objects influenced by physical
properties; DR+LSTM, which integrates an LSTM into PPO to model temporal dependencies, sim-
ilar to dynamic randomization with LSTM [13] but using PPO instead of RDPG; DR+Stack+Est,
which extends DR+Stack with one head for action computation and another for property estima-
tion; Student [23], which trains a student policy using DAgger; RMA [39], which trains to encode
observations by regressing towards the privileged latent representation of physical properties; and
UP-OSI [29], which simultaneously trains a privileged policy and an online property estimator.



5.1 Does the task-informed exploration approach improve task performance?

Ours. Fig. 3 summarizes the results for the one-shot Striking task. Our method achieves a
90.1% success rate, significantly outperforming all baselines, which reach at most 40%. Our
policies achieve 92.3% success in exploration (see Appx. C.1) and 98.7% in task, demonstrat-
ing that the exploration policy estimates properties with sufficient accuracy for successful task
performance. We confirmed consistent results on the Edge Pushing task (see Appx. C.2).

DR baselines. DR alone learns an average motion 100 o
across properties and achieves only a 25.4% suc- %0 DR [10] £ Student 23
cess rate. In methods with temporal information, & " DReSuck £ UP-OSI[29]
. ;’ —— DR+LSTM = RMA[39]

DR+Stack and DR+LSTM, exploratory pushing mo- g — DR#StacktBst =1 Ours
. . —— Privilege
tions emerge but attains only 35.4% and 23.3% task g " >

. @ +
success, respectively. These methods rely on de- ¢ o >
layed task rewards, provided only after task execu- 2 . o
tion, to evaluate the effectiveness of the exploration,
making it difficult to associate the exploratory mo- KR A

. . . Training St 1e7
tions with the rewards. Adding rewards for property FEEEE

estimation, as in DR+Stack+Est, also achieves only  Figure 3: Performance of different methods on the
34.8% due to the challenge of balancing exploration Striking task, with mean and standard deviation
and task execution rewards within a single policy. ~ reported across three training seeds.

Privileged baselines. The methods leveraging a privileged policy (Student, UP-OSI, and RMA)
achieved success rates of 23.0%, 33.7%, and 31.0%, respectively. Since the privileged task policy
lacks exploratory behavior, imitating it (Student) or rolling it out—whether using online estimation
(UP-OS]) or latent encodings (RMA)—Ieads to task failure.

5.2 Do task-informed exploration rewards capture task-relevant physical properties?

Fig. 4 presents task sensitivity to errors in each
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friction show a sharper decline in success rate

as error increases, compared to less sensitive
parameters such as static friction. This sen- _
sitivity model indicates that the former pa-
rameters are more relevant for performing the
task, resulting in tighter estimation thresholds ;
for exploration rewards. The results, align- ok
ing with our physics-based intuition, demon-

strate that our method automatically identifies Figure 4: Uni-modal functions fitted to the relationship

task-relevant properties. Similarly, in the Edge petween task success rate and normalized property es-
Pushing and CartPole tasks, each property timation errors, modeling task sensitivity. Dashed lines
exhibits distinct relationships, reflecting vary- indicate the computed estimation error thresholds.

ing levels of relevance to task performance. See Appx. C.4 for further analysis on all tasks.
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5.3 How do task-informed exploration rewards and uncertainty estimates contribute?

Task-informed exploration rewards. We compare the task-informed rewards from Eq. (3) against
task-agnostic rewards on the Striking task. When thresholds are uniformly too high (i.e., ¢ =
MaX; €hreshold,;)» task success drops to 47.3%, failing to accurately estimate task-relevant proper-
ties. When thresholds are uniformly too low (i.e., € = min; €preshold, ;) €xploration success drops to
8.0%, requiring highly accurate identification of all properties. In contrast, task-informed thresholds
achieve 92.3% exploration success and 90.1% task success, supporting our hypothesis that comput-



ing the highest estimation thresholds (to trigger exploration rewards) while maintaining sufficiently
low thresholds (to obtain more accurate estimates) is crucial. See Appx. C.3 for complete results.

