Published in Transactions on Machine Learning Research (09/2025)

Generalized Orders of Magnitude for
Scalable, Parallel, High-Dynamic-Range Computation

Franz A. Heinsen franz@glassroom.com
GlassRoom Software LLC

*

Leo Kozachkov leokoz8@gmail.com

Thomas J. Watson Research Center, IBM Research

Reviewed on OpenReview: |https: //openreview. net/ forum? 1d=SUuzb0S0Gu

Abstract

Many domains, from deep learning to finance, require compounding real numbers over long
sequences, often leading to catastrophic numerical underflow or overflow. We introduce
generalized orders of magnitude (GOOMs), a principled extension of traditional orders of
magnitude that incorporates floating-point numbers as a special case, and which in practice
enables stable computation over significantly larger dynamic ranges of real numbers than
previously possible. We implement GOOMs, along with an efficient custom parallel prefix
scan, to support native execution on parallel hardware such as GPUs. We demonstrate that
our implementation of GOOMs outperforms traditional approaches with three representative
experiments, all of which were previously considered impractical or impossible, and now
become possible and practical: (1) compounding real matrix products far beyond standard
floating-point limits; (2) estimating spectra of Lyapunov exponents in parallel, orders of
magnitude faster than with previous methods, applying a novel selective-resetting method
to prevent state colinearity; and (3) capturing long-range dependencies in deep recurrent
neural networks with non-diagonal recurrent states, computed in parallel via a prefix scan,
without requiring any form of stabilization. Our results show that our implementation of
GOOMs, combined with efficient parallel scanning, offers a scalable and numerically robust
alternative to conventional floating-point numbers for high-dynamic-range applicationsE]

1 Introduction

Scientists and engineers often work with real numbers spanning large dynamic ranges, which can exceed the
limits of common floating-point formats. A typical example is a chain of real-valued matrix products that
fails with catastrophic numerical error because it compounds element values beyond representable bounds.
Such chains are ubiquitous in science and engineering. For instance, in deep learning, chains of gradients are
multiplied together for backpropagation (LeCun et al., [1988)), and whether or not these chains explode or
vanish determines training success (Hochreiter & Schmidhuber; [1997; |Pascanu et al., 2013; |Mikhaeil et al.|
2022). In control theory, adjoint equations are used to determine optimal control inputs (Bryson, [2018)). In
dynamical systems theory, chains of Jacobian matrix values are iteratively applied to estimate Lyapunov
exponents (Strogatzl, [2018; [Pikovsky & Politi, [2016)). In numerous fields, including economics and finance,
Markov models describe behavior over time with chains of stochastic matrices (Ross, [1995).

Here, we propose generalizing the concept of “order of magnitude” to include the subset of the complex
plane that exponentiates elementwise to the real number line, enabling us to represent any real number—
positive, zero, or negative—as a complex logarithm that exponentiates to it. We call such complex logarithms
“generalized orders of magnitude,” or GOOMs for short. As with ordinary orders of magnitude, GOOMs

*The author is now at Brown University, Providence, RI.
ISource code for replicating our experiments is available at |github.com/glassroom/generalized_orders_of_magnitude.

https://openreview.net/forum?id=SUuzb0SOGu
https://github.com/glassroom/generalized_orders_of_magnitude

Published in Transactions on Machine Learning Research (09/2025)

Length of Longest Chain Before Numerical Catastrophe vs. Matrix Size

106 4 & L 4 2 L 4 2 & 2 2
< 1054
k=)
c
()
-
£ 10*4
©
<
(]
2 1034
(o)}
c
o
)

102 4 &——

10! T T T T T T T T

8 16 32 64 128 256 512 1024
Square Matrix Size d
—&— LMME over GOOMs, Complex64 4~ Conventional MatMul, Floaté4 —§— Conventional MatMul, Float32

Figure 1: Longest chain multiplying random normal square matrices without catastrophic numerical error on an
Nvidia GPU, up to a maximum of 1M steps, with real numbers represented as Float32 and Float64, and with GOOMs
represented as Complex64, applying a function we call log-matrix-multiplication-exp, or “LMME” (subsection .
Each point represents the mean of 30 runs, with vertical error bars indicating the standard error across those runs.
For every run, at each step, we sample matrix elements independently from N (0, 1).

are more stable than the real numbers to which they exponentiate. Formally, we define GOOMs as a set of
mathematical objects, and show that floating-point numbers are a special case of GOOMs. Our work builds
upon prior work on logarithmic number systems, with early roots in digital signal processing (Kingsbury!
& Rayner} [1971; |Alsuhli et al, |2023; [Kouretas & Paliouras| 2018}, |Sanyal et al., 2020)), though the idea of
representing numbers with exponentiation, as in scientific notation, is older. Defining and naming GOOMs
enables us to reason about all possible special cases, including floating-point numbers, in the abstract. From a
practical standpoint, GOOMs are complementary to existing numerical formats, not a replacement for them:
GOOMs provide a mechanism that can leverage existing numerical formats to enable software applications
to operate over a far greater dynamic range of real numbers than previously possible.

We implement GOOMs, as well as common operations over them, including real-valued matrix multiplication,
for a widely used software framework, PyTorch (Paszke et all 2019)), and publish our implementation as
an open-source software library. Our implementation represents real and imaginary components with either
Float32 or Float64 numbers, which, as we mention above, are themselves special cases of GOOMs, in effect
forming an “edifice of GOOMs.” By design, the dynamic range of our implementation far exceeds the
dynamic range of Float32 and Float64, as well as the dynamic range of extended floating-point formats,
such as Posits (Gustafson & Yonemotol 2017, proposed as a replacement for conventional ones (in any
practical configuration that could replace floating-point formats). We also quantify our implementation’s
relative error, running time, and memory use compared to Float32 and Float64. More implementations of
GOOMs are evidently possible (including, say, implementations that represent real components with a Posit
and imaginary ones with a single bit), but we do not explore them here.

We verify that our implementation works as expected with three representative experiments, all of which
were previously considered impractical or impossible, and now become possible and practical: First, we
compute chains of up to 1M random normal square matrices of size ranging from 8x8 to 1024x1024, with
element values that compound to magnitudes far beyond the limits representable with Float32 or Float64,
but which remain representable as GOOMs with Float32 real and imaginary components—a composite
datatype commonly known as “Complex64.” When we compute the chains conventionally over Float32 or
Float64, they fail early with catastrophic numerical error, as expected. When we compute the chains over
Complex64 GOOMs, they complete successfully (Figure .

Second, we formulate, implement, and test a parallel algorithm for estimating the spectrum of Lyapunov
exponents of dynamical systems, via a prefix scan (Blelloch, 1990), leveraging the greater dynamic range of
GOOMs to prevent catastrophic numerical error. We test our parallel algorithm on all dynamical systems

Published in Transactions on Machine Learning Research (09/2025)

from a dataset spanning multiple scientific disciplines, including astrophysics, climatology, and biochemistry
(Gilpin, 2023a3b). On parallel hardware, on all systems, our method computes accurate estimates orders of
magnitude faster than previous methods, which are sequential (Figure . A key component of our algorithm
is a method we devise for conditionally resetting interim states to arbitrary values, as we compute all states in
parallel via a prefix scan. We use our selective-resetting method to detect whenever interim deviation states
are close to collapsing into colinear vectors in the direction of the eigenvector associated with the largest
Lyapunov exponent, and to reset such near-colinear deviation states by replacing them with orthonormal
vectors in the same subspace, as we compute all deviation states in parallel, over GOOMs.

Finally, we formulate, implement, and successfully train and test on several tasks a deep recurrent neural
network (RNN) whose layers capture sequential dependencies with a non-diagonal state-space model (SSM),
computed over GOOMs, executable in parallel via a prefix scan, allowing recurrent state magnitudes to
fluctuate freely over time steps, without any form of stabilization. Parallel prefix scans have become more
common in deep learning with the introduction of linear SSMs (Gu et al. |2021; [2022; |Smith et al., 2023; (Gu
& Dao, 2023} [Yang et al.l 2024; [Feng et al.l |2024; |Grazzi et al| [2024). More recent work has extended the
use of parallel prefix scans to iteratively compute the trajectories of nonlinear state-space models (Lim et al.|
2024} |Gonzalez et al.| 2024)), broadening their potential applicability across more scientific and engineering
domains. Our RNN extends the application of parallel prefix scans to non-diagonal SSMs with recurrent
states whose elements can fluctuate freely over a greater dynamic range of real values than previously possible,
rendering all forms of stabilization unnecessary.

2 Generalized Orders of Magnitude

We define the generalized orders of magnitudes, or GOOMs, as the subset of the complex plane, C' € C,
which exponentiates elementwise to the real number line:

C' = {2’ eC|exp(a’) eR}, (1)

treating all elements of C’ whose exponentiated values are equal to each other as GOOM representations of
the same real number. For example, exp(3 + 27i) = exp(3 + 47i), so we treat 3 + 2mi and 3 + 47 as GOOM
representations of the same real number, exp(3) ~ 20.0855.

Equivalently, we can say that a GOOM’s imaginary component must be either a non-zero integer multiple
of i or an integer multiple of 27, such that the imaginary component’s exponentiation is in {—1,1}, per
Euler’s identity. When the imaginary component is an integer multiple of 27¢, the real number to which
the GOOM exponentiates is positive; otherwise, the imaginary component is a non-zero integer multiple
of mi, and the real number represented by the GOOM is negative. As a convention, we treat zero in the
real number line as non-negative—i.e., we represent it as a positive GOOM. Ordinary orders of magnitude,
including log-probabilities, are in the subset of GOOMs with zero imaginary component.

