
Under review as a conference paper at ICLR 2021

VILNMN: A NEURAL MODULE NETWORK APPROACH
TO VIDEO-GROUNDED LANGUAGE TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural module networks (NMN) have achieved success in image-grounded tasks
such as Visual Question Answering (VQA) on synthetic images. However, very
limited work on NMN has been studied in the video-grounded language tasks.
These tasks extend the complexity of traditional visual tasks with the additional vi-
sual temporal variance. Motivated by recent NMN approaches on image-grounded
tasks, we introduce Visio-Linguistic Neural Module Network (VilNMN) to model
the information retrieval process in video-grounded language tasks as a pipeline of
neural modules. VilNMN first decomposes all language components to explicitly
resolve any entity references and detect corresponding action-based inputs from
the question. The detected entities and actions are used as parameters to instantiate
neural module networks and extract visual cues from the video. Our experiments
show that VilNMN can achieve promising performance on two video-grounded
language tasks: video QA and video-grounded dialogues.

1 INTRODUCTION

Vision-language tasks have been studied to build intelligent systems that can perceive information
from multiple modalities, such as images, videos, and text. Extended from imaged-grounded tasks,
e.g. (Antol et al., 2015), recently Jang et al. (2017); Lei et al. (2018) propose to use video as the
grounding features. This modification poses a significant challenge to previous image-based models
with the additional temporal variance through video frames. Recently Alamri et al. (2019) further
develop video-grounded language research into the dialogue domain. In the proposed task, video-
grounded dialogues, the dialogue agent is required to answer questions about a video over multiple
dialogue turns. Using Figure 1 as an example, to answer questions correctly, a dialogue agent has to
resolve references in dialogue context, e.g. “he” and “it”, and identify the original entity, e.g. “a boy"
and “a backpack". In addition, the dialogue agent also needs to identify the actions of these entities,
e.g. “carrying a backpack” to retrieve information along the temporal dimension of the video.

Current state-of-the-art approaches to video-grounded language tasks, e.g. (Le et al., 2019b; Fan et al.,
2019) have achieved remarkable performance through the use of deep neural networks to retrieve
grounding video signals based on language inputs. However, these approaches often assume the
reasoning structure, including resolving references of entities and detecting the corresponding actions
to retrieve visual cues, is implicitly learned. An explicit reasoning structure becomes more beneficial
as the tasks complicates in two scenarios: video with complex spatial and temporal dynamics, and
language inputs with sophisticated semantic dependencies, e.g. questions positioned in a dialogue
context. In these cases, it becomes challenging to interpret model outputs, assess model reasoning
capability, and identify errors in neural network models.

Similar challenges have been observed in image-grounded tasks in which deep neural networks often
exhibit shallow understanding capability as they simply exploit superficial visual cues (Agrawal et al.,
2016; Goyal et al., 2017; Feng et al., 2018; Serrano & Smith, 2019). Andreas et al. (2016b) propose
neural model networks (NMNs) by decomposing a question into sub-sequences called program
and assembling a network of neural operations. Motivated by this line of research, we propose an
NMN approach to video-grounded language tasks. Our approach benefits from integrating neural
networks with a compositional reasoning structure to exploit low-level information signals in video.
An example of the reasoning structure can be seen on the right side of Figure 1.
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Video
Caption: a boy and a man walk to the room. The boy 

carries his backpack while the man…

Visual:  ...             

Audio:  ... 

Question: what is he doing while carrying it? 

find(he)

find(it)

Summarize()

where(a backpack)

where(a boy)

when(while 
carrying 

it)

describe
(what)

Dialog History
Question: how many people are in the video? 
Answer: there are a boy and a man
Question: what is the boy doing? 
Answer: the boy walks downstairs and carries a backpack   

Predicted Answer: he is cleaning a mirror . 

...

...

Dialogue Understanding

Video Understanding

Figure 1: A sample video-grounded dialogue: Inputs are question, dialogue history, video with caption, visual
and audio input, and the output is the answer to the question. On the right side, we demonstrate an example
symbolic reasoning process a dialogue agent can perform to extract textual and visual clues for the answer.

We propose Visio-Linguistic Neural Module Network (VilNMN) for video-grounded language tasks.
VilNMN leverages entity-based dialogue representations as inputs to neural operations on spatial
and temporal-level visual features. Previous approaches exploit question-level and token-level
representations to extract question-dependent information from video (Jang et al., 2017; Fan et al.,
2019; Le et al., 2019b). In complex videos with many entities or actions, these approaches might not
be optimal to locate the right features. To exploit object-level features, VilNMN is trained to identify
relevant entities first, and then to extract the temporal steps using detected actions of these entities.

VilNMN is also trained to resolve any co-references in language inputs, e.g. questions in a dialogue
context, to identify the original entities. Previous approaches to video-grounded dialogues often
obtain question global representations in relation to dialogue context. These approaches might be
suitable to represent general semantics in open-domain or chit-chat dialogues (Serban et al., 2016;
Li et al., 2016) but they are not ideal to detect fine-grained entity-based information as the dialogue
context evolves over time.

In summary, we introduce a neural module network approach to video-grounded language tasks
through a reasoning pipeline with entity and action representations applied on the spatio-temporal
dynamics of video. To cater to complex semantic inputs in language inputs, e.g. dialogues, our
approach also allows models to resolve entity references to incorporate question representations
with fine-grained entity information. In our evaluation, we achieve competitive performance on the
large-scale benchmark Audio-visual Scene-aware Dialogues (AVSD) (Alamri et al., 2019). We also
adapt VilNMN for video QA and obtain the state-of-the-art on the TGIF-QA benchmark (Jang et al.,
2017) across all tasks. Our experiments and ablation analysis indicate a potential direction to develop
compositional and interpretable neural models for video-grounded language tasks.

