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Abstract001

Large language models use high-dimensional002
latent spaces to encode and process textual in-003
formation. Much work has investigated how004
the conceptual content of words translates into005
geometrical relationships between their vector006
representations. Fewer studies analyze how the007
cumulative information of an entire prompt be-008
comes condensed into individual embeddings009
under the action of transformer layers. We use010
literary pieces to show that information about011
intangible, rather than factual, aspects of the012
prompt are contained in deep representations.013
We observe that short excerpts (10 − 100 to-014
kens) from different novels separate in the la-015
tent space independently from what next-token016
prediction they converge towards. Ensembles017
from books from the same authors are much018
more entangled than across authors, suggest-019
ing that embeddings encode stylistic features.020
This geometry of style may have applications021
for authorship attribution and literary analysis,022
but most importantly reveals the sophistication023
of information processing and compression ac-024
complished by language models.025

1 Introduction026

“What’s in a name?” famously asked Juliet (Shake-027

speare, ca. 1599) to interrogate the relationship028

between a concept’s multifaceted reality and its029

shorthand designation in the form of a word.1030

Four hundred years later, the question finds re-031

newed significance in the context of large language032

models (LLMs) (Brown et al., 2020; Touvron et al.,033

2023; Grattafiori et al., 2024), where words are034

represented as vectors in a high-dimensional latent035

space (Mikolov et al., 2013a,b). Much research has036

attempted to elucidate what information these rep-037

resentations, also called ‘embeddings’, convey, and038

how this information is encoded. Some fascinating039

1 “That which we call a rose / By any other word would
smell as sweet.” Act II, Scene II

insights have been uncovered in terms of geometri- 040

cal relationships between concepts (Mikolov et al., 041

2013a; Park et al., 2024, 2025). 042

Yet, word-to-vec(tor) embedding is only the first 043

step. For LLMs, an embedding leaves its starting 044

point and is transported, transformer layer after 045

transformer layer, to a new location that will de- 046

termine next-token prediction. In the process, it 047

loses its original identity and starts accumulating 048

information about all preceding tokens – and the 049

emergent meaning of their sequence (Fig. 1). 050
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Figure 1: After semantic embedding of the prompt,
vectors represent a single word. As the prompt passes
through transformer layers, the attention mechanism
funnels more and more information about preceding to-
kens into the last embedding – turning it into a ‘chimera’
vector, encoding bits of information from all others.

This raises the question: What’s in a prompt? In 051

other words, what kind of information contained 052

in the sequence of words forming the LLM’s input 053

finds itself distilled into deeper embeddings? 054

Prior work (see also Appendix A) has shown that 055

embeddings can contain global factual information 056

about, e.g., whether the preceding statement is true 057

or false (Marks and Tegmark, 2024), or its relation 058

to space and time (Gurnee and Tegmark, 2024). 059

This is interesting and sensible: factual understand- 060

ing seems necessary to output compelling prompt 061

continuation. 062

Here, we find evidence of the presence of more 063

subtle signals. Using short excerpts from various 064

literary works, we show that the embeddings con- 065

tain implicit information about the origin of the 066
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passage and can be classified with high accuracy.067