The concept of a complex order of magnitude, defined as ' = logz for x € R, may initially appear
unconventional; however, it is well-defined since e” =z We stop short of formally inducing an isomorphism
from R to C’, and vice versa, because we want to keep open the option of applying arbitrary complex-valued
transformations that leverage the structure of the complex planeﬂ Our only requirement for a number to
be a GOOM in C’ is that it must exponentiate to a number in the real line.

As with ordinary orders of magnitude, GOOMs are more stable than the real numbers to which they exponen-
tiate. We now provide two examples of how GOOMs can be used to perform two standard operations—real
scalar multiplication and the dot product of two real-valued vectors—in a way that is inherently more
numerically stable than traditional methods.

2Consider, for example, a deep learning model that processes data in C and includes a final layer that applies a transformation
from C to C’, thereby allowing the data to be scaled and projected to R. Not coincidentally, our implementation of GOOMs
makes instantiating and training such a model straightforward, because it ensures that backpropagation works seamlessly over
C, over C’, and across mappings between C’ and R, by extending PyTorch’s infrastructure for complex data types.

Published in Transactions on Machine Learning Research (09/2025)

Example 1 (Scalar Multiplication in R Becomes Addition in C') Suppose we are given d real num-
bers x1,xa,...,2xq, and we wish to compute their product:

d
y:$1~$2'-~$d:H$j.
j=1

We can express this product as a sum in C’', since, denoting a:; =logz; for j=1,2,....d,

d
exp (y') = H exp (1’;) = y = Z :17;
j=1

Jj=1

Example 2 (Dot Product in R Becomes log-sum-exp in C') Suppose we are given two d-dimensional
vectors a and b with elements in R. We wish to compute their dot product:

d
_ Ty b
c=a b—E a;b;.
Jj=1

We can express this dot product as a log-sum-exp (LSE) operation in C'. Denoting z' as the element-wise
sum of o' =log(a) and b’ =log(b),
zi = aj + b,

we find that ¢’ =log(c) = LSE (z'). This is because

d d d
exp(z’) = Z exp(a}) exp(b}) = Z exp(zj) = ¢ =logc=log Z exp(z}) = LSE(2').
j=1 j=1

Jj=1

Note that even if the individual elements of a and b are very large, the GOOM representation in C' remains
numerically stable. For example, suppose a; = b; = exp(1000). Naively computing the dot product in R fails
due to floating-point overflow. However, computing the LSE in C' works easily, since z; = 2000, which is
well within the capabilities of the numerically stabilized implementation of this operation, e.g., in PyTorch.

2.1 Floating-Point Numbers are a Special Case of GOOMs

Given a GOOM z’ = a + bi, representing a real number x, we know from equation [1| that = e = eathi =

e? x e’ € R. Calling e the “base,” a the “exponent,” and e, which is in {—1,1}, the “sign,” we have:

exponent

+ .
e?x e reR. (2)
T 0
a

base sign

xr =

If equation [2] seems familiar, it is because floating-point representations of real numbers, which have a base,
an exponent, and a sign, are in C’. Their base is 2 instead of e, their exponent is encoded in two sequences
of bits (one representing a significand or mantissa, the other representing an integer exponent) instead of as
the real component of a complex number, and their sign is encoded as a bit instead of as an exponentiated
imaginary component, but otherwise they represent real numbers in the same domain. Given a floating-point
number x with a signed significand s, represented by a fixed number of bits, and integer exponent n, also
represented by a fixed number of bits, we have:

r=sx2"
= abs(s) x 2" x sign(s)
= 2logz(abs(s)) y on sign(s)

_ 210g2(abs(s))+n X SigH(S), x € R.

Published in Transactions on Machine Learning Research (09/2025)

In other words, floating-point numbers are a special case of GOOM5E| Unlike floating-point numbers, which
are defined in terms of a fixed number of bits, GOOMs are defined more generally in terms of real and
imaginary components, independently how those components might be represented in a computer. Also
unlike floating-point numbers, GOOMs explicitly leave open the possibility of applying arbitrary transfor-
mations that leverage the structure of the complex plane. In practice, GOOMs are complementary to existing
floating-point formats, providing a mechanism that enables software applications to operate over a greater
dynamic range of real numbers than previously possible, without requiring the introduction of and support
for new floating-point formats, e.g., in hardware devices like Nvidia GPUs.

3 Implementation

We implement GOOMs for PyTorch, a widely used software framework for parallel computation, as Com-
plex64 and Complex128 composite data types, which represent their real and imaginary components as
Float32 and Float64 numbers, respectively. That is, we leverage existing floating-point formats, which are
special cases of GOOMs , to represent the real and imaginary components of other GOOMs, for rep-
resenting real numbers over a greater dynamic range than is possible with existing floating-point formats.
In practice, implementing this “edifice of GOOMs” is more straightforward than our description suggests,
thanks to the availability of and support for complex data types in PyTorch.

The dynamic range of our implementation is, as expected, far greater than that of Float32 and Float64
(Table , the two numerical formats with highest dynamic range supported by Nvidia GPUs. It is also far
greater than that of extended floating-point formats such as Posits in any practical configuration that could
replace Float32 or Float64E| We also note that our implementation can be readily extended to represent real
and imaginary components with Posits or other numerical formats that make different tradeoffs compared
to Float32 and Float64, provided such formats are supported by hardware. Other implementations are
evidently possible (including, for example, those that represent real components with a Posit and imaginary
ones with a single additional bit) but we do not explore them here. It bears repeating that in practice
GOOMs are complementary to existing numerical formats.

Representation Bits | Smallest Normal Magnitude | Largest Normal Magnitude
Float32 32 10738 ~ exp (—101'9395) 1038 ~ exp (101'9395)
Float64 64 107398 ~ exp (—102:8596) 10308 ~~ exp (1028596
Complex64 GOOM 64 exp (—10%%) exp (10%)
Complex128 GOOM | 128 exp (—10%%) exp (10%%)

Table 1: Dynamic range for Complex64 and Complex128 GOOMs versus Float32 and Float64.

By design, Complex64 and Complex128 GOOMSs benefit from the greater precision at smaller magnitudes
of Float32 and Float64, respectively, for representing larger magnitudes. Float32 and Float64 represent
magnitudes between 0 and 1 with negative exponents, consuming approximately half of all possible exponents
in the floating-point format, and magnitudes above 1 with positive exponents, consuming the remaining
exponents, such that precision decays as magnitude increases. Complex64 and Complex128 GOOMs thus
have greater precision at smaller magnitudes (in fact, the magnitudes become too small to be mapped via
exponentiation to Float32 and Float64, respectively), and precision decays below that of the underlying
floating-point format as magnitude increases toward the format’s maximum representable magnitude, and
beyond (Figure . We compare the relative error, running time, and memory use of Complex64 and
Complex128 GOOMs versus Float32 and Float64 in Appendix

3Extended floating-point numbers, including Posits (Gustafson & Yonemotol, [2017)), are a special case too.

4For example, the 64-bit configuration of Posits proposed as a drop-in replacement for Float64 by |Gustafson & Yonemoto!
(2017) (Table 3) covers magnitudes from roughly 107299 ~ exp(—102-8376) to 10299 ~ exp(10%:8376), far less than our imple-
mentation of Complex64 GOOMs, which cover from roughly exp(—1038) to exp(1038), excluding subnormal real components.

Published in Transactions on Machine Learning Research (09/2025)

}

v

(« o «

Pl | {(1 ¥ (RN
AL)) | |) |) L4
—c 01 log c c

Figure 2: At the top, we show the range of magnitudes with positive sign representable by Float32 or Float64, up
to a maximum ¢, and their approximate share of n, the number of possible bit sequences. For Float32, n = 232; for
Float64, n = 254, At the bottom, we show the same magnitudes, mapped to a complex GOOM’s real component,
represented by the same floating-point format. The shares of n are approximate to account for bitwise differences
between Float32 and Float64. For magnitudes with negative sign, the diagram is identical.

Along with functions for mapping existing floating-point numbers to complex-typed GOOMSs, and vice
versa, we also implement a variety of real-valued functions commonly applied in scientific and engineering
applications, including matrix multiplication, over complex-typed GOOMs. As expected, such functions
are more stable over C'. For example, scalar product over R becomes scalar addition over C' (Example
. A sum over R becomes a log-sum of exponentials over C’, i.e., it remains a sum, but with elementwise
nonlinear transformations before and after the sum (Example [2). A sum of products over R, as in a matrix
product or tensor contraction, becomes a log-sum-exp of scalar additions over C’, i.e., a sum of sums, with
elementwise nonlinear transformations before and after the first sum. A composition of linear transformations
and elementwise activation functions, as in a deep neural network, becomes a sum of sums of sums, with
elementwise nonlinear transformations interspersed between sums.

All implemented functions are parallelized, broadcastable over an arbitrary numbers of preceding indices,
and compatible with backpropagation of gradients over C, over C’, and over mappings between C’ and R,
taking special care to handle the singularity at zero gracefully, for use in a broad range of applications,
including deep learning.

3.1 Mapping Between Floating-Point Numbers and GOOMs

Floating-Point Numbers to Complex-Typed GOOMSs Given a floating-point number x, we map it
to a complex-typed GOOM z’ as follows:

2’ +— log(x)

loga) = fog (1 (0)) + {0,. >0 "

mi, x <0,
real real
where abs(-) and log(-) denote custom implementations of real absolute value and elementwise logarithm,
respectively, necessary to accommodate a broad range of applications.

real
Our implementation of abs(-) redefines its elementwise finite derivative, with respect to its input, to always
be non-zero, treating input values equal to zero as non-negative by convention,

Published in Transactions on Machine Learning Research (09/2025)

1, x>0

// redefined finite derivative (5)
-1, =<0,

real

dabs(z)
dx N
ensuring that gradients are zero in backpropagation only when the backpropagated error is zero. Otherwise,
our implementation of real absolute value behaves like PyTorch’s default implementation.