2 RELATED WORK

Video QA has been a proxy for evaluating a model’s understanding capability of language and video
and the task is treated as a visual information retrieval task. Jang et al. (2017); Gao et al. (2018);
Jiang et al. (2020) propose to learn attention guided by question global representation to retrieve
spatial-level and temporal-level visual features. Li et al. (2019); Fan et al. (2019); Jiang & Han (2020)
model interaction between all pairs of question token-level representations and temporal-level features
of input video. Extended from video QA, video-grounded dialogue is an emerging task that combines
dialogue response generation and video-language understanding research. Nguyen et al. (2018); Hori
et al. (2019); Hori et al. (2019); Sanabria et al. (2019); Le et al. (2019a;b) extend traditional QA
models by adding dialogue history neural encoders. Kumar et al. (2019) enhances dialogue features
with topic-level representations to express the general topic in each dialogue. Sanabria et al. (2019)
considers the task as a video summary task and concatenates question and dialogue history into a
single sequence and proposes to transfer parameter weights from a large-scale video summary model.
Different from prior work, we dissect the question sequence and explicitly detect and decode any
entities and their references. Our models also benefit from the additional insights on how models
learn to use component linguistic inputs for extraction of visual information.
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Figure 2: VilNMN includes 4 major components: (1) encoders that encode dialogue and video components
into continuous vector representations; (2) question parsers that parse question of the current dialogue turn into
compositional programs for dialogue and video understanding; (3) an inventory of neural modules that operate
on dialogue and video input components; and (4) a response decoder that generates natural language sequence
using dialogue-based and video-based execution outputs.

Extending from the line of research on neural semantic parsing (Jia & Liang, 2016; Liang et al.,
2017), Andreas et al. (2016b;a) introduce NMNs to address visual QA by decomposing questions
into linguistic sub-structures, known as programs, to instantiate a network of neural modules. NMN
models have achieved significant success in synthetic image domains where complex reasoning
process is required (Johnson et al., 2017b; Hu et al., 2018; Han et al., 2019). Our work is related to the
recent work that extends NMN models to real data domains. For instance, Kottur et al. (2018); Jiang &
Bansal (2019); Gupta et al. (2020) extend NMNs to visual dialogues and reading comprehension tasks.
In this paper, we introduce a new approach that exploits NMN to learn dependencies between the
lexical composition in language inputs and the spatio-temporal dynamics in videos. This is not present
in prior NMN models which are designed to apply on a two-dimensional image input without temporal
variance. In video represented as sequence of images, each represented by object-level features,
applying prior NMN models require aggregating frame-level features, e.g. through average pooling,
resulting in potential loss of information. An alternative solution is a late-fusion method in which
an NMN model performs reasoning structure programs on sampled video frames only. An object
tracking mechanism or attention mechanism is then used to fuse the output representations. Instead,
we propose to construct a reasoning structure with multi-step interaction between the space-time
information in video with entity-action detected in text.

3 METHOD

In this section, we present the design of our model, called Visio-Linguistic Neural Module Networks
(VilNMN). An overview of the model can be seen in Figure 2. The input to the model consists of a
dialogue D which is grounded on a video V . The input components include the question of current
dialogue turnQ, dialogue historyH, and the features of input video, including visual and audio input.
The output is a dialogue response, denoted asR. Each text input component is a sequence of words
w1, ..., wm ∈ Vin, the input vocabulary. Similarly, the output response R is a sequence of tokens
w1, ..., wn ∈ Vout, the output vocabulary.

To learn compositional programs, we follow Johnson et al. (2017a); Hu et al. (2017) and consider
program generation as a sequence-to-sequence task. Different from prior approaches, our models are
trained to fully generate the parameters of component modules in text. This approach is appropriate
as reasoning programs in real data domains such as current video-grounded dialogues are usually
shorter than those for synthetic data (Johnson et al., 2017a) and thus, program generation takes
less computational cost. However, module parameters, i.e. entities and actions, contain much
higher semantic variance than synthetic data, and our approach facilitates better transparency and
interpretability. We adopt a simple template “〈param1〉〈module1〉〈param2〉〈module2〉...” as the
target sequence. The resulting target sequences for dialogue and video understanding programs are
sequences Pdial and Pvid respectively.
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Table 1: Description of the modules and their functionalities. We denote P as the parameter to instantiate each
module, H as the dialogue history, Q as the question of the current dialogue turn, and V as video input.

Module Input Output Description
find P, H Hent For related entities in question, select the relevant tokens from dialogue history
summarize Hent,Q Qctx Based on contextual entity representations, summarise the question semantics
where P,V Vent Select the relevant spatial position corresponding to original (resolved) entities
when P,Vent Vent+act Select the relevant entity-aware temporal steps corresponding to the action parameter
describe P,Vent+act Vctx Select visual entity-action features based on non-binary question types
exist Q,Vent+act Vctx Select visual entity-action features based on binary (yes/no) question types

3.1 ENCODERS

Text Encoder. A text encoder is shared to encode text inputs, including dialogue history, questions,
and captions. The text encoder converts each text sequence X = w1, ..., wm into a sequence of
embeddings X ∈ Rm×d. We use a trainable embedding matrix to map token indices to vector
representations of d dimensions through a mapping function φ. These vectors are then integrated
with ordering information of tokens through a positional encoding function with layer normalization
(Ba et al., 2016; Vaswani et al., 2017). The embedding and positional representations are combined
through element-wise summation. The encoded dialogue history and question of the current turn are
defined as H = Norm(φ(H) + PE(H)) ∈ RLH×d and Q = Norm(φ(Q) + PE(Q)) ∈ RLQ×d.

To decode program and response sequences auto-repressively, a special token “_sos” is concatenated
as the first token w0. The decoded token w1 is then appended to w0 as input to decode w2 and so on.
Similarly to input source sequences, at decoding time step j, the input target sequence is encoded to
obtain representations for dialogue understanding program Pdial|j−1

0 , video understanding program
Pvid|j−1

0 , and system response R|j−1
0 . We combine vocabulary of input and output sequences and

share the embedding matrix E ∈ R|V|×d where V = Vin ∩ Vout.

Video Encoder. To encode video input, we use pre-trained models to extract visual features and
audio features. We denote F as the sampled video frames or video clips. For object-level visual
features, we denote O as the maximum number of objects considered in each frame. The resulting
output from a pretrained object detection model is Zobj ∈ RF×O×dvis . We concatenate each object
representation with the corresponding coordinates projected to dvis dimensions. We also make use of
a CNN-based pre-trained model to obtain features of temporal dimension Zcnn ∈ RF×dvis . The audio
feature is obtained through a pretrained audio model, Zaud ∈ RF×daud . We passed all video features
through a linear transformation layer with ReLU activation to the same embedding dimension d.

