
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ON DISCRIMINATIVE PROBABILISTIC MODELING FOR
SELF-SUPERVISED REPRESENTATION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the discriminative probabilistic modeling problem on a continuous do-
main for (multimodal) self-supervised representation learning. To address the
challenge of computing the integral in the partition function for each anchor data,
we leverage the multiple importance sampling (MIS) technique for robust Monte
Carlo integration, which can recover InfoNCE-based contrastive loss as a special
case. Within this probabilistic modeling framework, we conduct generalization
error analysis to reveal the limitation of current InfoNCE-based contrastive loss
for self-supervised representation learning and derive insights for developing bet-
ter approaches by reducing the error of Monte Carlo integration. To this end,
we propose a novel non-parametric method for approximating the sum of condi-
tional probability densities required by MIS through convex optimization, yield-
ing a new contrastive objective for self-supervised representation learning. More-
over, we design an efficient algorithm for solving the proposed objective. We
empirically compare our algorithm to representative baselines on the contrastive
image-language pretraining task. Experimental results on the CC3M and CC12M
datasets demonstrate the superior overall performance of our algorithm.

1 INTRODUCTION

Recently, self-supervised learning (SSL) of large models has emerged as a prominent paradigm for
building artificial intelligence (AI) systems (Bommasani et al., 2021; Ozbulak et al., 2023; Zhou
et al., 2023a; Zong et al., 2023). Unlike traditional supervised learning that relies on human-
labeled datasets, SSL can fully exploit the vast multimodal data readily available on the internet
via self-supervision (pretext tasks such as instance discrimination, masked modeling, and inpaint-
ing) to learn large foundation models that are useful for many downstream tasks. Although self-
supervision differs from human supervision, self-supervised and supervised learning share similar-
ities. For instance, many successful self-supervised learning models, e.g., CLIP (Radford et al.,
2021), still use the softmax function and the cross-entropy loss to define their objective func-
tions, similar to traditional multi-class classification in supervised learning. The key difference
is that self-supervised learning focuses on predicting relevant data instead of relevant labels.

Learning to Rank

Discriminative Probabilistic 
Model (DPM) over a Finite Set 

for Supervised Learning

Multi-Class Classification
= {Cat, Dog, Bird,…}

       = {Joker, Dune II, …, Lift,…}

Discriminative Probabilistic Model 
(DPM) over a Continuous Domain

Self-Supervised 
Representation Learning

Image space

Figure 1: DPM for supervised learning and self-
supervised representation learning.

Discriminative probabilistic modeling (DPM)
uses a parameterized model to capture the con-
ditional probability Pr(y∣x) of a target y ∈ Y
given an input data point x. It is a fundamen-
tal approach for supervised learning (see, e.g.,
Chapter 4.3 in Bishop 2006). For example, lo-
gistic regression for multi-class classification
(MCC) uses Pr(y∣x) to define the probability
of a label y given a data point x, whose max-
imum likelihood estimation (MLE) yields the
cross-entropy (CE) loss. Similarly, probabilis-
tic modeling approaches such as ListNet (Cao
et al., 2007) have been used for learning to rank
(L2R) to model the probability of a candidate y in a list given a query x. In these supervised learning
tasks, the target y is from a discrete and finite set Y (e.g. class labels or a list of candidates).
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What if the target y in DPM is from a continuous domain Y? This is particularly useful for model-
ing the prediction task of self-supervised representation learning. Considering that each underlying
object in the real world generates various forms of observational data, such as images, texts, and
audio, DPM is a natural choice to model the probability of observing a data point from a continuous
domain (e.g., the space of natural images, audio, or the continuous input embedding space of texts)
given an “anchor” data point. The anchor data may come from a different modality. However, solv-
ing DPM over a continuous domain is deemed as a challenging task (c.f. Section 1.3 in LeCun et al.
2006). Compared to the probabilistic modeling over discrete and finite sets, such as in traditional
supervised learning tasks like MCC and L2R, the DPM problem over a continuous domain (real
vector space) necessitates computing the partition function (i.e., the normalizing constant) for each
anchor. This involves an integration over an underlying continuous space, rather than a finite sum-
mation. Previous works tackle or circumvent this issue using Markov Chain Monte Carlo (MCMC)
sampling (Song and Kingma, 2021; Du and Mordatch, 2019; Ta et al., 2022), noise-contrastive es-
timation (NCE) (Gutmann and Hyvärinen, 2010), and energy-based models (EBMs) (LeCun et al.,
2006; Assran et al., 2023a). However, these approaches have drawbacks that hinder their wide
adoption in self-supervised representation learning. Specifically, MCMC approaches are computa-
tionally expensive and prone to divergence during training (Yang and Ji, 2021; Kim and Ye, 2022),
NCE suffers from slow convergence for high-dimensional data when the noise distribution is not
well-configured (Liu et al., 2022), and EBMs neglects the partition functions that may throw away
some discriminative power of DPM. The state-of-the-art discriminative self-supervised representa-
tion learning algorithms rely on InfoNCE-based contrastive losses (Oord et al., 2018; Chen et al.,
2020; Radford et al., 2021). However, the connection between these losses and DPMs is not fully
revealed, limiting our understanding of their strengths and weaknesses.

In this work, we study DPM over a continuous domain for self-supervised representation learning by
investigating a computational framework of robust Monte Carlo integration of the partition functions
based on the multiple importance sampling (MIS) approach (Veach and Guibas, 1995; Veach, 1998).
Our contributions can be summarized as follows:

●We construct an empirical risk for maximum likelihood estimation (MLE) based on MIS. Unlike
the setting in MIS for traditional stochastic simulation, the sums of conditional densities on training
data are not directly accessible, requiring approximations of these sums. We show that an InfoNCE-
based contrastive loss, referred to as the global contrastive loss (GCL) (Yuan et al., 2022), can be
derived as a special case of this empirical risk when a simple uniform approximation is used.

● Our finite-sample generalization analysis reveals that GCL incurs a non-diminishing error due to
the rather crude uniform approximation. To reduce this error, we introduce a novel non-parametric
method to approximate the sum of conditional densities required by the MIS approach through
optimization. In a toy experiment, we demonstrate that the proposed non-parametric method results
in better approximations and significantly smaller generalization errors than GCL.

● The MLE framework based on MIS and our non-parametric method inspires a new contrastive
objective for self-supervised representation learning. We design an efficient algorithm, NUCLR,
to optimize the proposed objective, which does not require the costly MCMC steps or the elusive
noise distribution selection. Furthermore, NUCLR can be interpreted as a contrastive representation
learning algorithm with nonuniform margins that are dynamically learned for negative pairs.

● Experimental results on language-image pretraining using CC3M and CC12M datasets show the
superior overall performance of NUCLR compared to baselines on downstream retrieval tasks.

1.1 RELATED WORK

Probabilistic Models for Self-Supervised Representation Learning: Discriminative probabilistic
models learn the conditional probability mass/density function p(y ∣ x) of y given data x. Recently,
some works have focused on modeling the conditional probability density function p(y ∣ x) for the
unsupervised representation learning task, where both x and y may belong to uncountable spaces.
Khemakhem et al. (2020) studied the identifiability (i.e., the learned representations are unique up to
a linear transformation) of DPM and showed its connection to nonlinear ICA models. Ta et al. (2022)
improved the Langevin MCMC method to handle the partition function in DPM for learning implicit
representations of behavior-cloned policies in robotics. Discarding the partition function, Assran
et al. (2023a); Bardes et al. (2024) proposed the energy-based models I-JEPA and V-JEPA to learn
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visual representations by predicting the relevance between data representations. Although the high-
level concept of JEPA is similar to our work in that both aim to predict the relevance between data
representations, our approach is grounded in discriminative probabilistic modeling, whereas JEPA is
an energy-based model that omits the partition function. Consequently, JEPA lacks some statistical
guarantees of probabilistic models, such as the convergence of the maximum likelihood estimator,
which have implications for performance on downstream tasks (See Remark 2). Furthermore, JEPA
is designed specifically for the visual modality whereas our algorithm applies to multimodal data.

By modeling the joint distribution p(x,y), hybrid models (Grathwohl et al., 2019; Wang et al.,
2022; Kim and Ye, 2022; Bizeul et al., 2024) simultaneously perform discriminative and generative
probabilistic modeling. Although the generative component in hybrid models might offer some ben-
efits for representation learning, such as achieving reasonably good performance with small batch
size, Kim and Ye (2022) pointed out that current hybrid models significantly increase the computa-
tional burden and cannot be applied to large-scale datasets such as ImageNet1k due to the expensive
inner loops of stochastic gradient Langevin dynamics or adversarial training. Furthermore, Bizeul
et al. (2024) mentioned1 that generative representation learning approaches face difficulties scaling
to large-scale, complex datasets, as “learning representations for complex data distributions under a
generative regime remains a challenge compared to discriminative approaches.”

InfoNCE-based Losses and Theoretical Guarantees: The InfoNCE loss is arguably the most
widely used loss function in contrastive learning (Chopra et al., 2005; Oord et al., 2018; Chen
et al., 2020; Radford et al., 2021). Given a dataset {(xi,yi)}ni=1 from two views or modalities,
the minibatch-based InfoNCE loss contrasts each positive pair with k negative pairs in the sampled
batch. Both empirical observations (Chen et al., 2020; Radford et al., 2021; Yuan et al., 2022) and
theoretical analysis (Yuan et al., 2022) demonstrate that algorithms based on InfoNCE perform well
when the batch size is sufficiently large (e.g. 32,768 for CLIP training), which demands a lot of
computational resources. Besides, several works analyze the generalization error of the minibatch-
based InfoNCE loss (Arora et al., 2019; Lei et al., 2023). However, these analyses have a critical
limitation: the generalization error increases with k, which contradicts practical observations.

To address the dependency on large batch sizes, Yuan et al. (2022) studied the global contrastive
loss (GCL), which can be viewed as a variant of the InfoNCE loss that contrasts each positive pair
with all other negative pairs in the whole dataset. Based on the exponential moving average (EMA)
technique, they developed the SogCLR algorithm that converges to a neighborhood of a station-
ary point of GCL even with small batch sizes (e.g., 256). Recently, Yau et al. (2024) introduced
the MCMC-based EMC2 algorithm that converges to the stationary point with a small batch size.
However, EMC2 appears to empirically perform worse than SogCLR on large datasets such as Ima-
geNet1k. Besides, Waida et al. (2023) established the generalization bound of the kernel contrastive
loss (KCL), which is a lower bound of GCL when the kernel is bilinear.

2 PRELIMINARIES

Notations: We use [n] to denote the set {1, . . . , n}. For a vector v ∈ Rn, v(i) represents its i-th
coordinate and we define exp(v) ∶= (exp(v(1)), . . . , exp(v(n)))⊺. Let X and Y be Lebesgue-
measurable data spaces of different views or modalities. When X or Y is finite, the Lebesgue
measure µ is replaced by the counting measure. For a sequence of random variables {xn}n∈N, we
write xn

p→ x to denote that {xn}n∈N converges in probability to x.

Multiple Importance Sampling (MIS): Next, we briefly review the multiple importance sam-
pling (MIS) approach (Veach and Guibas, 1995; Veach, 1998) for robust Monte Carlo integra-
tion. MIS was originally introduced to address the glossy highlights problem for image render-
ing in computer graphics, which involves computing several integrals of the form g(a, r, s) =
∫X f(x; r, s)dµ(x), which represents the light exiting a point a on a glossy surface under varia-
tions in light size s and surface glossiness r. For Monte Carlo integration of g(a, r, s), impor-
tance sampling based on a sample from a single distribution may lead to a large variance under
some light size/surface glossiness. To address this issue, the MIS approach constructs an unbi-
ased estimator ĝ(a, r, s) = ∑n

j=1
1
m ∑

m
l=1 ω

(j)(xj,l) f(xj,l;a,r,s)
pj(xj,l) by combining samples X̂1 . . . , X̂n

1https://openreview.net/forum?id=QEwz7447tR
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from distributions p1, . . . , pn, where X̂j ∶= {xj,1, . . . ,xj,m} is sampled from the j-th distribu-
tion, and ω = (ω(1), . . . , ω(n)) is a weighting function satisfies that ∑n

j=1 ω
(j)(x) = 1 when

f(x;a, r, s) ≠ 0 and ω(j)(x) = 0 when pj(x) = 0. Moreover, Veach and Guibas (1995) pro-
posed the “balance heuristic” ω(j)(x) = pj(x)

∑n
j′=1 pj′(x)

and proved that this choice of ω is near-optimal

in terms of variance among all possible weighting functions and the resulting MIS estimator is
ĝ(a, r, s) = ∑n

j=1
1
m ∑

m
l=1

f(xj,l;a,r,s)
∑n

j′=1 pj′(xj,l) . Empirically, they showed that MIS with the balance heuris-

tic leads to better rendering performance than importance sampling with a single distribution.