Our implementation of lrgz() is configurable, such that for real input elements equal or numerically close
to zero, we can specify whether the function will (a) return a sentinel value representing negative infinity,
maximizing precision up to the limits of the chosen data type; or (b) return a finite floor value that numerically
exponentiates to zero, for applications that require values always to be ﬁnitcﬂ

real
We redefine the elementwise finite derivative of log(-), with respect to its input, to add a data-type-specific
small number € to its denominator,

real
dlog(x) 1
= redefined finite derivative 6
T e // redefined finite derivat (6)

ensuring that gradients are always finite for backpropagation, including at the singularity for the logarithm
of zero. Otherwise, our implementation of real logarithm behaves like PyTorch’s default implementation
(e.g., it is undefined for negative real input values).

Complex-Typed GOOMs to Floating-Point Numbers Given a complex-typed GOOM z’, we map
it to a floating-point number x as follows:

x «— exp(z’)

exp(z’) =R (C()errﬁé’gx(x’)) ’ (7)

complex

where exp (-) denotes a custom implementation of complex elementwise exponentiation, and $(-) denotes
real component. We discard the imaginary component, which may not always be zero due to accumulation
of numerical errors. Recall that GOOMs exponentiate to R, by definition.

complex

We redefine the elementwise finite derivative of exp (-), with respect to its input, to always be non-zero
for backpropagation, by adding to or subtracting a data-type-specific small number € that shifts the finite
derivative’s real component away from zero:

complex complex
d°exXp(2) = () + e, R(Texp()) >0

; omplex // redefined finite derivative (8)
dx —e, R(“exp(2")) <0,

ensuring that gradients are zero in backpropagation only when the backpropagated error is zero. Otherwise,
our implementation of complex exponentiation behaves like PyTorch’s built-in implementation, relying on
PyTorch’s default behavior for backpropagating gradients over complex data types.

3.2 Real-Valued Matrix Multiplication over Complex-Typed GOOMs

Given two matrices, A’ € C'"*? and B’ € C'¥*™ the equivalent of their matrix product over R is expressible
as a log-sum-exp of elementwise additions:

5In our initial implementation, we specify log(SNN?) as the finite floor value, where SNN is the smallest normal number
representable by the chosen floating-point format. For example, for Complex64 GOOMSs, which have Float32 components, the
smallest normal number representable by Float32 is approximately 1.18 x 10738, so the finite floor, 2 x log(1.18 x 10738)7 is
approximately —174.7, which numerically exponentiates to zero at Float32 precision.

Published in Transactions on Machine Learning Research (09/2025)

LMME (4, B') := log (exp(A') exp(B'))
—_——
MatMul over R

= log Z exp(A;j) ® exp(B;k,)
J

eR‘nXdX’nL
—LSE (4}, © B),
J ——

€ C/nxdxm

where LMME is shorthand for “log-matrix-multiplication-exp,” LSE denotes log-sum-exp, and ® and &
denote elementwise product and addition, respectively, of each row of the first matrix with each column of
the second one (i.e., ® and @ denote outer product and addition, respectively, over index j). The final
expression in equation [J is easily parallelizable, because each row-column pair can be elementwise summed-
then-log-sum-exponentiated independently of all other pairs.

An optimal parallel implementation of LMME requires an efficient parallel implementation of log-sum-exp
of pairwise elementwise sums. A straightforward approach to implement it would be to compute all pairwise
elementwise sums in parallel, broadcasting over all other dimensions, then apply log-sum-exp, but doing so
would be impractical, because it would require O(ndm) space. Another obvious approach would be to apply
log-sum-exp to the elementwise addition of each pair of vectors independently of the other pairs (e.g., with
a vector-mapping, or “vmap,” operator), but doing so would run into memory-bandwidth constraints on
hardware accelerators like Nvidia GPUs, which are better suited for parallelizing computational kernels that
execute and aggregate results over tiled sub-tensors. Unfortunately, PyTorch and its ecosystem, including
intermediate compilers like Triton (Tillet et al., 2019), currently provide no support for developing highly
optimized complex-typed kernels.

As a compromise, we implement LMME(A’, B’) so it delegates the bulk of parallel computation to PyTorch’s
existing, highly optimized, low-level implementation of the dot-product over R, as follows:

Compromise

LMME (A, B') := log (exp (Aj; — a;) exp (Bj;, — by)) + a; + by, (10)

J

Scaled MatMul over R

where a; € R™ and b, € R™ are vectors with log-scaling constants, necessary because the interim exponen-
tiation to R may return values outside the bounds representable as floating-point numbers:

J

b — Sk (max (R (B)). 0) ,

J

a4 = T (max (R (4%)) 0) (11)

with ﬁll(?ar?(() denoting elementwise maximum, and R(-) denoting elementwise real components. The expression
in equation [I0] follows from the fact that we can scale each row of the left matrix and each column of the
right matrix, before multiplying the two matrices, and subsequently undo the scaling for every element of
the resulting product:

exp (A;) exp (Bfk)
exp (A4;) e L) = d Sk Oe ;) @ exp(b 12
; xp (A7) exp (Bj) Z (o)) \ e xp(a;) © exp(by). (12)
where division is applied elementwise, implicitly broadcasting over missing indices, and ® denotes elementwise
(Hadamard) product, also implicitly broadcasting over missing indices. We compute a; and by without
impacting gradients in backpropagation (i.e., detached from the computation graph).

Published in Transactions on Machine Learning Research (09/2025)

We recognize that our initial implementation of LMME is a sub-optimal compromise, both in terms of
precision (we execute scaled dot-products over a floating-point format, instead of elementwise sums over
complex-typed GOOMs) and performance (we must compute not only a scaled matrix product, but also per-
row and per-column maximums on the left and right matrices, respectively, two elementwise subtractions,
and two elementwise sums). In practice, we find that our initial implementation of LMME works well
in diverse experiments (section , incurring execution times that are approximately twice as long as the
underlying real-valued matrix product on highly parallel hardware—a reasonable initial tradeoff, in our view,
for applications that must be able to handle a greater dynamic range of real magnitudes. See Appendix
for a comparison of our implementation of LMME to PyTorch’s matrix product over Float32 and Float64.

3.3 Other Real-Valued Functions over Complex-Typed GOOMs

In principle, we can naively formulate the equivalent over C’ of any real-valued function f as a function
composition f’ that elementwise exponentiates the complex input, applies f to the exponentiated input, and
then takes the elementwise logarithm of f’s output:

fl=logofoexp. (13)

In practice, we can never implement the naive formulation, because the interim exponentiation to R may
return values that fall outside the bounds representable by existing floating-point formats. Instead, we must
either (a) implement f’ such that it avoids interim exponentiation to R altogether, always remaining in C’,
or (b) scale elements in the log-domain, before exponentiation to R, and undo the scaling after taking the
elementwise logarithm, using techniques analogous to the “log-sum-exp trick,” but specific to each function
f. We use both approaches, (a) and (b), to implement over C’ a variety of real-valued functions commonly
used in science and engineering.

Please see our published source code for the full list of implemented functions.

4 Representative Experiments

We verify that our implementation works as expected with three representative experiments: (a) long chains
of real-valued matrix products that compound element magnitudes far beyond the limits of Float32 and
Float64 numbers; (b) a parallel algorithm for estimating the full spectra and largest of Lyapunov exponents
of dynamical systems, via a prefix scan, orders of magnitude faster than previous methods, leveraging
complex-typed GOOMs to avoid catastrophic numerical error; and (c) a deep RNN whose layers capture
sequential dependencies with a non-diagonal linear SSM over complex-typed GOOMs, executable in parallel
via a prefix scan, allowing recurrent state magnitudes to fluctuate freely over a greater dynamic range of
real numbers than previously possible, making all forms of stabililization unnecessary.

4.1 Stability and Dynamic Range of Complex GOOM Matrix Products vs. Conventional Methods

We compare the stability and dynamic range of our implementation of LMME against those of conventional
matrix multiplication over R with floating-point numbers, on long chains of matrix products that compound
element magnitudes toward infinity. For d in {8,16,32,...,1024}, for t in {1,2,3,...,10%}, we multiply a
chain of random square matrices A; € R?¢ each element of which is independently sampled from a normal
distribution A/(0,1). At each step ¢, the state of a chain is

Sy = AiSi1, Ar ~N(0,1)4x4, (14)

with Sy ~ NV(0,1)4*? as the initial value. We repeatedly update the chain’s state until all steps are completed,
or until the computation fails with catastrophic numerical error—whichever occurs first. For each value of
d, we attempt to complete the chain 30 times on a recent Nvidia GPU.

Published in Transactions on Machine Learning Research (09/2025)

When we attempt to compute all chains with conventional matrix multiplication over R with Float32 and
Float64 numbers, we find that all chains fail early with catastrophic numerical error.

When we attempt to compute the chains over C’ with our implementation of LMME, representing GOOMs
as Complex64 numbers, we find that all chains successfully complete all steps (Figure [1)).