This study is not aimed at merely assessing068

the performance of LLMs for authorship attribu-069

tion (Huang et al., 2025), but rather at showing070

that implicit prompt features like authorship are071

encoded in deep embeddings (and not early ones).072

2 Methods073

Overview. We base our analysis on ensembles074

of short excerpts from various literary works and075

collect the embeddings of the last (rightmost) token076

after each layer of an LLM. From these vector077

representations, we apply classifier techniques to078

evaluate whether excerpts can be linked to their079

original oeuvres based on a single, information-080

rich embedding. We investigate in particular the081

influence of context length N (number of tokens082

in the input passage) and layer depth L (number of083

transformer layers that the prompt has crossed).084

Sources. We use digital versions of literary085

works obtained from the Project Gutenberg web-086

site (gutenberg.org). We curate a corpus of 19th087

and early 20th century anglophone novels for both088

consistency and diversity of styles, some of them089

from the same author (Appendix B.1).090

Processing. A full novel’s text is passed through091

a model’s tokenizer. The sequence of tokens’ IDs092

is then split into chunks of length N tokens, with093

N = 8, 16, . . . , 128 typically. Importantly, these094

text chunks do not correspond to any particular095

syntactic unit and can end with any kind of token096

(Appendix B.1). The rightmost embeddings x⃗N (L)097

are collected after each layer L for each chunk.2098

Models. We use a suite of open-source models099

from Hugging Face. We focus on the 16-layer100

Llama-3.2-1B base model (MetaAI, 2024) for101

insight and extend to other models in Appendix D.102

Classifiers. We use standard supervised classi-103

fying techniques to investigate the separability of104

ensembles of high-dimensional vectors: Support105

Vector Machine (SVM) probes for binary classifi-106

cation, and Multilayer Perceptron (MLP) probes107

for multiclass (details in Appendix B.1).108

2Indeed, the last embedding of the prompt is the one that
learns from all preceding tokens thanks to the causal masked
attention mechanism.
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Figure 2: (A) Ensembles of short excerpts (N = 64
tokens) from GE and VW separate in the latent space as
embeddings travel through successive transformer lay-
ers. (B) Linear classifier accuracy (%) to distinguish GE
vs VW ensembles as a function of prompt’s number of
tokens N and number of transformer layers crossed L.

3 Results 109

3.1 Embeddings encode authorship 110

Does a short passage (10-100 words) from a novel 111

contain enough information to be properly at- 112

tributed after processing by an LLM? We compare 113

excerpts from two novels: George Eliot’s (GE) 114

Silas Marner and Virginia Woolf’s (VW) Mrs Dal- 115

loway. By training a linear classifier, we examine 116

whether the two ensembles of high-dimensional 117

embeddings in the Llama 3.2 1B model can be sep- 118

arated. They can. We observe in Fig. 2 that as 119

their length N increases and the embeddings travel 120

deeper into the model, the excerpts can be classified 121

with over 90% accuracy. In contrast, when there is 122

not enough context (small N ) or not enough atten- 123

tion layers to ‘cross-pollinate’ information across 124

tokens (small L), each excerpt’s last embedding 125

has not absorbed enough contextual information to 126

reflect authorship. 127

More generally, an MLP probe can distinguish 128

excerpts from several novels with overall 75% ac- 129

curacy (Fig. 3A). These passages represent small 130

snippets of text from various works, with no con- 131

sistency in theme or syntax (see Tab. 4 in Ap- 132
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Figure 3: (A) Accuracy (%) of an MLP probe to distin-
guish passages from 13 different books (N = 128, L =
16). See Tab. 3 for the list of authors and novels. Cyan
squares emphasize novels from the same authors. It
is noteworthy that confusion increases between books
of the same author, even though they relate to different
topics. (B) Results specific to probe confusion for books
from the same author (intra) or a different author (extra).