3 DPM OVER A CONTINUOUS DOMAIN

When choosing X as the anchor space, we model the probability density p(y ∣ x) of an object y ∈ Y
given an anchor object x ∈ X by the following DPM parameterized by w:

pw(y ∣ x) =
exp(Ew(x,y)/τ)

∫Y exp(Ew(x,y′)/τ)dµ(y′)
, (1)

where τ > 0 is a temperature parameter for flexibility, Ew ∶ X ×Y → R is a parameterized prediction
function, e.g., Ew(x,y) = E1(w1,x)⊺E2(w2,y), where E1 and E2 are encoder networks. We
assume that exp(Ew(x,y)/τ) is Lebesgue-integrable for w ∈ W , W ⊂ Rd. Here pw(y ∣ x) is a
valid probability density function because ∫Y pw(y ∣ x)dµ(y) = 1. Given {(x1,y1), . . . , (xn,yn)}
sampled from the joint distribution px,y, the maximum likelihood estimation (MLE) aims to solve

min
w
{− 1

n

n

∑
i=1
τ log

exp(Ew(xi,yi)/τ)
∫Y exp(Ew(xi,y′)/τ)dµ(y′)

} . (2)

Corresponding to the empirical objective above, the true (expected) risk can be defined as

L(w) ∶= Ex,y [−τ log
exp(Ew(x,y)/τ)

∫Y exp(Ew(x,y′)/τ)dµ(y′)
] . (3)

Remark 1. When Y is a finite set, (3) reduces to the cross-entropy loss commonly used in su-
pervised learning. Besides, the true risk in (3) is subtly different from the asymptotic of the In-
foNCE (∞-InfoNCE) loss (Wang and Isola, 2020), which can be expressed as L∞-InfoNCE(w) =
Ex,y [−τ log exp(Ew(x,y)/τ)

Ey′ [exp(Ew(x,y′)/τ)]]. The difference lies in the denominator within the logarithm. It
is not clear how to interpret the ∞-InfoNCE loss from the probabilistic modeling viewpoint, since
p′w(y ∣ x) =

exp(Ew(x,y)/τ)
Ey′ [exp(Ew(x,y′)/τ)] is not a valid probability density function.

Remark 2. Learning the DPM pŵ∗ via MLE for self-supervised pretraining naturally provides
some performance guarantees for downstream discriminative tasks. Suppose that the true con-
ditional density function is parameterized by some w∗ ∈ W , i.e., p(y ∣ x) = pw∗(y ∣ x) =

exp(Ew∗(x,y)/τ)
∫Y exp(Ew∗(x,y′)/τ)dµ(y′)

for any x ∈ X ,y ∈ Y . Then, the maximum likelihood estimator ŵ∗ =
argmaxw∈W

1
n ∑

n
i=1 log pw(yi ∣ xi) with the sample {(xi,yi)}ni=1 of size n converges in prob-

ability to w∗ under some mild assumptions (see Theorem 2.1 in Newey and McFadden 1994).
Due to the continuous mapping theorem, the learned model satisfies Eŵ∗(x,y)

p→ Ew∗(x,y) and
pŵ∗(y∣x)

p→ pw∗(y∣x) if the parameterized models Ew and pw have measure-zero discontinu-
ity points on W , which naturally provides a statistical guarantee for cross-modality retrieval. In
App. C, we also discuss the performance of DPM on downstream classification tasks.

When choosing Y as the anchor space, we can also model the probability density of an object
x ∈ X given an anchor y ∈ Y by the parameterized model pw(x ∣ y) = exp(Ew(x,y)/τ)

∫X exp(Ew(x′,y)/τ)dµ(x′)

similar to (1). Based on a sample Ŝ = X̂ × Ŷ = {(x1,y1), . . . , (xn,yn)} of size n from the joint
distribution px,y, we can simultaneously model pw(y ∣ x) and pw(x ∣ y) via the objective below,
which resembles the symmetric InfoNCE loss in Radford et al. (2021):

min
w
− 1
n

n

∑
i=1
(τ log exp(Ew(xi,yi)/τ)

∫Y exp(Ew(xi,y′)/τ)dµ(y′)
+ τ log exp(Ew(xi,yi)/τ)

∫X exp(Ew(x′,yi)/τ)dµ(x′)
) .
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3.1 AN MIS-BASED EMPIRICAL RISK FOR MAXIMUM LIKELIHOOD ESTIMATION

For simplicity, we focus on the case where X is the anchor space and aim to model p(y ∣
x). The main challenge of MLE in (2) lies in computing the integral g(w;xi,Y) ∶=
∫Y exp (Ew(xi,y

′)/τ)dµ(y′) for each i ∈ [n], which is infeasible unless Y is finite. For Monte
Carlo integration based on the importance sampling, it is difficult, if not impossible, to select a sin-
gle distribution that works well for all integrals g(w;xi,Y), i ∈ [n]. Assume that each data yj is
sampled from pj = p(⋅ ∣ xj) given data xj sampled from the marginal, j = 1,2, . . . , n. Thus, we
employ the MIS method with balance heuristic (Veach and Guibas, 1995) to construct the following
estimator of g(w;xi,Y) by combining sampled data y1, . . . ,yn from n distributions p1, . . . , pn:

ĝ(w;xi, Ŷ) =
n

∑
j=1

1

∑n
j′=1 p(yj ∣ xj′)

exp (Ew(xi,yj)/τ) , Ŷ = {y1, . . . ,yn}. (4)

In App. B, we show that the estimator ĝ(w;xi, Ŷ) in (4) is an unbiased estimator of g(w;xi,Y)
and explain why we choose the balance heuristic over other possible weighting functions for MIS.

Remark 3. The variance of MIS-based estimator ĝ(w;xi, Ŷ) can be further reduced if we sample
multiple data {yj,l}ml=1 from each pj , j ∈ [n]. The MIS-based estimator is then constructed as

ĝ(w;xi, Ŷ) =
n

∑
j=1

1

m

m

∑
l=1

1

∑n
j′=1 p(yj,l ∣ xj′)

exp (Ew(xi,yj,l)/τ) , Ŷ =
n

⋃
j=1

m

⋃
l=1
{yj,1, . . . ,yj,m}.

In practice, yj,1, . . . ,yj,m can be approximated by random augmentations of yj , assuming that
the neighborhood of a high-density point also has relatively high density. Using a sample of
{yj,1, . . . ,yj,m} of size m > 1, as opposed to a single yj , has been empirically shown to improve
performance in bimodal contrastive learning (Fan et al., 2024; Li et al., 2024).

However, a remaining issue prevents us from using the MIS-based estimator in (4). Unlike the
rendering problem considered in Veach and Guibas (1995), we do not have access to the conditional
probability density p(yj ∣ xj′), j, j′ ∈ [n]. Thus, there is a need for a cheap approximation q̃(j)

of the sum of conditional probability densities q(j) ∶= ∑n
j′=1 p(yj ∣ xj′), ∀j ∈ [n], where q(j) can

be viewed as a measure of popularity of yj if we consider that all data in Ŝ = {(xi,yi)}ni=1 form
a graph and the weight on edge from node x to node y is p(y∣x). With a general approximation
q̃ = (q̃(1), . . . , q̃(n))⊺ of q = (q(1), . . . , q(n))⊺, the MLE objective in (2) with MIS can be written as

L̂(w; q̃, Ŝ) = − 1
n

n

∑
i=1
τ log

exp(Ew(xi,yi)/τ)
g̃(w;xi, Ŷ)

, g̃(w;xi, Ŷ) =
n

∑
j=1

exp (Ew(xi,yj)/τ)
q̃(j)

. (5)

Remark 4. If we simply choose the uniform approximation q̃ = nc1n with some c > 0, minimizing
L̂(w; q̃, Ŝ) in (5) is equivalent to minimizing the global contrastive loss (GCL) (Yuan et al., 2022).

3.2 FINITE-SAMPLE GENERALIZATION ANALYSIS

Next, we analyze the error between the empirical risk L̂(w, q̃; Ŝ) in (5) with a general approxima-
tion q̃ and the true risk L(w) in (3) for DPM. This analysis provides (i) insights into the statistical
error of GCL (Yuan et al., 2022), and (ii) guidance on finding an approximation q̃ better than the
uniform one used by GCL as discussed in Remark 4. First, we state the necessary assumptions.
Assumption 1. There exist c1, c2 > 0 such that ∥x∥2 ≤ c1, ∥y∥2 ≤ c2 for any x ∈ X ,y ∈ Y .

We focus on representation learning such that Ew(x,y) = E1(w1;x)⊺E2(w2;y), where w1 and
w2 are the encoders+projection heads of the first and second views/modalities, respectively. In
our theory, we consider the case that both E1 and E2 are L-layer neural networks2 with positive-
homogeneous and 1-Lipschitz continuous activation function σ(⋅) (e.g. ReLU).

Assumption 2. Suppose that E1(w1;x) ∈ RdL , E2(w2;y) ∈ RdL for some dL ≥ 1. Moreover, we
have ∥E1(w1;x)∥2 ≤ 1, ∥E2(w2;y)∥2 ≤ 1 such that Ew(x,y) ∈ [−1,1].

2Our results could potentially be extended to other neural networks, such as ConvNets, using the corre-
sponding Rademacher complexity bounds (See e.g., Truong, 2022).
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Based on the assumptions above, we provide a finite-sample generalization error bound between the
empirical risk L̂(w; q̃, Ŝ) in (5) and the true risk L(w) in (3).
Theorem 1. Suppose that Assumptions (1) and (2) hold. Consider the prediction function Ew

parameterized by L-layer deep neural networks w1,w2 and an approximation q̃ of q, where q(j) =
∑n

j′=1 p(yj ∣ xj′) ≥ Ω(n) almost surely, ∀j ∈ [n]. With probability at least 1 − δ, δ ∈ (0,1),

∣L̂(w; q̃, Ŝ) − L(w)∣ ≤ O
⎛
⎝
1

n
+
√

dL
n
+
√

log(1/δ)
n

+ Ew(q̃,q; Ŝ)
⎞
⎠
, (6)

where Ew(q̃,q; Ŝ) ∶= 1
n ∑

n
i=1∑n

j=1 ∣ 1
q̃(j) −

1
q(j) ∣ exp((Ew(xi,yj) − 1)/τ) is an error term.

Remark 5. (i) The uniform approximation q̃(j) = nc for all j ∈ [n] used by the GCL leads to a
non-diminishing error term E(q̃,q; Ŝ) for solving DPM over a continuous domain; (ii) Moreover,
the error term E(q̃,q; Ŝ) vanishes when Y is a finite set. Then, the result reproduces the classical
result in the literature for supervised learning (Boucheron et al., 2005).

3.3 NON-PARAMETRIC METHOD FOR APPROXIMATING THE MEASURE OF POPULARITY

In Section 3.2, we show that simply choosing a uniform q̃ as in GCL to approximate the measure
of popularities q (i.e., the sum of conditional probability densities) leads to a non-diminishing term
in generalization error. Next, we present a new way to approximate the measure of popularities
q. For brevity, we denote by E(⋅, ⋅) = Ew∗(⋅, ⋅) that corresponds to the real conditional density
p(y ∣ x) = pw∗(y ∣ x) =

exp(Ew∗(x,y)/τ)
∫Y exp(Ew∗(x,y′)/τ)dµ(y′)

. Thus, for any j ∈ [n] we have

q(j)=
n

∑
j′=1

p(yj ∣ xj′)=
n

∑
j′=1

exp(E(xj′ ,yj)/τ)
∫Y exp(E(xj′ ,y)/τ)dµ(y)

♢≈
n

∑
j′=1

exp(E(xj′ ,yj)/τ)
∑n

i′=1
1

q(i′) exp(E(xj′ ,yi′)/τ)
, (7)

where the last step ♢ is due to the MIS-based Monte Carlo integration and its error decreases when
n increases (See Prop. 1 in App. B). Since the expression in (7) is implicit, we propose a non-
parametric method to approximate q by solving the following convex optimization problem:

min
ζ∈Rn

⎧⎪⎪⎨⎪⎪⎩
− 1
n

n

∑
i=1
τ log( exp(E(xi,yi)/τ)

∑n
j=1 exp((E(xi,yj) − ζ(j))/τ)

) + 1

n

n

∑
j=1

ζ(j)
⎫⎪⎪⎬⎪⎪⎭
. (8)

The following theorem characterizes the set of optimal solutions to (8) and its relationship to q.
Theorem 2. The optimal solution to (8) is unique up to an additive scalar. In other words, if ζ∗
belongs to the optimal solutions set Z∗ of (8), then ζ∗ + c1n is also in Z∗ for any c ∈ R. Moreover,
if we define the set Q∗ ∶= {exp(ζ∗/τ) ∣ ζ∗ ∈ Z∗}, then any q̄ ∈ Q∗ satisfies the following equation

q̄(j) =
n

∑
j′=1

exp(E(xj′ ,yj)/τ)
∑n

i′=1
1

q̄(i′) exp(E(xj′ ,yi′)/τ)
, ∀j ∈ [n]. (9)

and the set Q∗ is closed under scalar multiplication, i.e., any q̄ ∈ Q∗ and C > 0 implies Cq̄ ∈ Q∗.
Remark 6. Due to Theorem 2 and the resemblance between (7) and (9), there exists a specific
q̃ ∈ Q∗ that approximates the real q in (7). Thus, we can approximate the real q (up to a scaling
factor) by solving the optimization problem in (8). Specifically, for q̃′ = exp(ζ∗/τ) computed from
any solution ζ∗ ∈ Z∗ to (8) with finite ℓ∞ norm, we can conclude that q̃′ and q̃ differ only by a
scaling factor, i.e., q̃′ = Zq̃ for some constant 0 < Z < ∞. There is no need to worry about the
scaling factor Z since minimizing the empirical risk L̂(w; q̃, Ŝ) and the corresponding true risk
L(w) is equivalent to minimizing L̂(w; q̃′, Ŝ) = L̂(w; q̃, Ŝ) + τ log(1/Z) and L(w) + τ log(1/Z).

We design a synthetic experiment to verify the effectiveness of our non-parametric method. Consider
anchor data space and X = {(x1, x2) ∣ x21 + y21 ≤ 1, x1 ∈ [−1,1] , x2 ∈ [0,1]} and contrast data space
Y = {(y1, y2) ∣ y1 ∈ [0,1] , y2 ∈ [0,1]}. Let x be uniformly distributed on X and the conditional
density of an y ∈ Y given x be p(y ∣ x) = exp(E(x,y)/τ)

∫Y exp(E(x,y′)/τ)dµ(y′) , where τ = 0.2 andE(x,y) ∶= x⊺y,

where the partition function ∫Y exp(E(x,y′)/τ)dµ(y′) can be exactly computed.
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Figure 2: Left: Illustration of spaces X and Y; Middle: RBF interpolated heatmaps of the true q and approx-
imation q̃ when n = 100; Right: Comparing the generalization error ∣L̂(q̃, Ŝ) − L∣ of our method and GCL
across various n. “MLE” refers to the MLE objective in (2) with the exact partition function.

