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Abstract—This paper presents FLEX, a real-time scheduling
framework that adaptively allocates limited machine attention
(i.e., computing resources) among different spatial views (parti-
tioned by camera facing directions) and sensory modalities (i.e.,
LiDAR and cameras) within multi-modal multi-view machine
perception on resource-constrained embedded platforms. It is
achieved through the effective wiring of two features: First,
considering the heterogeneous and time-varying criticality among
views and modalities within dynamic sensing contexts (i.e., object
locations), we calibrate an “anytime” multi-modal perception
pipeline that dynamically adjusts the modality fusion strategies
of each view. Second, to optimize the GPU processing through-
put with time guarantees, FLEX centers around an adaptive
batch scheduling algorithm that intelligently groups consecutive
asynchronous view inspection tasks based on the job sequence1

generated from a non-preemptive EDF schedule to maximize a
measure of system utility, with the runtime elastic fusion used as
a subroutine. Temporal load balancing is maintained during the
scheduling by always ensuring the sequential schedulability of
future tasks in early batching decisions. We implement FLEX
on NVIDIA Jetson Orin and conduct extensive experiments
with a large-scale driving dataset. The results demonstrate the
superiority of FLEX in improving perception quality and system
throughput with time guarantees.

Index Terms—Multi-Modal Perception, Task Batching, Real-
Time Scheduling

I. INTRODUCTION

Machine perception based on deep neural networks (DNNs)
is widely deployed in autonomous systems such as au-
tonomous vehicles (AV) and unmanned aerial vehicles (UAV).
They are typically equipped with multiple types of sensory
modalities (e.g., RGB cameras and LiDAR), and rely on a 3D
object detector integrating information from all modalities and
different views to localize and classify surrounding objects
[1]–[3]. It is imperative to achieve accurate environment
perception while keeping up with the real-time requirement,
where the trade-off becomes more complex within dynami-
cally evolving physical environments.

In this paper, we consider multi-modal multi-view 3D object
detection in the bird’s-eye view (BEV) space, as commonly
adopted in autonomous driving systems. Recent works have

*Shengzhong Liu is the corresponding author.
1Following the real-time conventions, we use “job” to denote the instance

of periodic tasks.

recognized the benefits of machine perception in the BEV
space [4], [5], as the object height information is less crit-
ical for driving on the road. Object detection results in the
BEV space are easier to use in the following localization
and planning phases. Besides, the BEV space has proved to
be appropriate for merging the distance information in the
LiDAR point clouds and the textual information in the RGB
images for collaborative 3D object detection [6], [7]. Despite
the superior performance, the complicated multi-modal multi-
view collaboration incurs a high computation workload to the
limited onboard processing capacity of embedded platforms.

To narrow this gap, several frameworks [8]–[11] have been
proposed to prioritize the inspection of some critical regions
over others. Compared to the conventional FIFO (First In
First Out) paradigm that sequentially and holistically processes
the sampled sensor frames, such fine-grained and priority-
driven processing better accommodates the imbalanced and
varying requirements on time and quality at different spatial
regions. In this paper, we consider the inspection of views
partitioned by camera-facing directions as the basic scheduling
units. The problem becomes more complex due to multi-
modal collaboration, as the impact of modalities on perception
quality is coupled with imbalanced view criticalities. To tackle
this challenge, we meticulously craft a notion of detection
utility to depict the influence of sensor modalities and spatial
views within dynamically evolving sensing contexts. Then,
we formulate the scheduling problem as one maximizing the
overall detection utility with deadline constraints, involving
the closely coupled algorithms of determining the resource
allocation among view inspection tasks and effective task
batching for optimizing the GPU processing throughput.

We first observe the view inspection task is highly config-
urable, creating a unique space for runtime computation adap-
tation. Motivated by recent findings on the varying modality
importance under different sensing scenarios [12], [13], we
thoroughly profile the latency characteristics of a represen-
tative multi-modal 3D detector, BEVFusion [14], and define
a configurable fusion space that can change the amount of
processed modality data, to achieve heterogeneous accuracy-
latency tradeoffs. Beyond static fusion configurations, we
develop an “anytime” elastic fusion strategy to adaptively
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identify the best fusion configuration for each view with
maximized detection utility, given a computation budget and
the runtime sensing context (i.e., object spatial distributions).

The second difference from existing works [8], [9], [11]
is we consider an adaptive batching policy for asynchronous
tasks (with mostly different release times and deadlines)
with time guarantees in the FLEX. Batching is known to
be effective for parallel DNN inference on GPU with im-
proved throughput [15]. However, existing batch scheduling
works [8], [10] are limited to group synchronous sub-tasks
(with the same release times and deadlines) extracted from
the same image, while we assume heterogeneous task peri-
ods between different views. Task batching becomes more
complex because we can hesitate between waiting to group
more jobs within the batch or initiating immediate execution
to avoid waste. We carefully design a novel adaptive batch
scheduling algorithm that intelligently groups “consecutive”
view inspection jobs (ordered by a variant of non-preemptive
EDF scheduling) into batches to balance resource utilization
and timely job execution. The online scheduling is accelerated
via an offline-constructed Hierarchical Schedule DAG (HSD)
to determine the time budget of batch execution.

The two features of FLEX, i.e., elastic fusion and adaptive
batching, are closely integrated and mutually enhance each
other. They jointly answer the questions of “what to batch”
and “how to batch” during the runtime scheduling. On one
hand, elastic fusion works as a subroutine to adaptive batching,
automatically identifying the fusion configurations for each
job to maximize a measure of detection utility, given the
job set and execution time budget of the batch; On the
other hand, adaptive batching effectively supports the parallel
processing of view inspection jobs with heterogeneous fusion
configurations generated by the elastic fusion algorithm, and
it enforces temporal load balancing in earlier batch decisions
to make room for future elastic fusion searches.

We implement FLEX on NVIDIA Jetson Orin and exten-
sively evaluate its performance with a large-scale real-world
driving dataset. The results show that FLEX achieves high
perception quality and system throughput, outperforming the
SOTA baseline by up to 22.0% in the recall, and up to 14.7%
in mAP, while satisfying all timing requirements and incurring
negligible runtime overhead.

Overall, the main contributions of this paper are:
• We tackle a challenging problem on real-time schedul-

ing for multi-modal multi-view 3D machine perception,
moving closer to real-world AV scenarios;

• We introduce an “anytime” elastic modality fusion strat-
egy that dynamically decides the fusion configuration of
each view given the computation time budget;

• We design a deadline-based, context-aware, and adaptive
batch scheduling algorithm that combines both offline
HSD construction and online selection to achieve a good
trade-off between resource utilization, timely job execu-
tion, and scheduling algorithm efficiency;

• We perform extensive evaluations on a real-world driving
dataset with diverse driving scenarios on Jetson Orin to

validate the efficacy and efficiency of FLEX.
The rest of this paper is organized as follows: In Section II,

we briefly review the related literature. We give an overview
of the architecture in Section III, then explain the elastic
fusion module in Section IV and the scheduling algorithm
in Section V. We present the evaluation results in Section VI
and conclude the paper in Section VIII.