3.2 NEURAL MODULES

We introduce neural modules that are used to assemble an executable program constructed by the
generated sequence from question parsers. We provide an overview of neural modules in Table 1 and
demonstrate dialogue understanding and video understanding modules in Figure 3 and 4 respectively.
Each module parameter, e.g. “a backpack”, is extracted from the parsed program. For each parameter,
we denote P ∈ Rd as the average pooling of component token embeddings.

find(P,H)→Hent. This module handles entity tracing by obtaining a distribution over tokens in
dialogue history. We use an entity-to-dialogue-history attention mechanism applied from an entity
Pi to all tokens in dialogue history. Any neural network that learn to generate attention between
two tensors is applicable .e.g. (Bahdanau et al., 2015; Vaswani et al., 2017). The attention matrix
normalized by softmax, Afind,i ∈ RLH , is used to compute the weighted sum of dialogue history
token representations. The output is combined with entity embedding Pi to obtain contextual entity
representation Hent,i ∈ Rd.

summarize(Hent,Q)→Qctx. For each contextual entity representation Hent,i, i = 1, ..., Nent, it
is projected to LQ dimensions and is combined with question token embeddings through element-
wise summation to obtain entity-aware question representation Qent,i ∈ RLQ×d. It is fed to a
one-dimensional CNN with max pooling layer (Kim, 2014) to obtain a contextual entity-aware
question representation. We denote the final output as Qctx ∈ RNent×d.

While previous models usually focus on global or token-level dependencies (Hori et al., 2019; Le
et al., 2019b) to encode question features, our modules compress fine-grained question representations
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Figure 3: find and summarize neural modules for dialogue understanding

at entity level. Specifically, find and summarize modules can generate entity-dependent local and
global representations of question semantics. We show that our modularized approach can achieve
better performance and transparency than traditional approaches to encode dialogue context (Serban
et al., 2016; Vaswani et al., 2017) (Section 4).

where(P,V)→Vent. Similar to the find module, this module handle entity-based attention to
the video input. However, the entity representation P in this case is parameterized by the original
entity in dialogue rather than in question (See Section 3.3 for more description). Each entity Pi is
stacked to match the number of sampled video frames/clips F . An attention network is used to obtain
entity-to-object attention matrix Awhere,i ∈ RF×O. The attended feature are compressed through
weighted sum pooling along the spatial dimension, resulting in Vent,i ∈ RF×d, i = 1, ..., Nent.

when(P,Vent)→Vent+act. This module follows a similar architecture as the where module.
However, the action parameter Pi is stacked to match Nent dimensions. The attention matrix
Awhen,i ∈ RF is then used to compute the visual entity-action representations through weighted sum
along the temporal dimension. We denote the output for all actions Pi as Vent+act ∈ RNent×Nact×d

describe(P,Vent+act)→Vctx. This module is a linear transformation to compute Vctx =
Wdesc

T [Vent+act;Pstack] ∈ RNent×Nact×d where Wdesc ∈ R2d×d, Pstack is the stacked representa-
tions of parameter embedding P to Nent ×Nact dimensions, and [; ] is the concatenation operation.

The exist module is a special case of describe module where the parameter P is the average
pooled question embeddings. The above where module is applied to object-level features. For
temporal-based features such as CNN-based and audio features, the same neural operation is applied
along the temporal dimension. Each resulting entity-aware output is then incorporated to frame-level
features through element-wise summation (Please refer to Appendix A.1).
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Figure 4: where and when neural modules for video understanding

An advantage of our architecture is that it separates dialogue and video understanding. We adopt a
transparent approach to solve linguistic entity references during the dialogue understanding phase.
The resolved entities are fed to the video understanding phase to learn entity-action dynamics in
video. We show that our approach is robust when dialogue evolves to many turns and video extends
over time (Please see Section 4 and Appendix C).

3.3 DECODERS

Question parsers. The parsers decompose questions into sub-sequences to construct compositional
reasoning programs for dialogue and video understanding. Each parser is an attention-based Trans-
former decoder. Given the encoded question Q, to decode program for dialogue understanding, the
contextual signals are integrated through 2 attention layers: one attention on previously generated
tokens, and the other on question tokens.

To generate programs for video understanding, the contextual signals are learned and incorporated
in a similar manner. However, to exploit dialogue contextual cues, the execution output of dialogue
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understanding neural modules Qctx (See Section 3.2) is incorporated to each vector in Pvid through
an additional attention layer. This layer integrates the entity-dependent contextual representations
from Qctx to explicitly decode the original entities for video understanding programs.

Response Decoder. System response is decoded by incorporating the dialogue context and video
context outputs from the corresponding reasoning programs to target token representations. We
follows a vanilla Transformer decoder architecture (Le et al., 2019b), which consists of 3 attention
layers: self-attention to attend on existing tokens, attention to Qctx from dialogue understanding
program execution, and attention to Vctx from video understanding program execution.

Optimization. We use the standard cross-entropy losses for prediction of dialogue and video
understanding programs and output responses. We optimize models by joint training to minimize:
L = αLdial + βLvid + Lres = α

∑
j − log(Pdial(Pdial,j)) + β

∑
l− log(Pvideo(Pvideo,l)) +

∑
n− log(Pres(Rn))

where P is the probability distribution of an output token. The probability is computed by passing
output representations from the parsers and decoder to a linear layer W ∈ Rd×V with softmax
activation. We share the parameters between W and embedding matrix E. The hyper-parameters
α ≥ 0 and β ≥ are fine-tuned during training.

4 EXPERIMENTS

Datasets. We use the AVSD benchmark from the 7th Dialogue System Technology Challenge
(DSTC7) (Hori et al., 2019). In the experiments with AVSD, we consider two settings: one with video
summary and one without video summary as input. In the setting with video summary, the summary
is concatenated to the dialogue history before the first dialogue turn. We also adapt VilNMN to the
video QA benchmark TGIF-QA (Jang et al., 2017). Different from AVSD, TGIF-QA contains a
diverse set of tasks, which address different visual aspects in video.

Training Procedure. We follow prior approaches (Hu et al., 2017; 2018; Kottur et al., 2018) by
obtaining the annotations of the programs through a language parser (Hu et al., 2016) and a reference
resolution model (Clark & Manning, 2016). During training, we directly use these soft labels of
programs and the given ground-truth responses to train the models. The labels are augmented with
label smoothing technique (Szegedy et al., 2016). During inference time, we generate all programs
and responses from given dialogues and videos. We run beam search to enumerate programs for
dialogue and video understanding and dialogue responses. (Please see Appendix B for more details).