pendix B.1). It could be that they contain enough133

factual information (names, subjects, etc.) to re-134

veal their provenance. However, we also observe135

a marked increase in classifier confusion across136

works from the same authors (Fig. 3B). This sug-137

gests that the classifier might be relying on patterns138

of vocabulary and syntax which find themselves139

encoded in deep embeddings (and not early ones).140

We refer to these abstract distinctive features as141

“style” and investigate what exactly is encoded and142

how.143

3.2 Stylistic signatures align with large144

principal components145

It’s been observed that embeddings and their trajec-146

tories tend to form low-dimensional structures. For147

example, Viswanathan et al. (2025) showed that the148

intrinsic dimension (ID) of token representations149

from a given prompt is generally much smaller150

than that of the ambient space. Sarfati et al. (2025)151

found, using singular value decomposition, that152

prompt ensembles stretch along a few directions153

and diffuse about most of the remaining subspace.154

Is the property of “style” contained in the small155

or large dimensions? Fig. 4 indicates that probe 156

accuracy plateaus at a maximum when keeping 157

about 16 directions along the largest principal com- 158

ponents. Interestingly, however, the ID of the en- 159

sembles remains under 20 dimensions and doesn’t 160

change with increased context N . This suggests 161

that contextual information effectively moves en- 162

sembles into different corners of the latent space 163

rather than altering their shape complexity. 164
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Figure 4: Dimensionality of stylistic features. (A)
Probe accuracy (%) for classifying GE vs. VW en-
sembles projected onto PCA subspaces spanned by
{u⃗k, . . . , u⃗k+n−1}, where u⃗k is the k-th principal com-
ponent and n is the subspace dimension (B) Intrinsic
dimension for embedding ensembles as a function of
context length N . ID is calculated using the TwoNN
method described in Valeriani et al. (2023).

3.3 Disrupting syntax conserves separability 165

Is style inferred from syntactic or semantic fea- 166

tures? To investigate, we use a shuffling approach 167

introduced in Viswanathan et al. (2025). For each 168

input pseudo-sentence, blocks of B consecutive 169

tokens are rearranged randomly, with B = 1 (ev- 170

ery token is independent), B = 4 (groups of four 171

tokens are kept together), etc. Perhaps surprising, 172

Tab. 1 shows that classifier probes remain accu- 173

rate for all persistence lengths B. This strongly 174

suggests that the stylistic signature perceived by 175

LLMs might rely more on lexical content than 176

structure. However, ensembles corresponding to 177

different shuffling scales are perfectly separable, 178

indicating that word order and syntax do affect the 179

representation of a prompt – as expected. 180

VW
GE

B = 1 B = 4 B = 32

B = 1 97 100 100
B = 4 100 95 98
B = 32 100 99 92

Table 1: Linear probe accuracy (%) for various shuffling
block size B.
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3.4 Geometrical relationships across181

languages182

Famously, LLMs latent spaces exhibit alluring geo-183

metrical properties, notably the parallelogram struc-184

tures such as woman:queen::man:king (Li et al.,185

2025). Do similar relationships exist at the ensem-186

ble level? Tab. 2 suggests that they do. We con-187

sider three French novels and their English transla-188

tions: Gustave Flaubert’s Madame Bovary, Victor189

Hugo’s Ninety-Three, and Émile Zola’s Germinal.190

A probe trained to separate a French ensemble pair191

keeps its accuracy on the corresponding English192

pair. Similarly, there is a strong similarity between193

centroid separations in French and in English. The194

cosine distance between author A and author B195

in French and in English is between 0.5 and 0.6,196

which is far smaller than expected for random vec-197

tors (1 ± 1/
√
2048). This observation seems to198

generalize point-based geometrical structures to199

distributed clouds of embeddings.200

F/H F/Z H/Z

79% 63% 65%

82% 65% 63%

Table 2: Accuracy of a reference linear probe trained to
distinguish Flaubert (F) from Hugo (H) in French, when
applied to other ensemble pairs. The probe achieves
about the same accuracy when applied to the corre-
sponding English-translated ensembles. It performs
significantly worse (60%) when applied to unrelated
pairs involving Zola (Z).