II. RELATED WORKS

Real-time Scheduling for DNN Inference. Numerous
recent studies [16]–[24] have focused on enabling real-time
DNN inference on resource-constrained embedded platforms.
When considering multiple parallel DNNs, existing works
focused on scheduling the computation on heterogeneous
processors [25], [26] and exploiting task batching techniques
to improve the system throughput [27]–[30]. Besides, there
have been works [8]–[11], [31] on real-time machine atten-
tion scheduling mechanisms that prioritize the inspection of
regions-of-interest (ROIs) over other areas, thereby improv-
ing the criticality-aware perception quality. However, they
either waste task batching opportunities on GPU [9], [11],
leading to suboptimal processing throughput, or are unable
to batch asynchronous tasks [8], [10] with time guarantees.
Additionally, most works regard 2D object detection on RGB
images as the standard perception task, and they struggle to
generalize to multi-modal 3D object detection. To the best of
our knowledge, no dominant task batching algorithms have
been proposed for multi-modal multi-view perception with
asynchronous tasks.

Resource Allocation for Multi-Modal Perception. Multi-
modal 3D detector outperforms single-modal methods by ef-
fectively combining complementary information from different
modalities [1], [2]. Existing real-time studies on multi-modal
perception [12], [13], [32], [33] mostly worked on developing
anytime inference capabilities, to maximally utilize the limited
resources within the time limit, while the higher-level resource
allocation among different tasks is overlooked. According to
the level of processing for modality fusion, multi-modal 3D
object detectors can be classified into three categories [1]:
early fusion [34], [35] at the input data level, middle fusion
[14], [36]–[39] at the latent feature level, and late fusion
[40], [41] at the output decision level. In principle, FLEX
can be applied to multi-modal fusion methods at different
levels as long as the fusion mechanism can be calibrated for
elastic modality fusion, but empirically, pushing the fusion
to relatively late phases closer to the output could better
accommodate dynamic DNN execution approaches, such as
imprecise computation [42]–[45]. We choose the middle-level
BEVFusion due to its outstanding fusion quality and practical
popularity in AV literature [4], which contains deep modality
feature extractors, a lightweight fusion module, and a detection
head.

III. PRELIMINARY AND OVERVIEW

In this section, we first briefly introduce the preliminaries
of multi-modal multi-view machine perception, and then we
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Fig. 1. A multi-view multi-modal machine perception sample.

give an overview of the proposed FLEX framework.

A. Multi-Modal Multi-View Machine Perception

Mult-Modal Fusion: We consider a machine perception
system for autonomous vehicles (AV) equipped with multiple
sensory modalities that periodically collect signals on physical
surroundings. Specifically, it includes 360-degree panoramic
LiDAR and multiple cameras facing different directions. Be-
sides, a 3D object detector (e.g., BEVFusion [14]) is executed
to localize and categorize surrounding objects, based on infor-
mation aggregated from both LiDAR and camera input. Multi-
modal fusion enhances the object detection quality but induces
additional computation overhead to the limited onboard com-
puting resources, thus presenting a trade-off between detection
quality and response latency.

Mult-View Partition: The 3D object detection pipeline
spatially partitions the vehicle’s surroundings into multiple
views. As shown in Figure 1, this partitioning is performed in
the BEV space based on the camera-facing directions, which
respectively monitor the forward, rear, left-front, right-front,
left-rear, and right-rear areas of the ego-vehicle. We formally
define a view as:

Definition 1 (View). A view is a 2D area in the 360◦ BEV
space of the vehicles surroundings. Each view is associated
with part of LiDAR point clouds and dedicated camera frames.

Running 3D object detection on each view is modeled as
independent periodic view inspection tasks, triggered at pre-
defined inspection frequencies. The deadline of each view
inspection job is set implicitly as the release time of the
next job. Inspection frequencies are different but static among
the views, according to their heuristic importance to the ego-
vehicle’s safety. For example, the front-view area is generally
more important than the left/right-rear-view areas and should
be inspected more frequently. The sampling frequencies of
LiDAR and cameras can be different, both of which are no
smaller than the highest view inspection frequency. Upon the
release of a new view inspection job, the perception pipeline
collects the most up-to-date data from both modalities using
a sensor synchronization mechanism, such as SEAM [46], to
prepare the input for 3D detection.

The limited computation resources must be appropriately
allocated among different view inspection tasks for responsive-
ness to physical surroundings. Moreover, as the AV navigates,
the criticality of different views may dynamically change due
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Fig. 2. Overview of the FLEX framework.

to evolving driving conditions (i.e., object location distribu-
tions) and runtime vehicle maneuvers (e.g., turn left/right, ac-
celerate/decelerate). We fix the view inspection frequencies but
dynamically change the amount of computation at each view
to achieve adaptive resource allocation and sustain consistently
high 3D object detection quality.

B. Motivation and System Overview

The efficiency and efficacy requirements for machine per-
ception motivate us to raise the following three questions:

• Q1: How to adaptively and intelligently allocate compu-
tation resources among different view inspection tasks to
maximize the overall perception quality?

• Q2: How to fully utilize the parallel processing capacity
of the GPU processor to improve the system throughput
and facilitate the perception quality?

• Q3: How to ensure the timely execution of all view
inspection tasks on different views?

To answer these questions, we propose FLEX, a real-time
scheduling framework for multi-modal multi-view machine
perception, that integrates elastic fusion and adaptive batching
as two key features, to appropriately allocate machine attention
(i.e., GPU computation time) [10] among spatial views and
sensory modalities. We now give intuitions on how these
features jointly achieve the design objectives.

• Elastic Fusion: It serves as an “anytime” solution for the
multi-modal object detector and is able to produce avail-
able detection results within any feasible time limit (Q3).
It adaptively adjusts the amount of processed LiDAR
and camera input within each inspection task, judiciously
compressing computation on less-critical views to make
room for critical view inspections (Q1).

• Adaptive Batching: It groups different view inspection
jobs into a single GPU request for improved task process-
ing throughput (Q2). We consider a flexible setting that
allows batching jobs with (1) asynchronous release times
and (2) heterogeneous multi-modal fusion configurations.
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The adaptive batch decisions naturally fit the purpose of
dynamic resource allocation (Q1).

The remaining question is: how to design an adaptive batch
scheduling policy that simultaneously satisfies requirements
Q2 and Q3? Our intuition is that jobs with similar deadlines
are more suitable to form a batch because batched jobs are
enforced to share the same finish time. Batching jobs with
diverse deadlines may cause a lack of sufficient execution
duration for jobs with later deadlines. Based on this observa-
tion, we develop a deadline-driven batch scheduling algorithm
that groups “consecutive” jobs based on a non-preemptive
EDF job sequence. Besides, it carefully determines the time
budget of a batch to ensure no deadlines are missed for
both currently active and future unpublished jobs, which is
efficiently done with the assistance of an offline-constructed
hierarchical schedule DAG (HSD).