AVSD Results. We evaluate model performance by the objective metrics based on word overlapping,
including BLEU (Papineni et al., 2002), METEOR (Banerjee & Lavie, 2005), ROUGE-L (Lin,
2004), and CIDEr (Vedantam et al., 2015), between each generated response and 6 reference gold
responses. As seen in Table 2, our models outperform most of existing approaches. In particular,
the performance of our model in the setting without video summary input is comparable to the
GPT-based RLM (Li et al., 2020) with much smaller model size. The Student-Teacher baseline (Hori
et al., 2019) specifically focuses on the performance gap between models with and without textual
signals from video summary through a dual network of expert and student models. Instead, VilNMN
reduces this performance gap through efficiently extracting relevant visual/audio information based on
fine-grained entity and action signals. We also found that VilNMN applied on object-level features is
competitive to the model applied on CNN-based features. The flexibility of VilNMN neural programs
can also be seen in the experiment when the video understanding program is applied on the caption
input as a visual feature.

Ablation Analysis. We experiment with several variants of VilMNM (either NMN or non-NMN-
based) in the setting with CNN based features and video summary input As can be seen in Table
3, our approach to video and dialogue understanding through compositional reasoning programs
exhibits better performance than non-compositional approaches. Compared to the approaches that
directly process frame-level features in videos (Row B) or token-level features in dialogues (Row C,
D), our full VilNMN (Row A) considers entity-level and action-level information extraction and thus,
avoids unnecessary and possibly noisy extraction. Compared to the approaches that obtain dialogue
contextual cues through a hierarchical encoding architecture (Row E, F) such as (Serban et al., 2016;
Hori et al., 2019), VilNMN directly addresses the challenge of entity references in dialogues. As
mentioned, we hypothesize that the hierarchical encoding architecture is more appropriate for less
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Table 2: AVSD test results: The visual features are: I (I3D), ResNeXt-101 (RX), Faster-RCNN (FR), C (caption
as a video input). The audio features are: VGGish (V), AclNet (A). Xon PT denotes models using pretrained
weights and/or additional finetuning. Best and second best results are bold and underlined respectively.

Model PT Visual Audio BLEU4 METEOR ROUGE-L CIDEr
Audio/Visual only (without Video Summary/Caption)
Baseline (Hori et al., 2019) - I - 0.305 0.217 0.481 0.733
Baseline (Hori et al., 2019) - I V 0.309 0.215 0.487 0.746
Baseline+GRU+Attn. (Le et al., 2019a) - I V 0.315 0.239 0.509 0.848
FGA (Schwartz et al., 2019) - I V - - - 0.806
JMAN (Chu et al., 2020) - I - 0.309 0.240 0.520 0.890
Student-Teacher (Hori et al., 2019) - I V 0.371 0.248 0.527 0.966
MTN (Le et al., 2019b) - I - 0.343 0.247 0.520 0.936
MTN (Le et al., 2019b) - I V 0.368 0.259 0.537 0.964
MSTN (Lee et al., 2020) - I V 0.379 0.261 0.548 1.028
RLM-GPT2 (Li et al., 2020) X I V 0.402 0.254 0.544 1.052
VilNMN - I - 0.397 0.262 0.550 1.059
VilNMN - FR - 0.388 0.259 0.549 1.040
VilNMN - - V 0.381 0.252 0.534 1.004
VilNMN - I V 0.396 0.263 0.549 1.059
Audio/Visual only (with Video Summary/Caption)
TopicEmb (Kumar et al., 2019) - I A 0.329 0.223 0.488 0.762
Baseline+GRU+Attn. (Le et al., 2019a) - I V 0.310 0.242 0.515 0.856
JMAN (Chu et al., 2020) - I - 0.334 0.239 0.533 0.941
FA+HRED (Nguyen et al., 2018) - I V 0.360 0.249 0.544 0.997
VideoSum (Sanabria et al., 2019) - RX - 0.394 0.267 0.563 1.094
VideoSum+How2 (Sanabria et al., 2019) X RX - 0.387 0.266 0.564 1.087
MSTN (Lee et al., 2020) - I V 0.377 0.275 0.566 1.115
Student-Teacher (Hori et al., 2019) - I V 0.405 0.273 0.566 1.118
MTN (Le et al., 2019b) - I - 0.392 0.269 0.559 1.066
MTN (Le et al., 2019b) - I V 0.410 0.274 0.569 1.129
VGD-GPT2 (Le & Hoi, 2020) X I V 0.436 0.282 0.579 1.194
RLM-GPT2 (Li et al., 2020) X I V 0.459 0.294 0.606 1.308
VilNMN - I - 0.421 0.277 0.574 1.171
VilNMN - FR - 0.421 0.275 0.571 1.148
VilNMN - I V 0.421 0.277 0.573 1.167
VilNMN - I+C V 0.429 0.278 0.578 1.188

Table 3: Ablation analysis of VilNMN with different model variants on the test split of the AVSD benchmark

# Model Variant BLEU4 CIDEr
A Full VilNMN 0.421 1.171
B ↪→ No video NMNs; + vanilla text→video attention 0.415 1.159
C ↪→ No dial. NMNs; + response→history attention 0.412 1.151
D ↪→ No dial. NMNs; + response→concat(history+question) attention 0.411 1.133
E ↪→ No dial. NMNs; + HREDLSTM(history) + question attn. 0.414 1.153
F ↪→ No dial. NMNs; + HREDGRU(history) + question attn. 0.415 1.138

entity-sensitive dialogues such as chit-chat and open-domain dialogues. Please see Appendix C for
additional analysis of performance breakdown by dialogue turns and video lengths.

Intepretability. A difference of VilNMN from previous approaches to video-grounded dialogues
is the model interpretability based on the predicted dialogue and video programs. From Figure 5,
we observe that in cases where predicted dialogue programs and video program match or are close
to the gold labels, the model can generate generally correct responses. In cases of wrong predicted
responses, we can further look at how the model understands the questions based on predicted
programs. In the 3rd turn of example 1, the output response is missing a minor detail as compared
to the label response because the video program fails to capture the parameter “rooftop”. These
subtle yet important details can determine whether output responses can fully address user queries.
Similarly, in example 2, the model answers the question “what room” instead of question about “an
object”. For additional qualitative analysis, please see Appendix D.

