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Abstract

Many confounding-resistant domain generalization methods for image classifica-
tion have been developed based on causal interventions. However, their reliance on
strong assumptions limits their effectiveness in handling unobserved confounders.
Although recent work introduces instrumental variables (IVs) to overcome this
limitation, the reliance on manually predefined instruments, particularly in the
context of visual data, may result in severe bias or invalidity when IV conditions
are violated. To address these issues, we propose a novel approach to automat-
ically learning Visual Instrumental Variables for confounding-resistant Domain
Generalization (VIV-DG). We observe that certain non-causal visual attributes
in image data naturally satisfy the basic conditions required for valid IVs. Moti-
vated by this insight, we propose the visual instrumental variable, a novel concept
that extends classical IV theory to the visual domain. Furthermore, we develop
an automatic visual instrumental variable learner that enforces IV conditions on
learned representations, enabling the automatic learning of valid visual instrumental
variables from image data. Ultimately, VIV-DG inherits the strengths of classical
IVs to mitigate unobserved confounding and avoids the significant bias caused by
violations of IV conditions in predefined IVs. Extensive experiments on multiple
benchmarks verify that VIV-DG achieves superior generalization ability.

1 Introduction

In machine learning, enhancing model generalization under distribution shifts remains a critical
challenge[1, 2]. To tackle this issue, domain generalization (DG) has emerged as a prominent research
area that aims to extract knowledge from source domains and effectively generalize to unseen target
domains [3, 4]. Recently, numerous DG methods have been proposed, such as adversarial learning
[5], domain augmentation [6, 7], invariant representation learning [8], explicit feature alignment [9],
and meta-learning [10, 11, 12], which have achieved significant progress. However, these methods
primarily rely on statistical correlations, which may still be insufficient for addressing domain shifts
[13]. This is because domain shifts are typically accompanied by confounders that simultaneously
influence both features and labels, introducing confounding effects and creating spurious correlations
between them. Consequently, methods based purely on statistical correlations may inadvertently
model these spurious associations, compromising their generalization capability.
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To avoid spurious correlations, researchers employ causal intervention techniques [14] (such as
backdoor adjustment, frontdoor adjustment, and instrumental variable methods) to mitigate con-
founding effects and learn cross-domain invariant causal representations. However, these techniques
rely on strong assumptions and face significant limitations in real-world applications. For example,
DIR-ReID [15] adopts backdoor adjustment to develop a more generalizable person re-identification
framework. Yet, backdoor adjustment assumes that all confounders are observable, while unobserved
confounders are commonly present in practice, limiting its effectiveness. FAGT [16] utilizes front-
door adjustment to mitigate confounding effects, but depends on valid mediators, which are often
difficult to identify and validate in many tasks. In contrast, instrumental variables (IVs) provide an
alternative solution that avoids explicitly modeling confounders or relying on mediators. IV-DG
[17] incorporates the instrumental variable framework into domain generalization by adopting a
predefined strategy that treats data from one domain as instruments for another. However, such
predefined instruments often violate the exclusion restriction. Although they originate from different
domains, features extracted by pretrained encoders for images of the same category typically exhibit
cross-domain discriminability. This violates the core assumption of IVs, rendering them weak or
invalid, and ultimately impairing generalization performance. In addition, predefined IVs rely heavily
on expert knowledge and require substantial human effort. Taken together, existing methods remain
inadequate in mitigating confounding effects, especially those caused by unobserved confounders.

…

V: Non-causal factors

S: Causal factors

Y: Label (Dog)

Image
…

(a) Decomposition

V

S Y

…

Causal

factors

Label

(Dog)

Non-causal factors

…

(b) Prior SCM

Confounders

U

S Y

Causal 

factors

Non-causal fa
ctors

Z

IVs

…

V

…
Label

(Dog)…

(c) Proposed SCM

Figure 1: Comparison of proposed and prior SCM.

Moreover, as shown in Figure 1a and
Figure 1b, existing DG methods based
on eliminating confounding effects of-
ten rely on prior structural causal mod-
els (SCMs) to partition inputs into
causal factors (such as shape and con-
tour) and non-causal factors (such as
background, style, and color), treating
all non-causal factors as confounders
to be suppressed. However, this coarse-
grained division and the paradigm of
uniformly treating all non-causal factors as confounders have notable limitations. In image data,
there often exist non-causal features that are stable across domains (e.g., the color and texture of the
main object). If these features are indiscriminately treated as confounders along with domain-specific
factors (such as background color), the model’s discriminative capability may be undermined. For
instance, although object color and texture may not be sufficient on their own to determine cate-
gory labels (e.g., yellow patches from a yellow cat and a yellow dog may look similar), they can
significantly enhance discrimination when combined with shape and contour cues.