We construct a dataset Ŝ = {(xi,yi)}ni=1 by uniformly sampling x1, . . . ,xn from X and then sam-
pling each yj from pj = p(⋅ ∣ xj) by rejection sampling. The ground-truth q can be computed by the
analytic expression of p(y ∣ x). To solve the optimization problem in (8), we initialize ζ0 = 0n and
obtain ζ∗ and q̃′ = exp(ζ∗/τ) by running gradient descent until the gradient norm ≤ 10−15. Besides,
we estimate the true risk L = −Ex,y[τ log p(y ∣ x)] by − 1

N ∑
N
i=1 τ log p(yi ∣ xi) on N = 50,000

sampled pairs and estimate Z > 0 by ∥q̃
′∥∞

∥q∥∞ to obtain q̃ = q̃′

Z
. Then we plug q̃ into (5) to calculate

our empirical risk L̂. It is worth noting that estimating the true risk L and the constant Z is only for
the plots in Figure 2, which is not necessary for real-world empirical risk minimization problems.

As shown in the middle of Figure 2, our method effectively approximates the true q up to a constant
Z. Moreover, we plot the generalization error of different methods in the right column of Figure 2,
which confirms the result in Theorem 1 and Remark 4 that the uniform approximation of q in GCL
results in a non-diminishing term in generalization error as n increases. In contrast, our method
achieves a significantly smaller generalization error, almost matching the MLE objective in (2) with
the exact partition function when n increases.

3.4 THE NUCLR ALGORITHM FOR SELF-SUPERVISED REPRESENTATION LEARNING

By substituting the q̃ from the non-parametric method described in Section 3.3, the problem of
minimizing the empirical risk of DPM in (5) becomes

min
w∈W

L̂(w; Ŝ), L̂(w; Ŝ) ∶= − 1
n

n

∑
i=1
τ log

⎛
⎝

n

∑
j=1

exp(Ew(xi,yi)/τ)
exp((Ew(xi,yj) − ζ(j)∗ )/τ)

⎞
⎠
,

where ζ∗ is solved from (8). Unfortunately, the true similarity function E ∶ X × Y → [−1,1] in (8)
is unknown. To address this, we can adopt a Jacobi-type alternating minimization approach. In the
t-th iteration, we replace the E(⋅, ⋅) in (8) by a fixed model Ewt(⋅, ⋅) and solve ζt+1 from

min
ζ∈Rn

Φt(ζ), Φt(ζ) ∶=
⎧⎪⎪⎨⎪⎪⎩
− 1
n

n

∑
i=1
τ log( exp(Ewt(xi,yi)/τ)

∑n
j=1 exp((Ewt(xi,yj) − ζ(j))/τ)

) + 1

n

n

∑
j=1

ζ(j)
⎫⎪⎪⎬⎪⎪⎭
. (10)

Then, we fix the auxiliary variable ζ to ζt and solve wt+1 from the following problem:

min
w∈W

Ψt(w), Ψt(w) ∶=
⎧⎪⎪⎨⎪⎪⎩
− 1
n

n

∑
i=1
τ log

⎛
⎝

exp(Ew(xi,yi)/τ)
∑n

j=1 exp((Ew(xi,yj) − ζ(j)t )/τ)
⎞
⎠

⎫⎪⎪⎬⎪⎪⎭
. (11)

However, solving the subproblems (10) and (11) exactly is computationally infeasible. Instead, we
obtain the new iterate (wt+1,ζt+1) by one step of gradient-based update3 from the previous iterate
(wt,ζt). Defining ϕi(w,ζ) ∶= ∑j≠i exp((Ew(xi,yj) − Ew(xi,yi) − ζ(j))/τ) and ε(ζ(i)) ∶=
exp(−ζ(i)/τ), the objectives Φt(ζ) and Ψt(w) in (10) and (11) can be rewritten as follows:

Φt(ζ) =
1

n

n

∑
i=1
τ log(ε(ζ(i)) + ϕi(wt,ζ)) +

1

n

n

∑
j=1

ζ(j), Ψt(w) =
1

n

n

∑
i=1
τ log(ε(ζ(i)t ) + ϕi(w,ζt)).

3E.g., the gradient descent or momentum-based update. It could be extended to multiple steps.
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Algorithm 1 NUCLR Algorithm for Self-Supervised Representation Learning

1: Initialize w0, u0, ζ ≥ ζ01n and set up ξ0 ≥ ζ0, η, γ
2: for t = 0,1 . . . , T − 1 do
3: Sample Bt ⊂ {1, . . . , n}
4: Compute G(ζ(j)t ) according to (14) for j ∈ Bt

5: Update ζ(j)t+1 =
⎧⎪⎪⎨⎪⎪⎩

ζ
(j)
t − ηG(ζ(j)t ) (or a momentum/adaptive method), j ∈ Bt
ζ
(j)
t , j ∉ Bt

6: ComputeG(wt) in (15) and update wt+1 =wt−ηG(wt) (or a momentum/adaptive method)
7: Update ξt+1 =max{ξt, ∥ζt+1∥∞}
8: end for

Given a size-B minibatch Bt ⊂ [n], the stochastic gradients of Φt(ζt), Ψt(wt) can be computed as

∂

∂ζ(j)
Φt(ζt;Bt) =

1

B
∑
i∈Bt

τ

ε
(i)
t + ϕi(wt,ζt;Bt)

∂

∂ζ(j)
(ε(i)t + ϕi(wt;ζt;Bt)) +

1

n
, j ∈ Bt, (12)

∇wΨt(wt;Bt) =
1

B
∑
i∈Bt

τ

ε
(i)
t + ϕi(wt,ζt;Bt)

∇wϕi(wt,ζt;Bt), (13)

where ε(ζ(i)t ) is shortened to ε(i)t , ϕi(wt;ζt;Bt)= n−1
B−1 ∑j∈Bt/{i} exp(

Ewt(xi,yj)−Ewt(xi,yi)−ζ(j)t )
τ

)
is a stochastic estimator of ϕi(wt,ζt). However, ∂

∂ζ(j)Φt(ζt;Bt) and∇wΨt(wt;Bt) are still biased

estimators of ∂
∂ζ(j)Φt(ζt), ∇wΨt(wt) because the gray parts are in the denominators, where the

bias is small only when the batch size B is large. To resolve this issue, we adopt the moving average
technique from the SogCLR algorithm (Yuan et al., 2022) to keep track of ϕi(w,ζ) for each i ∈ [n].
To be specific, we maintain a scalar u(i) for each i and update u(i)t+1 = (1 − γ)u

(i)
t + γϕi(wt,ζt;Bt)

for those i ∈ Bt while fixing u(i)t+1 = u
(i)
t for i ∉ Bt. Then, we obtain the following stochastic gradient

estimators G(ζ(j)t ) and G(wt) by replacing the gray parts in (12) and (13) with u(i)t+1:

G(ζ(j)t ) ∶=
1

B
∑
i∈Bt

τ

ε
(i)
t + u

(i)
t+1

∂

∂ζ(j)
(ε(i)t + ϕi(wt;ζt;Bt)) +

1

n
, j ∈ Bt, (14)

G(wt) ∶=
1

B
∑
i∈Bt

τ

ε
(i)
t + u

(i)
t+1
∇wϕi(wt,ζt;Bt), (15)

We also adopt an additional trick to improve the quality of the model w, especially during the early
training epochs. The denominator∑n

j=1 exp((Ew(xi,yj)−ζ(j)t )/τ) in the objective Ψt(w) of (11)

can be viewed as the weighted version ∑n
j=1 ε

(j)
t exp((Ew(xi,yj))/τ) of the corresponding term

in GCL, where ε(j)t = exp(−ζ(j)t /τ) can be viewed as the “strength” of pushing yj away from xi.
For less parameter tuning, we prefer initializing ζ from the same value ζ0 ∈ R. Consequently, nearly
equal weights are assigned to both the positive pair (xi,yi) and negative pairs {(xi,yj)}j≠i during
early training epochs, which may slow down the learning process of model w. To address this issue,
we introduce a scalar ξt = max{ξt−1, ∥ζt∥∞} and reduce ε(i)t in (15) of positive pair (xi,yi)) from
exp(−ζ(j)t /τ) to exp(−ξt/τ) to avoid aggresively pushing the positive data yi away from xi.

Then, we can update ζ and w based on G(ζ(j)t ) and G(wt). The full update procedure is in
Algorithm 1, referred to as NUCLR. The novelty of NUCLR lies in lines 5 and 10 of Algorithm 1.
If we fix ζt = 0n and ξt = 0, NUCLR becomes the SogCLR algorithm (Yuan et al., 2022). As
discussed in App. F.1, NUCLR incurs only minor computational and memory overheads compared
to SogCLR. Moreover, we offer an intuitive margin-based interpretation of NUCLR in App. F.2.

4 EXPERIMENTS ON BIMODAL REPRESENTATION LEARNING

Settings: In our experiments, we apply our algorithm to bimodal self-supervised representa-
tion learning on the Conceptual Captions (CC3M) (Sharma et al., 2018) and Conceptual 12M

8
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(CC12M) (Changpinyo et al., 2021) datasets. Because some data links have expired, our down-
loaded training set of CC3M contains n = 2,723,200 image-text pairs, while that of CC12M con-
tains n = 9,184,256 image-text pairs. We evaluate the performance of trained models on down-
stream zero-shot image-text retrieval and image classification tasks. Retrieval performance is eval-
uated on the test splits of the Flickr30k (Plummer et al., 2015) and MSCOCO (Lin et al., 2014)
datasets, in terms of the average Recall@1 score of image-to-text and text-to-image retrievals. The
top-1 classification accuracy is evaluated on the ImageNet1k (Russakovsky et al., 2015) and CI-
FAR100 (Krizhevsky et al., 2009) datasets. We compare our proposed NUCLR algorithm with
representative baselines CLIP (Radford et al., 2021), SigLIP (Zhai et al., 2023), DCL (Chuang
et al., 2020), CyCLIP (Goel et al., 2022), and SogCLR (Yuan et al., 2022)4 . All experiments utilize
distributed data-parallel (DDP) training on two NVIDIA A100 GPUs with 40GB memory and the
total batch size B in each iteration is 512. Besides, we use ResNet-50 as the vision encoder and
DistilBert as the text encoder. The output embedding of each encoder is projected by a linear layer
into a 256-dimensional feature representation for computing the losses. We run each algorithm 3
times with different random seeds and each run contains 30 epochs. Hyperparameters of all algo-
rithms are tuned based on the validation performance. The optimizer for the model parameter w
is AdamW (Loshchilov and Hutter, 2017) with a weight decay of 0.02 and a cosine learning rate
schedule (Loshchilov and Hutter, 2016). For all algorithms, we choose a fixed temperature param-
eter τ tuned within {0.01,0.03,0.05,0.07}. For SogCLR and NUCLR, we set γ = 0.8 as in the
SogCLR paper (Yuan et al., 2022). For our NUCLR, we select ζ0 = −0.05 on the CC3M dataset
and ζ0 = 0 on the CC12M dataset. Besides, we freeze ζ in the first 5 epochs and update ζ by the
SGDm optimizer with a cosine learning rate schedule.

Table 1: A comparison of test performance. The best result in each column is highlighted in black.

Dataset Algorithm MSCOCO Flickr30k CIFAR100 ImageNet1k Mean

CC3M

CLIP 24.23 ± 0.14 46.33 ± 0.76 33.94 ± 0.87 35.91 ± 0.33 35.10 ± 0.22
DCL 24.44 ± 0.20 46.03 ± 0.75 32.78 ± 0.46 35.90 ± 0.20 34.79 ± 0.29

SigLIP 23.21 ± 0.14 44.95 ± 0.45 35.70 ± 0.84 37.53 ± 0.09 35.35 ± 0.31
CyCLIP 24.47 ± 0.25 47.10 ± 0.83 37.27 ± 0.61 36.63 ± 0.04 36.37 ± 0.42
SogCLR 28.54 ± 0.25 52.20 ± 0.64 35.50 ± 1.71 40.40 ± 0.12 39.16 ± 0.33

NUCLR (Ours) 29.55 ± 0.26 53.55 ± 0.22 37.45 ± 0.45 40.49 ± 0.30 40.26 ± 0.19

CC12M

CLIP 30.30 ± 0.15 55.21 ± 0.45 25.35 ± 0.64 44.28 ± 0.22 38.79 ± 0.30
DCL 30.23 ± 0.21 54.63 ± 0.50 25.55 ± 0.61 44.32 ± 0.07 38.68 ± 0.14

SigLIP 30.13 ± 0.45 55.40 ± 0.32 26.60 ± 1.89 46.12 ± 0.12 39.56 ± 0.68
CyCLIP 30.35 ± 0.24 54.63 ± 0.20 26.71 ± 2.09 44.94 ± 0.02 39.15 ± 0.50
SogCLR 33.91 ± 0.26 59.28 ± 0.07 26.10 ± 0.88 49.82 ± 0.14 42.28 ± 0.27

NUCLR (Ours) 34.36 ± 0.13 60.45 ± 0.03 28.16 ± 1.35 49.82 ± 0.23 43.20 ± 0.39
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Figure 3: Validation Recall@1 performance of our algorithm and baseline SogCLR during training on the
CC3M (left two columns) and CC12M datasets (right two columns).

Comparison with Baselines: We compare the testing performance of our algorithm on downstream
retrieval and classification tasks with various baselines in Table 1. Moreover, we compare the Re-
call@1 of our NUCLR with that of SogCLR across the training epochs in Figure 3 on the validation
sets of MSCOCO and Flickr30k. Compared to baselines, our NUCLR achieves superior overall per-
formance. In particular, the improvement of our method is more significant in retrieval downstream

4For CLIP and SigLIP, we adapt implementations from the OpenCLIP repository. For DCL and CyCLIP,
we use the authors’ official implementations. For SogCLR, we use the implementation in the updated codebase
of Qiu et al. (2023), which yields better results of SogCLR than that reported in Qiu et al. (2023).
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tasks and zero-shot classification on CIFAR100, while its performance in zero-shot classification on
ImageNet1k is only marginally better or comparable to SogCLR.