TGIF-QA Results. In TGIF-QA experiments, we report the result using the L2 loss in Count task
and accuracy in other tasks. From Table 4, VilNMN outperforms all baseline models in all tasks
by a large margin. Compared to AVSD experiments, the TGIF-QA experiments emphasize video
understanding ability of the models, removing the requirement for dialogue understanding and natural
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Turn Question Dialogue NMN Video NMN Response

3

...what are they 
doing in the scene ? 
are they on a 
rooftop ?

Predicted: 
find(they), 
find(the scene) 
→summarize()  ✘
Gold: find(they)
→summarize()

Predicted: where(two men in the 
video),where(the scene)→ when(doing in 
the scene)→ describe(what) ✘
Gold: where(two men), where(rooftop)
→when(doing in the scene)
→describe(what)

Predicted: one is washing 
a chair and the other is 
taking pictures  ✘
Gold: yes , on a second 
floor roof deck , one man is 
washing a chair , another 
man is either filming or 
taking pictures

4

does he sit in the 
chair after washing 
it ?

Predicted: find(he), 
find(the chair) 
→summarize()✓
Gold: find(he), 
find(the chair)→ 
summarize()

Predicted: where(one man in the video), 
where(a chair)→ when(sit in the chair 
after washing it)→exist() ✓
Gold: where(one man), where(a chair)→ 
when(sit in the chair after washing 
it)→exist()

Predicted: no , he does not 
sit in the chair  ✓
Gold: no he does not , there 
is a pipe with water running 
all over

Turn Question Dialogue Understanding 
Program

Video Understanding
Program

Response

3

in the door way to the 
next room, there is an 
object. what is that?

Predicted: find(the 
room), find(the 
door)→summarize()✘
Gold: summarize()

Predicted: where(what room)
→when(what is that)→exist() ✘
Gold: describe(what)

Predicted: it looks like 
he is in a living room. ✘
Gold: he went to the 
doorway for a vacuum.

4

when he gets up, does 
he have anything in 
his hand?

Predicted: find(he), 
find(his)→ 
summarize()✓
Gold:find(he), 
find(his)→ 
summarize()

Predicted: where(one person in 
the video)→when(get up, have 
anything in his hands)→ 
describe(when)✘
Gold: where(one person in the 
video)→when(get up), 
when(have anything in his 
hands)→ describe(when)

Predicted: he has a 
vacuum in his hands. ✓
Gold: he goes for the 
vacuum.

Figure 5: Intepretability of model outputs from a dialogue in the test split of the AVSD benchmark.

Table 4: Experiment results on the TGIF-QA benchmark. The visual features are: ResNet-152 (R), C3D (C),
Flow CNN from two-stream model (F), VGG (V), ResNeXt-101 (RX).

Model Visual Count
(Loss)

Action
(Acc)

Transition
(Acc)

FrameQA
(Acc)

VIS(avg) (Ren et al., 2015a) R 4.80 0.488 0.348 0.350
MCB (aggr) (Fukui et al., 2016) R 5.17 0.589 0.243 0.257
Yu et al. (Yu et al., 2017) R 5.13 0.561 0.640 0.396
ST-VQA (t) (Gao et al., 2018) R+F 4.32 0.629 0.694 0.495
Co-Mem (Gao et al., 2018) R+F 4.10 0.682 0.743 0.515
PSAC (Li et al., 2019) R 4.27 0.704 0.769 0.557
HME (Fan et al., 2019) R+C 4.02 0.739 0.778 0.538
STA (Gao et al., 2019) R 4.25 0.723 0.790 0.566
CRN+MAC (Le et al., 2019c) R 4.23 0.713 0.787 0.592
MQL (Lei et al., 2020) V - - - 0.598
QueST (Jiang et al., 2020) R 4.19 0.759 0.810 0.597
HGA (Jiang & Han, 2020) R+C 4.09 0.754 0.810 0.551
GCN (Huang et al., 2020) R+C 3.95 0.743 0.811 0.563
HCRN (Le et al., 2020) R+RX 3.82 0.750 0.814 0.559
VilNMN R 2.65 0.845 0.887 0.747
↪→ soft label programs R 1.90 0.857 0.898 0.780
↪→ - res-to-question attn. R 3.28 0.801 0.776 0.679

language generation. This is demonstrated through higher performance gaps between VilNMN with
generated programs and soft label programs as compared to ones in AVSD experiments. We also
observe that an attention layer attending to question is important during the response decoding phase
in TGIF-QA as there is no dialogue context Qctx in Video QA tasks.
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5 CONCLUSION

While conventional neural network approaches have achieved notable successes in video-grounded
dialogues and video QA, they often rely on superficial pattern learning principles between contextual
cues from questions/dialogues and videos. In this work, we introduce Visio-Linguistic Neural Module
Network (VilNMN). VilNMN consists of dialogue and video understanding neural modules, each
of which performs entity and action-level operations on language and video components. Our
comprehensive experiments on AVSD and TGIF-QA benchmarks show that our models can achieve
competitive performance while promoting a compositional and interpretable learning approach.
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A ADDITIONAL MODEL DETAILS

A.1 NEURAL MODULES ON TEMPORAL FEATURES

To adapt our neural modules to temporal features, we apply the same neural architectures in all
modules except for the where module. In object-level features, this module operates on object-based
or spatial-based level. We can apply this module to temporal-based features similarly simply by not
stacking the parameter and pooling the attended features along the temporal dimension. For an entity
parameter Pi, the attention matrix in this case is an entity-to-temporal-step matrix Awhere,i ∈ RF

and the resulting pooled feature is Vent,i ∈ Rd. Before feeding this representation to a when module,
we incorporate each Vent,i into feature of each temporal step through an MLP layer and element-wise
summation, resulting in V stack

ent,i ∈ RF×d where F is the number of sampled video frames/clips. An
overview of the where module with temporal features can be seen in Figure 6.

“a boy”

Attention

Visual Input

MLP

where(a boy)

StackingTemporal 
pooling

MLP

Figure 6: Adaptation of the where module to temporal-based features

We adapt this module in a similar manner to other temporal-level features such as audio and textual
features such as video caption. We keep the same architecture in the when module. We denote the
resulting output from the when module for all actions Pi is Vact ∈ RNact×d. We concatenate this to
the output from the previous where module Vent to obtain Vent+act ∈ R(Nent+Nact)×d. This is used
as input to the describe or exist module.

A.2 QUESTION PARSER

The parsers decompose questions into sub-sequences to construct compositional reasoning programs
for dialogue and video understanding. Each parser is an attention-based Transformer decoder.
The Transformer attention is a multi-head attention on query, key, and value tensors, denoted as
Attention(Query,Key,Value). For each token in the Query sequence , the distribution over tokens
in the Key sequence is used to obtain the weighted sum of the corresponding representations in the
Value sequence.