Uncertainty estimates. Fig. 5a shows that both estimation =~ o == T
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when rolling out the exploration policy 100 times for the ;
Striking task. Further, Fig. 5b shows that low uncer- ‘ 010 T
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analysis, including uncertainty estimates of task-irrelevant . mic friction over time. (b) Uncertainty
properties. These findings support using uncertainty as a  distribution for successful vs. failed trials.

proxy for estimation error in physical setups and for determining when to switch to task execution.
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5.4 How does our approach perform on a physical robot?

We deploy our method on the robot, with examples ﬁ & ! @ ! & g& ; &

provided in the video and on the website. Our ap-

proach addresses sim-to-real challenges by learning \ > N \> \ > o
to explore and estimate task-relevant physical prop-
erties of objects, and by enabling the task policy to

adjust its motion based on the estimated properties. < o~ >
~" ~~

On the Striking task, we evaluated on pucks with  Exploration phase ( ) Task phase ( )

three distinct friction properties: ball bearings, ny- ;) Top: The robot’s exploration (poking the puck
lon, and aluminum. During exploration, each puck to infer friction and CoM) and task execution
exhibits distinct motion patterns due to differences (striking to the target). Bottom: RViz view with
in dynamic friction, as shown in Fig. 6. The online the workspace (yellow) and target (green).
property estimator successfully capture these differ- Avmoss ; Dall bearings
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Given the estimated properties, our method achieves
8/9 successful runs across three trials per puck.
These results demonstrate that the learned explo-
ration policy and online property estimator provide £ o0ss  \  // N\.A
accurate property estimates, and the uncertainty es- o 02 o4 o6 o8 10 12 14 1o
timates enable a policy switching, leading to one- Time (9

shot task success. We provide detailed results for the (b) Estimated dynamic friction and its uncertainty

Striking and Edee Pushine tasks in Appx. D. during exploration. The policy switches when all
Tixing ¢ fusiing pp property uncertainties fall below their thresholds,

though we only show dynamic friction here.
6 Conclusion Figure 6: Robot experiments on Striking task.
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We present a task-informed exploration RL approach that enables robots to perform exploratory mo-
tions for identifying task-relevant properties. Our approach automatically generates task-informed
exploration rewards by modeling the sensitivity of a privileged task policy to estimation errors in
each property. Additionally, we introduce an uncertainty-based mechanism to transition from ex-
ploration to task execution once the property estimates achieve sufficient accuracy for a given task.
We evaluate our approach on the Striking and the Edge Pushing tasks with objects of varying
friction and center of mass, demonstrating significantly improved task performance over alternative
methods. Our analysis shows that the exploration rewards capture the relative importance of phys-
ical properties in two manipulation tasks and the classical CartPole example. Finally, we validated
our approach in a physical setup, showing that the robot successfully performs exploration followed
by task execution using property and uncertainty estimates.
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Limitations

Correlated properties for exploration reward design. Our method for obtaining the task-informed
exploration rewards, by fitting uni-modal functions independently for each property, assumes un-
correlated effects of the properties’ estimation errors on the reduction of task performance. The
correlated case would require designing and testing more complex reward functions.

Geometry and complex dynamics. In this work, we assumed a fixed shaped object. Generalizing
over different shapes requires finding suitable input representations for the observed shape when
learning the privileged task policy. Extending our approach to represent more complex dynam-
ics—such as non-uniform friction, object deformation, or viscosity, poses the same representation
challenge due to the high-dimensionality of the parameter space. Additionally, simulation of such
dynamics is computationally expensive, making it demanding for learning policies using RL.