An overview of the proposed FLEX architecture is presented
in Figure 2. To effectively combine the design features, FLEX
comprises the following building components:

• Batch Fusion Decision Maker: Given a set of view
inspection jobs and the corresponding batch execution
budget, it decides feasible fusion configurations for each
job that maximizes an overall detection utility measure.

• Elastic Multi-Modal 3D Detector: It accepts and pro-
cesses adjustable multi-modal sensory data from different
view inspection jobs and generates detection results.

• Offline Hierarchical Schedule DAG: It serves as a fast
lookup table for the adaptive batch scheduler to determine
the latest finish time of a batch’s execution.

• Adaptive Batch Scheduler: It iterates potential candi-
date batches based on the Earliest Deadline First (EDF)
order and selects the one yielding the highest expected
detection utility gain to execute.

IV. OBJECT DETECTION WITH ELASTIC FUSION

In this section, we introduce the elastic multi-modal 3D
detector and explain how we determine the runtime fusion
strategy to maximize the notion of detection utility.

A. BEVFusion for Multi-Modal 3D Object Detection

BEVFusion [14] is an efficient and generic multi-modal
multi-task framework. It represents and fuses LiDAR and
image features in the unified BEV space, and can be applied
to a variety of perception tasks, e.g., 3D object detection
and map segmentation. We regard 3D object detection as the
standard machine perception task and provide a brief overview
of the BEVFusion-based object detection network (hereafter
referred to as BEVFusion without ambiguity). A multi-view
BEVFusion detection pipeline is demonstrated in Figure 3, and
the detector comprises the following four modules:

• LiDAR Feature Extractor: It first voxelizes the raw Li-
DAR point clouds and then performs sparse convolutions
on voxels to extract features in the BEV space.

• Image Feature Extractor: It feeds images into 2D
backbones and then projects 2D features into BEV space
via view transformation and BEV pooling.

Image Feature 
Extractor

LiDAR Feature 
Extractor

Detection 
Head

w/o Image

w/ Image

Elastic BEVFusion Detector
Temporal Point Clouds 
(Mandatory)

Image  (Optional)

View Partition 
In BEV Space 

Sensor Data 
of Single View

BEV Feature 
Processor

Fig. 3. Multi-view Multi-modal BEVFusion Detection Pipeline.

• BEV-Feature Processor: It processes the extracted fea-
tures in the shared BEV space, where the LiDAR features
are always required but the image features can be op-
tional. When both are available, the module concatenates
them, conducts convolutions for modality fusion, and
generates the fused features in the BEV space.

• Detection Head: It utilizes the BEV features to predict
the category, location, and size of the appeared objects.
An oriented 3D bounding box and a class are predicted
for each object.

Different modules of BEVFusion run sequentially on GPU, but
the view inspection jobs can be batched within each module.

LiDAR and Image Fusion: In 3D object detection, the
depth information of point clouds is critical for accurate
object localization, while the high-resolution image textual
information serves as its complement and can be skipped under
tight resource constraints.

Temporal Point Cloud Fusion: A common practice to
improve LiDAR-based 3D object detection quality is to merge
point clouds in past scans, for the enhanced description of
object location and structure. The points collected in past scans
are appended to current LiDAR points and fed into the LiDAR
feature extractor, where newly collected points possess higher
weights than history points. In FLEX, we exploit timestamp-
aware multi-frame point cloud concatenation for temporal
fusion. Upon dynamic resource availability, different numbers
of LiDAR frames can be fused to achieve elastic accuracy-
latency trade-offs. Empirically, there is an upper bound K
of LiDAR frames below which fusing more frames leads to
higher detection quality [47].

B. Batch Execution of View Inspection Jobs

Batch execution processing multiple data samples in parallel
on GPU improves the DNN inference throughput compared
to sequential execution [15]. Here we introduce the proposed
batch execution model that allows the batched view inspection
jobs to be configured differently during execution.

Assume the view set is {ri}n1 . The view inspection task is
highly configurable in our tailored BEVFusion implementa-
tion. The fusion configuration of a single view ri is (li, bi),
where li ≥ 1 is the number of LiDAR frames for temporal
fusion, and bi ∈ {0, 1} is a binary variable indicating whether
to incorporate the image frame. Since li only affects the point
list length and bi only affects the number of processed images,
view inspection jobs with different fusion configurations can
be directly batched within each BEVFusion module. Only a
single forward pass is needed in each feature extractor.
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Algorithm 1: Batch Fusion Configuration Search
Input: Views {rj} to inspect, time budget T , driving

context represented by {wj}.
Output: Fusion configuration for each view {(lj , bj)}.

1 Determine the maximum number of fused images;
2 for each feasible image configuration {bj} do
3 Obtain optimal fractional solution {l̂j} using the

Lagrange multiplier method;
4 Convert {l̂j} to feasible integer solution {lj} greedily;
5 end
6 Return configuration {(l∗j , b∗j )} with the maximum utility

among all configuration candidates.

We now analyze the worst-case execution time (WCET) of
batch detection for a view subset {rj}, where |{rj}| ≥ 1. The
WCET of BEVFusion is decomposed into its four modules:

• The LiDAR branch execution time mainly depends on
the point count in the point cloud, nearly proportional to
the LiDAR frame number used in all views, so we use
tl(

∑
j lj) to denote the WCET of the LiDAR branch.

• The image branch execution time is related to the number
of batched images and its WCET is denoted as ti(

∑
j bj).

• The execution time of the BEV-feature processor depends
on whether image features are incorporated. Therefore,
its WCET can be expressed as a binary-value function
tp(B), where B indicates whether

∑
j bj > 0 holds.

• The execution time of the detection head is roughly
constant, denoted as th.

Therefore, the batch execution’s WCET for a set of view
inspection jobs with configurations {(lj , bj)} is calculated by:

WCET = tl(
∑
j

lj) + ti(
∑
j

bj) + tp(B) + th. (1)

C. Elastic Fusion Configurations Search

We now explain the proposed elastic modality fusion strat-
egy. Given a set of view inspection jobs in the batch and the
associated execution time budget, the problem is formulated as
determining the feasible fusion configuration for each job to
maximize a notion of utility without violating the time limit.

The utility provides a proxy measure of perceptual quality
that considers both driving contexts and fusion configurations.
It should be calculated without ground-truth labels to be
effective during runtime adaptation.

Definition 2 (Detection Utility). The detection utility of in-
specting view ri with configuration (li, bi) is defined as:

ui(li, bi) = wi · (1 + αibi) · f(li). (2)

The factors contained in the utility are listed below:

• wi is the ratio of objects in view ri compared to the
total object number in all views, as counted from the
most recent inspection2.

2wi can be extended to consider the heterogeneous object importance or
driving behaviors, but more complicated wi designs are beyond our scope.

• αi is the relative detection quality gain ratio when fusing
image features compared to LiDAR-only approaches,
measured through offline profiling.