Ablation Study: For further understanding the key components of Algorithm 1, we compare the
performance of NUCLR against three variants: (i) NUCLR-†, which fixes ζ to ζ01n, i.e., removing
step 5 in Algorithm 1; (ii) NUCLR-♢, which does not reduce the strength ε(i)t of pushing away the
i-th positive pair to exp(−ξt/τ) as described in the penultimate paragraph of Section 3.4; and (iii)
NUCLR-♣, which does not freeze ζ in the first 5 epochs; to answer the following questions.

(i) What is the advantage of updating ζ using gradient-based updates compared to fixing it at ζ0?

(ii) Is it beneficial to reduce the strength of pushing away each positive pair by introducing ξ?

(iii) What is the benefit of freezing ζ during the initial training epochs?

The results are shown in Figure 4. First, we can observe that NUCLR with the learned ζ as in
Algorithm 1 outperforms NUCLR-† with a fixed ζ = ζ01n. Moreover, we present some examples
of images from CC3M with large or small q̃′ = exp(ζ/τ) in Figure 5, showing that the learned
q̃′ effectively captures data popularity: Images depicting human life, such as portraits, pets, and
landscapes, tend to be more popular than abstract symbols and shapes (see App. G.2.4 for more ex-
amples). Second, introducing ξ to avoid pushing away positive pairs improves performance in both
tasks compared to NUCLR-♢. Lastly, freezing ζ during the first 5 epochs yields better performance.
This improvement may arise because model wt is far from w∗ in the early stage of training, making
the ζ solved from (10) less accurate. We provide more experimental results in App. G.2.
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Figure 4: Compare the NUCLR algorithm with variants NUCLR-†, NUCLR-♢, and NUCLR-♣. “Downstream
Retrieval” refers to the average test recall@1 on MSCOCO and Flickr30k datasets; “Downstream Classifica-
tion” refers to the average test top-1 accuracy on CIFAR100 and ImageNet1k datasets.

0.079 0.081 0.083 0.006 0.006 0.007

Figure 5: Examples of CC3M images with large (in red) and small learned popularities q̃′ (in blue).

5 CONCLUSION

In this paper, we tackle the discriminative probabilistic modeling problem on a continuous space
by leveraging the multiple importance sampling (MIS) method and proposing a novel nonparamet-
ric method for approximating the sum of conditional probability densities required by MIS, which
yields a new contrastive loss for self-supervised representation learning. Then, we design an effi-
cient algorithm called NUCLR to optimize our new loss. Experimental results on bimodal pretrain-
ing demonstrate the improved overall performance of our method compared to baseline approaches
on downstream tasks. An open question remains whether we can learn a generative model in this
discriminative framework that can conditionally generate high-quality new data. Additionally, our
NUCLR algorithm requires storing additional 2n floating-point numbers for language-image pre-
training. Another open question is how to learn a neural network to predict the popularities.
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A OTHER RELATED WORK

In this section, we discuss previous research on discriminative and generative probabilistic modeling
and theoretical analyses of self-supervised learning that are relevant to our work.

A.1 DISCRIMINATIVE AND GENERATIVE PROBABILISTIC MODELS

Over the past decades, numerous probabilistic models have been developed for machine learning
and pattern recognition problems (Grenander, 1970; Wu et al., 2019). Our work is closely related
to previous works on discriminative probabilistic models for supervised and unsupervised learning,
generative probabilistic models, and the recently proposed hybrid probabilistic models.

A.1.1 DISCRIMINATIVE PROBABILISTIC MODELS FOR SUPERVISED LEARNING

For supervised learning, discriminative probabilistic models learn the conditional probability mass
function p(y ∣ x) of y given data x. Since the 2010s, discriminative probabilistic models based on
deep neural networks, such as ConvNets, have achieved tremendous success in supervised learning
tasks (LeCun et al., 2015), where y is a class label from a finite set of categories. Despite the avail-
ability of million-scale datasets with label annotations (Deng et al., 2009; Kemelmacher-Shlizerman
et al., 2016), scaling of these models is hindered by the enormous cost of collecting even larger
curated datasets with label annotations.

A.1.2 GENERATIVE PROBABILISTIC MODELS

Generative probabilistic models typically focus on modeling the marginal distribution p(x) of real
data. In particular, an energy-based generative probabilistic model can be defined as pθ(x) =
exp(−Eθ(x))

Zθ
, where Eθ(x) is called the energy parameterized by θ and Zθ is the partition func-

tion (LeCun et al., 2006). The intractable partition function is the key challenge in training an
energy-based generative probabilistic model. Markov Chain Monte Carlo (MCMC) sampling is a
popular approach for calculating the gradient of the model parameter of the log-likelihood (Younes,
1999; Hinton, 2002; Gao et al., 2018; Du and Mordatch, 2019; Du et al., 2020). However, MCMC
sampling is computationally expensive. MCMC-free approaches such as score-matching (Hyvärinen
and Dayan, 2005; Song et al., 2020a; Song and Ermon, 2020; Song and Kingma, 2021; Song et al.,
2020b) have been proposed to learn a model that can be used to generate the data through MCMC
sampling in the inference phase. On one hand, generative modeling tasks are generally more chal-
lenging than discriminative ones. For discriminative tasks, such as classification and retrieval, it
suffices to have the predicted conditional density p(⋅ ∣ x) of a relevant y be higher than that of an
irrelevant y. In contrast, generative tasks require a much more accurate high-dimensional density
estimation to produce high-quality new data. On the other hand, training and inference on gener-
ative models typically demand more time and computational resources compared to discriminative
models with a similar number of parameters.

A.1.3 HYBRID PROBABILISTIC MODELS

Grathwohl et al. (2019) propose the Joint Energy-based Model (JEM) to simultaneously perform
discriminative and generative learning by maximizing the likelihood of the joint distribution p(x,y)
for each image-label pair (x,y), which can be factorized into an MCC problem solved by mini-
mizing the CE loss and a generative modeling problem solved by the stochastic gradient Langevin
dynamic (SGLD). When label annotations are absent, Wang et al. (2022) and Kim and Ye (2022)
model the joint distribution p(x,x′) of a data point x and its augmented copy x′. Specifically,
Wang et al. (2022) directly maximize the log-likelihood of the joint distribution p(x,x′) via adver-
sarial learning, while Kim and Ye (2022) follow the idea of JEM to decompose the log-likelihood
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log p(x,x′) into the sum of a generative term log p(x) and a discriminative term log p(x′ ∣ x).
In Kim and Ye (2022), the gradient of the generative term is computed by multi-stage SGLD, and
the discriminative term is approximated by the InfoNCE loss with a finite number of negative data.
More recently, Bizeul et al. (2024) proposed the SimVAE method to model the joint distribution of
semantically related data (e.g., different augmented copies of an image). The SimVAE maximizes
the evidence lower bound (ELBO) of the log-likelihood by introducing the implicit latent structure
of SimCLR into the variational autoencoder.

A.2 THEORY OF SELF-SUPERVISED REPRESENTATION LEARNING

In this section, we review additional papers on the theoretical properties of self-supervised represen-
tation learning from broader perspectives. The pioneering work by Arora et al. (2019) established a
generalization bound for the minibatch-based InfoNCE loss that contrasts each positive pair with k
negative pairs in the sampled batch. They formally proved that the unsupervised error can bound the
classification error of a constructed mean classifier. Following the settings in Arora et al. (2019), Lei
et al. (2023) refined the analysis and improved the generalization bound by a factor of k. However,
both results above depend on the assumption that the negative data points are independent from
the anchor data points, which does not hold for contrastive learning algorithms used in practice5.
Moreover, their results suffer from a limitation that the generalization error increases as the number
of negatives k increases, which contradicts the practice. HaoChen et al. (2021) proposed a spec-
tral contrastive loss and established generalization bounds for both representation learning and the
downstream classification. Based on a graph-dependent McDiarmid inequality and a U-statistics re-
formulation, Waida et al. (2023) proved the generalization bound of a kernel contrastive loss (KCL)
without assuming the independence between anchors and negative data. They also provided theo-
retical guarantees on downstream zero-shot classification. Recently, Chen et al. (2024) established
a generalization bound of the symmetric minibatch-based InfoNCE loss used in CLIP, under the as-
sumption that an image and a text are conditionally independent given their common shared feature.
However, the convergence rate of the generalization error is also worse when the minibatch size in-
creases. They also proved that an approximate minimizer of the population loss leads to infinitesimal
zero-shot classification error under the assumption that “good” encoding functions exist.

Besides, Wang and Isola (2020) proved that the asymptotics of the InfoNCE loss can be decomposed
into two terms that optimize alignment and uniformity, respectively. Tian et al. (2020) showed that
minimizing the InfoNCE loss can maximize the mutual information between two views/modalities
since the loss is a lower bound of the mutual information. Tschannen et al. (2019) demonstrated that
the success of InfoNCE loss cannot be fully attributed to information maximization because maxi-
mizing a tighter bound of mutual information leads to worse empirical performance. Nakada et al.
(2023) show that the gradient descent steps of minimizing the symmetric InfoNCE loss of CLIP
can be viewed as performing singular value decomposition (SVD) on a contrastive cross-covariance
matrix when the representation is linear. Shwartz Ziv and LeCun (2024) proposed a unified frame-
work for self-supervised learning based on information theory. They surveyed numerous existing
approaches and demonstrated how their framework can encompass these approaches.

A.3 CONTRASTIVE LEARNING FOR LONG-TAILED DATA

Recently, several papers have proposed contrastive learning algorithms to address the challenge of
long-tailed semantic distributions in real-world datasets. For instance, Assran et al. (2023b) intro-
duced a method that applies a user-specified power-law prior to the distribution of representations
learned by Masked Siamese Networks (MSN). Based on the geometric harmonization method, Zhou
et al. (2023b) developed a bilevel objective to promote category-level uniformity instead of sample-
level uniformity in the representation space. Qiu et al. (2023) proposed a new robust contrastive
loss inspired by distributionally robust optimization (DRO), which dynamically learns individual-
ized temperature parameters for data points with frequent or rare semantics. The high-level ideas
of these papers are related to our work, as we estimates the nonuniform q(j) = ∑n

j′=1 p(yj ∣ xj′) to
reduce the error of Monte Carlo integration, while the papers above also model the uniformity in
data. However, our work is grounded in the statistical framework of DPM. It remains unclear how
the losses above can be interpreted within the DPM framework or whether these approaches can

5In practice, the negative data points for each anchor are from positive pairs of other anchors.
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address the non-diminishing error issue in GCL. Moreover, it is unclear about the effectivess of the
approaches (Assran et al., 2023b; Zhou et al., 2023b) in bimodal self-supervised learning, as they
focused on the unimodal setting. In Appendix G.2.1, we compare the experimental performance of
our NUCLR with that of (Qiu et al., 2023) in bimodal self-supervised learning.

B MIS WITH A GENERAL WEIGHT FUNCTION FOR DPM

We consider the following MIS-based estimator with a size-m sample from each distribution p(⋅ ∣
xj) and a general weight function ω for the integral g(w;xi,Y) = ∫Y exp(Ew(xi,y)/τ)dµ(y):

ĝ(w;xi, Ŷ,ω) =
n

∑
j=1

1

m

m

∑
l=1

ω(j)(yj,l)
p(yj,l ∣ xj)

exp (Ew(xi,yj,l)/τ) , Ŷ =
n

⋃
j=1
{yj,1, . . . ,yj,m}, (16)

where ω is a weighting function such that ω(y) is on a probability simplex, ∀y ∈ Y . We denote X̂ ∶=
{x1, . . . ,xn}, Ξi,j(ω,yj,l) ∶= ω(j)(yj,l)

p(yj,l∣xj) exp (Ew(xi,yj,l)/τ). We consider the “balance heuristic”

ω
(j)
bl (y) =

p(y∣xj)
∑n

j′=1 p(y∣xj′)
, ∀y ∈ Y and ∀j ∈ [n] proposed in Veach and Guibas (1995). Proposition 1

shows the unbiasedness of the estimator in (16) and justifies why we choose the balance heuristic.
Proposition 1. For each ω, we have that ĝ(w;xi, Ŷ,ω) is an unbiased estimator of the integral
g(w;xi,Y); (ii) The balance heuristic ωbl minimizes E[∑n

j=1
1
m ∑

m
l=1Ξi,j(ω,yj,l)2 ∣ X̂] among all

possible weighting functions for any i, where E[∑n
j=1

1
m ∑

m
l=1Ξi,j(ω,yj,l)2 ∣ X̂] is an upper bound

of the variance Var[ĝ(w;xi, Ŷ,ω) ∣ X̂]; (iii) If ∑n
j′=1 p(yj,l ∣ xj′) ≥ Ω(n), ∀j ∈ [n], l ∈ [m]

almost surely and Assumptions 2 holds, the variance goes to zero when n→∞ or m→∞.