Sim2real model mismatch. Despite our method explicitly handling the sim2real transfer by learn-
ing to explore and estimate the physical property parameters of the object, we still observed distinct
behavior in the highly dynamic striking task when the puck had a shifted center of mass, indicating a
significant sim2real mismatch in the dynamic model itself. While our method can handle sim-to-real
gaps due to parameter mismatch, it is unable to handle mismatches in the dynamic model itself, as
it learns parameter estimators in simulation.

Sensor modalities. Finally, in our experiments, we use only kinematic observations to infer prop-
erty parameters. It remains unexplored how to best utilize other sensing modalities, such as force-
torque, tactile, audio, and vision to identify a wider range of properties and adapt to more diverse
tasks and environments.
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Appendix

A Method

A.1 Task-informed exploration framework

Our proposed approach utilizes the task policy 74 to autonomously discover task-informed ex-
ploration rewards for training the exploration policy 7zp, Without manual design. These rewards
enable us to learn an exploration policy that generates informative motions to estimate the physical
properties relevant to the task. Additionally, we compute the uncertainty of the physical property
estimates and use them as a criterion to switch from the exploration to the task phase, as a surrogate
of a estimation error. The task policy then uses the last estimate of the physical properties g?) from
the exploration phase as input. Fig. 7 outlines the proposed method.
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Figure 7: Method outline. The exploration component involves simultaneous training of an explo-
ration policy 7., and a properties estimator fg, given ground truth property labels ¢*, and executing

the policy until the uncertainty ¥; gets lower than a given threshold. The task component entails
training a task policy, given the privileged information of the ground truth properties ¢*, which dur-

ing execution takes the last property estimate (2) of the exploration phase as an input.

A.2 Training the physical property and uncertainty estimator

In the property estimator ensemble f,, each neural network ¢ outputs a predicted mean éi’t and
covariance fllt given the current state s;. To train each network, we model the conditional dis-
tribution of the true physical properties as a multivariate Gaussian parameterized by the predicted
mean and covariance, i.e. p(¢|s;) = N (qgm, 2”). Therefore, we use the corresponding negative
log-likelihood (up to an additive constant) as the loss criterion:

)t g (6 =) S (6" —du).

1 ~
Los =50 ([Si “)

B Experimental setup
B.1 Tasks

Striking. The goal of this task is to strike a puck into a given target area beyond the robot’s reachable
workspace. Fig. 8a shows the simulated environment, and Fig. 8b provides a schematic representa-
tion, highlighting the non-overlapping yellow workspace and green target area. This highly dynamic
task exemplifies the scenario where the robot must adjust its motion based on the physical properties
of the object and is unable to recover from failure once the puck becomes unreachable, motivating
the need to perform exploratory motions before executing the main task. For each trial, the puck
and the robot start from a fixed position, and the task is successful if the puck arrives within a
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20cm x 20 cm square at the goal target coordinates (pii®, py*™). The state s, consists of the

puck’s position (ph"*, pb'*) and orientation Bpuck,> and the robot’s pusher position (phisher phushery

and the action a, consists of the pusher velocity (v2™™", vP*"™"). The properties ¢ contain: static

friction, dynamic friction, restitution, center of mass (CoM) in the x and y directions, and mass.

Edge Pushing. This task uses the same setup, randomized physical properties, state, and action
definitions as the Striking task. The goal is to push a box with unknown contents to a target
position at the edge of the table. Inaccurate estimates of the box’s physical properties can lead to
catastrophic and irreversible failure—specifically, the box falling off the table. Fig. 9a shows the
simulated environment, and Fig. 9b illustrates the green target position. The task succeeds if the box

arrives within 10, cm of the target coordinates (pss*', pys*") without falling off the table.