At each step t, the log-state of a chain over C’ is,

S; =LMME (4,,5,_,), A} ~logN(0,1)**4, (15)

with S} ~ log N(0,1)4%¢ as the initial value. As before, we repeatedly update the chain’s state until all steps
are completed, or until the computation fails with catastrophic numerical error—whichever occurs first. For
each value of d, we attempt to complete the chain 30 times on a recent Nvidia GPU.

We repeat all tests on a recent multi-core CPU, and obtain essentially the same results. We do not show
plots for the CPU tests because they are indistinguishable from those executed on the GPU. Further analysis
reveals that all chain states are representable in their entirety as complex-typed GOOMs, but not as the
floating-point numbers to which they would exponentiate, were it possible.

4.2 Parallel Estimation of Lyapunov Exponents over Complex-Typed GOOMs

A fundamental concept in the theory of dynamical systems is the Lyapunov exponent (Strogatz, 2018;
Pikovsky & Politi, [2016; [Bradley & Kantz, [2015} |Gilpin, [2024). Loosely speaking, Lyapunov exponents (LEs)
quantify how nearby trajectories in the state space of a nonlinear dynamical system diverge (or converge)
over time. In general, Lyapunov exponents (LEs) must be computed numerically along specific trajectories
of the system under consideration. If the system is stable—for instance, if it is contractive (Lohmiller &
Slotine, 1998 [Srinivasan & Slotine, |2023)—it may be possible to conclude a priori that the LEs are negative.
However, assigning precise numerical values to the LEs cannot in general be done analytically. Instead, LEs
must be computed by repeatedly multiplying Jacobian matrices of the dynamics. However, this approach
can be numerically unstable if the underlying dynamics themselves are unstable. Methods that address this
instability, such as iterative QR decomposition (Pikovsky & Politi, [2016), are not parallelizable in time. To
understand why, it helps to recall the standard algorithm for computing the largest Lyapunov exponent (cf.
(Pikovsky & Politi, 2016, Section 3.1)). The method propagates a vector through a sequence of matrices,
normalizing this vector at each step to keep it on the unit sphere. This normalization prevents numerical
overflow or underflow. However, because the normalization depends on the current state (specifically, its
magnitude), the procedure cannot be implemented using a parallel scan (Blellochl [1990]).

In particular, consider the nonlinear dynamical system
vy = fi(wi1) € RY, (16)

where f; denotes a given sequence of nonlinear functions. A simple example of equation is a recurrent
neural network z; = tanh(Wx,_1 + b + u;), where W is a weight matrix, b is a bias, and wu; is an input at
time t. If we wish to understand how small spatial perturbations to solutions of equation [16| influence the
future behavior of the system, we may analyze the associated variational equation

Aft

5It = Jt 5CCt_1, where Jt = .
O0xi_1

(17)

By unrolling the variational equation equation [17]in time, we see that the dynamics of a spatial perturbation
to the solution of the nonlinear dynamics equation [16[at time ¢t = 0 is entirely determined by the product of
Jacobian matrices up to time ¢:

t
51,5 = JtJt—l J1($$0 = <H<Jk)5x0 Ht5$0,
k=1

where H; is defined as the cumulative product of Jacobian matrices up to time ¢. Using H;, the LEs are
defined as the long-time average exponential growth (or decay) rates of these infinitesimal perturbations.

10

Published in Transactions on Machine Learning Research (09/2025)

Formally, the Lyapunov exponents \; are given by
1
A = tlirrolo n logo; | Hy |, (18)

where o;(-) denotes the i-th singular value of the product of Jacobians and log denotes natural logarithm. In
other words, they quantify the average exponential rates at which volumes spanned by perturbation vectors
expand or contract under the system’s dynamics.

103

Sequential Estimation Time
as Multiple of Parallel Time
=
o

—8— Mean, All Systems
Std Dev, All Systems

10t 10?2 10° 104 10°
Number of Steps

Figure 8: Time to estimate the spectrum of Lyapunov exponents sequentially, as a multiple of time to estimate it
in parallel, as we increase the number of steps, for all dynamical systems in a dataset spanning multiple scientific
disciplines (Gilpin) [2023akb)), in a single Nvidia GPU. The improvement starts tapering off at 10° steps because the
GPU’s compute capacity is saturated by parallel QR decompositions at all steps. Appendix@shows plots by system.

4.2.1 Full Spectra of Lyapunov Exponents in Parallel

A1
A2
The standard approach for estimating the full spectra of Lyapunov exponents, A = | . |, is:
Ad
To Ly - |
= Kz 2108 s g (R), (19)

where

Qt; Ry = QR(St) // QR-decomposition

(20)
St = JtQtfla

given initial deviation states with unit norms Sy € R%*? That is, at each step ¢ we obtain a triangular

matrix R; by a QR-decomposition of S, obtained by applying J; to the preceding orthonormal basis Q;_1

obtained by a previous QR-decomposition. The elementwise logarithms of R;’s eigenvalues, in its diagonal,

are unscaled estimates of A at step ¢; their scaled mean is the estimate of A.

Parallel estimation of A requires not only that we handle magnitudes that may not be representable as
floating-point numbers, which we already know we can do with complex-typed GOOMs, but also that we
execute a QR-decomposition before and after the application of each Jacobian matrix J;, to obtain its
input state’s orthonormal basis ;1 and its output state’s triangular factor Ry, respectively. Alas, if we

11

Published in Transactions on Machine Learning Research (09/2025)

naively attempt to compute all deviation state matrices in parallel, via a prefix scan, with the intention
of subsequently executing all QR decompositions in parallel, we are not able to do so, because states tend
to collapse—i.e., become colinear—in the direction of the eigenvector associated with the largest Lyapunov
exponent. We must find a way to prevent vectors from collapsing into colinear states.

Our solution is an algorithm that can compute all deviation state matrices in parallel, by applying a method
we devise for conditionally resetting interim states to arbitrary values in any linear recurrence, as we compute
it in parallel via a prefix scan. Our conditional-resetting method, which we describe separately in section
enables us to detect whenever any interim deviation states are close to collapsing into colinear vectors, and
to reset such near-colinear states by replacing them with orthonormal vectors in the same subspace, at any
time step, as we compute all deviation states in parallel, via a prefix scan, over complex-typed GOOMs. We
describe our parallel algorithm below.

Parallel Algorithm We execute the following groups of parallelized computations sequentially:

(a) Compute input states, Sp, S1, So, ..., ST—1, by cumulatively applying all Jacobian matrices except
the last one, J1, Ja, ..., Jr_1, to the given initial state Sy, in parallel, via a prefix scan, over complex-
typed GOOM:s (to be able to handle all magnitudes), applying our selective-resetting method (section
to reset any interim states in the chain that are close to becoming colinear, replacing them with an
orthonormal basis obtained via QR-decomposition, which we apply in parallel only to those interim
states, if any, selected for resetting. We define “close to becoming colinear” as the cosine similarity of
any pair of state vectors exceeding a specified threshold. Before applying QR-~decomposition to any
near-colinear interim states, we first log-scale them to log-unit norms, over complex-typed GOOMs,
and then exponentiate them to values representable as floating-point numbers.

(b) Compute orthonormal input bases Qo, @1, Q2, --., Qr—1, by applying QR~decomposition to every
Si. Before applying each such QR-decomposition, we first log-scale its input vectors to log-unit
norms, over complex-typed GOOMSs, and then exponentiate them to values representable as floating-
point numbers. We execute every QR-decomposition independently of the others, in parallel.

(c) Compute output states, S7, S5, ..., S5, by applying each Jacobian matrix J; to its preceding input
basis Q;_1. We apply each Jacobian matrix to its input basis independently of the others, in parallel.

(d) Compute the estimated A by applying QR-decomposition to every output state Sf, extracting the
diagonal elements (eigenvalues) of each triangular matrix Ry, taking the elementwise logarithm of
their absolute values, and computing their mean over all states. We apply QR-decomposition and
extract and transform diagonal elements for each state independently of the others, in parallel.

With T-way parallelism, fixing d, our algorithm’s time complexity is O(logT'), because the parallel prefix
scan in group (a) above has O(log T') time complexity, and every subsequent group of computations has O(1)
time complexity, except for the final mean computed in group (d), which has O(logT') time complexity. We
test our parallel algorithm on all dynamical systems from a dataset spanning multiple disciplines, including
astrophysics, climatology, and biochemistry (Gilpinl [2023ajb), on a recent Nvidia GPU. We find that our
parallel algorithm computes accurate estimates, orders of magnitude faster than sequential estimation with
previous methods (Figure [3).

4.2.2 Largest Lyapunov Exponent in Parallel

Estimating only the largest Lyapunov exponent (LLE) in parallel is straightforward over complex-typed
GOODMs, thanks to their ability to handle a greater dynamic range of magnitudes. The standard approach
for estimating the LLE relies on measuring changes in norm of an initial deviation vector uy € R% with unit
norm:

T

1 HStH)
LLE:= — S lo , 21
AT 2 2 (g 1)

12

Published in Transactions on Machine Learning Research (09/2025)

where At is the discrete time interval, and

s¢ = Jrur—1
St (22)

sl

Ut

Normalization of each preceding deviation state is necessary to keep element magnitudes from compounding
above or below the bounds representable by existing floating-point formats. Without normalization of
preceding steps, equation 2I] becomes:

T

ost 1 ¢l
LLE = — g It = Jisi— = ug. 23
AtT p 0og (St-l”) St tSt—1, S0 U ()

In Appendix [B] we show that equation 23] simplifies to:

est
LLE := ﬁ LSE(2PSCAN(LMME)(J%, ..., Jy, Ji, uf)) (24)

where PSCAN(LMME)(-) denotes a parallel prefix scan applying LMME over time steps, and

For each z € {ug, J1, Jo, ..., Jr}, 2 +— log(z).

