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Abstract

Computing the empirical Wasserstein distance in the Wasserstein-distance-based indepen-
dence test is an optimal transport (OT) problem with a special structure. This observation
inspires us to study a special type of OT problem and propose a modified Hungarian algo-
rithm to solve it exactly. For the OT problem involving two marginals with m and n atoms
(m ≥ n), respectively, the computational complexity of the proposed algorithm is O(m2n).
Computing the empirical Wasserstein distance in the independence test requires solving this
special type of OT problem, where m = n2. The associated computational complexity of the
proposed algorithm is O(n5), while the order of applying the classic Hungarian algorithm
is O(n6). In addition to the aforementioned special type of OT problem, it is shown that
the modified Hungarian algorithm could be adopted to solve a wider range of OT problems.
Broader applications of the proposed algorithm are discussed—solving the one-to-many
assignment problem and the many-to-many assignment problem. We conduct numerical ex-
periments to validate our theoretical results. The experiment results demonstrate that the
proposed modified Hungarian algorithm compares favorably with the Hungarian algorithm
and the well-known Sinkhorn algorithm.

1 Introduction

One appealing application of optimal transport (OT) and Wasserstein distance (Villani, 2009; Peyré et al.,
2019) is the independence test. The Wasserstein distance between two distributions µ1, µ2 on Z is defined
as:

W (µ1, µ2) := inf
{∫

Z2
d(z, z′)dγ(z, z′) : γ is a distribution with marginals µ1 and µ2

}
,

where (Z, d) is a metric space (w.l.o.g., 1-Wasserstein distance is considered in this paper). The Wasserstein
distance is a metric on probability measures (Villani, 2009). To test the independence between the variables
Y ∼ ν1 and Z ∼ ν2, people utilize the Wasserstein distance between the joint distribution of Y, Z and the
product distribution of Y, Z, i.e., W (γ(ν1, ν2), ν1 ⊗ν2). While the statistical properties of this approach have
been intensely investigated (Nies et al., 2021; Mordant & Segers, 2022; Wiesel, 2022), no existing literature
focuses on the computational aspect. In this paper, we discuss the following:

How to compute the empirical Wasserstein distance in the independence test?

In practice, given n i.i.d. samples {(y1, z1), · · · , (yn, zn)} generated from (Y, Z), one can build the statistic—
W (γ(ν̂1, ν̂2), ν̂1 ⊗ ν̂2), where ν̂ denotes the corresponding empirical distribution—to test the independence.
Computing W (γ(ν̂1, ν̂2), ν̂1 ⊗ ν̂2) is equivalent to solving the following optimization problem: (more details
are presented in Section 5.)

min
X◦∈Π◦

n∑
i,j,k=1

d((yi, zj), (yk, zk))X◦
ij;k, Π◦ =

X◦
ij;k ≥ 0

∣∣∣∣ n∑
k=1

X◦
ij;k = 1

n2 ,

n∑
i,j=1

X◦
ij;k = 1

n

 , (1)

where the metric d is usually chosen as d((yi, zj), (yk, zl)) = ∥yi − yk∥p + ∥zj − zl∥p, and ∥ · ∥p denotes the
lp norm.
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Problem (1) is an OT problem involving two marginals. One marginal is uniform with n atoms (i.e., we
have

∑n
i,j=1 X◦

ij;k = 1/n, ∀k, 1 ≤ k ≤ n), and the other marginal is uniform with n2 atoms (i.e., we have∑n
k=1 X◦

ij;k = 1/n2, ∀i, j, 1 ≤ i, j ≤ n). Motivated by this structure, we study the following special OT
problem:

min
X′∈U ′

m∑
i=1

n∑
j=1

X ′
ijCij , U ′ =

X ′
ij ≥ 0

∣∣∣∣ n∑
j=1

X ′
ij = 1

m
,

m∑
i=1

X ′
ij = mj

m
,

n∑
j=1

mj = m

 . (2)

where 0 < n ≤ m, mj ’s are positive integers. One marginal of this OT problem is n-dimensional where the
probability of each component is prescribed as mj/m (i.e., we have

∑m
i=1 X ′

ij = mj/m, ∀j, 1 ≤ j ≤ n), and
the other marginal is uniform with m atoms (i.e., we have

∑n
j=1 X ′

ij = 1/m, ∀i, 1 ≤ i ≤ m). In essence,
problem (1) is a special case of problem (2), where mj = n, m = n2.

Problem (2) is a linear programming (LP) problem with O(mn) variables and O(m+n) constraints, and then
could be solved exactly by LP solvers. The well-known simplex method has exponential worst-case complexity
(Klee & Minty, 1972). To the best of our knowledge, there are no known polynomial-time algorithms to get
exact solutions to LP with real-valued inputs. Throughout this paper, we consider real-valued entries in the
cost matrix and later propose a strongly polynomial-time algorithm to solve problem (2) precisely.

Per Birkhoff’s theorem (Birkhoff, 1946), the solution to problem (2) is a vertex (whose coordinates are zeros
and ones). Thus, problem (2) is equivalent to the following optimization problem: (the proof is relegated to
the Appendix.)

min
X∈U

m∑
i=1

n∑
j=1

1
m

XijCij , U =

Xij = {0, 1}
∣∣∣∣ n∑

j=1
Xij = 1,

m∑
i=1

Xij = mj ,

n∑
j=1

mj = m

 . (3)

One may recall the assignment problem, where the permutation matrix is the solution matrix. X ∈ U is
similar but different from the permutation matrix: X ∈ U is an m × n matrix instead of a square matrix
and has multiple entries of 1 in each column instead of only one entry. In this case, we are not able to
directly apply algorithms for the assignment problem, such as the Hungarian algorithm (Munkres, 1957).
An approach to obtain the precise solution to problem (3) is first to duplicate the columns of C and X, then
apply the Hungarian algorithm. The computational complexity of this approach is O(m3). In this paper,
a modified Hungarian algorithm is proposed. The algorithm specializes in solving the special type of OT
problem (3), which is equivalent to problem (2), with a provable lower order—O(m2n).