In this paper, we propose a novel approach, VIV-DG (Visual Instrumental Variable for Domain
Generalization), which effectively mitigates confounding effects and preserves valuable non-causal
information by automatically learning visual instrumental variables from image data without relying
on strong assumptions. However, obtaining valid IVs remains a significant challenge. Fortunately, we
observe that image data typically contain some non-causal visual attributes that satisfy the conditions
for IVs. Inspired by these observations, we unify the two critical challenges—identifying valid
instrumental variables and preserving discriminative non-causal features—into a single learning
objective: autonomously learning representations from images that satisfy the IV conditions and
using IV regression to mitigate confounding effects. Specifically, as depicted in Figure 1c, we finely
categorize non-causal factors into confounders and IVs, and establish a more refined SCM to analyze
the causal relationships among variables. Furthermore, we construct a learning framework for IVs,
composed of three alternately optimized subnetworks: (i) a causal feature extractor that extracts
causal representations and performs classification tasks; (ii) a visual instrumental variable learner
that learns valid IV representations by enforcing relevance, independence, and exclusion constraints;
(iii) a regression predictor that predicts causal factors unaffected by confounding effects. The entire
framework is trained with an alternating optimization strategy, progressively yielding more refined IV
and causal representations. Ultimately, VIV-DG inherits the advantages of classical IVs in mitigating
unobserved confounding, while avoiding the significant bias that may arise when predefined IVs
violate their conditions. Moreover, it reduces excessive reliance on expert knowledge and the high cost
of manual design. Experiments on multiple benchmarks show that VIV-DG significantly enhances
domain generalization performance. To sum up, the contributions of our work are as follows:
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• We propose VIV-DG, a novel approach that automatically learns visual instrumental variables
to effectively mitigate the effects of both observed and unobserved confounders, resulting in
improved domain generalization.

• We define the novel concept of visual instrumental variables and develop a learner that auto-
matically learns valid ones, effectively overcoming the severe bias caused by violations of IV
conditions in predefined approaches.

• Extensive experiments on multiple real-world benchmarks verify the effectiveness and advantages
of VIV-DG, demonstrating improved generalization ability.

2 Motivation

Figure 2: Non-causal factors
comparison.

We draw inspiration from two essential observations, which collec-
tively serve as the foundation for the development of our approach.

Intrinsic differences among non-causal factors. We observe
that non-causal factors in image data exhibit substantial intrinsic
differences. As shown in Figure 2, local textures and color patches
of an object, although not directly determining the category, can
provide discriminative features when combined with causal fac-
tors such as shape and contour, aligning with human cognitive
perception. In contrast, combining background elements like grass or flowers with object contours
often leads to biased or inconsistent recognition.

Certain visual attributes serving as IVs. We further find that when causal factors such as object
shape and contour are treated as treatment variables, intrinsic visual attributes of the object, such as
color and texture, often satisfy the conditions for IVs [18]: (i) Relevance: Object color and texture
are biologically or physically associated with shape and contour; (ii) Independence: Object color and
texture are primarily determined by inherent genetic or physical properties, and are thus independent
of confounders; (iii) Exclusion: Object color and texture do not directly determine the category label
but influence classification indirectly by affecting the object’s shape and contour.

3 Methodology

We propose the VIV-DG approach and develop a multi-stage alternating optimization strategy to
progressively refine both visual IVs and causal representations. The framework illustrated in Figure 3.

Figure 3: Overview of the VIV-DG framework, which consists of multiple alternately optimized
phases: (I) Initial causal factor extraction, (II) Visual IV learning under IV constraints, (III) Causal
prediction robust to confounding, and (I+) Causal factor refinement and debiasing.
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3.1 Visual instrumental variable

Observing that certain visual attributes naturally satisfy instrumental variable conditions, we propose
the concept of visual instrumental variable (Visual IV) to better exploit such valuable information.

Definition 1 (Visual instrumental variable). Suppose the visual space contains a triplet (X,Y, S),
where X denotes a visual object (e.g., an image), Y is the label for a downstream task, and S
represents a specific causal factor in the visual object such that S → Y . A visual attribute Z is
defined as visual instrumental variable (Visual IV) if it satisfies the following three conditions:

(i) Relevance: Z is significantly associated with the causal factor S, i.e., Z ⊥̸⊥ S;

(ii) Independence: Z is independent of the confounders U , i.e., Z ⊥⊥ U ;

(iii) Exclusion: Z affects Y only through its influence on the causal factor S, i.e., Z ⊥⊥ Y | S.

3.2 Proposed SCM for DG with IVs
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Figure 4: Proposed SCM for DG.

Building on the Visual IVs, we establish a refined SCM that
explicitly incorporates both IVs and unobserved confounders,
as shown in Figure 4. In this model, X represents the input
data (e.g., images), and Y represents the class labels, while U ,
C, Z, and S collectively constitute the generative factors of
the input data. Specifically, S represents causal factors (e.g.,
the shape and contours of the object), while U , C, and Z are
non-causal factors. Here, U denotes observed confounders (e.g.,
the background and style of the current image); C represents
unobserved confounders (e.g., visual factors that vary across
unseen domains); and Z denotes Visual IVs (e.g., object color and texture) that influence X but do
not directly affect Y . All the detailed connections in the SCM are presented in the Appendix C.