• f(li) = log li is the relative detection quality ratio
achieved through temporal point cloud fusion.

wi is utilized as a runtime driving-context variable decided by
object location distributions. It is noteworthy that we select
f(li) as a monotonically increasing concave function, as is
consistent with our offline profiling results in Figure 6.

Given a batched view set {rj} and a time budget T , the
optimal configuration search for each view is mathematically
formulated as an integer programming problem to maximize
the overall detection utility:

max
{(lj ,bj)}

∑
j

uj(lj , bj) (3a)

s.t. tl(
∑
j

lj) + ti(
∑
j

bj) + tp(B) + th ≤ T (3b)

lj ∈ {1, . . . , lmax}, bj ∈ {0, 1} (3c)

Constraint (3b) guarantees that the time budget is not ex-
ceeded. Note that if a specific view is chosen for inspection,
at least one corresponding LiDAR frame will be processed.

We present our batch fusion configuration search algorithm
of FLEX in Algorithm 1, which returns approximately optimal
configurations. Here, "approximately optimal" means that we
first find the optimal fractional solution and then approximate
it to a feasible integer solution. We only assign a single batch
for LiDAR and image feature extraction separately3, and then
figure out “what to include in the predefined LiDAR batch
and image batch”. Iterating over all feasible configurations
{(lj , bj)} is too time-consuming, so we design a two-step
method that first enumerates all possible image configurations
{bj} (in Lines 1 and 2). Once the first-step decision is
made, we determine the LiDAR frame number for each view
by solving a convex optimization problem without integer
constraints, i.e.,

max
{lj}

∑
j

wlj · f(lj) (4a)

s.t. tl(
∑
j

lj) ≤ Tl (4b)

Here wlj = wj · (1 + αjbj), and Tl is the time budget for
LiDAR feature processing after subtracting the WCET of other
modules from T . We use the Lagrange multiplier method [48]
to solve this problem. First, assuming that tl(L) = Tl holds,
then the maximum overall utility is obtained when

∑
j lj =

L holds since f(lj) is monotonically increasing. Second, by
leveraging the optimality condition of the Lagrange multiplier
method and the fact that f(lj) is concave, we have that at the
optimal solution {l̂j}, the derivatives of all utility functions
wlj ·f(l̂j) for all views are the same. Based on the above two

3In our context with limited batch candidates, for both LiDAR and image
feature extractors, initiating a second batch is always less efficient than adding
the data to the original first batch.
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Fig. 4. Task publish model and EDF-DB scheduling.

equations, we can quickly solve the optimal fractional solution
{l̂j}.

We then approximate {l̂j} to a feasible integer solution.
Specifically, we sum up all decimal parts of {l̂j} (includ-
ing parts that exceed lmax) and greedily reallocate these
spare LiDAR frames sequentially to the view that yields the
maximum utility gain. The algorithm finally returns integer
configurations {(lj , bj)} that achieves the maximum overall
utility among all the configuration candidates where each
configuration candidate corresponds to a feasible image con-
figuration.

V. ADAPTIVE BATCH SCHEDULING

In this section, we introduce the EDF-DB (Earliest Dead-
line First scheduling with Dynamic Batching) scheduler in
FLEX, a non-preemptive deadline-based scheduling algorithm
that enables dynamic online batching and job configuration.
Generally, it adaptively decides what to batch and how to
batch in three steps: (1) Generate batch candidates based on
the job deadlines. (2) Determine the batch execution time
budget with the help of offline-constructed HSD. (3) Invoke
the batch fusion configuration search and select the optimal
batch candidate to execute.

A. Execution Model and Problem Formulation

Task Execution Model: We regard the multi-modal 3D
object detection at different views as a collection of periodic
tasks {τi}n1 , with the period of τi as Pi. We use τi,j to denote
the j-th job of τi and use ri,j to denote its release time, and we
assume the initial jobs for all tasks are released synchronously.
At most one job of a task is executed non-preemptively on the
GPU at any time.

Execution Time Notations: As detailed in section IV-B,
the end-to-end WCET of task τi is a function of runtime
fusion configuration (i.e., whether to fuse image features and
the number of LiDAR frames). The WCETs and BCETs of
the most lightweight configuration, i.e., when only one frame
of LiDAR point cloud is used without incorporating image
features, are denoted with {cmin

i }, {bcmin
i }, respectively.

Scheduling Problem Formulation: When the GPU be-
comes idle after a previous batch or when a new job is
published during the processor’s idle time, the adaptive batch
scheduling algorithm should be invoked to determine for the
next batch, (1) which jobs are grouped in the batch and (2)
the fusion configuration for each job. We give a formal batch
definition in the scheduling context.

Definition 3 (Scheduled Batch). A scheduled batch is associ-
ated with four elements ({τik,jk}, {(lk, bk)}, s, d) where:

• {τik,jk} are the jobs within the batch.
• {(lk, bk)} denotes the fusion configuration for each job.
• s, d are the start and end times of batch execution.

Given the task set, the scheduling algorithm adaptively
generates a sequence of batches one by one to maximize the
batch detection utility with no deadline misses.

B. Batching Order Based on Non-Preemptive EDF

Following the insight to group jobs with similar dead-
lines into batches, we first sort the jobs according to an
EDF order and use it as the scheduling basis for our adap-
tive batch scheduling. Particularly, we adopt a non-work-
conserving EDF algorithm called CEDF (Clairvoyant non-
preemptive EDF) [49], that intelligently inserts idle times to
prevent upcoming priority inversion that will cause a deadline
miss. Specifically, when a job is scheduled according to the
EDF order, CEDF will check jobs that it may block, i.e., those
jobs with earlier deadlines but later release times, and check
whether this priority inversion leads to a deadline miss. We
give the following property of CEDF scheduling for a periodic
task set w.r.t. their initial job release times.

Lemma 1. For a set of jobs generated by a concrete periodic
task set, if it is schedulable under CEDF starting at time t,
then it is schedulable under CEDF starting at time t′, for all
t′ < t.

Proof. We prove the lemma by contradiction. Assume there
exist t1 and t2 such that t1 < t2. Under CEDF scheduling,
the job set is schedulable starting at t2 but not schedulable
starting at t1. For the schedule beginning at t1, let the first job
that misses the deadline be jL, with a deadline of dL.

Consider the sets of completed jobs scheduled by CEDF
up to dL from the two starting points, denoted as J1 and J2,
respectively. J1 can’t be a proper subset of J2, otherwise, the
schedule starting at t1 idles while there exist ready jobs whose
execution will not lead to a deadline miss because t1 < t2 and
the schedule starting at t2 is feasible. This means J1 contains a
job jE that doesn’t belong to J2. Note that the deadline dE of
jE must be later than dL otherwise the schedule starting at t2
also misses this deadline. Therefore, in the schedule starting
at t1, a priority inversion between jL and jE that causes a
deadline miss happens, which will not happen under CEDF
scheduling.