Back to the Wasserstein-distance-based independence test problem (1), the resulting computational complex-
ity of applying the proposed algorithm is O(n5) while the order of applying the classic Hungarian algorithm
is O(n6). In this sense, the proposed algorithm is faster.

In addition to the application in the Wasserstein independence test, broader applications of the modified
Hungarian algorithm, including solving the one-to-many assignment problem and the many-to-many assign-
ment problem (Zhu et al., 2011; 2016), are investigated. Two practical assignment problems involving the
soccer game and agent-task assignment serve as examples to illustrate how to apply the proposed algorithm.

1.1 Related work:

Approximation algorithms: Our modified Hungarian algorithm is an exact OT solver. There are also a
bunch of approximation algorithms (Cuturi, 2013; Altschuler et al., 2017; Dvurechensky et al., 2018; Lin et al.,
2019; Guo et al., 2020; Xie et al., 2022). Notably, precise solutions are needed in some scenarios, and Dong
et al. (2020) demonstrates the favorable numerical performance of the exact solutions over the approximate
solutions. Therefore, the development of efficient exact algorithms is of much interest. Numerical experiments
are conducted to compare the modified Hungarian algorithm with the most widely-used approximation
algorithm—the Sinkhorn algorithm, highlighting the efficiency of our exact algorithm.

Independence criteria: There are some other independence criteria based on OT or the Wasserstein
distance (Shi et al., 2020; Deb & Sen, 2021; Liu et al., 2022). We mainly focus on the formulation (1).
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1.2 Our contributions:

We propose a modified Hungarian algorithm to solve a special type of OT problem (2). The modification
enables us to deal with the scenario where two marginals have different sizes of atoms, and the atoms in
one of the marginals have multiple assignments. Further, the proposed modified Hungarian algorithm could
be extended to solve more general OT problems. Moreover, the applications of the proposed algorithm are
explored: adopting the modified Hungarian algorithm to solve the Wasserstein independence test problem
(1), the one-to-many assignment problem and the many-to-many assignment problem. Finally, several nu-
merical experiments are carried out to show the favorability of our algorithm over both the classic Hungarian
algorithm and the Sinkhorn algorithm.

1.3 Organization

The remainder of this paper is organized as follows. In Section 2, we introduce some basics of graph theory.
In Section 3, we propose the modified Hungarian algorithm and compute its computational complexity. In
Section 4, we explain how to generalize the proposed algorithm to solve a wider range of OT problems. In
Section 5, we apply the modified Hungarian algorithm to the Wasserstein-distance-based independence test
problem. In Section 6, we apply the modified Hungarian algorithm to the one-to-many assignment problem
and the many-to-many assignment problem. In Section 7, we carry out various numerical experiments
on both synthetic data and real data to validate our theoretical results and show the favorability of our
algorithm. We discuss some future work in Section 8.

2 Preliminaries

Some definitions related to combinatorial optimization and graph theory (Suri, 2006; Burkard et al., 2012)
are introduced. They will be needed in the rest of this paper.
Definition 1 (Assignment problem). Given an k × k cost matrix with components cij ≥ 0, i, j ∈ [k] =
{1, · · · , k}, the assignment problem is to solve minϕ

∑k
i=1 ciϕ(i), where ϕ is the permutation of set [k].

Definition 2 (Bipartite graph). A graph G = (V, E) is bipartite if there exists a partition V = V1 ∪ V2 such
that V1 ∩ V2 = ∅ and E ⊂ V1 × V2. W.L.O.G., we always assume E = V1 × V2.
Definition 3 (Matching and perfect matching). M ⊂ E in the bipartite graph G = (V, E) is a matching if
every node of G coincides with at most one edge of M . W.L.O.G., it is assumed that the number of nodes
in V1 is the same as V2. In this case, if every node of G coincides with exactly an edge of M , M is called a
perfect matching
Definition 4 (Weighted bipartite graph). A bipartite graph G = (V, E) is a weighted bipartite graph if there
is a weight w(·) ≥ 0 for each edge e ∈ E. The weight of a matching M is defined as

∑
e∈M w(e).

Definition 5 (Labeling and feasible labeling). For a weighted bipartite graph G = (V, E), a labeling is a
function l : V → R. A feasible labeling is one labeling such that l(v1) + l(v2) ≥ w(v1, v2), ∀v1 ∈ V1, v2 ∈ V2.
Definition 6 (Equality graph and neighbor). The equality graph w.r.t. labeling l is G′ = (V, El) where
El = {(v1, v2) : l(v1) + l(v2) = w(v1, v2)}. Define the neighbor of v2 ∈ V2 and S ⊂ V2 as Nl(v2) = {v1 :
(v1, v2) ∈ El} and Nl(S) = ∪v2∈SNl(v2), respectively.
Definition 7 (Alternating and augmenting path). Let M be a matching of the bipartite graph G = (V, E).
A path is alternating if its edges alternate between M and E − M . An alternating path is augmenting if both
endpoints do not coincide with any edges in M .