CartPole. Additionally, we evaluate our approach for modeling task sensitivity to estimation er-
ror on the classic CartPole benchmark example from Isaac Lab [40] to assess its generalizability
to tasks involving a different set of physical properties. Fig. 10a shows the simulated environment,
and Fig. 10b provides a schematic representation. For each trial, the pole starts from an angle sam-
pled from U[—0.25,0.25] rad. The task is successful if the pole remains upright within a tolerance
of 7/2rad for 5s. The state consists of the current cart position p,, cart velocity p.., pole angle 6,
and pole angular velocity 0, and the action a; specifies the force 7 applied to the cart along the z
direction. The properties ¢ contain: cart joint friction, pole joint friction, cart mass, and pole mass.

Target

( phuck, p,;uck)

3 y[
Puck ¢

>
<
S
2
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20

.
usher usher
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Pusher

(b)

Figure 8: Striking environment (a) in Isaac Lab [40, 41] and (b) top view schematics. The red
cylindrical pusher, on the left of the dark blue puck, moves at a given velocity inside of the yellow
reachable workspace. The goal of the task is to strike the puck to reach the square green target area.
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Figure 9: Edge Pushing environment (a) in Isaac Lab [40, 41] and (b) lateral view schematics.




(a) (b)

Figure 10: CartPole environment (a) in Isaac Lab [40, 41] and (b) horizontal view schematics. The
square cart slides on the horizontal slider when pushed with a force 7. The goal of the task is to
balance the rectangular pole vertically, i.e., § = 0.

B.2 Simulation setup

We develop Striking and CartPole simulation environments using Isaac Lab [40, 41], as depicted
in Fig. 8a and Fig. 10a. We use an NVIDIA GeForce RTX 2080 SUPER GPU and NVIDIA
GeForce RTX 4090 throughout the experiments.

Striking. We abstract the robot as a cylindrical pusher to accelerate training, and model the puck
as a fixed-size cylinder. We randomize the puck’s physical properties ¢, by sampling from the
distributions specified in Table 2. The environment operates at a control frequency of 24 Hz, with a
maximum episode duration of H = 300 steps or 12.5 seconds. Furthermore, we utilize PyBullet [42]
to evaluate the performance of our uncertainty estimation by rolling out the policy and estimator on
a different physics engine from the one used for training.

Edge Pushing. This environment uses the same setup as Striking, with the puck replaced by a
fixed-size box.

CartPole. We randomize the CartPole properties ¢, by sampling from the distributions specified
in Table 2. The environment operates at a control frequency of 60 Hz, with a maximum episode
duration of H = 300 steps or 5 seconds.

B.3 Training setup

Privileged task policy. We train the privileged task policy 7,5 using Proximal Policy Optimiza-
tion (PPO) [43] with a continuous action space, and stack the last 5 states, {s;, St—1,...,St—4},
to capture temporal information. For the Striking and Edge Pushing tasks, the policy function
consists of a neural network architecture with four linear layers of sizes 256, 128, 64, and 2, fol-
lowed by Tanh non-linearities, and the value function consists of the same architecture, but with
the final linear layer (1) that outputs the state value prediction. Table 3 provides a summary of the
key hyperparameters and training settings. For the CartPole example we use the default training
settings.

Task rewards. For the Striking and Edge Pushing tasks, the robot receives a positive reward
of r; = 430 for positioning the object (the puck or the box) within the target area and a penalty of
r¢ = —15 if either the object or the robot’s end effector violates the workspace boundaries. For the
CartPole task, we define the reward function as r; = +1 when the pole stays within 7/2 rad of
the upright position and the cart remains within the track limits. Violating either condition results in
ry = —2 and immediate episode termination as a failure.