4 Discussion and future directions201

Practicalities. We remark that a by-product of202

training LLMs is that they inherit a fine percep-203

tion of stylistic and informational patterns, even204

from short passages. Perhaps literature scholars205

will build upon this idea to implement more so-206

phisticated methods to address some long-standing207

mysteries and controversies: Was Shakespeare a208

single writer? Could Émile Ajar have been identi-209

fied as Romain Gary before illegitimately snatching210

a second Prix Goncourt (Tirvengadum, 1996)?211

Geometry of style. As an insightful application,212

we consider the geometry of style partially uncov-213

ered in this study and produce a low-dimensional214

representation. In Fig. 5, we propose a map of style215

where we place various oeuvres based on the rela-216

tive proximity of their corresponding embeddings.217

We discuss and interpret this visualization under 218

the lens of literature analysis in Appendix C. 219

Interpretability and implications. Beyond prac- 220

ticalities, the main objective of this work is to fur- 221

ther understand the information content of LLM 222

embeddings. Many studies have revealed that 223

LLMs construct world models in their latent space, 224

allowing encoding of many features in vector repre- 225

sentations, often linearly (Park et al., 2024). Some 226

of these features are easily interpretable while oth- 227

ers remain obscure (Bricken et al., 2023; Templeton 228

et al., 2024). We have shown here that intangible as- 229

pects of an input prompt, namely stylistic features, 230

are also abstractly encoded in deep representations. 231

5 Conclusion 232

We have shown that LLM embeddings representing 233

short (102 tokens) literary excerpts encode enough 234

information to identify their origin. Increased con- 235

fusion between books of the same author suggests 236

that embeddings convey a stylistic signature spe- 237

cific to a given writer. This signature appears to 238

lie within a small subspace spanned by the largest 239

principal components. Shuffling words conserved 240

separability, suggesting the main signal might be 241

about lexical content rather than syntax. 242
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Figure 5: Map of style: low-dimensional visualization
of the high-dimensional geometry across books and au-
thors. Text chunks (N = 128, L = 16) are UMAP em-
bedded from their 32-dimensional activations extracted
at the penultimate layer of the MLP classifier of Fig. 2.
We note the substantial overlap between excerpts from
the same author, e.g., Austen (JA1, JA2, JA3) or Wolf
(VW1, VW2). More comments in Appendix C.
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Limitations243

This study is limited to open-source LLMs in the244

1−2 billion parameter range, and a rather small cor-245

pus of texts. It also focus primarily on anglophone246

texts, which tends to constitute most of the model’s247

training set, and then possibly gives the models a248

finer perception of that language compared to oth-249

ers. When compute in not limiting, testing larger250

models for probe accuracy will be interesting. In251

particular, it should reveal whether the accuracy252

limitation are due to an information bottleneck, or253

to model limitations.254

Ethics Statement255

We find that this study complies with the ACL256

Ethics Policy and the ACM Code of Ethics. We257

use public domain texts and open-source models258

for our research, and do our best effort to reference259

all relevant prior work and acknowledge all con-260

tributions. We are not concerned with this study261

presenting any risk of AI deployment in society.262

Rather, we anticipate that advances in AI inter-263

pretability will contribute to strengthen AI safety264

guidelines.265
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A Additional background420