3 Modified Hungarian algorithm

In this section, we propose a modified Hungarian algorithm to solve the special type of OT problem (2),
which is equivalent to problem (3).
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Figure 1: pseudo-matching (left) and perfect pseudo-matching (right), where n = 3, m = 9, m1 = 2, m2 =
3, m3 = 4.

3.1 Review

We first review the Hungarian algorithm (Munkres, 1957). Recall that the assignment problem is to solve
minϕ

∑m
i=1 ciϕ(i). If we negate the costs and add the maximum of the costs to each component, solving

the assignment problem is equivalent to finding a maximum weighted matching in the weighted bipartite
graph with weights w(i, j) = maxij cij − cij . The Kuhn-Munkres theorem (Munkres, 1957) shows that
finding a maximum weighted matching is equivalent to finding a perfect matching on the equality graph
associated with some feasible labeling in the bipartite graph. In this regard, the Hungarian algorithm solves
the assignment problem by identifying a perfect matching on some equality graph in the weighted bipartite
graph.

3.2 Pseudo-matching

In problem (3), X ∈ U has one entry of 1 in each row, multiple entries of 1 in each column, and 0′s elsewhere.
Since a permutation matrix corresponds to a (perfect) matching in the bipartite graph, we define ‘pseudo-
matching’ in the bipartite graph G = (V1 ∪ V2, E) to describe X. V1 has m nodes representing the rows of
X while V2 has n nodes representing the columns of X. Notice that we usually have m > n. In this case,
each node in V1 coincides with at most one edge, while multiple edges are allowed to connect with nodes in
V2. See the formal definition in Definition 8.
Definition 8 (pseudo-matching, perfect pseudo-matching). In the bipartite graph G, where |V1| = m, |V2| =
n. PM ⊂ E is a pseudo-matching if every node of V1 coincides with at most one edge of PM , and jth
node of V2 coincides with at most mj edges of PM , where

∑n
j=1 mj = m. Furthermore, if every node of V1

coincides with exactly one edge of PM and jth node of V2 coincides with exactly mj edges of PM , PM is
called a perfect pseudo-matching.

Figure 1 is an example of (perfect) pseudo-matching, where n = 3, m = 9, m1 = 2, m2 = 3, m3 = 4. Under
this setting, each node in the left-hand side of the graph can coincide with at most one edge, while each
node in right-hand side can coincide with at most 2 edges, 3 edges, and 4 edges, respectively.

3.3 Our algorithm

Solving problem (3) is equivalent to looking for a maximum weighted pseudo-matching in the bipartite graph.
We develop a modified Kuhn-Munkres theorem based on the pseudo-matching. See Theorem 1. (The proof
can be found in the Appendix.) It demonstrates that we only need to find a perfect pseudo-matching on
some equality graph to solve problem (3).
Theorem 1 (Modified Kuhn-Munkres theorem). If l is a feasible labeling on the weighted bipartite graph
G = (V, E), and PM ⊂ El is a perfect pseudo-matching on the corresponding equality graph G′ = (V, El),
PM is a maximum weighted pseudo-matching.

Equipped with the modified Kuhn-Munkres theorem, we design a modified Hungarian algorithm (Algorithm
1). The definitions used in the algorithm are specified in Definition 9. The modified Hungarian algorithm
improves either the feasible labeling (adding edges to the associated equality graph) or the pseudo-matching
until the pseudo-matching is perfect on some equality graph w.r.t. some feasible labeling. The algorithm
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Figure 2: pseudo-augmenting process, where n = 3, m = 9, m1 = 2, m2 = 3, m3 = 4.

improves the pseudo-matching by generating pseudo-augmenting paths and then exchanging the edge status
along the paths. This process is called the pseudo-augmenting process. Also, we force the pseudo-augmenting
paths emanating from V2, which have a lower order of nodes.

Definition 9 (Free, matched, pseudo-matched, pseudo-alternating path, pseudo-augmenting path). Let PM
be a pseudo-matching of G = (V, E).

• If the node v is in V1, it is pseudo-matched if it is an endpoint of some edge in PM ; if the node v
is the jth node in V2, it is pseudo-matched if it is an endpoint of mj edges in PM . Otherwise, the
node is free.

• If the node v ∈ V , we say it is matched if it is an endpoint of some edge in PM .
• A path is pseudo-alternating if its edge alternates between PM and E − PM . A pseudo-alternating

path is pseudo-augmenting if both its endpoints are free.

An example of the pseudo-augmenting process is given in Figure 2. The solid line means that the edge
belongs to the pseudo-matching. The dashed line means that the edge belongs to the equality graph but
does not belong to the pseudo-matching. Node B and node C are pseudo-matched. Edge A-B and edge
C-D are not in the pseudo-matching. In this sense, A-B-C-D is a pseudo-alternating path. Because node A
and node D are free, A-B-C-D is a pseudo-augmenting. The pseudo-augmenting process is to exchange the
status of the edges: delete B-C from the pseudo-matching and enter A-B, C-D into the pseudo-matching.
The pseudo-matching has been improved in this way.

3.4 Computational complexity

We now analyze the computational complexity of Algorithm 1. Similar to the Hungarian algorithm (Suri,
2006), we keep track of slackv1 = minv2∈S{l(v1) + l(v2) − w(v1, v2)}, ∀v1 ̸∈ T . The computational cost
increases when computing αl via slacks, updating the values of slacks, and calculating the labeling.