Notably, since the confounders U and C simultaneously affect both the causal factors S and the
labels Y , they establish backdoor paths between S and Y : S ↔ U → Y and S ← C → Y . As a
result, in addition to the causal relationship S → Y , spurious correlations are introduced, leading to
confounding effects [19, 20]. Conventional estimation of P (Y |S) results in a biased estimator that
absorbs both the true causal dependence and spurious correlations, limiting its generalizability.

3.3 Disentanglement of causal factors and confounders

Guided by the proposed SCM, we employ the widely used Fourier-based data augmentation to learn
representations of the initial causal factors (mainly including the shape and contour information of
the object) and confounders.

Causal factor extraction. The phase component obtained via the Fourier transform [21] of an image
primarily encodes semantic (i.e., discriminative) information, whereas the amplitude component
mainly captures style-related (i.e., non-discriminative) details [13]. Based on this observation, we
perturb the amplitude of the original image xi while preserving its phase, and generate an augmented
version denoted as xpi . We then learn the consistent representation of xi and xpi as the initial causal
factor through a consistency constraint using maximum mean discrepancy (MMD) [22]. Specifically,
for an image xi, its Fourier transform F(xi) is represented as

F(xi) = A(xi)× e−j×P(xi), (1)

where A(xi) and P(xi) denote the amplitude and phase components, respectively. To generate the
augmented image xpi that emphasizes phase information, we perturb the amplitude component as

A′ (xi) = (1− λ1)A (xi) + λ1A (x̂j) , (2)

where x̂j is randomly sampled from an arbitrary source domain, and λ1 ∼ U(0.5, 1) controls the
perturbation strength. We then reconstruct the image by combining the perturbed amplitude A′(xi)
with the original phase P(xi) through inverse Fourier transform:

xpi = F
−1

(
A′ (xi)× e−j×P(xi)

)
. (3)
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To learn consistent representation (i.e., the initial causal factor) between the images xi and xpi , we
employ a shared encoder Gθ(·) to extract their features: ri = Gθ(xi) and rpi = Gθ(xpi ). We then
leverage the MMD [22] to enforce representation consistency. The MMD loss is defined as

LMMD =

∥∥∥∥∥ 1

n1

n1∑
i=1

Φ (xi)−
1

n2

n2∑
i=1

Φ (xpi )

∥∥∥∥∥
2

H

, (4)

where n1 and n2 denote the numbers of original and augmented samples, respectively. Here, n1 = n2.
The function Φ(·) maps inputs to a reproducing kernel Hilbert space (RKHS), denoted byH.

To capture class-discriminative information from both the original image x and the augmented image
xp, we apply a classifier h to the extracted features r and rp, producing predicted label distributions
ŷ. The classification loss is computed using the standard cross-entropy:

Lcls = E(x,y)∼p(x,y) [−y log σm(f(x; θ))] + E(xp,yp)∼p(xp,yp) [−yp log σm (f (xp; θ))] , (5)

where σm is the softmax activation and f(·) denotes h ◦ g(·). To further encourage representation
consistency, we incorporate the LMMD loss, and define the overall loss for learning causal factors as

Lcausal = β1Lcls + τLMMD, (6)

where β1 and τ are trade-off hyperparameters. The learned consistent representation is used as the
initial causal representation, i.e., the initial causal factor si, for the original image xi.

Confounder extraction. To extract confounders without relying on domain labels, we also adopt the
Fourier-based data augmentation strategy. In contrast to causal factors, confounders typically capture
domain-specific characteristics such as color and style, which are primarily reflected in the amplitude
spectrum. Thus, we perturb the phase information and combine it with the original image’s amplitude
A(xi) to generate the augmented image xai that retains the amplitude information:

P ′ (xi) = (1− λ2)P (xi) + λ2P (x̂j) , (7)

xai = F−1
(
A (xi)× e−j×P′(xi)

)
, (8)

where P ′(xi) denotes the perturbed phase components, and λ2 ∼ U(0.5, 1) controls the perturbation
strength. We then derive the confounder representation ui by extracting features from the augmented
image xai through the encoder Gθ(·), i.e., ui := rai = Gθ (xai ).
Remark 1. Unlike the correlation matrix loss used in CIRL [13], which enforces both consistency
between original and augmented causal features and decorrelation across different samples, we adopt
the MMD loss to focus solely on the former. We observe that enforcing inter-sample independence
may discard shared causal cues. For instance, zebras and horses share similar shapes, which are
generally considered causal features [23]. In this case, emphasizing feature independence may
weaken the representation of shape-related causal information.