Exploration policy. We also use PPO to train the exploration policy 7y, consisting of an LSTM
layer with 128 hidden units, followed by three fully connected layers with 256, 64, and 2 units, and
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Task Physical Property Distribution
Static Friction 4[0.05,0.3]
Dynamic Friction U[0.05,0.3]

. Restitution U[0.0, 1.0]

Striking
Mass (kg) U[0.02,0.5]
Center of Mass Distance (m)  ¢[0,0.7 x puck radius]
Center of Mass Angle (rad) Ul0, 2]
Static Friction U[0.05,0.3]
Dynamic Friction 14[0.05,0.3]

Edge Pushing Restitution U[0.0,1.0]
Mass (kg) U[0.02,0.5]
Center of Mass Distance (m) U[0,0.7 x box width]
Center of Mass Angle (rad) Ulo, 2]
Cart Joint Friction 4[0.0,1.0]
Pole Joint Friction 4[0.0, 1.0]

CartPol
artrote Cart Mass (kg) (0.1, 10.0]
[

Pole Mass (kg) U[0.1,10.0]

Table 2: Randomization range of physical properties.

Tanh non-linearities. The value function consists of the same architecture, but with the final linear
layer (1) that outputs the state value prediction. Table 3 summarizes the key hyperparameters.

Physical property and uncertainty estimator. Each network in the ensemble consists of two
LSTM layers with 128 hidden units, followed by a fully connected layer that outputs 2 X ||¢|| units,
where ||¢|| is the dimensionality of the physical properties being estimated. The first ||¢|| units,
to which we apply a Tanh nonlinearity, correspond to the predicted mean of the physical proper-
ties (ﬁi’t. The remaining ||¢|| units correspond to the predicted natural logarithm of the diagonal
elements of the covariance matrix XAJ” We use the natural logarithm to improve numerical stability
during training and assume a diagonal covariance matrix to simplify parametrisation and reduce the
dimensionality of the output. To form the ensemble, we train five networks with different random
initialization weights.

Noise. We add two types of noise to the observations: step-wise noise, applied independently at
each timestep to simulate sensor noise, and episodic noise, which remains constant throughout the
episode to simulate calibration errors. Table 4 summarizes the distributions of the observation noise.
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Hyperparameter Value

Parallel Environments 8192
Initial Learning Rate («) 3x 1074
Optimizer Adam
Batch Size 4096
Rollout Steps Task: 16, Exploration: 64
Number of Epochs 8
Discount Factor () 0.99
GAE Lambda () 0.95
Clip Range (¢) 0.2
Entropy Coefficient (3) 0.0
Total Timesteps 24,000

Table 3: Key hyperparameters used for PPO training of the task and exploration policies.

Noise Distribution

Task Input
pu Step Episode
. Object position (m) N(0,0.00252) N(0,0.00257)
Edszr;l:llsii; Object orientation (rad) N(0,0.01%)  N(0,0.012)
& € Pusher position (m) N(0,0.00252) A/(0,0.00252)

Pole joint position (rad) ~ AN(0,0.15%)  A(0,0.15%)

. . . 2 2
CartPole Pole qo.mt Vel(.)(?lty (rad/s) N(0,0. 152) N(0, 0.152)
Cart joint position (m) N(0,0.05%)  N(0,0.05%)
Cart joint velocity (m/s)  N(0,0.05%)  N(0,0.052)

Table 4: Summary of step-wise noise, simulating sensor noise at each timestep, and episodic noise,
simulating calibration and systematic errors across the entire episode, for the Striking and CartPole
tasks.
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B.4 Hardware setup

We evaluate our approach on a physical setup using a KUKA iiwa robot arm equipped with a pusher
extension, as shown in Fig. 11. We use a Vicon motion capture system to track the object’s current
pose, and map the policy actions (i.e., pusher velocities) to robot joint configurations using inverse
kinematics. We evaluate two hardware tasks: Striking a puck with three friction levels and three
center-of-mass locations (Fig. 11), and Edge Pushing a box of eggs placed on one of two sides
(Fig. 2).

Ball bearings

Target

Nylon

Aluminium Left

Figure 11: The task-informed exploration approach enables the robot to autonomously learn how
to explore and identify the physical properties of objects relevant to a given task. For one-shot tasks
such as striking, the robot must first identify the object’s properties through exploratory motions to
achieve the task success.