The number of edges of the pseudo-matching increases by 1 after one loop, so O(m) loops is needed to
form a perfect pseudo-matching. There are two subroutines in each loop: the first is to update the feasible
labeling (Step 2), and the second is to improve the pseudo-matching (Step 3). In the procedure of updating
the feasible labeling, since there are n nodes in V2, the improvement occurs O(n) times to build a pseudo-
alternating tree. In each time, computing αl, updating the slacks, and calculating the labeling cost O(m).
In the procedure of improving the pseudo-matching, when a new node has been added to S, it costs O(m)
to update slacks, and O(n) nodes could be added. On the other hand, when a node has been added to T , we
just remove the corresponding slackv1 . We conclude that each loop costs O(mn), so the total computational
complexity of Algorithm 1 to solve problem (3) is O(m2n). We summarize the analysis above in Theorem 2.

Theorem 2. The computational complexity of applying the modified Hungarian algorithm to solve problem
(3) is O(m2n).

Note that the adoption of the Hungarian algorithm has an order of O(m3). Hence, the proposed modified
Hungarian algorithm will outperform, especially when m ≫ n.
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Algorithm 1: Modified Hungarian Algorithm
Generate an initial feasible labeling l: ∀v2 ∈ V2, l(v2) = 0; ∀v1 ∈ V1, l(v1) = maxv2∈V2{w(v1, v2)} and
initialize a pseudo-matching M in El;

1 if M is a perfect pseudo-matching then
Stop

else
Pick up a free node vfree ∈ V2. Set S = {vfree}, T = ∅;
for v1 ∈ V1 is matched to vfree do

T = T ∪ v1
end

end
2 if Nl(S) − T = ∅ then

update labeling such that forcing Nl(S) − T ̸= ∅:

αl = minv1 ̸∈T,v2∈S{l(v1) + l(v2) − w(v1, v2)}, l(v) =


l(v) − αl v ∈ S

l(v) + αl, v ∈ T

l(v), otherwise
.

end
3 if Nl(S) − T ̸= ∅ then

pick v1 ∈ Nl(S) − T ;
if v1 is free then

vfree → v1 is a pseudo-augmenting path. Pseudo-augment the pseudo-matching M . Go to Step 1;
end
if v1 is pseudo-matched to z then

extend the pseudo-matching tree: S = S ∪ {z}, T = T ∪ {v1};
for v1 ∈ V1 is matched to z do

T = T ∪ v1;
end

end
Go to Step 2.

end

4 Generalization

In this section, we discuss how to adopt the modified Hungarian algorithm to solve a class of more general
OT problems.

For the special type of OT problem we discuss earlier, we require that one marginal of the OT problem
should be uniform. The next step is to relax the ‘uniform’ requirement:

What if each component probability of two marginals is prescribed as ni/M and mj/M , respectively?

In other words, we are interested in solving the following optimization problem:

min
X∗∈U∗

m∑
i=1

n∑
j=1

X∗
ijCij , U∗ =

X∗
ij ≥ 0

∣∣∣∣ n∑
j=1

X∗
ij = ni

M
,

m∑
i=1

X∗
ij = mj

M
,

n∑
j=1

mj =
m∑

i=1
ni = M

 , (4)

where 0 < n ≤ m, ni’s, mj ’s are positive integers. One possible method is first to rewrite problem (4) as
the formulation of the special type of OT problem (2), seeing Proposition 1 (the proof is relegated to the
Appendix).
Proposition 1. Problem (4) is equivalent to the following optimization problem:

min
X†∈U†

M∑
i=1

n∑
j=1

X†
ijC†

ij , U† =

X†
ij ≥ 0

∣∣∣∣ n∑
j=1

X†
ij = 1

M
,

M∑
i=1

X†
ij = mj

M

 . (5)
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where C† is an M × n matrix generated by duplicating the ith row of C ni times:

C†
tj =

{
C1j 1 ≤ t ≤ n1

Cij n1 + · · · + ni−1 + 1 ≤ t ≤ n1 + · · · + ni, 2 ≤ i ≤ m
.

Problem (5) belongs to the special type of OT problem (2). We could apply the proposed modified Hungarian
algorithm to problem (5) and get the exact solution to problem (4). The resulting computational complexity
is O(M2n).

5 Application to the independence test using the Wasserstein distance

In this section, we apply the modified Hungarian algorithm to the Wasserstein-distance-based independence
test, which originally motivates us to study the special type of OT problem (2).

Suppose that there are n i.i.d. samples {(y1, z1), · · · , (yn, zn)}, where (yi, zi) ∼ (Y, Z), Y ∼ ν1, Z ∼ ν2. One
could prove the following equivalence:

Y ⊥ Z ⇐⇒ ν1 ⊗ ν2 = γ(ν1, ν2) ⇐⇒ W (ν1 ⊗ ν2, γ(ν1, ν2)) = 0,

which follows from the fact that the Wasserstein distance is a valid metric between probability measures.
Given the empirical data, we utilize the statistic W (γ(ν̂1, ν̂2), ν̂1 ⊗ ν̂2) to test the independence between Y
and Z, where ν̂ denotes the empirical distribution and has the following expressions:

γ(ν̂1, ν̂2) =

 1
n 0

· · ·
0 1

n

 , ν̂1 ⊗ ν̂2 =

 1
n2 · · · 1

n2

· · · · · · · · ·
1

n2 · · · 1
n2

 .

Plug in the Wasserstein distance formula, the resulting optimization problem is:

min
X∈Π

n∑
i,j,k,l=1

d((yi, zj), (yk, zl))Xij;kl, (6)

where

Π =

Xij;kl ≥ 0
∣∣∣∣ n∑

k,l=1
Xij;kl = 1

n2 ,

n∑
i,j=1

Xij;kl =
{

1
n k = l

0 k ̸= l
, ∀i, j, k, l = 1, · · · , n.