3.4 Automatic Visual IV learning

3.4.1 Masked image construction for IV representation learning

To ensure that the learned Visual IV representations compensate for the texture and color features
while excluding shape and contour information, we design a mask generation module to preprocess
the input data. This module consists of two main components: (i) image difference computation and
mask generation, and (ii) masked image construction. Specifically, this module preserves texture
and color-related regions by computing pixel-wise differences between grayscale versions of the
original and augmented images. It then masks out regions dominated by shape information. This
targeted preprocessing procedure ensures that the learned Visual IV representations capture attributes
complementary to causal features. We denote the masked image as xm, and extract its representation
using the IV encoder Zψ , denoted by z := Zψ(xm). The details are provided in Appendix D.

3.4.2 Relevance-constrained learning

We enforce that Visual IV Z remains highly informative of the causal factors S by maximizing their
mutual information I(Z;S). Mutual information is formally defined as [24]

I(Z;S) = Ep(z,s)
[
log

p(z, s)

p(z)p(s)

]
, (9)
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which is intractable in high dimensions because it requires the true joint and marginal densities.
Drawing inspiration from classifier-based variational bounds [25], we employ an adversarial training
scheme that leverages positive and negative sample pairs: Positive pairs {(zi, si)}Ni=1 are drawn
from the same original sample. Negative pairs {(zi, sj)}i̸=j are from different image samples.
Furthermore, we construct a discriminator network Tµ : R2d → R and apply a sigmoid activation
σs(·) ∈ (0, 1) to interpret the output as the probability of a positive pair. The mutual information
admits the following lower bound based on the Jensen–Shannon divergence variational principle:

I(Z;S) ≥ Ep(z,s)
[
− log

(
1 + e−Tµ(z,s)

)]
+ Ep(z)p(s)

[
− log

(
1 + eTµ(z,s)

)]
. (10)

We operationalize this bound through a minibatch-approximated binary cross-entropy objective:

LMI_ZS = − 1

N

N∑
i=1

log σs (Tµ (zi, si))−
1

N

N∑
i=1

1

N − 1

∑
j ̸=i

log (1− σs (Tµ (zi, sj))) . (11)

The first term encourages σs(Tµ(zi, si)) to approach 1 for positive pairs, while the second term drives
σs(Tµ(zi, sj)) toward 0 for negative pairs. For notational clarity, we further express the objective in
its expectation form:

LMI_ZS = −E(z,s)∼p(z,s)[log σs (Tµ(z, s))]− E(z,s)∼p(z)p(s)[log (1− σs (Tµ(z, s)))]. (12)

By minimizing LMI_ZS , we effectively maximize the variational lower bound on I(Z;S), thereby
satisfying the relevance condition of the Visual IV.

3.4.3 Independence-constrained learning

To enforce statistical independence between the learned Visual IV Z and the confounders U , we aim
to minimize their mutual information I(Z;U). Direct computation of I(Z;U) is intractable in high-
dimensional space, so we adopt an adversarial approach based on the Jensen–Shannon (JS) divergence.
Specifically, we introduce a discriminator network T ′

µ : R2d → R that distinguishes samples from
the joint distribution p(z, u) and the product of marginals p(z)p(u). Positive pairs {(zi, ui)}Ni=1
are drawn from p(z, u), preserving the original correlation, while negative pairs {(zi, uj)}i̸=j are
generated by randomly shuffling the confounder indices. To confuse the discriminator and reduce
mutual information, we define the empirical adversarial loss as

LMI_ZU =
1

N

N∑
i=1

log σs(T
′
µ(zi, ui)) +

1

N

N∑
i=1

1

N − 1

∑
j ̸=i

log(1− σs(T
′
µ(zi, uj))), (13)

where σs(·) denotes the sigmoid function. The equivalent expectation form is

LMI_ZU = E(z,u)∼p(z,u)[log σs(T
′
µ(z, u))] + E(z,u)∼p(z)p(u)[log(1− σs(T

′
µ(z, u)))]. (14)

Minimizing this loss with respect to the Visual IV encoder confuses the discriminator, thereby
reducing I(Z;U) and enforcing the independence condition for the Visual IV.

3.4.4 Exclusion-constrained learning

To ensure the learned Visual IV Z satisfies the exclusion condition (i.e., Z affects the outcome
Y solely through the causal factors S), we propose a variational approximation to minimize the
conditional mutual information I(Y ;Z | S). Since direct computation in high-dimensional spaces is
intractable, we approximate it by minimizing the Kullback-Leibler (KL) divergence between two
conditional distributions. Formally, the conditional mutual information is defined as