We test our method for parallel LLE estimation on all dynamical systems from a dataset spanning multiple
disciplines, including astrophysics, climatology, and biochemistry (Gilpin, 2023a3bl), on a recent Nvidia GPU.
We find that our parallel method computes accurate estimates, and as expected, its execution is orders of
magnitude faster than sequential estimation with previous methods.

4.3 Parallelizable Non-diagonal State-Space RNN over Complex-Typed GOOMs

Deep learning models apply a variety of normalization methods (RMSNorm, LayerNorm, BatchNorm, Group-
Norm, etc.), residual mechanisms (LSTM cells, GRU cells, residual layers, skip connections, etc.), gated linear
activation functions (ReLU, SiLU, GeLU, GLU, SwiGLU, etc.), and various other techniques to keep the
magnitudes of feedforward elements and backpropagated gradients from becoming too small or too large,
for preventing catastrophic numerical errors. Deep RNN models tend to be most susceptible to such numer-
ical issues, because their layers capture sequential dependencies by repeatedly applying the same recurrent
transformation at each time step, compounding the transformation.

We formulate and implement a deep RNN whose layers capture sequential dependencies with non-diagonal
recurrences over complex-typed GOOMs, allowing recurrent state magnitudes to fluctuate freely over a
greater dynamic range of real numbers than previously possible, enabling computation in parallel via a
prefix scan without requiring any form of stabilization. Otherwise, the RNN operates conventionally over
floating-point numbers. The RNN consists of a standard embedding layer that maps token values (e.g.,
integers representing symbols in a vocabulary) to feature vectors representing token states; multiple residual
recurrent layers that capture sequential dependencies over complex-typed GOOMs, and a conventional model
head that is task-specific (e.g., a linear transformation for classification tasks).

Each residual recurrent layer captures sequential dependencies on multiple heads per token, by applying:
first, LayerNorm and a linear transformation with bias to obtain each token’s heads; second, a parallel prefix
scan of a non-diagonal linear recurrence, capturing per-head sequential dependencies with a standard state-
space model, (over complex-typed GOOMSs, as we will detail shortly); and finally, gated linear units (GLU)
on every head, followed by a linear transformation of the flattened heads, to obtain a residual, added to the
token’s input state.

Per head, we capture sequential dependencies with a standard linear state-space model:

13

Published in Transactions on Machine Learning Research (09/2025)

Ty = Axt,l + But

(25)
yr = Cxy + Duy,
where u; € R, 2, € R?, and vy, € R, with h = 2d for application of GLU, and A, B, C, and D are matrix
parameters—but we compute the recurrence over complez-typed GOOMs. That is, we first map the initial
state xg, all input head states u;, and all matrix parameters to complex-typed GOOMs,

For each z € {xg, us, A, B, C, D}, 2’ +— log(2),

then compute the recurrent relationship in equation over complex-typed GOOMs, for every head, in
parallel, via a prefix scan that obtains all states x} without applying any form of stabilization,

), = LSE (LMME(A', #}_,), LMME(B', u})), (26)

then map z; back to a floating-point format, for executing the remaining computations in the layer. We
cannot exponentiate the elements of x} outright, because their magnitudes might not be representable by a
floating-point format, so we first log-scale z}, then exponentiate its elements, as follows:

¢ +— max (R(z})) @)
scaled @y «— exp (z} — ¢ +2),

computing the log-scaling real constant ¢ without altering gradients in backpropagation (i.e., detached from
the computation graph). The elements of every scaled z, fall between — exp(2) and exp(2).

We train and test instances of our RNN on several tasks, including (but not limited to) generative language
modeling on The Pile (Gao et al., [2020)), classification and generation of pixel sequences from MNIST (LeCun
et al.| [2010)), and a Copy Memory task. Perhaps the most remarkable finding about the training dynamics is
how unremarkable they are, even though we are computing non-diagonal recurrences in parallel without any
form of stabilization. We are even able to compile and autocast to Float16 all components of the RNN that
execute operations over floating-point formats, executing in PyTorch’s eager mode only the non-diagonal
recurrences in parallel, via the prefix scan over complex-typed GOOMs. Figure [4] shows examples of training
runs for two tasks. Please see our published source code to replicate training runs on all tasks.

5 Selective-Resetting Method for Parallel Scans of Linear Recurrences

As part of our work to formulate an algorithm for parallel estimation of Lyapunov exponents (subsection
, we devise a method for conditionally resetting interim states to arbitrary values in a linear recurrence,
as we compute all of its states in parallel, via a prefix scan. For ease of exposition, we describe our method
with a non-diagonal, time-variant, linear recurrence over R, understanding that the method generalizes to
any linear recurrence—diagonal or not, time-variant or not—over R or other fields.

Given:

« an initial state X, in R%*9,
« a sequence of transition matrices A1, As, ..., Ay, each in R¥*?,
o a “selection” function S : R¥*9 — {0,1}, and

e a “reset” function R : R4*94 s RI*4,

we wish to compute a linear recurrence X; = A;X;_1, for t in {1,2,...,n}, via a parallel prefix scan, but
modifying the recurrence, such that, for any interim compound state A* computed during the parallel scan,

14

Published in Transactions on Machine Learning Research (09/2025)

Natural Language Generation,
Sequences of 1024 Tokens, The Pile

Classification from Last Pixel Value,
Sequences of 784 Pixel Values, MNIST

2.5
10 4
2.0 1
@ @
S g S
> > 1.51
Q Q
° o
5 5
{=4 {=4
w w
2 07 5 1.0
2 a
o o
(9] (9]
0.5 1
41
" . -
0.0 —
108 107 108 10° 1010 0 2 4 6 8 10

Number of Tokens Epoch

Figure 4: Examples of training dynamics for the RNN we implement, capturing sequential dependencies with non-
diagonal recurrences, computed in parallel via a prefix scan, without any form of stabilization. Left: Natural language
generation on The Pile , with a 124M-parameter RNN incorporating a 50257 token-id vocabulary
and 24 layers; we stopped training at 10B tokens. Right: Classification, from last pixel value, of sequences of 784
pixels from MNIST (LeCun et all [2010), with a 12.8M-parameter RNN incorporating a 256 token-id vocabulary and
8 layers. See our source code for replicating all training runs, including for both tasks shown here.

it S(A*) = 1, we reset A* by replacing it with R(A*), making R(A*) the new initial state for subsequent
states, until we reach either (a) the final state of the recurrence, or (b) a subsequent state that has previously
been selectively reset—whichever occurs first.

We accomplish our objective in two steps. First, we add a bias matrix at each step: X; = A; X;_1 + By, with
every bias matrix initialized to all-zeros: B; +— {0}%*¢ for ¢ in {1,2,...,n}, such that, at initialization,
the new recurrence matches the original unmodified one.

Second, we execute a parallel prefix scan over the new recurrence, but instead of applying an ordinary
linear recurrence with bias, we apply the following binary associative transformation to every pair of tuples

containing preceding interim states, (A;rev7 B;rev), and subsequent ones to be updated, (A, Biu:):

// first, selective resetting:

If S(A%.,) =1 and B:

prev prev
* *
Bprev ¢ R (Aprcv)

A* - {O}dxd

prev

_ {O}dxd .

(28)

// then, ordinary recurrence:

* * *
Acurr AcurrApreV

* * * *
Bcurr Acurr Bprev + Bcurr

We obtain a modified sequence of states that may or may not match the original sequence, because one or
more of its states may have been reset during the scan. The selective-resetting transformation equation [2§|
is associative, because it can reset each state only once, and the zeroed-out transition matrix of any reset
state eventually zeroes-out all subsequent transition matrices via cumulative multiplication.

Our selective-resetting method incorporates multiple moving parts, and it may take some effort to grasp fully
how all of them interact upon a first read. For the convenience of readers seeking an intuitive understanding
of the method, Appendix [C] explains it more informally with step-by-step examples.

15

Published in Transactions on Machine Learning Research (09/2025)

6 Discussion

By encoding real numbers as complex logarithms, GOOMs enable stable, scalable and parallel computation
across dynamic ranges far beyond what Float32 or Float64 support, without requiring changes to hardware
or floating-point standards.

Our experiments support GOOMs’ robustness and versatility. In long matrix product chains, complex-typed
GOOMs avoid overflow and underflow where conventional approaches fail early. In Lyapunov exponent
estimation, the combination of complex-typed GOOMs with a parallel prefix scan and a novel selective-
resetting method enables accurate, time-parallel analysis of chaotic systems, orders of magnitude faster than
with previous methods. In deep learning, RNNs handle freely fluctuating non-diagonal recurrent states over
complex-typed GOOMs without compounding beyond representable limits or degrading gradients, rendering
all forms of stabilization unnecessary.

We show that GOOMSs can be implemented straightforwardly in native PyTorch, supporting autograd and
GPU execution through standard complex types. We note that although the current implementation of
operations like log-matrix-multiplication-exp (Section introduces some overhead, future work on custom
kernels could close this gap.

To summarize, GOOMs in practice offer a robust, software-level solution to numerical instability in high-
dynamic-range computations. Their blend of flexibility, precision, scalability, and parallelizability makes
them a powerful tool for scientific computing in general, and deep learning in particular.

References

Ghada Alsuhli, Vasileios Sakellariou, Hani Saleh, Mahmoud Al-Qutayri, Baker Mohammad, and Thanos
Stouraitis. Number systems for deep neural network architectures: A survey. arXiv preprint
arXiv:2307.05035, 2023.