 .

It is worth noting that Xij;kl = 0, k ̸= l. If we let X◦
ij;k :=

∑n
l=1 Xij;kl, problem (6) can be simplified as

problem (1). Problem (1) belongs to the special type of OT problem, where mj = n, ∀j, 1 ≤ j ≤ n, m = n2.
Adopting the Hungarian algorithm to problem (1) costs O(n6), while adopting the proposed Hungarian
algorithm directly costs O(n5).

6 Application to the one-to-many assignment problem and the many-to-many
assignment problem

In this section, we proceed to explain how to apply the modified Hungarian algorithm to solve the one-to-
many assignment problem and the many-to-many assignment problem. The applications are shown based
on two practical examples.

Example 1 (one-to-many assignment problem): An assignment problem involving the soccer ball
game mentioned by Zhu et al. (2011) is considered here. Suppose a coach is tasked to choose players from
a soccer team with m1 players (a1, · · · , am1). There are 4 roles (r1 goalkeeper, r2 backs, r3 midfields, r4
forwards). It is assumed that m1 > 4. Suppose each player’s performance evaluation of each role is known.
The overall performance evaluation of the team is the sum of each selected player’s performance evaluation
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of its assigned role. The optimal strategy is to maximize the overall performance evaluation of the team.
The coach should solve the following optimization problem:

max
A∈A

m1∑
i=1

4∑
j=1

AijPij , A =

Aij = {0, 1}
∣∣∣∣ 4∑

j=1
Aij ≤ 1,

m1∑
i=1

Aij = rj

 ,

where Pij ≥ 0 denotes player ai’s performance evaluation of role j, Aij = 1 means player ai is selected as
role j while Aij = 0 means the player is not selected as role j.

If m1 =
∑4

j=1 rj , the optimization problem above belongs to the special type of OT problem (3), where
n = 4, m =

∑4
j=1 rj . The modified Hungarian algorithm could be applied to find the optimal strategy, and

the resulting computational complexity is O(4m2
1).

If m1 >
∑4

j=1 rj , we can’t apply the modified Hungarian algorithm directly. To make the problem tractable,
we create one more role, and each player’s performance evaluation of this role is 0. Players who are not
selected are ‘assigned’ to this role by default. In this scenario, our goal is to solve the following optimization
problem:

max
A†∈A†

m1∑
i=1

5∑
j=1

A†
ijP †

ij , A† =

A†
ij = {0, 1}

∣∣∣∣ 5∑
j=1

A†
ij = 1,

m1∑
i=1

A†
ij =

{
rj 1 ≤ j ≤ 4
m1 −

∑4
j=1 rj j = 5

 ,

where we append P by adding one more column of zeros to get P †. It belongs to the special type of OT
problem, where n = 5, m = m1. Then, we could apply the modified Hungarian algorithm to solve the
problem, and the resulting computational complexity is O(5m2

1).

Note that the computational order of applying the algorithm developed by Zhu et al. (2011) is O(m3
1), which

is worse than the proposed modified Hungarian algorithm.

Example 2 (many-to-many assignment problem): The following example is an agent-task assignment
problem mentioned by Zhu et al. (2016). Assume there are m2 tasks (t1, · · · , tm2) and n1 agents (a1, · · · , an1)
in total. It is assumed that n1 < m2. Each task should be undertaken by many agents, and each agent can
perform many tasks. To be more specific, task ti must be assigned to li agents, agent aj can perform at most
sj tasks. Suppose the performance evaluation of each agent performing each task is known. The optimal
assignment plan is to maximize the overall performance. The resulting optimization problem is as follows:

max
A′∈A′

m2∑
i=1

n1∑
j=1

A′
ijP ′

ij , A′ =

A′
ij = {0, 1}

∣∣∣∣ n1∑
j=1

A′
ij = li,

m2∑
i=1

A′
ij ≤ sj

 ,

where P ′
ij ≥ 0 denotes agent aj ’s performance evaluation on task ti, A′

ij = 1 means that agent aj is assigned
to perform task ti while A′

ij = 0 means that agent aj is not assigned to perform task ti.

If
∑m2

i=1 li =
∑n1

j=1 sj , the optimization problem follows the formulation of the problem in Section 4, where
n = n1, M =

∑n1
j=1 sj . We could apply the modified Hungarian algorithm to find the optimal assignment

plan, and the resulting computational complexity is O(n1(
∑n1

j=1 sj)2).

If
∑m2

i=1 li <
∑n1

j=1 sj , we create one more task which must be performed by (
∑n1

j=1 sj −
∑m2

i=1 li) agents, and
each agent’s performance of this new task equals 0. This reformulation promises that each agent performs
the maximum amount of tasks. Accordingly, we need to solve the following optimization problem:

max
A‡∈A‡

m2+1∑
i=1

n1∑
j=1

A‡
ijP ‡

ij , A‡ =

A‡
ij = {0, 1}

∣∣∣∣ n1∑
j=1

A‡
ij =

{
li 1 ≤ i ≤ m2∑n1

j=1 sj −
∑m2

i=1 li j = m2 + 1
,

m2+1∑
i=1

A‡
ij = sj ,

 ,

where we append P ′ by adding one more row of zeros to get P ‡. It follows the formulation of problem
(4), where n = n1, M =

∑n1
j=1 sj . We could adopt the method introduced in Section 4, and the resulting

computation complexity is O(n1(
∑n1

j=1 sj)2).
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Figure 3: Comparison with the Hungarian algorithm on synthetic data
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Figure 4: Comparison with the Hungarian algorithm on CIFAR10

Note that the computational order of applying the algorithm developed by Zhu et al. (2016) is O((
∑n1

j=1 sj)3),
which has a higher computational burden than our proposed method.