I(Y ;Z | S) = Ep(s,z) [DKL(p(Y | s, z) ∥ p(Y | s))] = H(Y | S)−H(Y | S,Z), (15)

where H(·) denotes conditional entropy and DKL(·∥·) denotes KL divergence. If Z remains depen-
dent on Y given S, then H(Y | S,Z) < H(Y | S), implying I(Y ;Z | S) > 0. To enforce that Z
carries no predictive information beyond S, we minimize this divergence term. In practice, we use
the main classifier h to produce differentiable proxies for the true conditional distributions:

ps(y|s) = σm(h(s)), pz⊕s(y|z, s) = σm(h(z ⊕ s)), (16)
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where ⊕ denotes element-wise addition (adopted instead of concatenation to avoid dimensionality
explosion), and σm represents the softmax function. If the causal factor S sufficiently encodes
information relevant to predicting Y , the ideal scenario satisfies

pz⊕s(y|z, s) = ps(y|s) ∀z, (17)

which yields I(Y ;Z | S) = 0. Thus, we enforce this constraint by minimizing the KL divergence
between the two distributions:

LMI_ZY = Ep(s,z)DKL (pz⊕s∥ps) = E

[∑
y

pz⊕s(y | z, s) log
pz⊕s(y | z, s)
ps(y | s)

]
. (18)

Minimizing LMI_ZY is equivalent to maximizing H(Y |S,Z), which encourages Z to preserve the
uncertainty of Y given S. This mechanism enforces the exclusion restriction by guaranteeing that the
instrument Z can only affect the outcome Y through the causal pathway mediated by S.

3.4.5 Overall objective function for Visual IV learning

The overall objective for Visual IV representation learning is thus formulated as

Ltotal_IV = α1LMI_ZS + α2LMI_ZU + α3LMI_ZY, (19)

where α1, α2, and α3 are trade-off hyperparameters. During backpropagation, only the parameters
of the Visual IV learner Zψ and the discriminator are updated, while the parameters of both the
main encoder Gθ and the classifier h are kept frozen. Notably, although derived from the images, the
learned IVs can still exhibit exogeneity through disentangled learning.

3.5 Regression predictor for causal factor refinement and debiasing

We construct a lightweight regression predictor Rϕ (abbreviated as the regressor) that maps the
learned Visual IV representation z back to the original causal feature space, predicting new causal
factors (causal representations) that are unaffected by confounding effects.

RegressorRϕ is implemented as a three-layer MLP with LayerNorm, BatchNorm, GELU activation,
and Dropout. Given the layer-normalized input z, It outputs the estimated reconstructed causal
factors, ŝ := Rϕ

(
LN(z)

)
, where LN(·) denotes layer normalization. We train Rϕ by minimizing

the mean-squared error between ŝ and the learned initial causal factors s. The loss is expressed as

Lreg = E(s,z)∼p(s,z)
[
∥Rϕ(LN(z))− s∥22

]
. (20)

During this stage, both the main encoder Gθ and the Visual IV learner Zψ remain frozen; only the
parameters of regressorRϕ are updated. After training the regressorRϕ, we freeze the parameters of
both the IV learner Zψ and the regressorRϕ. We then input the debiased causal factor ŝ, predicted
byRϕ, into the main classifier h and compute the corresponding classification loss:

Lŝcls = E(ŝ,y)∼p(ŝ,y) [−y log σmh(ŝ)] , (21)

where σm denotes the softmax function. Subsequently, we unfreeze the main encoder Gθ and classifier
h, and jointly optimize the classification loss Lcls on the original image x and its phase-augmented
images xp, along with the MMD loss LMMD, to obtain the refined causal representation learning loss:

L+
causal = β1Lcls + β2Lŝcls + τLMMD. (22)

By optimizing the above objective, we correct and debias the main encoder Gθ, encouraging the
model to learn more comprehensive causal representations and thus improve generalization.

3.6 Progressive optimization via four-stage alternating training

We adopt a four-stage training protocol to optimize each component: (i) we first train the primary
encoder Gθ to extract initial causal factors; (ii) we then freeze Gθ and train the IV learner Zψ to learn
Visual IVs; (iii) next, we freeze both Gθ and Zψ, and train the regressorRϕ to establish a mapping
from Visual IVs to causal factors; (iv) finally, we freeze Zψ and Rϕ, and fine-tune Gθ to further
refine causal representation learning. In particular, the third and fourth stages reflect the causal logic
of IV regression. Notably, although the model components are optimized in alternating stages, the
overall framework is end-to-end trainable. For clarity, the stage-wise configuration is summarized in
Appendix H.3.4. The pseudocode for VIV-DG is presented in Appendix F.
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Remark 2 (Limitation–Solution). To address the limitation that training the regression predictor
increases computational cost when using larger backbones for the main encoder Gθ and the Visual IV
learner Zψ , we propose a simplified alternative: a feature fusion strategy that integrates the learned
Visual IV features and the initial causal factors via addition in the representation space. We refer to
this lightweight version as VIV-DG-Lite. Notably, the fusion reduces training cost but compromises
interpretability, whereas the regressor offers better interpretability at the expense of model complexity.