Guy E. Blelloch. Prefix sums and their applications. Technical Report CMU-CS-90-190, School of Computer
Science, Carnegie Mellon University, November 1990.

Elizabeth Bradley and Holger Kantz. Nonlinear time-series analysis revisited. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 25(9), 2015.

Arthur Earl Bryson. Applied optimal control: optimization, estimation and control. Routledge, 2018.

Leo Feng, Frederick Tung, Mohamed Osama Ahmed, Yoshua Bengio, and Hossein Hajimirsadeghi. Were
rnns all we needed? arXiv preprint arXiv:2410.01201, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace
He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile: An 800gb dataset of diverse
text for language modeling, 2020.

William Gilpin. Chaos as an interpretable benchmark for forecasting and data-driven modelling, 2023a.
William Gilpin. Model scale versus domain knowledge in statistical forecasting of chaotic systems, 2023b.
William Gilpin. Generative learning for nonlinear dynamics. Nature Reviews Physics, 6(3):194-206, 2024.

Xavier Gonzalez, Andrew Warrington, Jimmy T.H. Smith, and Scott W. Linderman. Towards Scalable
and Stable Parallelization of Nonlinear RNNs. Advances in Neural Information Processing Systems, 37:
5817-5849, 2024.

Riccardo Grazzi, Julien Siems, Jorg KH Franke, Arber Zela, Frank Hutter, and Massimiliano Pontil. Un-
locking state-tracking in linear rnns through negative eigenvalues. arXiv preprint arXiv:2411.12537, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint
arXiv:2812.00752, 2023.

16

Published in Transactions on Machine Learning Research (09/2025)

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state
spaces. In International Conference on Learning Representations (ICLR), 2021.

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization of
diagonal state space models. Advances in Neural Information Processing Systems, 35:35971-35983, 2022.

John L Gustafson and Isaac T Yonemoto. Beating floating point at its own game: Posit arithmetic. Super-
computing frontiers and innovations, 4(2):71-86, 2017.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):1735-1780,
1997.

N.G. Kingsbury and P.J.W. Rayner. Digital filtering using logarithmic arithmetic. FElectronics Letters, 7:
56-58, 1971. doi: 10.1049/el:19710039.

Toannis Kouretas and Vassilis Paliouras. Logarithmic number system for deep learning. In 2018 7th Inter-
national Conference on Modern Circuits and Systems Technologies (MOCAST), pp. 1-4. IEEE, 2018.

Yann LeCun, D Touresky, G Hinton, and T Sejnowski. A theoretical framework for back-propagation. In
Proceedings of the 1988 connectionist models summer school, volume 1, pp. 21-28, 1988.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Yi Heng Lim, Qi Zhu, Joshua Selfridge, and Muhammad Firmansyah Kasim. Parallelizing non-linear se-
quential models over the sequence length. In The Twelfth International Conference on Learning Repre-
sentations, 2024.

Winfried Lohmiller and Jean-Jacques E Slotine. On contraction analysis for non-linear systems. Automatica,
34(6):683-696, 1998.

Jonas Mikhaeil, Zahra Monfared, and Daniel Durstewitz. On the difficulty of learning chaotic dynamics with
rnns. Advances in neural information processing systems, 35:11297-11312, 2022.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural networks.
In International conference on machine learning, pp. 1310-1318. Pmlr, 2013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Koépf, Edward Z. Yang, Zach
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. CoRR,
abs/1912.01703, 2019.

Arkady Pikovsky and Antonio Politi. Lyapunov exponents: a tool to explore complex dynamics. Cambridge
University Press, 2016.

Sheldon M Ross. Stochastic processes. John Wiley & Sons, 1995.

Arnab Sanyal, Peter A Beerel, and Keith M Chugg. Neural network training with approximate logarithmic
computations. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 3122-3126. IEEE, 2020.

Jimmy T.H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space layers for sequence
modeling. In International Conference on Learning Representations (ICLR), 2023.

Anand Srinivasan and Jean-Jacques Slotine. Contracting differential equations in weighted banach spaces.
Journal of Differential Equations, 344:203-229, 2023.

Steven H Strogatz. Nonlinear dynamics and chaos with student solutions manual: With applications to
physics, biology, chemistry, and engineering. CRC press, 2018.

17

Published in Transactions on Machine Learning Research (09/2025)

Philippe Tillet, H. T. Kung, and David Cox. Triton: an intermediate language and compiler for tiled neural
network computations. In Proceedings of the 3rd ACM SIGPLAN International Workshop on Machine
Learning and Programming Languages, MAPL 2019, pp. 10-19, New York, NY, USA, 2019. Association
for Computing Machinery. ISBN 9781450367196. doi: 10.1145/3315508.3329973.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers with
the delta rule over sequence length. In Proceedings of NeurIPS, 2024.

18

Published in Transactions on Machine Learning Research (09/2025)

A Time to Estimate Spectrum of Lyapunov Exponents by System

The plots below show time to estimate the spectrum of Lyapunov exponents sequentially, as a multiple
of time to estimate it in parallel with our algorithm, as we increase the number of time steps, for every
dynamical system in a dataset spanning multiple scientific disciplines . Each point is the
mean of seven runs on a single Nvidia GPU. In a few cases (most notably, “MacArthur”), the improvement in
execution time tapers off as we increase the number of steps to and above 10°, because parallel computation
of all QR decompositions saturates the single GPU at approximately 100% utilization.

Aizawa AnishchenkoAstakhov Ameodo AmnoldBeltramiChildress AmoldWeb AtmosphericRegime BeerRNN BelousovZhabotinsky Bickleyjet Blasius. BlinkingRotlet

i
i
jis
s
Ik
N
i
i
il

Bouali2 BurkeShaw CaTwoPlus CellCycle CellularNeuralNetwork Chen ChenLee Chua

o

Colpitts

i
s
N
i
i
i
i
s

SR
i
S
S
i

NS

N

NS
NN
NS
NS

Dadras Dequanti DoubleGyre DoublePendulum Duffing ExcitableCell Finance FluidTrampoline

ForcedVanDerPol

o GlycolyticOscillati Holmes. Hadley Halvorsen Hopfield HyperBao HyperCai
10?

K

£10t

B

Hyperjha HyperLorenz Hyperlu HyperPang HyperQi HyperRossler HyperWang HyperXu HyperYan HyperYangChen InteriorSquirmer

Il
il
N
N
il
Il
N
N
il
il
il

IsothermalChemical ItikBanksTumor JerkCircuit KawczynskiStrizhak Laser LidDrivenCavityFlow Lorenz Lorenz84. Lorenz96 LorenzBounded LorenzCoupled

N
N
i
i
N
i
i
il
N

LorenzStenflo LuChen LuChenCheng MacArthur MooreSpiegel MultiChua NewtonLiepnik NuclearQuadrupols OscillatingF

Il
s
i
i
NI
il
jis
BN

Qi QiChen Rossler Rucklidge Sakarya SaltonSea SanUmSrisuchinwong ShimizuMorioka

N
RN

i
NN
i
i
IS
i
i
i

SprottA SprottB SprottC SprottD SprottE SprottF SprottG. SprottH Sprott! Sprott) Sprottjerk

i
i
i
i
i
i
i
i
i
il
i

Sprottk Sprottl. SprottM SprottMore SprottN Sprott0 SprottP SprottQ SprottR Sprotts SprottTorus

i
i
il
N
i
i
i
i
i
il
i

StickslipOscillator SwingingAtwood Thomas Torus TurchinHanski VallisEINino WangSun WindmiReduced YuWang YuWang2 ZhouChen

i
N
N
i
i
N
N
N
il
N
i

2

107 107 10* 10° 10' 10? 10° 10* 10° 10' 107 10° 10* 10° 10' 107 10° 10 10° 10' 107 10° 10° 10° 10' 107 10° 10 10° 10 107 10° 10* 10° 10' 107 10° 10* 10° 10' 10° 10° 10* 10° 10' 107 10° 10* 10° 10' 10? 10° 10% 10°
Number of Steps Number of Steps Number of Steps Number of Steps Number of Steps Number of Steps Number of Steps Number of Steps Number of Steps Number of Steps Number of Steps

19

Published in Transactions on Machine Learning Research (09/2025)

B Derivation of Expression for Estimating Largest Lyapunov Exponent

If we express the sum of scalar logarithms in equation [23| as a logarithm of scalar products, we obtain:

est

1 lls¢ll)
LLE = lo ,
AT gH<|st1

= 1 log(”T| X/XMXM>
AtT JIE=1i Dstfl ™ luoll
1Dl
AtT sl

IOgHJT J2J1’LLO||

= AtT log \/Z(JT - JadJiug)?

Norm computed over R

1
= m 10g Z(JT N J2J1u0)2

(29)

1
= SAIT log Zexp (log(J7 ... JaJiug))?
= ﬁ LSE (2 LMME(log Jr, LMME(. .., LMME(log J2, LMME(log J1, log ug)))))
QA — LSE (2 LMME(J7., LMME((..., LMME(J3, LMME(J}, up))))
QA — LSE(2PSCAN(LMME) (., ..., J3, J up).