We further define the hyper-period for a task set:

Definition 4 (Hyper-Period). The hyper-period HP of a task
set is defined as the least common multiple of all task periods,
such that

HP = HP ({τi}n1 ) = lcm(P1, . . . , Pn), (5)

Without loss of generality, we assume all tasks start at
time 0. Thus, to evaluate the schedulability of the task set
with given task WCETs {ci} using CEDF, we only need
to check whether the task set is schedulable in the first
hyper-period from 0 to HP . Besides, we assume the task
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Algorithm 2: The EDF-DB Scheduling Algorithm
Input: Task set with periods {Pi} and WCETs {cmin

i },
current time t.

Output: A feasible batch with maximized detection quality.
1 Select job τa1,b1 according to CEDF;
2 Determine batch member sequence τa2,b2 , . . . , τan,bn that

may batch with τa1,b1 according to the order under CEDF
scheduling;

3 for each batch candidate do
4 Determine the latest finish time lft with the help of

HSD ;
5 Calculate the actual start and finish time s, d for this

batch given by formula (6) ;
6 Determine the actual configuration for the batch, and

calculate the utility gain ;
7 end
8 Return the batch candidate with the highest average utility

gain and the corresponding configurations.

set is always schedulable with CEDF scheduling under their
most lightweight configurations. Although determining the
schedulability of concrete non-preemptive periodic tasks is
NP-Hard in a strong sense [50], by confining ourselves to
special cases of a concrete periodic task set with synchronized
starting time, we can quickly run an offline simulation to
evaluate its schedulability within a hyper-period.

C. EDF-DB: Adaptive Batch Scheduling

We now introduce an EDF-DB algorithm in FLEX for adap-
tive batch scheduling. Since we only allow consecutive jobs
within a batch, the search space for batches on synchronized
tasks is much smaller. Our general idea is to dynamically
group appropriate jobs and determine the time budget of these
jobs to form a feasible batch. The feasibility of a scheduled
batch is defined below:

Definition 5 (Feasible Batch). A scheduled batch
({τik,jk}, {(lk, bk)}, s, d) is feasible if it satisfies:

1) The release time of any job τik,jk is no later than the
batch start time s.

2) The absolute deadline of any job τik,jk is no earlier than
the batch end time d.

3) The execution time of the selected configuration {(lk, bk)}
is no longer than the assigned execution time d− s.

4) The remaining jobs in the same hyper-period are schedu-
lable with CEDF under their most lightweight configura-
tions {cmin

i } starting from time d.

In Condition 4), when considering the current batch decision,
we ensure the schedulability of remaining jobs within the same
hyper-period under sequential execution. This design preserves
time budgets for potential configuration upgrades when future
jobs are executed in batch, leading to temporal load balancing
and consistent detection quality over time.

When multiple feasible batch candidates exist, EDF-DB
selects the one with the maximum expected detection quality
gain. Within each batch, EDF-DB considers the current detec-
tion context (i.e., object spatial distributions) and determines

Level-3

Level-5

Level-4
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Fig. 5. An example of the intermediate 3 layers of HSD. For instance, if the
level-3 node’s corresponding job τ3,0 finishes during the time interval [100,
150), then the next job scheduled by CEDF is τ4,0.

{(lk, bk)} for jobs in the batch satisfying condition 3) to
maximize the batch detection quality.

The EDF-DB algorithm is summarized in Algorithm 2.
CEDF may insert idle times to prevent upcoming deadline
misses. In such cases, our EDF-DB also keeps the processor
idle until this idle time finishes; otherwise, the deadline miss
is bound to happen. When EDF-DB is invoked at time t, it first
selects the job τa1,b1 according to CEDF, which we call the
batch leader. Then we consider the sequence of jobs (batch
members) τa2,b2 , . . . , τan,bn that may join this batch according
to the CEDF scheduling order, assuming job execution times
are {cmin

i }. We only need to consider jobs whose release time
is before the batch leader’s deadline. Some jobs in the batch
may have not been released at time t, which means the batch
needs to wait until their releases before executing.

As mentioned, EDF-DB follows the order given by
CEDF scheduling. As shown in Figure 4, only batches
that group consecutive jobs, conforming to the form
{τa1,b1 , τa2,b2 , . . . , τaq,bq}, are allowed. In other words, no in-
termediate jobs can be skipped within the CEDF job sequence.
Such a potential feasible batch is called a batch candidate.
For each batch candidate, we first determine its latest finish
time (lft), which ensures all jobs after this batch will meet
their deadlines under the original CEDF scheduling. This is
calculated by our HSD algorithm (as introduced later), and the
lft of the current batch equals to the latest start time of future
jobs. Assume the latest release time and the earliest deadline
within the batch are respectively rmax, dmin, then the actual
start and end time of the batch’s execution are given by:

s = max (rmax, t), d = min (dmin, lft). (6)

Once we determine the actual time budget for a candidate
batch (i.e., what to batch), we can accordingly search its best
runtime job configurations using Algorithm 1 (i.e., how to
batch), and calculate the batch detection utility. Then, we
choose the batch candidate with the highest average utility
gain, along with its best job configurations, for execution.

D. Hierarchical Schedule DAG

Within EDF-DB scheduler execution, repetitively analyzing
the CEDF schedulability of remaining jobs in the same hyper-
period for each candidate batch can be time-consuming. Fortu-
nately, the schedulability under the most lightweight configura-
tions is consistent across different hyper-periods. To accelerate
the online scheduling, we introduce an offline algorithm to
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Algorithm 3: Hierarchical Schedule DAG Construct
Input: Task set τ with periods {Pi}, WCETs {cmin

i },
BCETs {bcmin

i }.
Output: A hierarchical schedule DAG G(V,E).

1 Initialize G(V,E) as empty graph;
2 Select the job τm,0 with the earliest deadline among all jobs,

add τm,0 to V ;
3 N := the number of total jobs in a hyper-period;
4 for k = 1, . . . , N − 1 do
5 Vk−1 := set of nodes whose level is k − 1;
6 (Vk−1,1, . . . , Vk−1,p) := partition of Vk−1 based on

finished job set of each node ;
7 for l = 1, . . . , p do
8 JRk−1,l := remaining job set of Vk−1,l;
9 est := earliest start time of JRk−1,l;

10 {jo}, {[lefto, righto)} := the set of first scheduled
job under CEDF and its corresponding start
interval computed by Algorithm 4;

11 Add each job jo in {jo} to V as a level-k node vo ;
12 for ∀u ∈ Vk−1,l, ∀vo ∈ {vo} do
13 if condition (9) holds, then add to E an edge

from u to vo, the assigned interval of the edge
is calculated by formula (10);

14 end
15 end
16 end
17 Return the constructed G(V,E).

Algorithm 4: First Job Enumeration (FJE)
Input: remaining job set JR, earliest start time est.
Output: possible first jobs scheduled by CEDF and the

corresponding start time intervals
{jo}, {[lefto, righto)}.