7 Numerical experiments

In this section, we carry out experiments on the Wasserstein independence test problem on a synthetic
dataset, CIFAR101 (Krizhevsky et al., 2009) and Wisconsin breast cancer dataset2 (Dua & Graff, 2017).
We compare the proposed modified Hungarian algorithm with the exact algorithm—Hungarian algorithm,
and the approximation algorithm—Sinkhorn algorithm. The numerical results validate the computational
complexity of the modified Hungarian algorithm, and show the favorability of applying the proposed algo-
rithm over the Hungarian algorithm and Sinkhorn algorithm. The performance is evaluated by the number
of numerical operations here. We relegate the results of the running time to the Appendix.

7.1 Experiment setting

Our algorithm is adaptive to any metric. The foregoing experiments are based on the lp norm-based metric:
d((xi, yj), (xk, yl)) = ∥xi − xk∥p + ∥yj − yl∥p. More specifically, we examine how the modified Hungarian
algorithm, the Hungarian algorithm and the Sinkhorn algorithm perform when p = 1 and p = 2. We
create one dependent case and one independent case with different sample sizes for each dataset and run the
algorithms on each case 10 times. We plot the worst, best and average number of numerical operations for
each case.

Synthetic data: Suppose that there are independent variables X ∼ N(5110, 30I10), where 110 is a 10-
dimensional vector with all ones and I10 is the identity matrix; and Y = (Y1, .., Y25)T , where Yi’s are
independent and follow Unif(10, 20). We calculate the empirical Wasserstein distance in (1) independent

1https://www.cs.toronto.edu/~kriz/cifar.html
2https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

9

https://www.cs.toronto.edu/~kriz/cifar.html
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)


Under review as submission to TMLR

2.0 2.5 3.0 3.5

ln(sample size)
4

6

8

10

12

14

16

18

20

ln
(#

op
er

at
io

n)
dependent case, p = 1

2.0 2.5 3.0 3.5

ln(sample size)
4

6

8

10

12

14

16

18

20
dependent case, p = 2

2.0 2.5 3.0 3.5

ln(sample size)
4

6

8

10

12

14

16

18

20
independent case, p = 1

2.0 2.5 3.0 3.5

ln(sample size)
4

6

8

10

12

14

16

18

20
independent case, p = 2

modified Hungarian average modified Hungarian best modified Hungarian worst Hungarian average Hungarian best Hungarian worst

Figure 5: Comparison with the Hungarian algorithm on Wisconsin breast cancer data
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Figure 6: Comparison with the Sinkhorn algorithm on synthetic data

case: between X and Y ; (2) dependent case: between X and Z (where Z = X1 + Y1, X1 is the first 5
coordinates of X, Y1 is the first 5 coordinates of Y ).

CIFAR10: Each image in CIFAR10 contains 32 × 32 pixels, and each pixel is composed of 3 color channels.
Each image is essentially a 3072-dimensional vector. Then, we rescale the vector components to [0, 1].
Suppose X ∈ R3072 is the distribution generated uniformly from the images of classes: airplane, automobile,
bird, cat, and deer; Y ∈ R3072 is the distribution generated uniformly from the images of other five classes.
We calculate the empirical Wasserstein distance in (1) independent case: between X and Y1 (where Y1 is the
first 1536 coordinates of Y ); (2) dependent case: between X and Z (where Z = X2/2 + Y1/2, X2 is the last
1536 coordinates of X, Y1 is the first 1536 coordinates of Y ).

Breast cancer data: There are 569 instances, and each instance possesses 30 features. Each instance is a
30-dimensional vector, and we rescale the components to [0, 1]. There are two classes of instances: benign
and malignant. Let X ∈ R30 be the distribution generated uniformly from the benign class, and Y ∈ R30 be
the distribution generated uniformly from the malignant class. We calculate empirical Wasserstein distance
in (1) independent case: between X1 and Y2 (where X1 is the first 5 coordinates of X, Y2 the last 25
coordinates of Y ); (2) dependent case: between X and Z (where Z = X1 ∗ Y1, X1 is the first 5 coordinates
of X, Y1 is the first 5 coordinates of Y , ∗ means the coordinate-wise product).

7.2 Comparison with the Hungarian algorithm

We compare the modified Hungarian algorithm with the classic Hungarian algorithm. The results are pre-
sented in Figure 3, 4, 5. The figures illustrate that the proposed algorithm gains a factor n in computational
complexity when solving the proposed special type of OT problem. To be more specific, notice that the
slope of ln(number of numerical operations) over ln(sample size) indicates the order of the associated algo-
rithm, and the slope of our algorithm is around 5 while the slope of the Hungarian algorithm is around 6.
This observation implies that the order of applying our algorithm is O(n5) while the order of applying the
Hungarian algorithm is O(n6). Such observations are consistent with our theoretical results.
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Figure 7: Comparison with the Sinkhorn algorithm on CIFAR10
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Figure 8: Comparison with the Sinkhorn algorithm on Wisconsin breast cancer data

7.3 Comparison with the Sinkhorn algorithm

We compare the modified Hungarian algorithm with the Sinkhorn algorithm. Among the state-of-the-art
approximation solvers for OT problems, the first-order approximation algorithms (Dvurechensky et al., 2018;
Lin et al., 2019; Guo et al., 2020) are mainly employed to solve the balanced case (m = n). The Sinkhorn
algorithm could deal with the unbalanced scenario (m ̸= n) and is widely used in all kinds of OT-related
models. Therefore, we choose the Sinkhorn algorithm as the baseline and then investigate the performance of
the Sinkhorn algorithm in the Wasserstein-distance-based independence test problem. When we implement
the Sinkhorn algorithm, we set the regularization parameter as 0.1 and the accuracy as 0.0001.