Proof. Since for any j ∈ [n] yj,1, . . . ,yj,m are i.i.d. distributed, we have

E [ĝ(w;xi, Ŷ,ω) ∣ X̂] =
n

∑
j=1

E [ ω
(j)(yj,1)

p(yj,1 ∣ X̂)
exp (Ew(xi,yj,1)/τ) ∣ X̂]

=
n

∑
j=1
∫Y

ω(j)(y)
p(y ∣ xj)

p(y ∣ xj) exp (Ew(xi,y)/τ)dµ(y) ⋆= ∫Y
n

∑
j=1

ω(j)(y) exp (Ew(xi,y)/τ)dµ(y)

= ∫Y exp (Ew(xi,y)/τ)dµ(y), (17)

where ⋆ is due to Tonelli’s theorem. Since {yj,l}j∈[n],l∈[m] are mutually independent and for a
specific j, yj,1, . . . ,yj,l are i.i.d., the variance of the estimator in (16) can be upper bounded as

Var[ĝ(w;xi, Ŷ,ω) ∣ X̂] =
1

m

n

∑
j=1

E[Ξi,j(ω,yj,1)2 ∣ X̂] −
1

m

n

∑
j=1

E[Ξi,j(ω(j),yj,1) ∣ X̂]2 (18)

≤ 1

m

n

∑
j=1

E[Ξi,j(ω,yj,1)2 ∣ X̂] =
1

m

n

∑
j=1
∫Y

ω(j)(y)2 exp (Ew(xi,y)/τ)2

p(y ∣ xj)
dµ(y).

Due to Tonelli’s theorem, we have
n

∑
j=1
∫Y

ω(j)(y)2 exp (Ew(xi,y)/τ)2

p(y ∣ xj)
dµ(y) = ∫Y

n

∑
j=1

ω(j)(y)2 exp (Ew(xi,y)/τ)2

p(y ∣ xj)
dµ(y).

We can instead minimize the variance upper bound at each y pointwise. Then, minimizing

∑n
j=1

ω(j)(y)2 exp(Ew(xi,y)/τ)2
p(y∣xj) subject to the simplex constraint leads to ω(j)bl (y) =

p(y∣xj)
∑n

j′=1 p(y∣xj′)
.

Var[ĝ(w;xi, Ŷ,ωbl) ∣ X̂] ≤
1

m

n

∑
j=1

E[Ξi,j(ωbl,yj,1)2 ∣ X̂] =
1

m

n

∑
j=1

E [exp(Ew(xi,yj,1)/τ)2
(∑n

j′=1 p(yj,1))2
∣ X̂]

≤ 1

nm
∫Y p(y ∣ Oj) exp (Ew(xi,y)/τ)2 dµ(y) = O (

1

mn
) .

Interestingly, the minimizer ωbl of 1
m
E[∑n

j=1∑m
j=1Ξi,j(ω,yj,l)2 ∣ X̂] does not depend on xi. We

can obtain the estimator in (4) by plugging the balance heuristic ωbl into (16) and letting m = 1.
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C PERFORMANCE OF DPM ON DOWNSTREAM ZERO-SHOT CLASSIFICATION

Suppose that the true conditional density function p(y ∣ x) is generated by some w∗ ∈ W , i.e.,
p(y ∣ x) = pw∗(y ∣ x) =

exp(Ew∗(x,y)/τ)
∫Y exp(Ew∗(x,y′)/τ)dµ(y′)

. Then, the maximum likelihood estimator ŵ∗ =
argmaxw∈W

1
n ∑

n
i=1 log pw(yi ∣ xi) with the random sample {(xi,yi)}ni=1 converges in probability

to w∗ under some mild assumptions (see Theorem 2.1 in Newey and McFadden (1994)).

Consider the downstream multi-class classification with K > 1 distinct classes. The task is to
predict the ground-truth label c(x) ∈ {1, . . . ,K} of a data x ∈ X . Suppose that there are K subsets
Y1, . . . ,YK of Y and any y ∈ Yk belongs to the k-th class. Moreover, the ground-truth label c(x) of
data x is c(x) = argmaxk∈[K]Pr(k ∣ x). Given the model ŵ∗ trained via MLE, the predicted label
cŵ∗(x) of a data x ∈ X can be obtained by the following 1-nearest neighbor (1-NN) classifier:

cŵ∗(x) = argmax
k∈[K]

Eŵ∗(x,yk),

where yk ∈ Y is an example of the k-th class. For instance, the example yk of the k-th class of the
downstream image classification could be “a photo of {class_k}” when X is the image domain and
Y is the text domain (Radford et al., 2021). Due to the monotonicity of the function exp(⋅/τ) and the
expression of pw in (1), we have cŵ∗(x) = argmaxk∈[K]Eŵ∗(x,yk) = argmaxk∈[K] pŵ∗(yk ∣ x).
As long as the probability mass Pr(k ∣ x) on class k is proportional to the probability density
p(yk ∣ x) on the example yk of class k, the zero-one loss ℓ0/1(x, c(x); ŵ∗) = I[cŵ∗(x) ≠ c(x)] on

the data-label pair (x, c(x)) of the downstream classification approaches zero when ŵ∗
p→w∗.

D PROOF OF THEOREM 1

The structure of our proof is as follows:

• Section D.1 presents necessary lemmas for our generalization analysis;
• Section D.2 decomposes the generalization error into two parts, which are handled by Sec-

tion D.3 and Section D.4, respectively;
• Section D.5 provides bounds for Rademacher complexities of function classes parameter-

ized by deep neural networks.

The main theorem can be proved by combining (20), (21), (22), (23), (24), (27), (30), (31).

D.1 LEMMAS

The following two lemmas provide contraction lemmas on Rademacher complexities. Lemma 1
considers the class of real-valued functions, and Lemma 2 considers the class of vector-valued func-
tions (Maurer, 2016; Lei et al., 2023). Let ϵi and ϵi,j be independent Rademacher variables, i.e.,
they take values in {+1,−1} with the same probability.
Lemma 1 (Contraction Lemma, Thm 11.6 in Boucheron et al. (2013)). Let τ ∶ R+ ↦ R+ be convex
and nondecreasing. Suppose ψ ∶ R↦ R is contractive (∣ψ(t) −ψ(t̃)∣ ≤ G∣t− t̃∣) and ψ(0) = 0. Then
for any F̃ we have

Eϵτ( sup
f∈F̃

n

∑
i=1
ϵiψ(f(xi))) ≤ Eϵτ(G sup

f∈F̃

n

∑
i=1
ϵif(xi)).

We say that a function ψ ∶ Rd → R is G-Lipschitz continuous w.r.t. ∥⋅∥2 if ∣ψ(x) − ψ(x)∣ ≤
G ∥x − x′∥2 for a G > 0 and any x,x′ ∈ Rd.

Lemma 2. Let F be a class of bounded functions f ∶ Z ↦ Rd which contains the zero function. Let
τ ∶ R+ → R+ be a continuous, non-decreasing, and convex function. Assume g̃1, . . . , g̃n ∶ Rd → R
are G-Lipschitz continuous w.r.t. ∥ ⋅ ∥2 and satisfy g̃i(0) = 0. Then

Eϵ∼{±1}nτ( sup
f∈F

n

∑
i=1
ϵig̃i(f(xi))) ≤ Eϵ∼{±1}ndτ(G

√
2 sup
f∈F

n

∑
i=1

d

∑
j=1

ϵi,jfj(xi)). (19)
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The following lemma estimates the moment generating function of a Rademacher chaos variable of
order 2 (De la Pena and Giné, 2012).
Lemma 3 (De la Pena and Giné 2012). Let ϵi, i ∈ [n] be independent Rademacher variables. Let
ai,j ∈ R, i, j ∈ [n]. Then for Z = ∑1≤i<j≤n ϵiϵjaij we have

Eϵ exp (∣Z ∣/(4es)) ≤ 2, where s2 ∶= ∑
1≤i<j≤n

a2i,j .

The following lemma is a version of Talagrand’s contraction lemma.
Lemma 4 (Lemma 8 in Mohri and Medina (2014)). Let H be a hypothesis set of functions map-
ping X to R and ψ is G-Lipschitz functions for some G > 0. Then, for any sample S of n points
x1, . . . , xn ∈ X , the following inequality holds:

1

n
Eϵ1∶n [sup

h∈H

n

∑
i=1
ϵiψ(h(xi))] ≤

G

n
Eϵ1∶n [sup

h∈H

n

∑
i=1
ϵih(xi)] .

D.2 ERROR DECOMPOSITION

Considering loge x ≤ x − 1 for any x > 0, we have

L̂(w; q̃, Ŝ) − L(w)

= Ex,y[Ew(x,y)] −
1

n

n

∑
i=1
Ew(xi,yi) +

1

n

n

∑
i=1
τ log(g̃(w;xi, Ŷ)) −Ex [τ log g(w;x,Y)]

= Ex,y[Ew(x,y)] −
1

n

n

∑
i=1
Ew(xi,yi) +

1

n

n

∑
i=1

Ex

⎡⎢⎢⎢⎢⎣
τ log

∑n
j=1

1
q̃(j) exp((Ew(xi,yj) − 1)/τ)

∫Y exp((Ew(x,y) − 1)/τ)dµ(y)

⎤⎥⎥⎥⎥⎦

≤ Ex,y[Ew(x,y)] −
1

n

n

∑
i=1
Ew(xi,yi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I

+ C
n

n

∑
i=1

n

∑
j=1

1

q̃(j)
exp(Ēw(xi,yj)) −CEx [∫Y exp(Ēw(x,y))dµ(y)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
II

, (20)

where we define Ēw(x,y) ∶= Ew(x,y)−1
τ

∈ [−2/τ,0] such that exp(Ēw(x,y)) ∈ [exp(−2/τ),1].
Besides, and C ∶= supx∈X

τ

∫Y exp(Ēw(x,y))dµ(y) . Due to Assumption 2, C ≤ τ exp(2/τ)
µ(Y) < ∞. In

practice, C could be much smaller than the worst-case value τ exp(2/τ)
µ(Y) . Similarly, we have

L(w) − L̂(w; q̃, Ŝ) ≤ 1

n

n

∑
i=1
Ew(xi,yi) −Ex,y[Ew(x,y)] (21)

+C ′Ex [∫Y exp(Ēw(x,y))dµ(y)] −
C
′

n

n

∑
i=1

n

∑
j=1

1

q̃(j)
exp(Ēw(xi,yj)),

where C
′ = τ∥q̃∥∞

n
exp(2/τ).

D.3 BOUNDING TERM I

Define the function class E ∶= {(x,y) ↦ Ew(x,y) ∣w ∈ W}. Since (x1,y1), . . . , (xn,yn) are i.i.d.
and Assumption 1 (Ew(x,y) ∈ [−1,1] for any w ∈ W), we can apply the McDiarmid’s inequality to
Ex,y[Ew(x,y)]− 1

n ∑
n
i=1Ew(xi,yi) and utilize the symmeterization argument following Theorem

3.3 in Mohri et al. (2018). With probability at least 1 − δ
4

,

Ex,y[Ew(x,y)] ≤
1

n

n

∑
i=1
Ew(xi,yi) + 2Rn(E) + 6

√
log(8/δ)

2n
,

20
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where Rn(E) ∶= EX̂,Ŷ[R̂+n(E)], R̂+n(E) ∶= Eϵ1∶n [supe∈E 1
n ∑

n
i=1 ϵiEw(xi,yi)] is the empirical

Rademacher complexity of E on the sample X̂×Ŷ, and ϵ1, . . . , ϵn are Rademacher random variables.
Similarly, we can also apply McDiarmid’s inequality to 1

n ∑
n
i=1Ew(xi,yi) − Ex,y[Ew(x,y)] and

then use the symmetrization argument. With probability at least 1 − δ
4

,

1

n

n

∑
i=1
Ew(xi,yi) ≤ Ex,y[Ew(x,y)] + 2Rn(E) + 6

√
log(8/δ)

2n
,

Thus, with probability at least 1 − δ
2

, we have

∣ 1
n

n

∑
i=1
Ew(xi,yi) −Ex,y[Ew(x,y)]∣ ≤ 2Rn(E) + 6

√
log(8/δ)

2n
. (22)

D.4 BOUNDING TERM II

We decompose the term II in (20) as follows.

II = 1

n

n

∑
i=1

n

∑
j=1

1

q̃(j)
exp(Ēw(xi,yj)) −Ex [∫Y exp(Ēw(x,y))dµ(y)]

= 1

n

n

∑
i=1

n

∑
j=1
( 1

q̃(j)
− 1

q(j)
) exp(Ēw(xi,yj))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
II.a

+ 1

n

n

∑
i=1

n

∑
j=1

1

q(j)
exp(Ēw(xi,yj)) −Ex [∫Y exp(Ēw(x,y))dµ(y)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
II.b

. (23)

Thus, we have ∣II∣ ≤ ∣II.a∣ + ∣II.b∣. Since exp(Ēw(x,y)) = exp((Ew(x,y) − 1)/τ) ≤ 1 for any
x ∈ X ,y ∈ Y , we have

∣II.a∣ ≤ 1

n

n

∑
i=1

n

∑
j=1
∣ 1

q̃(j)
− 1

q(j)
∣ exp(Ēw(xi,yj)) ≤

n

∑
j=1
∣ 1

q̃(j)
− 1

q(j)
∣ . (24)

We define Γ(X̂, Ŷ) ∶= supw { 1
n ∑

n
i=1∑n

j=1
1

q(j) exp(Ēw(xi,yj)) −Ex [∫Y exp(Ēw(x,y))dµ(y)]}.
We denote that X̂ℓ = (X̂/{xℓ}) ∪ {x′ℓ}, Ŷℓ = (Ŷ/{yℓ}) ∪ {y′ℓ}, where (x′1,y′1), . . . , (x′n,y′n) are
i.i.d. to (x1,y1), . . . , (xn,yn). We denote that q(y; X̂) ∶= ∑x∈X̂ p(y ∣ x) such that q(j) = q(yj ; X̂).
If q(j) = ∑n

j′=1 p(yj ∣ xj′) ≥ Ω(n) almost surely, we have

∣Γ(X̂, Ŷ) − Γ(X̂ℓ, Ŷ)∣

=
RRRRRRRRRRR
sup
w

1

n

n

∑
j=1

1

q(j)
exp(Ēw(xℓ,yj)) − sup

w

1

n

n

∑
j=1

1

q(yj ; X̂ℓ)
exp(Ēw(x′ℓ,yj))

RRRRRRRRRRR
≤ O(1/n),

∣Γ(X̂, Ŷ) − Γ(X̂, Ŷℓ)∣

=
RRRRRRRRRRR
sup
w

1

n

n

∑
i=1

1

q(yℓ; X̂)
exp(Ēw(xi,yℓ)) − sup

w

1

n

n

∑
i=1

1

q(y′ℓ; X̂)
exp(Ēw(xi,y

′
ℓ))
RRRRRRRRRRR
≤ O(1/n).