1 fd := the first deadline among all jobs in JR ;
2 Binary search to find the latest start time lst ∈ [est, fd] ;
3 divide [est, lst) into adjacent intervals {[lefto, righto)}

based on the first scheduled job jo under CEDF ;
4 Return {jo}, {[lefto, righto)} ;

construct a Hierarchical Schedule DAG (HSD). It covers all
possible CEDF job execution sequences within a hyper-period,
used as a “fast lookup table” to efficiently determine the
execution time budget of all candidate batches by looking up
the latest start time (lst) of all possible remaining job sets
without complex runtime profiling.

Figure 5 visually illustrates a part of HSD. For a constructed
HSD G(V,E), each node v ∈ V corresponds to a job, and the
directed edges represent the order of job executions. HSD is
hierarchical:

1) It has a single level-0 root node with no in-edge, and the
level of node v is the distance from the root to v;

2) An edge exists only if it points from a level-k node to
a level-(k + 1) node. Any path starting with the root in
HSD represents a sequence of job execution under CEDF
scheduling.

3) An edge e = (u, v) ∈ E, i.e., pointed from u to v, is
assigned with a time interval, which is formally defined
below.

Definition 6 (Edge Time Interval). An edge (u, v) is assigned
with the left-closed, right-open time interval [s, t), so that if

the sequence of jobs from the root to u finishes their execution
within [s, t), then the next job scheduled by CEDF is v.

Formally, given a start-aligned task set, the pseudocode
of constructing its HSD in a hyper-period is summarized in
Algorithm 3 (HSDC). HSDC starts by adding the job with the
earliest deadline as the root (Line 2). Assume the number of
jobs within a hyper-period is N (Line 3), then the maximum
level in the graph is N − 1. The graph is constructed level by
level, as shown between Lines 4 to 17.

In the k-th iteration for graph construction, HSDC first
partitions all level-(k − 1) nodes according to their finished
job set (Line 5 to 6), i.e., two nodes are divided into the same
partition if and only if they have the same finished job set.
The finished job set of a node v, denoted by J(v), contains
jobs in the path from the root to node v. Though there could
be multiple paths from the root to the node v, as we will
show later in Lemma 2, their job sets are the same. Thus,
the finished job set of a node is well-defined, and the same
with the partition based on it. For each partition Vk−1,l of the
node-set at level-(k − 1), we construct new nodes at level-k
and add edges from nodes in Vk−1,l to the newly added nodes,
as shown between Lines 8 to 14.

For partition Vk−1,l and its finished job set Jk−1,l, its
remaining job set is defined as JRk−1,l = J − Jk−1,l, where
J is the set of all jobs within a hyper-period (Line 8). Then
we calculate the possible earliest start time (est) of JRk−1,l

by the following equation:

est(JRk−1,l) = min {eft(v) | v ∈ Vk−1,l}. (7)

Here eft(v) is the earliest finish time of the job by v. The
earliest finish time of the root τm,0 is bcoffm . For non-root
node v representing job τi,j , suppose the set of time intervals
assigned with edges pointing to v is {[sm, tm)}, then eft(v)
is calculated by:

eft(v) = min {max (sm, ri,j) + bcoffi }. (8)

Recall that ri,j is the release time of τi,j .

HSDC then invokes a First Job Enumeration (FJE)
subroutine (in Algorithm 4) with the remaining job set and the
earliest start time (Line 10). It first uses binary search to find
JR’s latest start time (lst) (Lines 1, 2), i.e., JR is schedulable
with the execution time {cmin

i } under CEDF only if starting
before lst. The binary search’s correctness is guaranteed by
the CEDF property stated in Lemma 1. Then, FJE divides
the feasible start time interval [est, lst) into a set of disjoint
adjacent time sub-intervals {[lefto, righto)} according to the
first job jo of JR scheduled by CEDF starting within the sub-
interval. After FJE returns all possible first jobs {jo} for the
target remaining job set, HSDC adds each job jo as a new
level-k node vo to the node set V (Line 11). Then HSDC
adds edges from a node u in Vk−1,l to a newly added node
vo (Lines 12 to 14) if the following equation holds:

eft(u) < righto. (9)
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The assigned interval of the newly added edge is given by:

[max (lefto, eft(u)), righto). (10)

We then show that the finished job set J(v) of a node v in
HSD is well-defined.

Lemma 2. For a node v in a constructed HSD, the set of jobs
on any path from the root to v are the same.

Proof. We prove the lemma by induction. It holds for the
root of the HSD, whose finished job set contains only itself.
Assume it holds for all level-k nodes. Then for any level-
(k+1) node v, we consider the set of level-k nodes that have
an edge pointing to v, denoted by P (v). Our construction
process guarantees that all nodes in P (v) belong to the
same partition of the level-k node set. Applying the inductive
hypothesis, the finished job sets of nodes in P (v) are unique
and identical. Let U be the finished job set corresponding
to this partition. We then have that the set of jobs on any
path from the root to v must be U + {v}, which proves the
lemma.

How to use the constructed HSD to determine the latest
finish time (lft) for each batch candidate in EDF-DB? For
a batch, assume the finished job set (including the batch itself)
is J , and the last job in this batch (according to CEDF order)
is j. Then we locate the corresponding node v representing
job j whose finished job set is J in the (|J | − 1)-th level
of the HSD. Assume the set of time intervals assigned to the
out-edges of v is {[sq, tq]}, then the latest finish time of the
target batch is given by lft = max {tq}.

Space complexity of HSD. Assuming the number of all
jobs in a hyper-period is N , and the maximum number of
nodes in a level of HSD is M . Due to the hierarchy of HSD,
the required space to store the nodes and edges of HSD are
O(NM) and O(NM2) respectively. In our evaluation which
typically involves hundreds of jobs in a hyper-period, M is
usually smaller than 15. The total space required to store
the HSD typically ranges from tens to hundreds of kilobytes,
which is acceptable on our test embedded device (see Section
VI-A).

VI. EVALUATION

In this section, we evaluate the effectiveness and efficiency
of FLEX on the NVIDIA Jetson Orin platform with a large-
scale real-world driving dataset.

A. Experimental Setup

1) Hardware Platform: All experiments are conducted on
an NVIDIA Jetson Orin SoC, which is designed for automotive
embedded systems. It is equipped with a 12-core Arm Cortex-
A78AE v8.2 64-bit CPU, a 2048-core NVIDIA Ampere ar-
chitecture GPU with 64 Tensor Cores, and 64 GB memory.
We set the power mode to MAXN and set the GPU and
CPU to operate at their maximum frequency to ensure stable
performance.

2) Dataset: We test on the nuScenes [51] dataset, a large-
scale public dataset for autonomous driving developed by
the team at Motional. It consists of 20-second driving video
clips collected in Boston and Singapore captured by various
sensors. We use the sensor data from 6 cameras and the
LiDAR mounted on the top. The cameras are positioned to face
forward, rearward, left-front, right-front, left-rear, and right-
rear directions. We conducted tests using 85 driving scenes,
comprising over 3400 data samples4. Each sample includes a
LiDAR point cloud frame and 6 images.