4 Theoretical analysis

We present the main theoretical guarantee, with formal proofs provided in Appendix E.
Theorem 1 (Learnability of Visual IVs). Let (X,S,U, Y ) be four random variables, where X
denotes observed images, S denotes the causal factors affecting Y , U denotes the confounders, and
Y denotes the downstream labels. Assume that HZ = {hω : X → Z} is a sufficiently expressive
family of mappings (e.g., one that contains all smooth bijections on a latent subspace). Consider the
objective

L(ω) = −α1I(hω(X);S) + α2I(hω(X);U) + α3I(hω(X);Y | S), (23)
with α1, α2, α3 > 0. Then any global minimizer ω∗ yields

Z∗ = hω∗(X), (24)

which is learnable as defined in the learnability definition (Definition 2) in the Appendix.

5 Experiments

5.1 Datasets and settings

We evaluate VIV-DG on several real-world benchmarks: Digits-DG [26], PACS [27], Office-Home
[28], and VLCS [29]. The datasets and implementation details are shown in Appendix H.

5.2 Experimental results

5.2.1 Evaluation on benchmarks

We compare non-causal and causality-inspired DG methods. A detailed description of the baselines
is provided in Appendix H.2. Table 1 presents the results of our VIV-DG and its simplified version,
VIV-DG-Lite, on the Digits-DG, PACS (ResNet-18), and Office-Home (ResNet-18) datasets.

Table 1: Leave-one-domain-out accuracies (%) on Digits-DG, PACS, and Office-Home

Methods Digits-DG PACS (ResNet-18) Office-Home (ResNet-18)

MN MM SVHN SYN Avg. A C P S Avg. A C P R Avg.

DeepAll [26] 95.8 58.8 61.7 78.6 73.7 77.6 76.8 95.9 69.5 79.9 57.9 52.7 73.5 74.8 64.7
CCSA [30] 95.2 58.2 65.5 79.1 74.5 - - - - - 59.9 49.9 74.1 75.7 64.9
JiGen [31] 96.5 61.4 63.7 74.0 73.9 79.4 75.3 96.0 71.4 80.5 53.0 47.5 71.5 72.8 61.2
RSC [32] - - - - - 83.4 80.3 96.0 80.9 85.2 58.4 47.9 71.6 74.5 63.1
CrossGrad [33] 96.7 61.1 65.3 80.2 75.8 - - - - - 58.4 49.4 73.9 75.8 64.4
DDAIG [26] 96.6 64.1 68.6 81.0 77.6 84.2 78.1 95.3 74.7 83.1 59.2 52.3 74.6 76.0 65.5
MatchDG [34] - - - - - 81.3 80.7 96.5 79.7 84.6 - - - - -
L2A-OT [35] 96.7 63.9 68.6 83.2 78.1 83.3 78.2 96.2 73.6 82.8 60.6 50.1 74.8 77.0 65.6
CIRL [13] 96.1 69.9 76.2 87.7 82.5 86.1 80.6 95.9 82.7 86.3 61.5 55.3 75.1 76.6 67.1
LRDG [36] - - - - - 81.9 80.2 95.2 84.7 85.5 61.7 52.4 73.0 75.9 65.8
FACT [7] 97.9 65.6 72.4 90.3 81.5 85.9 79.4 96.6 80.9 85.7 60.3 54.9 74.5 76.6 66.6
IV-DG [17] - - - - - 83.4 78.8 96.9 78.7 84.4 60.4 47.7 72.6 76.1 64.2
FAGT [16] 98.3 65.7 70.9 90.4 81.3 87.5 80.9 96.9 81.9 86.8 60.1 55.0 74.5 75.8 66.4
CDIM [37] 98.7 64.0 74.1 92.9 82.4 83.6 77.6 95.5 78.2 83.7 - - - - -
VIV-DG-Lite 97.8 66.8 77.8 91.4 83.5 86.1 81.8 96.6 83.3 87.0 60.8 55.9 75.8 76.3 67.2
VIV-DG 97.6 67.1 77.4 91.6 83.4 86.6 81.5 96.9 83.9 87.2 61.1 56.3 75.3 76.8 67.4
† The best and second best results are marked in bold and underlined, respectively. Avg. = Average accuracy(%).

Table 1 shows that our method exhibits two key advantages: (i) it outperforms existing causality-
inspired DG methods, with significant improvements over the IV-DG [17] method, which relies on
the predefined IV strategy; (ii) it demonstrates a pronounced advantage under severe distribution
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shifts. For instance, on the Digits-DG dataset, where SVHN and SYN exhibit large distribution gaps,
VIV-DG and VIV-DG-Lite outperform the baselines by a clear margin. Similarly, in PACS, where
there is a substantial distribution shift, our method consistently surpasses all baselines.