Attention(Query,Key, V alue) = softmax(
QueryKeyT√

dkey
)V alue ∈ RLquery×dquery

Each attention is followed by a feed-forward network applied on each position identically. We exploit
the multi-head and feed-forward architecture, which show good performance in NLP tasks such as
NMT and QA (Vaswani et al., 2017; Dehghani et al., 2019), to efficiently incorporate contextual cues
from dialogue components to parse question into reasoning programs. Given the encoded question
Q, to decode program for dialogue understanding, the contextual signals are integrated through 2
attention layers: one attention on previously generated tokens, and the other on question tokens. At
time step j, we denote the output from an attention layer as Adial,j.

A
(1)
dial = Attention(Pdial|j−1

0 , Pdial|j−1
0 , Pdial|j−1

0 ) ∈ Rj×d

A
(2)
dial = Attention(A

(1)
dial, Q,Q) ∈ Rj×d

Similarly, to generate programs for video understanding, the contextual signals are learned and
incorporated in a similar manner. However, to exploit dialogue contextual cues, the execution output
of dialogue understanding neural modules Qctx is incorporated to each vector in Pdial through an
additional attention layer. This layer integrates the resolved entity information to decode the original
entities for video understanding. It is equivalent to a reasoning process that converts the question
from its original multi-turn semantics to single-turn semantics.

A
(3)
vid = Attention(A

(2)
vid, Qctx, Qctx) ∈ Rj×d
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A.3 NON-NMN MODELS

For ablation analysis, we evaluate several variants of VilNMN, based on the following categories:

To test the contribution of our NMN approach for video understanding, we remove the parser for
video understanding program and related neural modules and replace them with pure neural network
architecture (Model B). Specifically, we remove neural modules where, when, describe, and
exist. We then directly use video feature embeddings V as Vctx as input to the original attention
layer in response decoder similarly to (Hori et al., 2019; Sanabria et al., 2019).

A(3)
res = Attention(A(2)

res , V, V ) ∈ Rj×d

To further test the contribution of NMN architecture for dialogue understanding, we similarly remove
the question parser for dialogue understanding program and neural modules find and describe.
We then directly use the dialogue history embeddings H and question embeddings Q as inputs to the
response decoder in two different ways. First, we replace the original attention on dialogue context
Qctx with two attention layers to attend on dialogue history and question sequentially (Model C). As
noted by Le et al. (2019b), question input contains much more relevant signals than dialogue history
and attention operation should be separated from the one on dialogue history.

A(2a)
res = Attention(A(1)

res , H,H) ∈ Rj×d

A(2b)
res = Attention(A(2a)

res , Q,Q) ∈ Rj×d

Alternatively, we simply concatenate dialogue and question embeddings similarly to (Hori et al.,
2019; Sanabria et al., 2019) and use it as input to the original attention layer (Model D).

A(2)
res = Attention(A(1)

res , [H;Q], [H;Q]) ∈ Rj×d

To use more sophisticated neural models for dialogue understanding, we further adopt the hierarchical
encoding architecture with question attention (Li et al., 2016; Serban et al., 2016; Hori et al., 2019).
Each dialogue turn Ht, including a pair of human utterance and system response, is processed
separately by a word-level RNN such as LSTM (Model E) or GRU (Model F). A sentence-level RNN
is used to sequentially process the last hidden states obtained previously turn by turn. The output in
each recurrent step is fed to an attention layer such as (Bahdanau et al., 2015; Vaswani et al., 2017) to
obtain question-aware representations of dialogue history.

Hword
t = RNN(Ht) ∈ Rd

Hsent
t = RNN(Hword

t ) ∈ Rd

H = [Hsent
t ]|T−1

t=1 ∈ Rd×(T−1)

Qctx = Attention(Q,H,H) ∈ RLQ×d

where T is the current dialogue turn. The output is treated as Qctx and is fed to the corresponding
attention layer in the response decoder.

B ADDITIONAL EXPERIMENT DETAILS

B.1 DATASETS

We use the AVSD benchmark from DSTC7 (Hori et al., 2019) which consists of dialogues grounded
on the Charades videos (Sigurdsson et al., 2016). Each dialogue contains up to 10 dialogue turns,
each turn consists of a question and expected response about a given video. For visual features, we
use the 3D CNN based features from a pretrained I3D model (Carreira & Zisserman, 2017) and
object-level features from a pretrained FasterRNN model (Ren et al., 2015b). The audio features are
obtained from a pretrained VGGish model (Hershey et al., 2017). In the experiments with AVSD,
we consider two settings: one with video summary and one without video summary as input. In the
setting with video summary, the summary is concatenated to the dialogue history before the first
dialogue turn. We also adapt VilNMN to the video QA benchmark TGIF-QA (Jang et al., 2017).
Different from AVSD, TGIF-QA contains a diverse set of QA tasks:

• Count: open-ended task which counts the number of repetitions of an action

15



Under review as a conference paper at ICLR 2021

• Action: multiple-choice (MC) task which asks about a certain action occurring for a fixed
number of times

• Transition: MC task which emphasizes temporal transition in video
• Frame: open-ended task which can be answered from visual contents of one of video frames

For the TGIF-QA benchmark, we use the extracted features from a pretrained ResNet model (He
et al., 2016).

Table 5: Summary of DSTC7 AVSD and TGIF-QA benchmark

# Train Val. Test

AVSD
Dialogs 7,659 1,787 1,710
Turns 153,180 35,740 13,490
Words 1,450,754 339,006 110,252

TGIFQA

Count QA 24,159 2,684 3,554
Action QA 18,428 2,047 2,274
Trans. QA 47,434 5,270 6,232
Frame QA 35,453 3,939 13,691

B.2 TRAINING DETAILS

We use a training batch size of 32 and embedding dimension d = 128 in all experiments. Where
Transformer attention is used, we fix the number of attention heads to 8 in all attention layers. In
neural modules with MLP layers, the MLP network is fixed to 2 linear layers with a ReLU activation
in between. In neural modules with CNN, we adopt a vanilla CNN architecture for text classification
(without the last MLP layer) where the number of input channels is 1, the kernel sizes are {3, 4, 5},
and the number of output channels is d. We initialize models with uniform distribution (Glorot &
Bengio, 2010). During training, we adopt the Adam optimizer (Kingma & Ba, 2015) and a decaying
learning rate Vaswani et al. (2017) where we fix the warm-up steps to 15K training steps. We employ
dropout (Srivastava et al., 2014) of 0.2 at all networks except the last linear layers of question parsers
and response decoder. We train models up to 50 epochs and select the best models based on the
average loss per epoch in the validation set.