The results are presented in Figure 6, 7, 8. One may observe that for almost all instances, the total number
of numerical operations of the modified Hungarian algorithm is less than the Sinkhorn algorithm. Moreover,
the performance of the modified Hungarian algorithm has a lower variance than the Sinkhorn algorithm. In
conclusion, the modified Hungarian algorithm outperforms the Sinkhorn algorithm.

8 Discussion

A modified Hungarian algorithm is developed to efficiently solve a wide range of OT problems. Theoretical
analysis and numerical experiments demonstrate that the proposed algorithm compares favorably with the
Hungarian algorithm and the Sinkhorn algorithm. In addition to the computational aspects, broad applica-
tions are explored, including the Wasserstein-distance-based independence test, the one-to-many assignment
problem and the many-to-many assignment problem. The many-to-many assignment problem closely relates
to practical problems involving service assignment problems (Ng et al., 2008), sensor networks (Bhardwaj
& Chandrakasan, 2002), and access control (Ahn & Hu, 2007). Future work along this line is to apply the
proposed algorithm to problems involving engineering and control. Also, there is some possibility of applying
the proposed algorithm to some unsupervised learning problems. For example, the clustering problem could
be formulated as an OT problem (Genevay et al., 2019). Assume that there are n clusters and m samples
in total, and each cluster has mj samples. If we want to identify the cluster assignment to minimize the
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‘distance’ between cluster ‘centers’ and the associated assigned samples, we are solving the special type of
OT problem in this paper. The future work along this line may be to find a scheme to determine ‘distance’
and ‘centers’ to promise desirable model performances.
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A Appendix

A.1 Proof of proposition in Section 1

Proposition 2. The optimization problem (2) is equivalent to the optimization problem (3).

Proof. We first consider the following two optimization problems (7), (8):

min
X1∈U1

m∑
i=1

m∑
j=1

X1
ijC‡

ij , U1 =

X1
ij ≥ 0

∣∣∣∣ m∑
j=1

X1
ij = 1

m
,

m∑
i=1

X1
ij = 1

m

 . (7)

where C‡ is an m × m matrix generated by duplicating the jth column of C mj times:

C‡
it =

{
Ci1 1 ≤ t ≤ m1,

Cij m1 + · · · + mj−1 + 1 ≤ t ≤ m1 + · · · + mj , 2 ≤ j ≤ n
.

min
X‡∈U‡

m∑
i=1

m∑
j=1

1
m

X‡
ijC‡

ij , U‡ =

X‡
ij = {0, 1}

∣∣∣∣ m∑
j=1

X‡
ij = 1,

m∑
i=1

X‡
ij = 1

 , (8)

Then, we denote the objective functions of problems (2), (3), (7) and (8) by f ′(X ′), f(X), f1(X1), and
f‡(X‡), respectively.

Firstly, we prove (2) ⇐⇒ (7).
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On one hand, for any X1 ∈ U1, if we let

X ′
ij =

m1∑
t=1

X1
it, j = 1,

X ′
ij =

m1+···+mj∑
t=m1+···+mj−1+1

X1
it, 2 ≤ j ≤ n,

then we have
X ′

ij ≥ 0,

n∑
j=1

X ′
ij =

m1∑
t=1

X1
it +

m1+···+mj∑
t=m1+···+mj−1+1

X1
it =

m∑
t=1

X1
it = 1

m
,

m∑
i=1

X ′
ij =

m∑
i=1

m1∑
t=1

X1
it = m1

m
, j = 1,

m∑
i=1

X ′
ij =

m∑
i=1

m1+···+mj∑
t=m1+···+mj−1+1

X1
it = mj

m
, 2 ≤ j ≤ n.

Thus, X ′ ∈ U ′.

For the objective functions, we have the following:

f ′(X ′) =
m∑

i=1

n∑
j=1

X ′
ijCij =

m∑
i=1

 m1∑
t=1

X1
itC

1
it +

m1+···+mj∑
t=m1+···+mj−1+1

X1
itC

1
it

 =
m∑

i=1

m∑
t=1

X1
itC

1
it = f1(X1).

On the other hand, for any X ′ ∈ U , if we let

X1
it =

{
X ′

i1/m1 1 ≤ t ≤ m1

X ′
ij/mj m1 + · · · + mj−1 + 1 ≤ t ≤ m1 + · · · + mj , 2 ≤ j ≤ n,

then we have
X1

it ≥ 0,

m∑
t=1

X1
it =

n∑
j=1

X ′
ij

mj
mj =

n∑
j=1

X ′
ij = 1

m
,

n∑
i=1

X1
it =

n∑
i=1

X ′
ij

mj
= 1

mj

n∑
i=1

X ′
ij = 1

m
.

Thus, X1 ∈ U1.

For the objective functions, we have the following:

f1(X1) =
m∑

i=1

m∑
t=1

X1
itC

1
it =

m∑
i=1

n∑
j=1

X ′
ij

mj
Citmj = f ′(X ′).

Hence, (2) ⇐⇒ (7).

By Birkhoff’s theorem, we know (7) ⇐⇒ (8). Therefore, we have (2) ⇐⇒ (8).