For a more comprehensive validation, we evaluate our method using a larger backbone network,
ResNet-50, to assess its scalability and robustness. Table 2 presents the results on the VLCS dataset. It
can be observed that both VIV-DG and VIV-DG-Lite achieve the same optimal average performance,
surpassing recent causality-inspired methods with gains of 0.8% over iDAG and 0.5% over GMDG.
Moreover, they demonstrate competitive performance across multiple domains. Table 1 and Table 2
demonstrate that our methods effectively mitigate confounding effects and improve generalization.

5.3 Analysis of the distinct behaviors of VIV-DG and VIV-DG-Lite

Table 2: The results on VLCS with ResNet-50

Methods C L S P Avg.

RSC [32] 98.0 67.2 70.3 75.6 77.8
MixStyle [38] 98.6 64.5 72.6 75.7 77.9
SagNet [39] 97.9 64.5 71.4 77.5 77.8
PCL [40] 99.0 63.6 73.8 75.6 78.0
iDAG [41] 98.1 62.7 69.9 77.1 76.9
RICE [42] 98.3 69.2 74.6 75.1 79.3
GMDG [43] 98.3 65.9 73.4 79.3 79.2
VIV-DG-Lite 99.2 67.4 74.4 77.6 79.7
VIV-DG 99.0 67.7 74.6 77.5 79.7

As shown in Table 1 and Table 2, the per-
formance of VIV-DG and VIV-DG-Lite varies
across target domains. To understand this dis-
crepancy, we provide a detailed analysis. Specif-
ically, VIV-DG-Lite approximates the causal
representations by combining the IVs with
the initial causal representations, which retains
more original discriminative information but is
more susceptible to confounding. Therefore, it
performs better in domains with smaller distribu-
tion shifts, such as Product in Office-Home and
Cartoon in PACS dataset. In contrast, VIV-DG
predicts causal representations through a trained
regressor for bias correction, which helps reduce confounding effects and thus performs better in do-
mains with larger distribution shifts, such as Sketch in PACS dataset. Overall, VIV-DG demonstrates
greater robustness compared to VIV-DG-Lite.

5.4 Analytical experiments

5.4.1 Parameter sensitivity
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Figure 5: (Left) Univariate hyperparameter analysis. (Right) Combined hyperparameter analysis.

To evaluate the robustness of the VIV-DG under different hyperparameter settings, we perform a
sensitivity analysis on the PACS dataset using the ResNet-18. Appendix H.3.3 summarizes the
hyperparameter settings for each stage. Since τ and β2 are adaptively adjusted, the analysis focuses
on β1, α1, α2, and α3. We first perform a univariate sensitivity analysis for each hyperparameter,
followed by a combination analysis of α1, α2, and α3, keeping other hyperparameters at their default
values. The value ranges and step sizes are listed in Appendix H.4. As shown in Figure 5, the model
demonstrates satisfactory robustness across both individual and combined hyperparameter settings.

5.4.2 Ablation study

To evaluate the contribution of each component, we conduct ablation studies on Digits-DG, PACS,
and Office-Home. As shown in Table 3, removing both the Visual IV module and the regressor
(w/o VIV &Rϕ) leads to a significant performance drop compared to the full model, indicating that
relying solely on data augmentation and MMD for invariant representation learning is insufficient.
This demonstrates that mitigating confounding effects is crucial for effective domain generalization.
Moreover, the results show that the exclusion loss is the most critical, as it effectively prevents the
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introduction of extra confounders as IVs. Meanwhile, the relevance and independence losses help
reduce confounding effects and enhance the expressiveness of causal representations.

Table 3: Ablation study (%) on Digits-DG, PACS, and Office-Home datasets

Methods Setting
Digits-DG PACS (ResNet-18) Office-Home (ResNet-18)

MN MM SV SY Avg. A C P S Avg. A C P R Avg.

VIV-DG

w/o VIV &Rϕ 96.7 62.3 72.8 89.7 80.4 82.7 78.1 93.6 80.5 83.7 58.7 54.6 74.2 76.1 65.9
w/o I(Z;S) 96.8 64.5 74.0 90.6 81.5 85.5 80.4 95.8 83.6 86.3 60.9 54.4 75.6 76.7 66.9
w/o I(Z;U) 96.9 64.1 75.0 90.2 81.6 84.9 79.7 95.9 83.0 85.9 60.9 53.9 75.3 76.6 66.7

w/o I(Y ;Z|S) 96.7 64.6 74.7 90.5 81.6 84.6 79.1 95.3 82.4 85.4 60.7 53.6 75.4 76.5 66.6
Full Model 97.6 67.1 77.4 91.6 83.4 86.6 81.5 96.9 83.9 87.2 61.1 56.3 75.3 76.8 67.4