C ADDITIONAL RESULTS

To evaluate model robustness, we report the relative performance by calculating the difference of
CIDEr in experimental settings against the most basic setting. Specifically, we compare against
performance of output responses in the first dialogue turn position (i.e. 2nd-10th turn vs. the 1st

turn), or responses grounded on the shortest video length range (video ranges are intervals of 0-10th,
10-20th percentile and so on). We report the results of the model variants A, B, and E (See the
Ablation Analysis section in the main paper and Appendix A.3 for model description). First, as can
be seen in Figure 7, for various dialogue turn positions, we observe that the original VilNMN (model
A) suffers less than model E when dialogues extend over time up the 8th turn. This explains the
contribution of dialogue understanding modules in solving entities even when the dialogues grow
longer. Secondly, as compared to model B, we observe that the Full VilNMN (model A) is less
affected as the videos grounding the dialogues grow longer. The difference is clear when the video
length increases up to 33 seconds.

We also report the absolute scores and compare model variants. In Table 6a, we compare model
variants B and E. We observe that model B generally performs better than model E in overall,
especially in higher turn positions, i.e. from the 4th turn to 8th turn. Interestingly, we note some
mixed results in very low turn position, i.e. the 2nd and 3rd turn, and very high turn position, i.e.
the 10th turn. Potentially, in very high turn position, the neural based approach such as hierarchical
RNN can better capture the global dependencies within dialogue context than the entity-based
compositional NMN method.

In Table 6b, we compare model variants A and B. We note that the performance gap between model
A and B is quite distinct, with 7/10 cases of video ranges in which model A outperforms. However,
similarly to our prior observations in experiments by dialogue turn, in lower ranges (i.e. 1-23
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Figure 7: Performance of model variants A, B, and E, by dialogue turn position and video length. The
performance is calculated relatively to performance of the most basic setting, i.e. responses of the first dialogue
turn ∆CIDErturn_i = CIDErturn_i −CIDErturn_1, or responses grounding on the lowest video range (0 to 23
seconds) ∆CIDErrange_i = CIDErrange_i − CIDEr0−23.

Table 6: Performance breakdown in BLEU4 and CIDEr

(a) by dialogue turn between model variants B and E.

BLEU4 CIDEr
turn position Model B Model E Model B Model E

1 0.579 0.587 1.623 1.650
2 0.429 0.430 1.155 1.142
3 0.275 0.289 0.867 0.846
4 0.309 0.305 0.859 0.855
5 0.355 0.335 1.088 1.023
6 0.357 0.329 1.044 0.950
7 0.342 0.325 0.896 0.847
8 0.361 0.332 1.025 0.973
9 0.383 0.431 1.043 1.182
10 0.395 0.371 0.931 0.977

(b) by video length range (in seconds) between model variants A and B.

BLEU4 CIDEr
video range

(seconds) Model A Model B Model A Model B

1-23 0.432 0.447 1.298 1.355
23-28 0.436 0.433 1.264 1.165
28-30 0.398 0.376 1.203 1.164

30-30.6 0.441 0.418 1.220 1.202
30.6-31 0.413 0.411 1.250 1.166
31-31.6 0.439 0.451 1.249 1.295
31.6-32 0.430 0.419 1.217 1.192
32-33 0.468 0.445 1.343 1.237
33-37 0.388 0.381 1.149 1.124
37-75 0.356 0.365 0.910 0.962

seconds) and higher ranges (37-75 seconds), model A performs not as well as model B. There are
additional factors that we will need to examine further to explain the results, such as the complexity
of the questions for these short and long-range videos. Potentially, our question parser for video
understanding program needs more sophisticated composition method to retrieve information from
these video ranges.
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D QUALITATIVE ANALYSIS

We extract the predicted programs and responses for some example dialogues in Figure 8, 9, 10, and
11 and report our observations:

• We observe that when the predicted programs are correct, the output responses generally
match the ground-truth (See the 1st and 2nd turn in Figure 8, and the 1st and 4th turn in
Figure 10) or close to the ground-truth responses (1st turn in Figure 9).

• When the output responses do not match the ground truth, we can understand the model
mistakes by interpreting the predicted programs. For example, in the 3rd turn in Figure 8,
the output response describes a room because the predicted video program focuses on the
entity “what room” instead of the entity “an object” in the question. Another example is
the 3rd turn in Figure 10 where the entity “rooftop” is missing in the video program. These
mismatches can deviate the information retrieved from the video during video program
execution, leading to wrong output responses with wrong visual contents.

• We also note that in some cases, one or both of the predicted programs are incorrect, but the
predicted responses still match the ground-truth responses. This might be explained as the
predicted module parameters are not exactly the same as the ground truth but they are close
enough (e.g. 4th turn in Figure 8). Sometimes, our model predicted programs that are more
appropriate than the ground truth. For example, in the 2nd turn in Figure 9, the program
is added with a where module parameterized by the entity “the shopping bag” which was
solved from the reference “them” mentioned in the question.

• We observe that for complex questions that involve more than one queries (e.g. the 3rd turn
in Figure 10), it becomes more challenging to decode an appropriate video understanding
program and generate responses that can address all queries.

• In Figure 11, we demonstrate some output examples of VilNMN and compare with two
baselines: Baseline (Hori et al., 2019) and MTN (Le et al., 2019b). We noted that VilNMN
can include important entities relevant to the current dialogue turn to construct output
responses while other models might miss some entity details, e.g. “them/dishes” in example
A and “the magazine” in example B. These small yet important details can determine the
correctness of dialogue responses.

18



Under review as a conference paper at ICLR 2021

Turn Question Dialogue Understanding 
Program

Video Understanding
Program

Response

1

how many people 
are in the video ?

Predicted: summarize()
✓
Gold: summarize()

Predicted: describe(how many 
people) ✓
Gold: describe(how many 
people)

Predicted: there is only 
one person in the video. 
✓
Gold: there is one 
person in the video. 

2

does this person ever 
leave the field of 
view ?