Since xi and yj are mutually dependent only when i = j, we then apply the McDiarmid-Type
inequalities for graph-dependent variables (Theorem 3.6 in Zhang et al. (2019)) to the term II.b and
−II.b. With probability at least 1 − δ

4
, δ ∈ (0,1), we have

II.b ≤ E [sup
w

II.b] +O
⎛
⎝

√
10 log(4/δ)

n

⎞
⎠
. (25)
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Similarly, with probability at least 1 − δ
4

, δ ∈ (0,1), we have

−II.b ≤ E [sup
w
{−II.b}] +O

⎛
⎝

√
10 log(4/δ)

n

⎞
⎠
. (26)

Let (x′1,y′1), . . . , (x′n,y′n) be a virtual sample i.i.d. to (x1,y1), . . . , (xn,yn). Denote that X̂′ ∶=
{x′1, . . . ,x′n}, Ŷ′ ∶= {y′1, . . . ,y′n}. Due to (17), we have

Ex [∫Y exp(Ēw(x,y))dµ(y)] = EX̂′,Ŷ′

⎡⎢⎢⎢⎢⎣

1

n

n

∑
i=1

n

∑
j=1

1

q(y′j ; X̂′)
exp(Ēw(x′i,y′j))

⎤⎥⎥⎥⎥⎦
.

We can rewrite and decompose the E [supw II.b] term as

E [sup
w

II.b] = E
⎡⎢⎢⎢⎢⎣
sup
w

⎧⎪⎪⎨⎪⎪⎩

1

n

n

∑
i=1

n

∑
j=1

1

q(j)
exp(Ēw(xi,yj)) −Ex [∫Y exp(Ēw(x,y))dµ(y)]

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎢⎣
sup
w

⎧⎪⎪⎨⎪⎪⎩

1

n

n

∑
i=1

n

∑
j=1

1

q(j)
exp(Ēw(xi,yj)) −EX̂′,Ŷ′

⎡⎢⎢⎢⎢⎣

1

n

n

∑
i=1

n

∑
j=1

1

q(y′j ; X̂′)
exp(Ēw(x′i,y′j))

⎤⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦

≤ EX̂,Ŷ,X̂′,Ŷ′ [sup
w
{ 1
n

n

∑
i=1

1

q(yi; X̂)
exp(Ēw(xi,yi)) −

1

n

n

∑
i=1

1

q(y′i; X̂′)
exp(Ēw(x′i,y′i))}]

+EX̂,Ŷ,X̂′,Ŷ′

⎡⎢⎢⎢⎢⎣
sup
w

⎧⎪⎪⎨⎪⎪⎩

1

n

n

∑
i=1
∑
j≠i

1

q(j)
exp(Ēw(xi,yj)) −

1

n

n

∑
i=1
∑
j≠i

1

q(y′j ; X̂′)
exp(Ēw(x′i,y′j))

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦

≤ O(1/n) +E
⎡⎢⎢⎢⎢⎣
sup
w

⎧⎪⎪⎨⎪⎪⎩

1

n

n

∑
i=1
∑
j≠i

1

q(j)
exp(Ēw(xi,yj)) −

1

n

n

∑
i=1
∑
j≠i

1

q(y′j ; X̂′)
exp(Ēw(x′i,y′j))

⎫⎪⎪⎬⎪⎪⎭

⎤⎥⎥⎥⎥⎦
,

the last step is due to the assumption q(yi; X̂) = ∑n
j′=1 p(yi ∣ xj′) ≥ Ω(n). Next, we adapt the

proof technique in Theorem 6 of Waida et al. (2023). W.l.o.g., we assume that n is even (If n is
odd, we can apply the following analysis to the first n − 1 terms in the summation, where n − 1 is
even. The last term in the summation is a O(1/n) term, which does not change the result). Suppose
that Sn is the set of all permutations (the symmetric group of degree n). Then, for each s ∈ S, pairs
(xs(2i−1)),ys(2i)) (i = 1, . . . , n/2) are mutually independent. Consider the alternative expression of
a U-statistics of order 2 (See Appendix 1 in Clémencon et al. (2008)):

1

n(n − 1)
n

∑
i=1
∑
j≠i

1

q(j)
exp(Ēw(xi,yj)) =

1

n!(n/2) ∑s∈Sn

n/2
∑
i=1

1

q(ys(2i); X̂)
exp(Ēw(xs(2i−1),ys(2i))).

It then follows that

E [sup
w

II.b] ≤ O(1/n) + n−1
n/2 E

⎡⎢⎢⎢⎢⎣
sup
w

1

n!
∑
s∈Sn

n/2
∑
i=1

⎛
⎝
exp(Ēw(xs(2i−1),ys(2i)))

q(ys(2i); X̂)
−
exp(Ēw(x′s(2i−1),y′s(2i)))

q(y′
s(2i); X̂

′)
⎞
⎠

⎤⎥⎥⎥⎥⎦

≤ O(1/n) + n−1
n/2

1

n!
∑
s∈Sn

E
⎡⎢⎢⎢⎢⎣
sup
w

n/2
∑
i=1

⎛
⎝
exp(Ēw(xs(2i−1),ys(2i)))

q(ys(2i); X̂)
−
exp(Ēw(x′s(2i−1),y′s(2i)))

q(y′
s(2i); X̂

′)
⎞
⎠

⎤⎥⎥⎥⎥⎦

= O(1/n) + n−1
n/2 E

⎡⎢⎢⎢⎢⎣
sup
w

n/2
∑
i=1
(exp(Ēw(x2i−1,y2i))

q(y2i; X̂)
− exp(Ēw(x′2i−1,y′2i))

q(y′2i; X̂′)
)
⎤⎥⎥⎥⎥⎦

= O(1/n) + n−1
n/2 E

⎡⎢⎢⎢⎢⎣
sup
w

n/2
∑
i=1

ϵi (
exp(Ēw(x2i−1,y2i))

q(y2i; X̂)
− exp(Ēw(x′2i−1,y′2i))

q(y′2i; X̂′)
)
⎤⎥⎥⎥⎥⎦

≤ O(1/n) + 2(n − 1)
n/2 E

⎡⎢⎢⎢⎢⎣
sup
w

n/2
∑
i=1

ϵi exp(Ēw(x2i−1,y2i))
q(y2i; X̂)

⎤⎥⎥⎥⎥⎦
,
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where we have used the symmetry between the permutations in Sn and (xi,yi), (x′i,y′i). By
Lemma 4 and the assumption q(y2i; X̂) = ∑n

j′=1 p(y2i ∣ xj′) ≥ Ω(n), we further get

E [sup
w

II.b] ≤ O(1/n) +O(1/n)E
⎡⎢⎢⎢⎢⎣
sup
w

n/2
∑
i=1

ϵi exp(Ēw(x2i−1,y2i))
⎤⎥⎥⎥⎥⎦
.

Define the function class Ḡ = {(x,y) ↦ exp(Ēw(x,y)) ∣ w ∈ W}. Then, we define the following
empirical Rademacher complexity

R̂−n/2(Ḡ; s) ∶=
2

n
Eϵ1∶n/2

⎡⎢⎢⎢⎢⎣
sup
w

n/2
∑
i=1

ϵi exp(Ēw(xs(2i−1),ys(2i)))
⎤⎥⎥⎥⎥⎦
.

We further define the Rademacher complexity R−n/2(Ḡ) ∶= maxs∈Sn EX̂,Ŷ[R̂−n/2(Ḡ; s)]. We can
also apply the symmetrization argument above to bound E[supw{−II.b}]. Due to Assumption 1,
we can bound the II.b term as: With probability 1 − δ

2
, δ ∈ (0,1), we have

∣II.b∣ ≤ O(1)R̂−n/2(Ḡ; s) +O
⎛
⎝
1

n
+
√

10 log(4/δ)
n

⎞
⎠
. (27)

D.5 BOUNDING RADEMACHER COMPLEXITIES

We consider the specific similarity function:
Ew(x,y) = E1(w1;x)⊺E2(w2;y).

We consider L-layer neural networks
E1(w1;x) ∈ F1,L = {x→ σ(W1,Lσ(W1,L−1 . . . σ(W1,1x))) ∶ ∥W1,l∥F ≤ Bl},
E2(w2;y) ∈ F2,L = {y → σ(W2,Lσ(W2,L−1 . . . σ(W2,1y))) ∶ ∥W2,l∥F ≤ Bl}.

Suppose that W1,l ∈ Rd1,l×d1,l−1 , W2,l ∈ Rd2,l×d2,l−1 and d1,0 = d1, d2,0 = d2, d1,L = d2,L = dL.
Define W ⊺

l = (W
(1)
l , . . . ,W

(dl)
1 ), where W (ι)

l is the ι-th row of matrix Wl. The following results
are adaptions of the results in Golowich et al. (2018).

D.5.1 BOUNDING Rn(E)

Define h ∶ R2d → R as h(v) = v⊺1v2, where v = (v1

v2
) and v1,v2 ∈ Rd. It is clear that Ew(x,y) =

h(E1(w1;x),Ew(w2;y)). Due to Assumption 2, we have ∥E1(w1;x)∥2 ≤ 1 and ∥E2(w2;y)∥2 ≤
1. For any v = (v1

v2
) ,v′ = (v

′
1

v′2
) and v1,v2,v

′
1,v

′
2 ∈ [0,1]d, we have

(h(v) − h(v′))2 ≤ 2(v⊺1(v2 − v′2))2 + 2((v1 − v′1)⊺v′2)2 ≤ 2 ∥v − v′∥
2
2 ,

where we have used (a + b)2 ≤ 2a2 + 2b2 and the decomposition v⊺1v2 − (v′1)⊺v′2 = v⊺1(v2 − v′2) +
(v1 − v′1)⊺v′2. Thus, we can conclude that h is 1-Lipschitz continuous to v and apply Lemma 2 to
the function Ew(x,y) = h(E1(w1;x),E2(w2;y)):

R̂+n(E) = Eϵ1∶n [sup
e∈E

1

n

n

∑
i=1
ϵiE(xi,yi)]

≤ 1

n
Eϵ1,ϵ2∈{±1}ndL [sup

w

n

∑
i=1

dL

∑
ι=1
(ϵ(i,ι)1 E

(ι)
1 (w1,xi) + ϵ(i,ι)2 E

(ι)
2 (w2,yi))]

≤ 1

n
Eϵ1∈{±1}ndL [sup

w

n

∑
i=1

dL

∑
ι=1
ϵ
(i,ι)
1 E

(ι)
1 (w1,xi)] +

1

n
Eϵ1,ϵ2∈{±1}ndL [sup

w

n

∑
i=1

dL

∑
ι=1
ϵ
(i,ι)
2 E

(ι)
2 (w2,yi)]

= 1

n
Eϵ1∈{±1}ndL [ sup

W1,L,f1,L−1∈F1,L−1

n

∑
i=1

dL

∑
ι=1
ϵ
(i,ι)
1 σ(f1,L−1(xi)⊺W (ι)

1,L)]

+ 1

n
Eϵ2∈{±1}ndL [ sup

W2,L,f2,L−1∈F2,L−1

n

∑
i=1

dL

∑
ι=1
ϵ
(i,ι)
2 σ(f2,L−1(yi)⊺W (ι)

2,L)] .
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For simplicity, we can only consider one of the terms above and neglect the index of embedding
networks (1 or 2). Let xi be one of xi and yi. Cauchy-Schwarz and (supx)2 ≤ supx2 imply

Eϵ∈{±1}ndL [ sup
WL,f∈FL−1

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)⊺W (ι)
L )]

≤
⎛
⎝
Eϵ∈{±1}ndL

⎡⎢⎢⎢⎢⎣
( sup
WL,f∈FL−1

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)⊺W (ι)
L ))

2⎤⎥⎥⎥⎥⎦

⎞
⎠

1
2

≤
⎛
⎝
Eϵ∈{±1}ndL

⎡⎢⎢⎢⎢⎣
sup

WL,f∈FL−1
(

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)⊺W (ι)
L ))

2⎤⎥⎥⎥⎥⎦

⎞
⎠

1
2

. (28)

For a λ > 0, Jensen’s inequality implies that

Eϵ∈{±1}ndL

⎡⎢⎢⎢⎢⎣
sup

WL,f∈FL−1
(

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)⊺W (ι)
L ))

2⎤⎥⎥⎥⎥⎦

= 1

λ
log exp

⎛
⎝
λEϵ

⎡⎢⎢⎢⎢⎣
sup

WL,f∈FL−1
(

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)⊺W (ι)
L ))

2⎤⎥⎥⎥⎥⎦

⎞
⎠

≤ 1

λ
log
⎛
⎝
Eϵ exp

⎛
⎝
λ sup

WL,f∈FL−1
(

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)⊺W (ι)
L ))

2⎞
⎠
⎞
⎠
. (29)

We utilize the following facts: (i) supx x
2 ≤ max{(supx x)2, (supx(−x))2} and for a Rademacher

random variable ϵ, we have ϵ,−ϵ are i.i.d.; (ii) Lemma 1 with τ(t) = exp(λt2) and σ is 1-Lipschitz;
(iii) (supx)2 ≤ supx2:

Eϵ exp
⎛
⎝
λ sup

WL,f∈FL−1
(

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)⊺W (ι)
L ))

2⎞
⎠

(i)
≤ 2Eϵ exp

⎛
⎝
λ( sup

WL,f∈FL−1

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)⊺W (ι)
L ))

2⎞
⎠

(ii)
≤ 2Eϵ exp

⎛
⎝
λ( sup

WL,f∈FL−1

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)f(xi)⊺W (ι)
L )

2⎞
⎠

(iii)
≤ 2Eϵ exp

⎛
⎝
λ sup

WL,f∈FL−1
(

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)f(xi)⊺W (ι)
L )

2⎞
⎠
.