3) Neural Network for Detection: We use the BEVFu-
sion [14] model in MMDetecion3D [52] library as the 3D
object detection network. We calibrate its pipeline to support
elastic multi-modal fusion. We use TensorRT with FP16 pre-
cision to speed up the image feature extractor and detection
head. The LiDAR feature extractor is accelerated with the fast
3D sparse convolution library [53] published by NVIDIA with
FP16 precision. The worst-case inference latency of different
modules is profiled in advance.

4) Workload Setup: Unless otherwise indicated, we regard
the inspection of 6 views, as partitioned by the camera facing
directions, as 6 periodic tasks with implicit deadlines. We
manually change the task periods to induce diverse workloads.
Under our implicit deadline model, shorter periods lead to
higher scheduling workloads. Specifically, we assign a period
of 160ms, 200ms, 250ms, 300ms, 400ms, and 600ms to the
6 tasks to represent a moderate workload. To create the
easy workload, we multiply each period by 1.1; for the hard
workload, we multiply them by 0.9. Specifically, the task set’s
utilization (i.e., sum of the ratio between WCET and the
period of all tasks) with the minimum fusion configuration
(i.e., only one LiDAR frame is used without incorporating
image features) for easy, moderate, and hard workloads 72.4%,
79.6%, and 88.5%, respectively.

5) Evaluation Metrics: Our metrics mainly consider the
overall 3D object detection quality. We use detection recall,
precision, and mean average precision (mAP) to evaluate the
detection accuracy. These metrics are calculated based on
the bounding box overlap between the predictions and the
groundtruth labels. A detection is said to be matched with a
groundtruth object if their intersection of union (IoU) is larger
than a predefined threshold (set as 0.35 in this paper). We also
evaluate the effectiveness of FLEX in utilizing computational
resources, measured by the ratio of processed sensor data over
the maximum configuration, which includes 5 history LiDAR
frames as well as images from all spatial views. Specifically,
the following metrics are defined:

• Detection Recall: The ratio between detections matched
with groundtruth objects and the total groundtruth objects.

• Detection Precision: The ratio between detections
matched with groundtruth objects and the total detected
objects.

4In nuScenes, the labeling frequency is 2Hz, and the frequencies of LiDAR
and cameras sampling are 20Hz and 12Hz, respectively. Unlabeled LiDAR
frames are used for temporal point cloud fusion.
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Fig. 6. Accuracy and latency profiles on different fusion configurations.

• Mean Average Precision (mAP): The mean of the
average precision among all classes. It provides a com-
prehensive assessment of the model’s overall performance
in detecting objects across different classes.

• LiDAR/Image Process Ratio: The ratio between the
processed LiDAR/image frames and the maximum con-
figuration volume.

B. Offline Latency and Accuracy Profiling

Different multi-modal fusion configurations can lead to a
wide spectrum of inference latency and detection accuracy.
Here we investigate their trade-off and report a breakdown
of batch execution latency for all modules under different
modal fusion configurations. The obtained profiling results are
reported in Figure 6. We have the following observations:
First, both incorporating image features and increasing the
number of LiDAR frames in temporal fusion improve the
detection quality. Different configurations may achieve similar
detection accuracy but vary significantly in inference latency,
thus requiring careful runtime selection. Second, all BEV-
Fusion modules can benefit from batched execution. As the
number of batched tasks increases, the execution time for the
detection head and BEV-feature processor remains relatively
stable. On the contrary, the latency of LiDAR and image
feature extractors increases along with the increasing input
data volume, but it is still more efficient than sequential task
execution.

C. Contribution of Elastic Fusion

We compare the context-aware elastic fusion strategy in
FLEX with the static fusion strategies. Given a static fusion
configuration, we determine its WCET via offline profiling,
which is further used as the time budget for our elastic fusion
algorithm. The obtained mAP and recall results are reported in
Figure 7. The results show that the elastic fusion consistently
outperforms the static fusion strategy with a clear margin on
the achieved mAP and recall. With the same time budget, elas-
tic fusion can appropriately allocate the computation resources
to critical views that can receive higher detection utility and
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Fig. 7. Comparison of elastic fusion and static fusion on detection accuracy.
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TABLE I
ACCURACY COMPARISON BETWEEN ELASTIC FUSION AND STATIC

FUSION CONFIGURATION OF 3 LIDAR FRAMES WITHOUT IMAGE FUSION.

Fusion Strategy Elastic (Easy) Elastic (Moderate) Elastic (Hard) Static
Recall 60.8% 59.7% 58.1% 52.3%
mAP 63.9% 63.4% 62.4% 58.6%

adaptively select suitable configurations (i.e., history LiDAR
frames and whether to use the image frame), both of which
benefit the overall detection quality. Instead, static fusion
strategies lack flexibility in view configuration selection, and
they may suffer in scenarios where objects are unevenly
distributed between spatial views.

We further prove the schedulability improvement brought
by the elastic fusion through ablation studies. We compare
the job deadline miss rate of elastic fusion and static fusion
under three workloads. We employ the same batch scheduling
policy proposed in Section V on all fusion strategies for
a fair comparison. The results are shown in Figure 8. Our
elastic multi-modal fusion detector serves as an “anytime”
neural network, i.e., it can yield available detection results
given different time budgets, leading to no deadline misses.
However, static fusion suffers from severe deadline misses
when adopting computation-intensive configurations, e.g., 5
LiDAR frames with image fusion. Although conservative
fusion configurations, e.g., 3 LiDAR frames without image
fusion, can alleviate deadline misses, as shown in Table I,
they fail to fully utilize computational resources and cause
degraded detection quality.

D. Scheduling Algorithm Comparison

In this subsection, we evaluate the scheduling performance
of FLEX compared to several baselines, under different
scheduling workloads (i.e., easy, moderate, and hard load).

1) Baselines: All baselines are non-preemptive.
• NP-FP [11]: Non-preemptive fixed-priority scheduling.

It is a state-of-the-art multi-task perception scheduling
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Fig. 9. Scheduling algorithms comparison on detection accuracy.

Easy Moderate Hard
Workload

20

40

60

80

100

LiD
AR

 P
ro

ce
ss

 R
at

io
 (%

)

EDF
NP-FP

EDF-B
FLEX

(a) LiDAR Process Ratio.

Easy Moderate Hard
Workload

0

10

20

30

40

50
Im

ag
e 

Pr
oc

es
s R

at
io

 (%
)

0.0 0.0 0.0

EDF
NP-FP

EDF-B
FLEX

(b) Image Process Ratio.

Fig. 10. Scheduling algorithms comparison on sensor data throughput.

algorithm. We use the version that allows flexible runtime
priority inversion and we employ Rate Monotonic (RM)
as the prioritization policy.

• EDF: Earliest deadline first scheduling. It always chooses
the job with the earliest deadline. We use the maximum
static configuration such that no deadline miss happens
via offline schedulability test.