Similarly, for any X‡ ∈ U‡, if we let

Xij =
m1∑
t=1

X‡
it, j = 1,
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Xij =
m1+···+mj∑

t=m1+···+mj−1+1
X‡

it, 2 ≤ j ≤ n,

then we have X ∈ U and f‡(X‡) = f(X).

For any X ∈ U , if we let

X‡
it =

{
Xi1/m1, 1 ≤ t ≤ m1

Xij/mj m1 + · · · + mj−1 + 1 ≤ t ≤ m1 + · · · + mj , 2 ≤ j ≤ n

then we have X‡ ∈ U‡ and f‡(X‡) = f(X).

Therefore, (3) ⇐⇒ (8).

In conclusion, we have (3) ⇐⇒ (8) ⇐⇒ (2).

A.2 Proof of Theorem 1

Proof. Denote the edge e ∈ E by e = (ev1 , ev2). Let PM ′ be any perfect pseudo-matching in G (not
necessarily in the equality graph El). And vi

1, i = 1, · · · , m; vj
2, j = 1, · · · , n are nodes from V1 and V2,

respectively. Since vi
1 ∈ V1 is covered exactly once by PM ′, and vj

2 ∈ V2 is covered exactly mj times by
PM ′, we have

w(PM ′) =
∑

e∈P M ′

w(e) ≤
∑

e∈P M ′

(l(ev1) + l(ev2)) =
m∑

i=1
l(vi

1) +
n∑

j=1
mj l(vj

2),

where the first inequality comes from the definition of feasible labeling.

Thus,
∑m

i=1 l(vi
1) +

∑n
j=1 mj l(vj

2) is the upper bound of the weight of any perfect pseudo-matching. Then
let PM be a perfect pseudo-matching in the equality graph El, we have

w(PM) =
∑

e∈P M

w(e) =
m∑

i=1
l(vi

1) +
n∑

j=1
mj l(vj

2).

Hence w(PM ′) ≤ w(PM), and PM is the maximum weighted pseudo-matching.

A.3 Proof of Proposition 1

Proof. We denote the objective functions of problems (4) and (5) by g∗(X∗), and g†(X†), respectively.

On one hand, for any X† ∈ U†, if we let

X∗
ij =

n1∑
t=1

X†
tj , i = 1,

X∗
ij =

n1+···+ni∑
t=n1+···+ni−1+1

X†
tj , 2 ≤ i ≤ m,

then we have
X∗

ij ≥ 0,

m∑
i=1

X∗
ij =

n1∑
t=1

X†
tj +

n1+···+ni∑
t=n1+···+ni−1+1

X†
tj =

M∑
t=1

X†
tj = mj

M
,

n∑
j=1

X∗
ij =

n∑
j=1

n1∑
t=1

X†
tj = n1

M
, i = 1,
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Figure 9: Comparison with the Hungarian algorithm on synthetic data w.r.t. time

m∑
i=1

X∗
ij =

m∑
i=1

n1+···+ni∑
t=n1+···+ni−1+1

X†
it = ni

m
, 2 ≤ i ≤ m.

Thus, X∗ ∈ U∗.

For the objective function, we have the following:

g∗(X∗) =
M∑

i=1

n∑
j=1

X∗
ijCij =

n∑
j=1

 n1∑
t=1

X†
tjCtj +

n1+···+ni∑
t=n1+···+ni−1+1

X†
itCit

 =
n∑

j=1

M∑
t=1

X†
itC

†
it = g†(X†).

On the other hand, for any X∗ ∈ U∗, if we let

X†
tj =

{
X∗

1j/n1, 1 ≤ t ≤ n1

X∗
ij/ni n1 + · · · + ni−1 + 1 ≤ t ≤ n1 + · · · + ni, 2 ≤ i ≤ m

.

then we have
X†

ij ≥ 0,

n∑
j=1

X†
ij =

n∑
j=1

X∗
ij

ni
= ni

M
,

M∑
i=1

X†
ij =

M∑
i=1

X∗
ij

ni
ni =

m∑
i=1

X∗
ij = mj

M
.

Thus, X† ∈ U†.

For the objective function, we have the following:

g†(X†) =
M∑

i=1

n∑
j=1

X†
ijC†

ij =
n∑

j=1

m∑
i=1

X∗
ij

ni
Citni = g∗(X∗).

Hence, (4) ⇐⇒ (5).

A.4 Experiment results w.r.t. running time

We run the Hungarian algorithm code from package ‘scipy’ in Python, modify the Sinkhorn algorithm code
according to package ‘POT’, and implement the modified Hungarian algorithm. We record the running time.
Figure 9, 10, 11,12, 13, 14 are experiment results w.r.t. the running time.

When the sample size is small, our algorithm may be slower than the Hungarian algorithm. However, as
the sample size increases, our algorithm becomes more efficient than the Hungarian algorithm. In some
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Figure 10: Comparison with the Hungarian algorithm on CIFAR10 w.r.t. time
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Figure 11: Comparison with the Hungarian algorithm on Wisconsin cancer data w.r.t. time

cases, the Sinkhorn algorithm may be faster than the modified Hungarian algorithm. However, the modified
Hungarian algorithm still outperforms the Sinkhorn algorithm on average w.r.t. running time.

In theory, our proposed algorithm will compare more favorably if all algorithms are implemented in a low-level
language, such as C++.
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Figure 12: Comparison with the Sinkhorn algorithm on synthetic w.r.t. time
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Figure 13: Comparison with the Sinkhorn algorithm on CIFAR10 w.r.t. time
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Figure 14: Comparison with the Sinkhorn algorithm on Wisconsin cancer data w.r.t. time
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