A.1 LLM internal geometry421

LLMs have been found to encode high-level at-422

tributes in surprising geometric patterns within423

their embedding spaces. Recent work supports424

a linear representation hypothesis, wherein certain425

abstract concepts correspond to linear directions or426

subspaces in the latent representation space (Park427

et al., 2024). For instance, models appear to428

linearly represent attributes like factual truthful-429

ness, enabling simple probes or even direct ma-430

nipulation of activations along those concept di-431

rections (Marks and Tegmark, 2024). Similarly,432

categorical semantic relationships can emerge as433

geometric structures: models represent categories434

as vertices of a simplex and encode hierarchi-435

cal relations via approximately orthogonal com-436

ponents (Park et al., 2025). The representational437

geometry induced by prompts has also been ana-438

lyzed; different prompting or in-context learning439

strategies imprint distinct geometric signatures on440

a model’s internal states, highlighting how task441

framing can alter the organization of latent fea-442

tures (Kirsanov et al., 2025). Moreover, in multilin-443

gual settings, LLM embedding spaces can separate444

language-specific style from language-neutral con-445

tent along perpendicular axes, suggesting a degree446

of factorization between surface form and underly-447

ing meaning (Chang et al., 2022).448

A.2 Authorship attribution449

An important high-level attribute of interest is lit-450

erary style. Authorship attribution and stylistic451

analysis have served as tests for whether mod-452

els capture subtle distributional differences be-453

yond topic or semantics. Traditional stylometry454

relied on carefully engineered linguistic features455

(e.g. function word frequencies, character n-grams,456

syntactic patterns), but modern transformer-based457

LMs can learn such distinctions directly from raw458

text (Hicke and Mimno, 2023). Recent studies459

demonstrate that large pretrained models achieve460

strong performance on author identification. For461

example, Hicke and Mimno (2023) showed that a462

fine-tuned T5 model can attribute Early Modern463

English plays to their likely authors, indicating that464

LLM representations encode distinctive stylistic465

signatures. Likewise, GPT-based methods have466

been applied to Latin prose to verify authorship,467

with results rivaling traditional stylometric classi-468

fiers (Gorovaia et al., 2024). Notably, these analy-469

ses also highlight that model judgments can be con- 470

founded by semantic content rather than pure style. 471

The challenge of disentangling an author’s unique 472

style from the topic of the text is well-recognized 473

in authorship analysis (Alshomary et al., 2024). 474

A.3 Interpretability 475

Lyu et al. (2023) identified specific latent direc- 476

tions corresponding to concrete stylistic attributes – 477

such as formality and lexical complexity – in a pre- 478

trained model’s embedding space. Their findings 479

provide evidence that certain stylistic features are 480

encoded along approximately linear axes, making 481

them separable by simple geometric probes. Such 482

results echo the broader concept-vector findings 483

above, but for attributes of writing style. Still, un- 484

covering literary style (encompassing a complex 485

mix of diction, syntax, and narrative voice) may 486

pose an even greater challenge than these relatively 487

focused style elements. Interpretability research 488

has begun to bridge these latent representations 489

with human-interpretable descriptions. Some ap- 490

proaches aim to map regions or dimensions of em- 491

bedding space to understandable concepts. For ex- 492

ample, Simhi and Markovitch (2023) project prede- 493

fined semantic concepts into a model’s embedding 494

space, using them as basis vectors to interpret other 495

embeddings. Another line of work leverages gener- 496

ative LLMs to produce interpretable style represen- 497

tations: Patel et al. (2023) used GPT-3 to annotate 498

millions of sentences with stylistic descriptors and 499

distilled these into a “Linguistically Interpretable 500

Style Embedding” model. The resulting system 501

encodes texts into a 768-dimensional style vector 502

aligned with attributes like formality, tone, and syn- 503

tax, allowing direct inspection of which dimensions 504

are active for a given text. Together, these efforts 505

underscore both the richness of style information in 506

LLM latent spaces and the complexity of extracting 507

or explaining it. 508

B Methods 509

The code for generating and processing data will 510

be made available on a GitHub repository. 511

B.1 Dataset 512

In Tab. 3, we present the references to the authors 513

and literary pieces used as the input data to our 514

analysis. 515

We introduce one text in French (G. Sand’s 516

Jacques) as a baseline for separability (embeddings 517
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from different languages are usually easy to dif-518

ferentiate). The other texts include different anglo-519

phone authors with distinctive styles yet from about520

the same time period, and from different English-521

speaking countries. This is in order to maintain a522

certain homogeneity in the style. We also consid-523

ered only rather large novels (over 500 pages) in524

order to be able to assemble substantial ensembles.525

B.2 Excerpts526

The full text of a given novel is tokenized at once,527

and the resulting sequence of token identifiers is di-528

vided into chunks of N consecutive tokens. These529

non-overlapping chunks represent short text frag-530

ments of various forms. In particular, they do not531

necessarily start or end with a sentence and the last532

token can be anything: punctuation, word suffix, ar-533

ticle, verb, etc. In Tab. 4, we show a few examples534

of 16-token chunks in their textual form.535

B.3 Classifiers536

For binary classification, we use a Support Vector537

Machine with linear kernel, and after dimension-538

ality reduction by PCA to 64 dimensions. The539

training to validation data split was 70/30.540

For multiclass classification, we train a Multi-541

layer Perceptron with penultimate layer of dimen-542

sion 32, cross-entropy loss and Adam optimizer.543

C Map of style544

Fig. 5 presents a visualization of style proximity545

across books and authors. Here we propose an546

alternative representation and interpret it from a547

traditional literature analysis perspective.548

C.1 Centroid visualization549

In order to emphasize proximity between ensem-550

bles (rather than text snippets), we propose an alter-551

native representation based on centroid proximity.552

We calculate the centroids location of each book en-553

semble and apply multidimensional scaling (MDS)554

to yield a two-dimensional representation in Fig. 6.555

The similarity matrix used for MDS is the pair co-556

sine distances between centroids.557

C.2 Literary comment558

This spatial distribution of Fig. 6 depicts inter-559

esting relationships between the narrative tech-560

niques and styles of various authors. Virginia561

Woolf (VW) and James Joyce (JJ), known for pi-562

oneering techniques like stream of consciousness563
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Figure 6: Alternative map of style emphasizing relative
distances between ensembles by embedding their shared
geometry with multidimensional scaling.