• EDF-B: EDF scheduling with task batching. It batches
the maximum number of currently active jobs according
to EDF order such that: (1) The time budget of the batch
is the sum of the budgets of all jobs. (2) No deadline
miss happens within the batch and no unpublished jobs
may be blocked by the batch’s execution.

It is worth noting that both NP-FP and EDF-B use the same
elastic fusion algorithm as FLEX, while EDF uses the offline-
determined static fusion configuration that ensures no deadline
miss happens.

2) Scheduling Results: The experiment results on detection
quality and data process ratio are shown in Figure 9 and Figure
10, respectively. We found that FLEX achieves the best in all
detection quality metrics under different levels of workloads.
It significantly outperforms baselines in recall, a vital metric
in autonomous driving since the consequence of missing an
actual object can be severe, which is typically positively re-
lated to the processed data ratio. Besides, FLEX demonstrates
stability under various workloads, with only a minor accuracy
degradation under the hard workload compared to the easy
workload. Generally, batch scheduling frameworks can utilize
the parallel computing ability of GPU to process more sensor
data, which leads to improved detection quality. As depicted
in Figure 10, sequential scheduling algorithms, such as NP-
FP, struggle to process and fuse image features under heavy
workloads, leading to a significant drop in accuracy. Besides,
compared to EDF-B, FLEX triggers more batch opportunities
and sets tighter deadlines for feasible batch execution with the
assistance of the offline-generated schedule graph, resulting in
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Fig. 11. The impact of the number of tasks on our approach.

TABLE II
BATCHED JOB PROPORTION WITH DIFFERENT NUMBER OF TASKS.

Number of Tasks 3 4 5 6
Batching Proportion 68.26% 91.51% 96.32% 94.72%

LiDAR Process Ratio 94.18% 63.50% 60.03% 74.58%
Image Process Ratio 3.87% 46.97% 51.92% 54.42%
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Fig. 12. Detection accuracy over time.

a comparatively higher image processing ratio even under the
hard workload.

E. Varying Number of Views

In this section, we evaluate the impact of the task set on
FLEX’s performance. We repeat the experiments with 3, 4, 5,
and 6 views respectively. To exclude the influence of absolute
workload, we assign periods for each task set so that the task
set’s utilization with the minimum configuration is around 85%
for all number of views. We compare the accuracy results
of FLEX and the maximum configuration (5 LiDAR frames
with image feature fusion, as the upper bound) in Figure 11.
FLEX is generally effective with varying numbers of views,
with a recall degradation from 3.1% to 5.9%, and an mAP
degradation from 1.5% to 2.7%, compared to the upper bound.
The degradation differs among different task sets partially
because of the varying batch execution opportunities under
different job publish modes. We further calculate the ratio of
the batched job over the total executed jobs in Table II. FLEX
generally optimizes the job batching policies to achieve higher
data processing throughput and higher perception quality.
When the number of tasks is relatively small, e.g., 3 views,
fewer task batching opportunities are identified, which leads
to insufficient utilization of the available computing resources
and a significant drop in image process ratio, thus the gap
between FLEX and the max configuration is relatively large.
We conclude that the advantage of FLEX lies in scenarios
when more tasks need to be scheduled and processed creating
more potential batching opportunities.
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Fig. 13. Scheduling overhead breakdown in FLEX.

F. Temporal Detection Quality Consistency

One concern on FLEX is whether the “aggressive” batching
in the scheduling stage of early jobs can occupy the execution
time and sacrifice the detection quality of later jobs. We
further investigate the changes in detection accuracy over time
under the FLEX scheduling. We divide each scene into ten
equal time intervals and record the accuracy for each interval.
We compare the results with the maximum configuration
(5 LiDAR frames with image feature fusion) as shown in
Figure 12. FLEX maintains high detection quality throughout
entire scenes, with a relatively small gap compared to the
maximum configuration. FLEX determines the time budget for
the current batch while ensuring sequential schedulability for
future jobs, which preserves sufficient batch execution time for
both current and future jobs. This leads to a balanced temporal
load and resource allocation, thereby guaranteeing the stability
of detection quality over time.

G. Scheduling Overhead

Finally, we report the breakdown scheduling overhead of
FLEX. The results are shown in Figure 13 as cumulative dis-
tribution functions (CDF). We evaluate the overhead with dif-
ferent numbers of tasks and report both the absolute scheduling
latency and its relative ratio over its batch execution time. The
scheduling overhead consists of two parts: generating feasible
batch candidates and deciding the fusion configurations for
batch execution. Both are lightweight compared to the job’s
execution latency in most cases, and the former is minimized
in our approach with the help of the offline-generated look-
up table. Our scheduling process runs on a CPU and doesn’t
compete for GPU resources with the detection model, though
the scheduling overhead is counted into the overall end-to-end
latency, and it can be simply subtracted from the time budget
assigned to the batch execution.

VII. DISCUSSION AND LIMITATIONS

Scalability of HSD construction. We adopt node merging
in the HSD construction process to partially alleviate state

explosion. Two factors affect the scalability of HSD construc-
tion: First, the camera count, which is limited and 6 cameras
already match existing AV systems. Second is the hyper-period
length, which is determined by the task period composition.
Our experiments include 5-40s hyper-periods with 80-900 jobs
where the HSD construction takes 40s-15min on a desktop,
which is acceptable. The real-world task sets in industrial
practice typically contain a few hundred to a few thousand
jobs in a hyper-period [54], [55]. The hyper-period may be
excessively long, e.g., in non-harmonic [56] period composi-
tions, in which case more empirical optimization techniques
need to be explored.

Preemption of DNN Inference. We use the non-preemptive
task model because commodity GPUs lack efficient preemp-
tive scheduling support [25], [57]. Mainstream deep-learning
frameworks [58], [59] usually provide only limited preemption
control via the coarse-grained GPU stream priority. Though
existing works explore software-based methods, e.g., chunk-
wise DNN [60], or hardware enhancement, e.g., lightweight
context-switch [61], [62] to promote GPU preemption, their
approaches are limited (e.g., the preemption granularity of
chunk-wise methods is determined by the execution time of
the DNN chunk) and more hardware supports are required. To
extend FLEX to preemptive cases while still fully exploiting
the massive parallelism capability of the GPU, one of the
future directions is to design continuous batching techniques
[63] so that a running batch may dynamically integrate parts
of new DNN jobs for more fine-grained parallelism.

VIII. CONCLUSION

We presented a novel real-time scheduling framework,
FLEX, for multi-modal multi-view perception systems on
resource-constrained embedded platforms equipped with an
onboard GPU. It effectively combines an elastic multi-modal
fusion strategy with an adaptive batch scheduling algorithm, in
a context-aware scheduling principle, to appropriately allocate
the limited computing resources to the critical spatial views
with more objects. Extensive evaluations are performed with
a large-scale real-world autonomous driving dataset, including
85 driving scenarios, on the Jetson Orin platform, to demon-
strate the effectiveness of FLEX in achieving superior resource
allocation between different views and modalities that lead
to consistently better detection quality and data processing
throughput than the baselines.
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