C Additional results
C.1 Exploration policy training — Striking

Simultaneous training of exploration policy and property estimator. Fig. 12 shows the training
performance of the exploration policy 7eyp, trained using task-informed exploration rewards and
the estimator loss defined in Eq. (4), for the striking task. The results show the average over three
random seeds, with shaded regions indicating the standard deviation. We demonstrate that, despite
the exploration rewards being non-stationary due to their dependence on the simultaneously trained
estimator, on-policy RL achieves stable training and consistently converges to an exploration success
rate above 90% across seeds.

Alternative system identification approaches. Our framework supports alternative system identi-
fication modules, as long as they can output both estimates and uncertainty. While the LSTM-based
property estimator is sufficient for our short exploration horizon, we also tested a Transformer-
based estimator, achieving similar exploration success (Fig. 13). Our method can accommodate
such models for tasks requiring longer temporal dependencies during exploration or multi-modal
inputs. Additionally, although we chose a learned property estimator for fast, online inference and
ease of integration into an RL pipeline without additional simulation queries, investigating alterna-
tive modules (e.g., sim-in-the-loop approaches) is promising future work.
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Figure 12: Exploration policy training and estimator loss of LSTM-based estimator.
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Figure 13: Exploration policy training and estimator loss of Transformer-based estimator.
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C.2 Edge Pushing baseline comparison — Edge Pushing
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Figure 14: Performance with different training configurations of the control policy for Edge Pushing
task. We report mean and standard deviation across five training seeds.

C.3 Task-agnostic vs. task-informed exploration rewards

Method

Success Rate (%)
Exploration Task

Task-agnostic Min.
Task-agnostic Max.
Task-informed

8.0 29
91.7 47.3
92.3 90.1

Table 5: Ablation on task-agnostic vs. task-informed exploration rewards. We provide detailed

results in Appx. C.5.
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C.4 Sensitivity analysis — Striking, Edge Pushing, CartPole

While our approaches can apply any uni-modal functions, we applied three different uni-modal
distributions, the Gaussian, Beta, and Gamma distributions, to model the sensitivity of each property

to each task.
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(j) Different uni-modal functions fitted to model the sensitivity of the task success rate to the esti-
mation error on each property for the Striking, Edge Pushing, and CartPole tasks.
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C.5 Estimation error during exploration policy training

Fig. 16 illustrates how the Root Mean Squared Error (RMSE) of the property estimates at the end
of the exploration episode evolves during training. We report mean and standard deviation (SD)
across the training environments. With the task-informed exploration policy, the estimation error for
relevant physical properties, such as CoM and dynamic friction, decreases, while the error for less
relevant properties remains high. By the end of training, the estimation errors for all properties fall
below the thresholds indicated by the dotted lines. In contrast, task-agnostic exploration policies
result in high estimation errors across all physical properties. The exploration reward with high
estimation thresholds for all properties (Task-agnostic (Max.)) proves non-informative. Due to the
high thresholds, even large estimation errors fall below them, failing to incentivize accurate property
estimation. On the other hand, setting thresholds too low for all properties (Task-agnostic (Min.))
makes it difficult to achieve the required thresholds, leading to sparse rewards. Additionally, training
becomes more challenging, as it requires learning more complex behaviors to accurately estimate
all properties.
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Figure 16: RMSE of the property parameter estimation at the end of the episode during training
(solid line) and the estimation threshold (dashed line).
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C.6 Can we use uncertainty for policy switching?

Relationship between uncertainty and estimation error. First, we evaluate whether the estimated
uncertainty reflects the estimation errors by rolling out the exploration policy 100 times in Isaac
Lab. Fig. 17 shows the mean and standard deviation of the estimation errors and uncertainties
over the first 14 timesteps (= 0.6 seconds) of the exploration episodes. The plots demonstrate
that as the exploration progresses, both the estimation errors and uncertainties decrease for task-
relevant properties, such as the CoM in the y-direction and dynamic friction. This result suggests
that the uncertainty estimates effectively reflect the estimation error, supporting our approach of
using uncertainty as a surrogate when the estimation error is inaccessible at test time.
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Figure 17: Estimation errors and uncertainties of property parameters during the exploration
episode. As the exploration progresses, both the estimation errors and uncertainties decrease for
task-relevant properties.