20

Published in Transactions on Machine Learning Research (09/2025)

C Intuition behind Selective Resetting, with Step-by-Step Examples

Consider, for a moment, the following time-variant non-diagonal linear recurrence with biases,

X = A X1+ By, (30)

where X;, A;, By, and initial state X, are all square matrices in R4¥¢, for ¢ in {1,2,...,n}. If we zero-out a
particular transition matrix A;, we “reset” the recurrence at that step, with the corresponding B; becoming
the new initial state. For example, given a recurrence with n = 3 states,

X, = A1X0 4+ B1 /] Xo is the initial state
X5 = A3 X1 + By (31)
X3 = A3 Xy + Bs,

if we set Ay «+— {0}%%9, then By becomes the new initial state for subsequent states:

X1 =41 X0+ B
Xy = M + By // B2 becomes the initial state for subsequent states (32)

We can apply the same mechanism to reset linear recurrences without biases. Initialize all B;’s to all-zeros,
such that, at initialization, we have the equivalent of a recurrence without biases:

X = AtXt,1 +)Bt/ // all By’s are zeroed-out at initialization (33)

Now, at any step, we can reset this linear recurrence without biases, by zeroing-out that step’s transition
matrix and replacing the corresponding bias matrix with a new initial state of our choice. For example, a
sequence of n = 3 states with all B;’s initialized to all-zeros, is:

X1 =4:Xp +B{ = A1Xo // Xo is the initial state
Xo = A X +/B{ = A X, (34)
X3 =A3X, —|—% = A3X5.

If we set, say, By +— R(A2X1), then Ay +— {0}%*¢ where R : R¥*4 s R?¥4 ig a function of our choice,
we obtain the following sequence of states:

X1 =AXo+ Bl =41X,
X2 = M + B2 = B2 // Ba2 becomes the new initial state for all subsequent states (35)
X3 =A3Xo+ B5 = A3X,.

Now, consider a parallel prefix scan, applied right-to-left, over the unmodified recurrence.

21

Published in Transactions on Machine Learning Research (09/2025)

C.1 Parallel Prefix Scan without Selective Resets

When we apply a parallel prefix scan, right-to-left, over the unmodified recurrence, we have:

Input states :

Parallel step 1 :

Parallel step 2 :

Output states :

Sums :

Input states :

Parallel step 1 :

Selective reset :

Parallel step 2 :

Output states :

Parallel Prefix Scan:

33 B2 B1 BQ // bias states initialized to all-zeros
A3 Ay Ay A1 Xy Xo
A3Bsy + B3 u:Ece By A1By + By ume Byo
AzA2(A1Xo) A2(A1Xo) - A1Xo Xo
A3Ax(A1 By + B1) + AsBy + Bs | A2(A1Bo+ By) + By |update| A1Bo+ B1 | By
A3A2A1XO AQAlXO A1X0 XO
{O}dxd {O}dxd {O}dxd {O}dxd // By’s are all-zeros
‘ A3A2A1X0 I A2A1X0 I A1X0 I Xo ‘ . // same as recurrence without biases
(36)
That is, we obtain X; = A;X;_1, equal to the original recurrence without biases.
C.2 Parallel Prefix Scan with One Selective Reset
If we selectively reset, say, the second interim compound state, before parallel step 2, we have:
Parallel Prefix Scan, Selectively Reset before Parallel Step 2:
As Ay Ay Xo . .
Bg B2 B1 B() // bias states initialized to all-zeros
A3A2 A2 AlXO XO
A3Bs + By | undate| Bo A1By + By | update| Bo
A1 Xy . {0}dxd
Replace Ay Bo + By with R(A1 Xo) (37)
Az Ay ({0}4) Ay ({0}) | {03 X
A3As R(A1Xo) + A3Bo + Bs | Ay R(A1Xo) + Ba |update| R(A1X0) | Bo
{O}dxd {O}dxd {O}dxd XO o i
AsAs R(A1Xo) | A2 R(A1Xo) | R(ALXo) | {oydxa | /7 Prsarealizeros

Sums :

| A3A3 R(A1Xo) | A2 R(A1X0) | R(A1X0) | Xo |

// modified linear recurrence

That is, we obtain a modified sequence in which step 2’s state was selectively reset, changing its value from
A1 X to R(A1 X)), compounded in all subsequent states, as we computed all states in parallel.

22

Published in Transactions on Machine Learning Research (09/2025)

D Quantitative Comparisons of Our Implementation to Floating-Point Formats

We compare Complex128 and Complex64 GOOMs, respectively, to Float64 and Float32, the two float
formats with greatest precision and dynamic range currently supported on Nvidia GPUs. The comparisons,
shown in the pages that follow, are valid only for our implementation, not for GOOMs in general.

Magnitude of Errors We compare the magnitude of errors for one- and two-argument scalar functions
that can be used to compose many other functions, and also for a representative matrix product. The one-
argument scalar functions are: reciprocal y = 1/z, square root y = /T, square y = 22, natural logarithm
y = logz, and exponential y = e*. The two-argument scalar functions are: addition z = x + y (and
implicitly, subtraction, since z — y = x + —y) and scalar product z = zy (and implicitly, division, since
x/y = zy~'). The matrix product is of two 1024 x 1024 matrices with elements independently sampled
from N(0, 1), representative of typical matrix products in deep learning models. We apply all one- and
two-argument functions except the exponential function over a range of values spanning the approximate
number of decimal digits to which each float format is precise: 1071° to 10'® for Float64, and 10~6 to 10° for
Float32. We apply the exponential function over a range of values spanning 10~° to 10. For one-argument
functions, the range consists of 1M input values, equally spaced in the domain of decimal digits. For two-
argument functions, each argument’s range consists of 10,000 input values, equally spaced in the domain
of decimal digits, such that we apply each two-argument function to 100M different pairs of input values.
For all one- and two-argument functions, we measure the magnitude of absolute errors in base 10 (i.e., the
number of decimal digits of error) in relation to the same operation executed over Float128, a float format
with greater precision and dynamic range than Float64 and Float32. For the matrix product, we measure
the error normalized by the Frobenius norm of the matrix product in relation to the same operation executed
over Float128. We execute all operations on a recent Nvidia GPU, except for operations and comparisons
over Float128, because Nvidia GPUs currently do not support it. We implement all transformations over
complex-typed GOOMs so they accept floats as inputs, internally map them to complex-typed GOOMs,
execute all computations over complex-typed GOOMs, map them back to floats, and, finally, return those
floats as outputs. Mapping complex-typed GOOMs to floats impacts precision but is necessary for comparison
to Float128. We find that the magnitude of errors varies from approximately the same to only slightly more,
notwithstanding the impact of mapping complex-typed GOOMs to floats.

Running Time We compare running time for every one- and two-argument scalar function, as we apply it
to a batch of 100M input samples, each independently drawn from U(0, 1), processing each batch in parallel
on a recent Nvidia GPU. We also compare running time for the representative matrix product. We apply
each transformation 30 times, each time to a different batch, and compute the mean running time over
all batches. We report the mean running time of each transformation over Complex128 and Complex64
GOOMs as a multiple of the mean running time for Float64 and Float32, respectively. We implement
every transformation over complex-typed GOOMs to accept complex-typed GOOMSs as inputs and return
complex-typed GOOMs as outputs, regardless of whether doing so penalizes running time. For example,
we implement scalar addition over complex-typed GOOMs as log(em/ + ey,)7 not as e + ¥, significantly
impacting running time due to the creation of float tensors for storing interim exponentiated values and
complex tensors for storing output values. On the other hand, our implementation of natural logarithm
incurs zero running time, because complex-typed GOOMs are already natural logarithms. We find that for
most operations, the running time of our implementation is approximately twice that of floats.

Memory Use We compare memory use for every one- and two-argument scalar function, as we apply it
to a batch of 100M input samples, each independently drawn from (0, 1), processing each batch in parallel
on a recent Nvidia GPU. We also compare memory use for the representative matrix product. For both
complex-typed GOOMs and floats, we measure peak memory allocated, including creation of input, interim,
and output tensors, as well as PyTorch overhead, if any. We report peak memory allocated over Complex128
and Complex64 GOOMs as a multiple of peak memory allocated over Float64 and Float32, respectively. We
find that peak memory allocated is typically at least twice that of floats, but sometimes it can be less.

For all comparisons, see the pages that follow. To replicate the comparisons, see our published source code.

23

Published in Transactions on Machine Learning Research (09/2025)

D.1 Complex128 GOOMs versus Float64

We show the comparisons of Complex128 GOOMs to Float64 first, because they are likely more important
to researchers and practitioners interested in quantitative comparisons of precision.