Predicted: find(this 
person)→summarize() 
✓
Gold: find(this 
person)→ summarize 
()

Predicted: where(one person
in the video)→when(leave 
the
field of view)→exist() ✓
Gold: where(one person in
 the video)→when(leave the
field of view)→exist()

Predicted: no, he does 
not leave the view. ✓
Gold: no, he is in the 
video the whole time.

3

in the door way to 
the next room, there 
is an object. what is 
that?

Predicted: find(the 
room), find(the 
door)→summarize()✘
Gold: summarize()

Predicted: where(what room)
→when(what is that)→exist()
✘
Gold: describe(what)

Predicted: it looks like 
he is in a living room. 
✘
Gold: he went to the 
doorway for a vacuum.

4

when he gets up, 
does he have 
anything in his 
hand?

Predicted: find(he), 
find(his)→ 
summarize()✓
Gold:find(he), 
find(his)→ 
summarize()

Predicted: where(one person in 
the video)→when(get up, 
have anything in his hands)
→ describe(when)✘
Gold: where(one person in the 
video)→when(get up), 
when(have anything in his 
hands)→ describe(when)

Predicted: he has a 
vacuum in his hands. ✓
Gold: he goes for the 
vacuum.

Figure 8: Example output programs and responses from a dialogue in the test split of the AVSD benchmark.

Turn Question Dialogue Understanding 
Program

Video Understanding
Program

Response

1

what is is holding in 
his hand in the 
beginning ?

Predicted: find(his) 
→summarize() ✓
Gold: find(his) 
→summarize()

Predicted: where(a man) 
→when(holding in his hand 
in the beginning) → describe 
(what) ✓
Gold: where(a man)→ when 
(holding in his hand in the 
beginning)→ describe(what)

Predicted: he is holding 
a shopping bag in his 
hand .  ✘
Gold: looks like a bag 
of beans

2

does he put them 
down ?

Predicted: find(he), 
find(them)
→summarize()✘
Gold: find(he)→ 
summarize()

Predicted: where(a man), where 
(a shopping bag)→when(put 
them down)→exist() ✘
Gold: where(a man)→ when(put 
them down)→exist()

Predicted: yes he puts 
them down on the table .  
✓
Gold: yes he puts it 
down after looking at it

Figure 9: Example output programs and responses from a dialogue in the test split of the AVSD benchmark.
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Turn Question Dialogue Understanding 
Program

Video Understanding
Program

Response

1

hi how many people 
are in the video from 
start to finish ?

Predicted: summarize() 
✓
Gold: summarize()

Predicted: describe(how many 
people) ✓
Gold: describe(how many 
people)

Predicted: there are two 
people in the video . ✓
Gold: hello , there are 
two men

2

are they carrying on 
a conversation 
between themselves 
?

Predicted: find(they) 
→summarize()✓
Gold: find(they), 
find(themselves)
→summarize()

Predicted: where(two men in the 
video)→when(carrying on a 
conversation between 
themselves)→exist() ✓
Gold: where(two men)→ when 
(carrying a conversation 
between themselves)→exist()

Predicted: yes , they are 
carrying a conversation  
✘
Gold: no , background 
noise is birdsong and 
shuffling noises

3

what are they doing 
in the scene ? are 
they on a rooftop ?

Predicted: find(they), 
find(the scene) 
→summarize()   ✘
Gold: find(they)
→summarize()

Predicted: where(two men in the 
video),where(the scene)→ 
when(doing in the scene)→ 
describe(what) ✘
Gold: where(two men), 
where(rooftop)→when(doing 
in the scene)
→describe(what)

Predicted: one is 
washing a chair and the 
other is taking pictures  
✘
Gold: yes , on a second 
floor roof deck , one 
man is washing a chair , 
another man is either 
filming or taking pic      
tures

4

does he sit in the 
chair after washing 
it ?

Predicted: find(he), 
find(the chair) 
→summarize()✓
Gold: find(he), 
find(the chair)→ 
summarize()

Predicted: where(one man in the 
video), where(a chair)→ 
when(sit in the chair after 
washing it)→exist() ✓
Gold: where(one man), where(a 
chair)→ when(sit in the 
chair after washing it)
→exist()

Predicted: no , he does 
not sit in the chair  ✓
Gold: no he does not , 
there is a pipe with 
water running all over

Figure 10: Example output programs and responses from a dialogue in the test split of the AVSD benchmark.

Video 
(Sample Frame)

Dialog History and Question Predicted Dialogue & Video 
Understanding Program

Predicted and Ground-truth Responses

A Dialog History: ...what is going on 
when the video starts ? a man is 
looking out a doorway...what is he 
doing in there then ? he starts to wash 
dishes ...
Question: does he wipe them with a 
towel?

Dialogue Program (VilNMN): 
find(he), find(them) 
→summarize() 
Video Program (VilNMN): where(a 
man), where(the dishes) → 
when(wipe them with a towel)
→ exist() 

Predicted (VilNMN): no he doesn’t wipe them with a towel . 
✓
Predicted (Baseline): no he does not take a picture of the 
camera. ✘
Predicted (MTN): no he does not do anything with with 
hands. ✘
Gold: looks like he just uses his hands .

B Dialog History: ...what is he reading? 
He is reading a magazine and he is 
laughing...
Question: is he laughing because of 
the magazine?

Dialogue Program (VilNMN): 
find(he), find(the magazine) 
→ summarize()
Dialogue Program (VilNMN): 
where(one young boy in the 
video), where(a magazine) → 
when (laughing because of 
the magazine)→ exist()

Predicted (VilNMN): yes, he is laughing at the magazine . ✓
Predicted (Baseline): yes he is talking to the camera . ✘
Predicted (MTN): no he is not laughing at the end of the 
video . ✘
Gold: maybe , because then he throws the magazine aside .

C Dialog History: ...how many people 
are in the video? There is one person 
in the video...
Question: in the door way to the next 
room, there is an object. What is that?

Dialogue Program (VilNMN): 
find(the room), find(the 
door)→ summarize()
Dialogue Program (VilNMN): 
where(what room)→ when (what 
is that)→ exist()

Predicted (VilNMN): it looks like he is in a living room . ✘
Predicted (Baseline): i m not sure what it is . ✘
Predicted (MTN): he walks into the room . ✘
Gold: he went to the doorway for a vacuum . 

Figure 11: Intepretability of example outputs from VilNMN and baselines models (Hori et al., 2019; Le et al.,
2019b)
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