Due to (iv) ∥Wl∥F ≤ Bl for each l ∈ [L], we further have

Eϵ exp
⎛
⎝
λ sup

WL,f∈FL−1
(

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)⊺W (ι)
L ))

2⎞
⎠

≤ 2Eϵ exp
⎛
⎝
λ sup

WL,f∈FL−1
(
dL

∑
ι=1
∥

n

∑
i=1

ϵ(i,ι)f(xi)∥
2

∥W (ι)
L ∥2)

2⎞
⎠

≤ 2Eϵ exp
⎛
⎝
λ sup

WL,f∈FL−1
∥WL∥2F

dL

∑
ι=1
∥

n

∑
i=1

ϵ(i,ι)f(xi)∥
2

2

⎞
⎠

(iv)
≤ 2Eϵ exp

⎛
⎝
λB2

L sup
f∈FL−1

dL

∑
ι=1
∥

n

∑
i=1

ϵ(i,ι)f(xi)∥
2

2

⎞
⎠

= 2Eϵ exp
⎛
⎝
λB2

L sup
WL−1,f∈FL−2

dL

∑
ι=1
∥

n

∑
i=1

ϵ(i,ι)σ(WL−1f(xi))∥
2

2

⎞
⎠
.
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Due to the positive-homogeneous property of the activation function σ(⋅), we have

dL

∑
ι=1
∥

n

∑
i=1

ϵ(i,ι)σ(WL−1f(xi))∥
2

2

=
dL

∑
ι=1

XXXXXXXXXXXXXX

⎛
⎜
⎝

∑n
i=1 ϵ

(i,ι)σ(f(xi)⊺W (1)
L−1)

⋮
∑n

i=1 ϵ
(i,ι)σ(f(xi)⊺W (dL−1)

L−1 )

⎞
⎟
⎠

XXXXXXXXXXXXXX

2

2

=
dL

∑
ι=1

dL−1
∑
r=1
(

n

∑
i=1

ϵ(i,ι)σ(f(xi)⊺W (r)
L−1))

2

=
dL−1
∑
r=1
∥W (r)

L−1∥
2

2

dL

∑
ι=1

⎛
⎜
⎝

n

∑
i=1

ϵ(i,ι)σ
⎛
⎜
⎝
f(xi)⊺

W
(r)
L−1

∥W (r)
L−1∥2

⎞
⎟
⎠

⎞
⎟
⎠

2

≤ ∥WL−1∥2F max
r∈[dL−1]

dL

∑
ι=1

⎛
⎜
⎝

n

∑
i=1

ϵ(i,ι)σ
⎛
⎜
⎝
f(xi)⊺

W
(r)
L−1

∥W (r)
L−1∥2

⎞
⎟
⎠

⎞
⎟
⎠

2

≤ B2
L−1 sup

w∶∥w∥2≤1

dL

∑
ι=1
(

n

∑
i=1

ϵ(i,ι)σ (f(xi)⊺w))
2

.

Thus, we can obtain

Eϵ exp
⎛
⎝
λ sup

WL,f∈FL−1
(

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)⊺W (ι)
L ))

2⎞
⎠

≤ 2Eϵ exp
⎛
⎝
λB2

LB
2
L−1 sup

∥w∥2≤1,f∈FL−2

dL

∑
ι=1
(

n

∑
i=1

ϵ(i,ι)σ(f(xi)⊺w))
2⎞
⎠

≤ 2Eϵ1∶n exp
⎛
⎝
dLλB

2
LB

2
L−1 sup

∥w∥2≤1,f∈FL−2
(

n

∑
i=1
ϵiσ(f(xi)⊺w))

2⎞
⎠
.

Applying Lemma 1 with τλ(t) = exp(dLλB2
LB

2
L−1t

2) gives

Eϵ exp
⎛
⎝
λ sup

WL,f∈FL−1
(

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)⊺W (ι)
L ))

2⎞
⎠
≤ 2Eϵ1∶n

⎡⎢⎢⎢⎢⎣
τλ
⎛
⎝

sup
∥w∥2≤1,f∈FL−2

∣
n

∑
i=1
ϵiσ(f(xi)⊺w)∣

⎞
⎠

⎤⎥⎥⎥⎥⎦

≤ 2Eϵ1∶n

⎡⎢⎢⎢⎢⎣
τλ
⎛
⎝

sup
∥w∥2≤1,f∈FL−2

n

∑
i=1
ϵiσ(f(xi)⊺w)

⎞
⎠

⎤⎥⎥⎥⎥⎦
+ 2Eϵ1∶n

⎡⎢⎢⎢⎢⎣
τλ
⎛
⎝

sup
∥w∥2≤1,f∈FL−2

−
n

∑
i=1
ϵiσ(f(xi)⊺w)

⎞
⎠

⎤⎥⎥⎥⎥⎦

= 4Eϵ1∶n

⎡⎢⎢⎢⎢⎣
τλ
⎛
⎝

sup
∥w∥2≤1,f∈FL−2

n

∑
i=1
ϵiσ(f(xi)⊺w)

⎞
⎠

⎤⎥⎥⎥⎥⎦
≤ 4Eϵ1∶n

⎡⎢⎢⎢⎢⎣
τλ
⎛
⎝

sup
∥w∥2≤1,f∈FL−2

n

∑
i=1
ϵif(xi)⊺w

⎞
⎠

⎤⎥⎥⎥⎥⎦

≤ 4Eϵ1∶n [τλ ( sup
WL−2,f∈FL−3

∥
n

∑
i=1
ϵiσ(WL−2f(xi))∥

2

)] ≤ 4Eϵ1∶n

⎡⎢⎢⎢⎢⎣
τλ
⎛
⎝
BL−2 sup

∥w∥2≤1,f∈FL−3
∣
n

∑
i=1
ϵif(xi)⊺w∣

⎞
⎠

⎤⎥⎥⎥⎥⎦
,

where in the last step we have used the positive-homogeneous property of σ(⋅) (e.g., analysis similar
to handling the supremum over WL, f ∈ FL−1). Applying the inequality above recursively over the
layers leads to

Eϵ exp
⎛
⎝
λ sup

WL,f∈FL−1
(

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)⊺W (ι)
L ))

2⎞
⎠
≤ 2LEϵ1∶n [τλ (

L−2
∏
l=1

Bl ∥
n

∑
i=1
ϵixi∥

2

)] .

Plug the inequality above into (29):

Eϵ∈{±1}ndL

⎡⎢⎢⎢⎢⎣
sup

WL,f∈FL−1
(

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)⊺W (ι)
L ))

2⎤⎥⎥⎥⎥⎦
≤ 1

λ
log
⎛
⎝
2LEϵ1∶n exp

⎛
⎝
dLλ(

L

∏
l=1
B2

l )∥
n

∑
i=1
ϵixi∥

2

2

⎞
⎠
⎞
⎠
.
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Let λ̃ = dLλ (∏L
l=1B

2
l ) and choose λ = 1

8esdL(∏L
l=1 B2

l
) , s = (∑1≤i≤ĩ≤n(x⊺iXĩ)2)

1
2 . Then, λ̃ =

1/(8es) and we can apply Lemma 3 to show Eϵ1∶n [exp (2λ̃∑1≤i≤ĩ≤n ϵiϵĩx
⊺
iXĩ)] ≤ 2 such that

Eϵ1∶n exp
⎛
⎝
λ̃∥

n

∑
i=1
ϵixi∥

2

2

⎞
⎠
= Eϵ1∶n

⎡⎢⎢⎢⎢⎣
exp
⎛
⎝
λ̃

n

∑
i=1
∥xi∥22 + 2λ̃ ∑

1≤i≤ĩ≤n
ϵiϵĩx

⊺
iXĩ

⎞
⎠

⎤⎥⎥⎥⎥⎦

= exp(λ̃
n

∑
i=1
∥xi∥22)Eϵ1∶n

⎡⎢⎢⎢⎢⎣
exp
⎛
⎝
2λ̃ ∑

1≤i≤ĩ≤n
ϵiϵĩx

⊺
iXĩ

⎞
⎠

⎤⎥⎥⎥⎥⎦
≤ 2 exp(λ̃

n

∑
i=1
∥xi∥22) .

Since λ = 1
8esdL(∏L

l=1 B2
l
) and s2 ≤ ∑1≤i≤ĩ≤n ∥xi∥22 ∥xĩ∥

2
2 ≤ (∑

n
i=1 ∥xi∥22)

2
, we can obtain

Eϵ∈{±1}ndL

⎡⎢⎢⎢⎢⎣
sup

WL,f∈FL−1
(

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)⊺W (ι)
L ))

2⎤⎥⎥⎥⎥⎦
≤ 1

λ
log(2L+1 exp(λ̃

n

∑
i=1
∥xi∥22))

= (L + 1) log 2
λ

+ dL (
L

∏
l=1
B2

l )
n

∑
i=1
∥xi∥22 ≤ dL (

L

∏
l=1
B2

l )(8(L + 1)e log 2 + 1)
n

∑
i=1
∥xi∥22 .

Due to (28), we can obtain

R̂+n(E) = Eϵ1∶n [sup
e∈E

1

n

n

∑
i=1
ϵiE(xi,yi)] ≤

1√
n

¿
ÁÁÀdL (

L

∏
l=1
B2

l )(8(L + 1)e log 2 + 1)(c1 + c2).

(30)

D.5.2 BOUNDING R−n/2(Ḡ)

We define the dataset D̂s ∶= {(xs(1),ys(2)), . . . , (xs(n−1),ys(n))}. Consider E ∶= {(x,y) ↦
Ew(x,y) ∣w ∈ W} and the following two function classes

Ē ∶= {(x,y) ↦ Ēw(x,y) ∣w ∈ W}, Ḡ = {(x,y) ↦ exp(Ēw(x,y)) ∣w ∈ W}.

The empirical Rademacher complexities of Ē , Ḡ on D̂s can be defined as

R̂−n/2(Ē ; s) = Eϵ1∶n/2

⎡⎢⎢⎢⎢⎣

2

n
sup
w

n/2
∑
i=1

ϵiĒw(xs(2i−1),ys(2i))
⎤⎥⎥⎥⎥⎦
,

R̂−n/2(Ḡ; s) = Eϵ1∶n/2

⎡⎢⎢⎢⎢⎣

2

n
sup
w

n/2
∑
i=1

ϵi exp(Ēw(xs(2i−1),ys(2i)))
⎤⎥⎥⎥⎥⎦
.

Note that t↦ exp(t) is 1-Lipschitz when t ≤ 0. Due to Lemma 4 and Ēw(x,y) = (Ew(x,y)−1)/τ ,

R̂−n/2(Ḡ; s) ≤ R̂−n/2(Ē ; s) =
1

τ
R̂−n/2(E ; s). (31)

Then, we can bound R̂−n/2(E ; s) in the way similar to bounding R̂+n(E) in Section D.5.1.

E PROOF OF THEOREM 2

Proof. The problem in (8) is equivalent to

min
ζ∈Rn

⎧⎪⎪⎨⎪⎪⎩

1

n

n

∑
i=1
τ log

⎛
⎝

n

∑
j=1

exp((E(xi,yj) −E(xi,yi) − ζ(j))/τ)
⎞
⎠
+ 1

n

n

∑
j=1

ζ(j)
⎫⎪⎪⎬⎪⎪⎭
. (32)

We define that Φ(ζ) ∶= 1
n ∑

n
i=1 τ log (∑n

j=1 exp((E(xi,yj) −E(xi,yi) − ζ(j))/τ)) + 1
n ∑

n
j=1 ζ

(j).
Due to the first-order optimality condition, any optimal solution ζ∗ to (8) satisfies

exp(ζ(j)∗ /τ) =
n

∑
j′=1

exp(E(xj′ ,yj)/τ)
∑n

i′=1 exp((E(xj′ ,yi′) − ζi′∗ )/τ)
, ∀j ∈ [n].
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Then, we can obtain (9) by changing the variable q̄(j) = exp(ζ(j)∗ /τ) for any j ∈ [n].
Due to the property of the log-sum-exp function and E(xi,yj) ∈ [−1,1], we have

Φ(ζ) ≥ 1

n

n

∑
i=1

max
j∈[n]
{E(xi,yj) −E(xi,yi) − ζ(j)} +

1

n

n

∑
j=1

ζ(j) ≥ −2 − min
j∈[n]

ζ(j) + 1

n

n

∑
j=1

ζ(j) ≥ −2.

Thus, Φ(ζ) is proper convex. Besides, each line parallel to the diagonal line dn = {ζ ∣ ζ = z1n, z ∈
R} can be expressed as d̄n(b) = {ζ∣ζ = z1n + [

0
b
] , z ∈ R} with some unique b ∈ Rn−1. For exam-

ple, in the case n = 2, a line d̄2(b) with some b ∈ R can be rewritten as d̄2(b) = {ζ ∣ ζ(2) = ζ(1) + b},
which is parallel to the diagonal line d2 = {ζ ∣ ζ(2) = ζ(1)}. For any point ζ on a line d̄n(b),

Φ(ζ) = 1

n

n

∑
i=1
τ log

⎛
⎝

n

∑
j=1

exp((E(xi,yj) −E(xi,yi) − z + b(j))/τ)
⎞
⎠
+ z + 1

n

n

∑
j=1

b(j)

= 1

n

n

∑
i=1
τ log

⎛
⎝
exp(−z/τ)

n

∑
j=1

exp((E(xi,yj) −E(xi,yi) − b(j))/τ)
⎞
⎠
+ z + 1

n

n

∑
j=1

b(j)

= 1

n

n

∑
i=1
τ log

⎛
⎝

n

∑
j=1

exp((E(xi,yj) −E(xi,yi) − b(j))/τ)
⎞
⎠
+ 1

n

n

∑
j=1

b(j),

where the expression on the R.H.S is fixed when z varies. Then, the value of Φ(ζ) does not change
along the line d̄n(b). Note that every point ζ ∈ Rn is uniquely located on one line d̄n(b) parallel to

the diagonal line dn. Thus, if ζ∗ = z∗1n + [
0
b∗
] with specific z∗ ∈ R and b∗ ∈ Rn−1 is a minimum

of Φ(ζ), then any point on the line d̄n(b∗) is a minimum of Φ(ζ).
There may exist uncountably infinite many b∗ ∈ Rn−1 and every point on d̄n(b∗) minimizes Φ(ζ).
However, we can rule out such a case since the set of minima of a proper convex function is convex
and Φ(ζ) is strictly convex along any direction other than the diagonal and parallel lines6. Thus,

there is only a unique b∗ ∈ Rn−1 and any point on d̄n(b∗) = {ζ∣ζ = z1n + [
0
b∗
] , z ∈ R} minimizes

Φ(ζ), i.e., the minimum of Φ(ζ) is unique up to an arbitrary scalar additive term z ∈ R.