D.1.1 Magpnitude of Errors on Reciprocals

Magnitude of Error versus Float128 for Reciprocals, y = 1/x
Complex128 GOOM Float64

-10

-y

-15

logio ly

-20

-25

-30

=35 1
-15 -10 -5 0 5 10 15 -15 -10
logi0Xx

y: Float128
y: Tested Value

D.1.2 Magpnitude of Errors on Square Roots

Magnitude of Error versus Float128 for Square Roots, y =vVx

Complex128 GOOM Float64
-7.5
-10.0
-12.5
> -15.0
>
S -17.5
g

—20.0

—22.5 A

—25.0 1

=15 -10 -5 0 5 10 15

y: Floatl28
y: Tested Value

Published in Transactions on Machine Learning Research (09/2025)

D.1.3 Magnitude of Errors on Squares

Magnitude of Error versus Float128 for Squares, y = x?
Complex128 GOOM Float64

-y
|
iR
o

logio ly
|
N
o

y: Float128
y: Tested Value

D.1.4 Magpnitude of Errors on Natural Logarithms

Magnitude of Error versus Float128 for Natural Logarithms, y = logx
Complex128 GOOM Float64

-y

log1o ly

-19

-20

-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
y: Float128
y: Tested Value

25

Published in Transactions on Machine Learning Research (09/2025)

D.1.5 Magpnitude of Errors on Exponentials

Magnitude of Error versus Float128 for Exponentials, y = e*
Complex128 GOOM Float64

-10

-y

logio ly

T
-5 -4 -3 -2 -1

y: Floatl28
y: Tested Value |Og 10X

o 4
=

D.1.6 Magnitude of Errors on Scalar Addition/Subtraction

Magnitude of Error versus Float128 for Scalar Addition, z=x+y

Complex128 GOOM Float64

15

-2

logi0y
logiolz

-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
z: Float128

logio X l0g10 X 2: Tested Value

26

Published in Transactions on Machine Learning Research (09/2025)

D.1.7 Magnitude of Errors on Scalar Product/Division

Magnitude of Error versus Float128 for Scalar Product, z=xy
Complex128 GOOM Float64

-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
log1ox log10Xx

D.1.8 Normalized Errors on Representative Matrix Product

Histogram of Normalized Errors versus Float128 for a Matrix Product, Z = XY,
where X, Y are 1024x1024 Matrices with Elements Sampled from N{(0, 1)

o

|

A
)
-zl

I I

w N

o o
logio |z

|
I
o

z: Float128
2: Tested Value

. Complex128 GOOM Float64
10-
5x 10718
-5x 10718
_10—17

0 2500 5000 7500 10000 12500 15000 O 2500 5000 7500 10000 12500 15000

Z: Float128

5T Number of Elements Number of Elements
: Tested Value

27

Published in Transactions on Machine Learning Research (09/2025)

D.1.9 Execution Times

Execution Time on an Nvidia GPU, Complex128 GOOM as a Multiple of Float64

Reciprocals

Square Roots
Squares

Natural Logarithms

Exponentials

Scalar Addition

Scalar Product

Matrix Product

4 6 8 10
Execution Time, Complex128 GOOM as a Multiple of Float64
Scalar functions: 100M in parallel (Mean of 30 Runs)

Matrix product: 1024x1024 mats

Mean execution times are as reported by torch.utils.benchmark.Timer. To the extent possible, we apply
transformations in-place, to minimize the impact of new memory allocations on execution time. Complex128
GOOMs are already natural logarithms, so obtaining them incurs no computation.

D.1.10 Peak Memory Allocated

Peak Memory Allocated on an Nvidia GPU, Complex128 GOOM as a Multiple of Float64

Reciprocals

Square Roots
Squares

Natural Logarithms
Exponentials
Scalar Addition
Scalar Product

Matrix Product

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Peak Memory Allocated, Complex128 GOOM as a Multiple of Float64
Scalar functions: 100M in parallel (Including Memory Allocated to Input, Interim, and Output Tensors)

Matrix product: 1024x1024 mats

Memory allocation figures are as reported by torch.cuda.memory.max_memory_allocated. To the extent
possible, we do not apply transformations in-place, to allocate memory for input, interim, and output tensors.
Memory use by the matrix product over Complex128 GOOMs is for our initial implementation of LMME.

28

Published in Transactions on Machine Learning Research (09/2025)

D.2 Complex64 GOOMs versus Float32

We show the comparisons of Complex64 GOOMs to Float32 in the same order as the comparisons of Com-
plex128 GOOMs to Float64, for easier cross-reference.

D.2.1 Magpnitude of Errors on Reciprocals

Magnitude of Error versus Float128 for Reciprocals, y = 1/x
Complex64 GOOM Float32
0.0 11 T

=5.0 +— .

-y

-7.5 f |

-10.0 i T

logio ly

-12.5 T Tt -

-17.5 T LK

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6

y: Float128 |OgloX |0910X

y: Tested Value

D.2.2 Magnitude of Errors on Square Roots

Magnitude of Error versus Float128 for Square Roots, y =vx
Complex64 GOOM Float32

-y

logie |y

-6 -4 -2 0 2 4 6 -6 -4 -2 0 2 4 6
y: Float128
y: Tested Value

29

Published in Transactions on Machine Learning Research (09/2025)

D.2.3 Magnitude of Errors on Squares

Magnitude of Error versus Float128 for Squares, y = x?
Complex64 GOOM

Float32

-y

logio ly

y: Float128
y: Tested Value

D.2.4 Magpnitude of Errors on Natural Logarithms

Magnitude of Error versus Float128 for Natural Logarithms, y = log x

Complex64 GOOM

Float32

-y
|

O
1

log1o ly

-12 ‘ [T ‘

‘ [T 1T T ‘

-13 Uk

-6 -4 -2 0 2 4 6
y: Float128
y: Tested Value

30

Published in Transactions on Machine Learning Research (09/2025)

D.2.5 Magpnitude of Errors on Exponentials

Magnitude of Error versus Float128 for Exponentials, y = e*
Complex64 GOOM Float32

-y

logio ly

12 14— | 4

-14

-5 -4 -3 -2 -1 0 1 -5 -4 -3 -2 -1 0 1
y: Floatl28
y: Tested Value

D.2.6 Magnitude of Errors on Scalar Addition/Subtraction

Magnitude of Error versus Float128 for Scalar Addition, z=x+y
Complex64 GOOM Float32

|
N
n

|
)
o
o

logiolz -2l

-12.5

-15.0

-17.5

: Float128
: Tested Value

N

N>

31

Published in Transactions on Machine Learning Research (09/2025)

D.2.7 Magnitude of Errors on Scalar Product/Division

107°

5x 10710

-5x1071°

-107°

Magnitude of Error versus Float128 for Scalar Product, z=xy
Complex64 GOOM

Float32

N
-5 _'I\‘
e
-10 ©
-15
-20
|0910X ; 'II:'Ieosatteldzsmue
D.2.8 Normalized Errors on Representative Matrix Product
Histogram of Normalized Errors versus Float128 for a Matrix Product, Z = XY,
where X, Y are 1024x1024 Matrices with Elements Sampled from N{(0, 1)
Complex64 GOOM Float32
T T
0 2000 4000 6000 8000 10000 O 2000 4000 6000 8000 10000

Z: Float128
Z: Tested Value

Number of Elements

32

Number of Elements

Published in Transactions on Machine Learning Research (09/2025)

D.2.9 Execution Times

Execution Time on an Nvidia GPU, Complex64 GOOM as a Multiple of Float32

Reciprocals
Square Roots
Squares

Natural Logarithms

Exponentials

Scalar Addition

Scalar Product

Matrix Product

4 6 8 10
Execution Time, Complex64 GOOM as a Multiple of Float32
Scalar functions: 100M in parallel (Mean of 30 Runs)

Matrix product: 1024x1024 mats

Mean execution times are as reported by torch.utils.benchmark.Timer. To the extent possible, we apply
transformations in-place, to minimize the impact of new memory allocations on execution time. Complex64
GOOMs are already natural logarithms, so obtaining them incurs no computation.

D.2.10 Peak Memory Allocated

Peak Memory Allocated on an Nvidia GPU, Complex64 GOOM as a Multiple of Float32

Reciprocals

Square Roots
Squares

Natural Logarithms
Exponentials
Scalar Addition
Scalar Product

Matrix Product

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Peak Memory Allocated, Complex64 GOOM as a Multiple of Float32
Scalar functions: 100M in parallel (Including Memory Allocated to Input, Interim, and Output Tensors)

Matrix product: 1024x1024 mats

Memory allocation figures are as reported by torch.cuda.memory.max_memory_allocated. To the extent
possible, we do not apply transformations in-place, to allocate memory for input, interim, and output tensors.
Memory use by the matrix product over Complex64 GOOMs is for our initial implementation of LMME.

33

	Introduction
	Generalized Orders of Magnitude
	Floating-Point Numbers are a Special Case of GOOMs

	Implementation
	Mapping Between Floating-Point Numbers and GOOMs
	Real-Valued Matrix Multiplication over Complex-Typed GOOMs
	Other Real-Valued Functions over Complex-Typed GOOMs

	Representative Experiments
	Stability and Dynamic Range of Complex GOOM Matrix Products vs. Conventional Methods
	Parallel Estimation of Lyapunov Exponents over Complex-Typed GOOMs
	Full Spectra of Lyapunov Exponents in Parallel
	Largest Lyapunov Exponent in Parallel

	Parallelizable Non-diagonal State-Space RNN over Complex-Typed GOOMs

	Selective-Resetting Method for Parallel Scans of Linear Recurrences
	Discussion
	Time to Estimate Spectrum of Lyapunov Exponents by System
	Derivation of Expression for Estimating Largest Lyapunov Exponent
	Intuition behind Selective Resetting, with Step-by-Step Examples
	Parallel Prefix Scan without Selective Resets
	Parallel Prefix Scan with One Selective Reset

	Quantitative Comparisons of Our Implementation to Floating-Point Formats
	Complex128 GOOMs versus Float64
	Magnitude of Errors on Reciprocals
	Magnitude of Errors on Square Roots
	Magnitude of Errors on Squares
	Magnitude of Errors on Natural Logarithms
	Magnitude of Errors on Exponentials
	Magnitude of Errors on Scalar Addition/Subtraction
	Magnitude of Errors on Scalar Product/Division
	Normalized Errors on Representative Matrix Product
	Execution Times
	Peak Memory Allocated

	Complex64 GOOMs versus Float32
	Magnitude of Errors on Reciprocals
	Magnitude of Errors on Square Roots
	Magnitude of Errors on Squares
	Magnitude of Errors on Natural Logarithms
	Magnitude of Errors on Exponentials
	Magnitude of Errors on Scalar Addition/Subtraction
	Magnitude of Errors on Scalar Product/Division
	Normalized Errors on Representative Matrix Product
	Execution Times
	Peak Memory Allocated