Relationship between uncertainty and task success. Next, we evaluate the relationship between
uncertainty estimates and task success. For this evaluation, we roll out the task policy 100 times in
PyBullet using estimates from the exploration policy, running for the maximum episode length. We
use a simulator different from the one used for training to better assess uncertainty when there is a
domain gap between training and testing, as we intend to use these uncertainties in a physical setup.
Fig. 18 presents box plots of uncertainty at the end of the exploration episode for successful and
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failed trials. The plots show that low uncertainty in task-relevant property estimates leads to task
success, while high uncertainty results in failure. These findings suggest that uncertainty estimates
during exploration predicts task outcomes and indicates when property estimates are sufficiently
accurate to transition from exploration to the task phase.
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Figure 18: Relationship between uncertainties and task outcomes when rolling out the exploration
and task policies in PyBullet. Low uncertainties lead to task success, while high uncertainties cor-
relate with failures, particularly for task-relevant properties such as CoM in the y-direction and
dynamic friction.

D Robot experiments

D.1 Striking

Varying surface friction. We provide dynamic friction estimates and its uncertainty for all trials on
pucks with different levels of friction. Fig. 19 shows that the dynamic friction estimates consistently
converge to 0.09 for ball bearings, 0.12 for nylon, and 0.15 for aluminum, with uncertainty dropping
below 0.056, the uncertainty thresholds computed in Fig. 18.
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Figure 19: Estimates of dynamic friction and its associated uncertainty during exploration policy
execution on the physical setup. Dynamic friction estimates consistently converge to 0.9, 0.12, and
0.15 for the pucks with ball bearings, nylon, and aluminum, respectively.

Shifted center of mass. We also evaluated pucks with three varying locations of the center of mass,
as shown in the second column in Fig. 11. When the CoM is in the center, the robot successfully
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estimates its location and completes the task, achieving 3/3 successful runs. However, for pucks
with shifted CoM—either to the left or right—exploration fails due to inaccurate estimates and con-
sistently high uncertainty, as shown in Fig. 20. We observe that, while shifts in the CoM primarily
cause spinning with minimal trajectory deviation in the Isaac Lab training environment, they result
in more pronounced trajectory divergence in the physical setup. This discrepancy likely arises be-
cause the simulation models the puck-table contact as a point contact, whereas real-world contact
involves full surface contact, altering the friction distribution. Bridging this sim-to-real gap by mod-
eling such contact in simulation or utilizing a small amount of real-world data to learn unmodeled
dynamics is a promising direction for future work.
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Figure 20: Estimates of the y component of the center of mass and its associated uncertainty during
exploration policy execution on the physical setup. Uncertainty decreases in successful trials, while
it remains high (i.e., above the threshold 0.054 obtained from Fig. 18) in failed trials.

D.2 Edge Pushing

Shifted center of mass. For the Edge Pushing task, we tested the robot with two different center-
of-mass (CoM) locations by placing the eggs on either side of the egg cartons. When we shifted the
CoM to the left, the robot estimated its location 5.8cm off-center to the left, achieving 5/5 successful
runs. When we shifted the CoM to the right, the robot estimated its location 5.8cm off-center to the
right, achieving 3/5 successful runs. Fig. 21 shows that the robot’s CoM estimates converge to the
correct values, with uncertainty dropping below 0.018—the computed threshold.
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Figure 21: Estimates of the x component of the center of mass and its associated uncertainty dur-
ing exploration policy execution on the physical setup for the Edge Pushing task. Uncertainty
decreases below the computed threshold 0.018, leading to successful trials .
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