and free indirect discourse, cluster apart, reflect- 564

ing their shared modernist experimentation. Jane 565

Austen’s texts (JA), which also employ free in- 566

direct discourse but within a more traditional re- 567

alist framework, form their own distinct group- 568

ing. Austen’s group is clearly separated both from 569

the modernists and from American authors such 570

as Nathaniel Hawthorne (NH), Herman Melville 571

(HM), and Mark Twain (MT). These American 572

writers, characterized predominantly by narrative 573

realism or romanticism, are grouped centrally and 574

distinctly apart from the experimental modernist 575

approaches of Woolf and Joyce. 576

D Generalization to additional models 577

For generalization, we reproduce the same method- 578

ology with three other open-source models released 579

in 2025: 580

• gemma-3-1b-pt from Google (US) (Team 581

et al., 2025) 582

• Qwen3-1.7B-Base from Qwen (China) (Yang 583

et al., 2025) 584

• SmolLM2-1.7B from Hugging Face 585

(France) (Allal et al., 2025) 586

These models are queried in their “base” form, i.e. 587

not fine-tuned for chat (“instruct”). We use models 588

in the one-billion-parameter range as smaller mod- 589

els are generally more interpretable, and also due 590

to compute constraints. 591

We find the same patterns of ensemble separabil- 592

ity across models, as shown in Fig. 7. In particu- 593
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ID Author Novel Date Country
GS George Sand Jacques⋆ 1833 France

HM1 Herman Melville Moby Dick 1851 America
HM2 Herman Melville Pierre 1852 America
JA1 Jane Austen Emma 1815 England
JA2 Jane Austen Pride and Prejudice 1813 England
JA3 Jane Austen Sense and Sensibility 1811 England
JJ James Joyce Ulysses 1922 Ireland

MT1 Mark Twain Life on the Mississippi 1883 America
MT2 Mark Twain Roughing It 1872 America
NH1 Nathaniel Hawthorne The House of the Seven Gables 1851 America
NH2 Nathaniel Hawthorne The Scarlet Letter 1850 America
VW1 Virginia Woolf Night and Day 1919 England
VW2 Virginia Woolf The Voyage Out 1915 England

Table 3: Authors and novels used for analysis. Note that Jacques is in French.

15 preceding tokens last token
least knew somebody who knew his father and mother? To the peasants of old time

off time superstition clung easily round every person or thing that was at all unw

crime; especially if he had any reputation for knowledge, or showed any skill in

live in a rollicking fashion, and keep a jolly Christmas, Wh

shook him, and his limbs were stiff, and his hands clutched the bag

nothing strange for people of average culture and experience, but for the villagers near whom

road, and lifting more imposing fronts than the rectory, which peeped

which seemed to explain things otherwise incredible; but the argumentative Mr. Macey

handicraft. All cleverness, whether in the rapid use of that difficult instrument

lar or the knife-grinder. No one knew where wandering men had their

-weaver, named Silas Marner, worked at his vocation in a

of it, and two or three large brick-and-stone homesteads ,

the outskirts of civilization—inhabited by meagre sheep and thinly- sc

certain awe at the mysterious action of the loom, by a pleasant sense of scorn

The questionable sound of Silas’s loom, so unlike the natural cheerful tro

Table 4: Examples of 16-token excerpts from G. Eliot’s Silas Marner. Embeddings derived from the last token are
the ones collected to form the ensembles of the analysis.
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lar, embeddings corresponding to increased context594

and deep layers are more easily separable.595
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Figure 7: Probe accuracy (%) for GE vs VW in other
LLMs (applied on deepest embeddings).
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