F MORE DISCUSSIONS ON NUCLR IN ALGORITHM 1

F.1 COMPUTATIONAL AND MEMORY OVERHEADS OF NUCLR

The computational cost of updating w in NUCLR is O(Bd), where B is the batch size and d is the
total number of parameters in the model w. This cost is identical to that of SogCLR. The additional
computational cost of NUCLR lies in the update of ζ (line 4 and line 5 of our algorithm).

The computation of G(ζ(j)t ) w.r.t. ζ(j)t in (14) requires {u(i)t+1}i∈Bt and ∂
∂ζ(j)ϕi(wt,ζt,Bt). Here

{u(i)t+1}i∈Bt is also needed in SogCLR so it does not result in additional cost. Besides, note that
∂

∂ζ(j)ϕi(wt,ζt,Bt) = − n−1
(B−1)τ exp(

Ewt(xi,yj)−Ewt(xi,yi)−ζ(j)t

τ
) , where the shaded part is already

computed in the forward propagation and does not incur additional cost. The computation of the
gradient w.r.t. ζ(j)t only involves a summation of B scalars such that the computational cost of line
4 and line 5 of NUCLR is only O(B2). Since d exceeds 70 million in our experiments, the O(B2)
additional computational cost of NUCLR is negligible compared to the dominant O(Bd) term.

Compared to SogCLR, NUCLR needs to store one extra n-dimensional vector ζ. Maintaining ζ
in GPU only requires less than 100MB for 12 million data points, which is negligible compared to
the GPU memory required for backpropagation. Moreover, we may instead maintain the vector ζ
in CPU and only transfer those needed {ζ(j)}j∈Bt to GPU in each iteration. The overhead can be
further reduced by overlapping the communication and computation.

6Each log-sum-exp function is strictly convex along any direction other than diagonal and parallel lines.
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F.2 MARGIN INTERPRETATION OF NUCLR

Cross-entropy and contrastive losses with a positive additive margin have been widely studied in the
literature (Li et al., 2002; Liu et al., 2016; Wang et al., 2018; Cao et al., 2019; Li et al., 2019; Zhu
et al., 2020), which can be viewed as a smooth version of the hinge loss to separate the matching
(positive) pair (xi,yi) from negative pairs {(xi,yj) ∣ yj ≠ yi,yj ∈ Y}. In supervised learning tasks
such as face verification and multi-class classification, using a relatively large positive margin has
been shown to be beneficial (Wang et al., 2018; Cao et al., 2019). However, the “false negative” issue
is more pronounced in self-supervised learning. Determining the appropriate (positive or negative)
margin becomes more difficult, as aggressively and uniformly pushing negative pairs away from
positive pairs may hurt the performance (Xie et al., 2022). As shown in the objective in (11), our
NUCLR algorithm adopts an individualized negative margin ζ(j) for each negative data yj when
updating the model parameter w. Rather than relying on an expensive grid search for individualized
margins, our method learns them in a principled way. Recall ζ(j) can serve as a measure of the
popularity since q̃(j) ∝ exp(ζ(j)/τ) when ζ(j) is optimized. As a result, NUCLR may help tolerate
potential false negatives because the negative margin ζ(j) between pairs (xi,yi) and (xi,yj) is
larger when yj is popular, as it is more likely to be a false negative.

G MORE EXPERIMENTAL RESULTS

G.1 ADDITIONAL PLOT OF THE TOY EXPERIMENT IN SECTION 3.3

To further verify whether the non-diminishing error might be worse under long-tailed data distribu-
tions, we added a new experiment in Figure 7, Appendix G.1 of our revised manuscript. We still
use the data spaces X , Y , and the density function p(y ∣ x) as defined in the last paragraph in Pg.
6 of our paper. Here we consider two values τ = 0.2 and τ = 1.0, where τ = 0.2 results in a more
long-tailed distribution of q compared to τ = 1.0. As demonstrated in Figure 6, the generalization
error and the error term E(q̃,q; Ŝ) of GCL are worse (larger) when q is long-tailed. Moreover, our
method effectively reduce the error term E(q̃,q; Ŝ) and the generalization error in both cases.
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Figure 6: Left column: Distributions of the true q and our estimated q̃ with τ = 1.0 and τ = 0.2, which are
estimated by KDE when n = 100; Middle column: Comparing the generalization error ∣L̂(q̃, Ŝ) − L∣ of our
method and GCL across various n. “MLE” refers to the MLE objective in (2) with the exact partition function;
Right column: Comparing the error term E(q̃,q, Ŝ) of our method and GCL across various n.
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G.2 MORE BIMODAL EXPERIMENTAL RESULTS

G.2.1 COMPARISON WITH ISOGCLR

In Section 4 of the main paper, both our algorithm NUCLR and baselines (CLIP, SigLIP, CyCLIP,
DCL, SogCLR) use a shared temperature parameter τ for all data pairs. In contrast, the iSogCLR
algorithm (Qiu et al., 2023) learns an individual temperature parameter for each pair of data. Here
we compare the testing performance of our NUCLR algorithm to that of iSogCLR. The results show
that our NUCLR outperforms iSogCLR on most metrics except for the zero-shot classification on
ImageNet1k when pretrained on the CC12M dataset. Lastly, we note that the individual temperature
learned by the approach in iSogCLR could also be incorporated into our algorithm.

Table 2: Test performance of NUCLR and iSogCLR.

Dataset Algorithm MSCOCO Flickr30k CIFAR100 ImageNet1k Mean

CC3M
iSogCLR 28.50 ± 0.21 51.56 ± 0.38 35.57 ± 0.99 40.18 ± 0.28 38.95 ± 0.30
NUCLR 29.55 ± 0.26 53.55 ± 0.22 37.45 ± 0.45 40.49 ± 0.30 40.26 ± 0.19

CC12M
iSogCLR 34.09 ± 0.25 59.42 ± 0.41 27.78 ± 1.75 50.23 ± 0.18 42.88 ± 0.38
NUCLR 34.36 ± 0.13 60.45 ± 0.03 28.16 ± 1.35 49.82 ± 0.23 43.20 ± 0.39

G.2.2 EFFECT OF THE INITIAL VALUE ζ0

Table 3: Test performance of NUCLR with different initial values of ζ0.

Dataset Algorithm MSCOCO Flickr30k CIFAR100 ImageNet1k Mean

CC3M
SogCLR 28.54 ± 0.25 52.20 ± 0.64 35.50 ± 1.71 40.40 ± 0.12 39.16 ± 0.33

NUCLR (ζ0 = 0.0) 29.51 ± 0.12 53.10 ± 0.35 37.17 ± 1.27 40.21 ± 0.24 40.00 ± 0.26
NUCLR (ζ0 = −0.05) 29.55 ± 0.26 53.55 ± 0.22 37.45 ± 0.45 40.49 ± 0.30 40.26 ± 0.19

CC12M
SogCLR 33.91 ± 0.26 59.28 ± 0.07 26.10 ± 0.88 49.82 ± 0.14 42.28 ± 0.27

NUCLR (ζ0 = 0.0) 34.36 ± 0.13 60.45 ± 0.03 28.16 ± 1.35 49.82 ± 0.23 43.20 ± 0.39
NUCLR (ζ0 = −0.05) 34.35 ± 0.14 59.69 ± 0.16 26.30 ± 2.35 49.90 ± 0.28 42.56 ± 0.59

We also investigate the performance of NUCLR with two different initial values ζ0 of the auxiliary
variable ζ: 1) The natural choice ζ0 = 0; and 2) The value ζ0 = −0.05 according to EqCo (Zhu et al.,
2020). As seen in Table 3, ζ0 = −0.05 performs better on the CC3M dataset while ζ0 = 0 yields
better results on the CC12M dataset. It is worth noting that our NUCLR algorithm, with either
initialization ζ0, leads to overall better performance than SogCLR.

G.2.3 CURVES OF MEAN ζ AND HISTOGRAMS OF ζ AFTER THE FINAL EPOCH
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Figure 7: Curves of the mean ζ across the training epochs on the CC3M and CC12M datasets.

Figure 7 plots the curves of the mean ζ across the training epochs. In Figure 8, we visualize the
final distributions of the learned ζ for images and texts in the CC3M and CC12M datasets. These
distributions exhibit long tails, suggesting that many images or texts have low popularities in web-
based datasets like CC3M and CC12M.

G.2.4 IMAGES FROM CC3M DATASET WITH LARGE AND SMALL LEARNED POPULARITY

Figure 9 and 10 provide more images from CC3M with small and large learned popularity q̃′.
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Figure 8: Histograms of the learned ζ after the final epoch on the CC3M and CC12M datasets.

“Athletic couple running 
together in the forest.”

“Funny puppy in red 
Christmas hat holds a 
percent sign and sales 
symbol.”

“Journalist poses with 
her medal.”

“Dark and pale pink tulips 
in sunshine with long 
shadows on the lawn.”

“Cute cartoon pug dog 
on the flower.”

“Older caucasian man 
wearing brown leather 
standing next to his 
motorcycle out in the 
desert.”

“Bouquet of yellow roses 
with a writable white 
card on an old wooden 
board.”

“Woman in front of a 
refrigerator.”

“Puppy sitting in a 
bucket with flowers 
around her, on a white 
background.”

“Businessman in an 
office shouting on a 
megaphone.”

Figure 9: Images (and their captions) from the CC3M dataset with large q̃′ (high learned popularity).

“Towel on a hanger 
seamless pattern.”

“Vector illustration of 
icons go to the web.”

“Ladybug in a decorative 
pattern, nature, seamless 
vector background.”

“The abstract background 
is created from simple 
wavy lines and circles.”

“The white cross in a red 
stroke.”

“A little boy is reading a 
book in a surreal nature 
landscape.”

“Vector illustration of 
icons on the theme of 
ecology.”

“The elephant, the 
biggest wild animal.”

“Vector illustration for 
the new year.”

“Flexible metal pipe on a 
white background.”

Figure 10: Images (and their captions) from the CC3M dataset with small q̃′ (low learned popularity).
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G.2.5 EVALUATIONS ON MORE DATASETS

We also compare the evaluation results of our NUCLR and baselines on three additional datasets
other than the four datasets (MSCOCO, Flickr, CIFAR100, and ImageNet) used in Section 4.

• ImageNet-R (Hendrycks et al., 2021): a challenging image classification dataset con-
taining 30,000 various renditions (e.g., paintings, embroidery) from 200 ImageNet object
classes. These renditions are naturally occurring, with textures and local image statistics
unlike those of ImageNet images. This makes this dataset well-suited for evaluating out-
of-distribution generalization.

• DTD (Cimpoi et al., 2014): a texture recognition dataset that contains textural images in
the wild from 47 classes.

• Food-101 (Bossard et al., 2014): a food recognition dataset contains 25,250 food images
from 101 categories.

Table 4: A comparison of test performance on ImageNet-R, DTD, and Food-101 datasets. The best result in
each column is highlighted in black.

Dataset Algorithm ImageNet-R DTD Food-101 Mean

CC3M

CLIP 36.47 ± 0.40 23.05 ± 1.55 19.07 ± 0.14 26.20 ± 0.58
DCL 36.11 ± 0.29 24.11 ± 1.68 18.46 ± 0.50 26.23 ± 0.32

SigLIP 39.64 ± 0.19 22.34 ± 2.08 20.09 ± 0.23 27.36 ± 0.82
CyCLIP 37.83 ± 0.34 24.59 ± 1.49 19.25 ± 0.85 27.22 ± 0.60
SogCLR 42.65 ± 0.50 25.83 ± 0.73 22.33 ± 0.51 30.27 ± 0.52

NUCLR (Ours) 43.82 ± 0.25 27.73 ± 0.94 22.22 ± 0.31 31.26 ± 0.30

CC12M

CLIP 46.84 ± 0.41 27.73 ± 1.86 43.54 ± 1.07 39.37 ± 1.09
DCL 46.92 ± 0.41 28.07 ± 1.69 43.12 ± 0.85 39.37 ± 0.70

SigLIP 48.87 ± 0.46 28.92 ± 2.37 44.37 ± 0.75 40.72 ± 0.71
CyCLIP 48.66 ± 0.09 27.95 ± 1.54 43.93 ± 0.69 40.18 ± 0.69
SogCLR 54.54 ± 0.24 31.79 ± 0.55 49.89 ± 0.61 45.41 ± 0.45

NUCLR (Ours) 55.24 ± 0.51 31.91 ± 0.54 51.04 ± 0.15 46.06 ± 0.05

As shown in Table 4, our algorithm demonstrates superior overall test performance on these three
datasets. Notably, the improvement of our NUCLR algorithm over SogCLR on the more challenging
ImageNet-R dataset is significantly bigger than that on the ImageNet1k dataset (c.f. Table 1).
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