VIV-DG-Lite

w/o VIV &Rϕ 96.7 62.3 72.8 89.7 80.4 82.7 78.1 93.6 80.5 83.7 58.7 54.6 74.2 76.1 65.9
w/o I(Z;S) 97.1 64.4 74.9 90.4 81.7 85.6 79.7 95.4 82.9 85.9 60.5 53.9 75.4 75.9 66.4
w/o I(Z;U) 96.9 63.9 74.6 90.2 81.4 84.7 78.4 95.5 82.4 85.3 60.4 53.7 75.6 76.1 66.5

w/o I(Y ;Z|S) 96.5 64.2 74.4 90.1 81.3 84.5 78.2 95.5 81.9 85.0 60.2 53.3 75.2 75.7 66.1
Full Model 97.8 66.8 77.8 91.4 83.5 86.1 81.8 96.6 83.3 87.0 60.8 55.9 75.8 76.3 67.2

† The results of "w/o IV &Rϕ" are identical for both VIV-DG and VIV-DG-Lite under this setting, and are provided for both methods to facilitate direct comparison.

5.4.3 Visual explanation

To validate that VIV-DG learns causal representations consistent with human cognition, we conduct
visual analysis using Grad-CAM on images with complex backgrounds from the Art-Painting domain.
We deliberately choose this domain because the classification accuracies of VIV-DG and the baseline
CIRL [13] are comparable, making any visual improvement in identifying causal regions a meaningful
contribution. We compare VIV-DG against both CIRL and an ablated version of our model without
the Visual IV learning module (Ours (w/o VIV)). As shown in Figure 6, VIV-DG demonstrates a
superior ability to capture global features and focus on the core object structures. For instance, in
images of dog, giraffe, and house, VIV-DG identifies broader, more holistic regions compared to
the localized cues relied upon by CIRL. More importantly, the ablated model (Ours (w/o VIV))
exhibits significant deviations, especially in complex backgrounds (e.g., dog). Even in simpler scenes
(e.g., horse and house), it is less accurate than the full model in capturing causally relevant regions.
These results provide strong visual evidence that the Visual IV module is crucial, further supporting
VIV-DG’s effectiveness in learning cognitively consistent causal representations.

Figure 6: Grad-CAM visualization on the PACS dataset with Art-Painting as the target domain.

6 Conclusion

We propose a novel confounding-resistant DG approach, termed VIV-DG. We break away from the
conventional view that simply categorizes non-causal factors as confounders and observe that certain
visual attributes in image data satisfy the conditions of IVs. Building on this insight, we develop a
framework that automatically learns valid Visual IVs and mitigates the significant bias arising from
violations of IV conditions in predefined IVs. By mitigating confounding effects, including those
from unobserved confounders, VIV-DG consistently achieves improved generalization.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The novelty of our work is clearly presented in both the abstract and introduc-
tion, and the experiments are designed to validate it accordingly.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide limitations in the Remark 2.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide formal theorems with all necessary assumptions clearly stated, and
complete proofs are included in the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions of the experimental settings and the algo-
rithm’s pseudocode in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets involved in this research are all publicly available real-world
datasets, and we plan to release the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed descriptions in Appendices H.1 and H.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Due to the nature of large-scale pertaining, we cannot repeat each training
multiple times to calculate the error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix H.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Read and agree.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the broader impacts in Appendix J.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide credits to all works utilized in this study.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well documented, with the details
provided in the Appendix.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

19



16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This research does not involve LLMs as important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

This appendix includes technical and supplementary materials: related work, technical background,
the VIV-DG pseudocode, experimental setup, additional results, and broader impacts.

A Related work

A.1 Confounding effect mitigation for DG

Recently, numerous domain generalization methods have been developed to learn causal representa-
tions by mitigating confounding effects. These methods are typically categorized into three causal
intervention frameworks: backdoor adjustment, frontdoor adjustment, and instrumental variable
(IV) methods. For instance, Zhang et al. [15] propose the DIR-ReID framework based on backdoor
adjustment to learn domain-invariant representations for person re-identification. Similarly, Sui et
al. [44] design a causal attention mechanism using backdoor adjustment to improve robustness and
interpretability. However, backdoor adjustment assumes access to all confounders, which is often
unrealistic due to the presence of unobserved confounders in real-world scenarios. Toan Nguyen et
al. [16] propose the FAGT method based on frontdoor adjustment, achieving improved generalization.
Nonetheless, it relies on observable mediators, which are difficult to identify and validate in practice.
Yuan et al. [17] introduce IV-DG, which treats data from one domain as instrumental variables for
another. However, even if domains differ, features extracted from the same class may still share
cross-domain discriminative information, potentially violating the exclusivity assumption of IVs.

A.2 Instrumental variable

Instrumental variables are exogenous variables that are associated with the treatment but have no
direct causal effect on the outcome [18]. Even in the presence of unobserved confounders, IV methods
can effectively eliminate confounding effects, which makes instrumental variables widely applicable
for causal effect estimation and counterfactual prediction [45, 46]. Recently, instrumental variables
have gained increasing attention in machine learning. In addition to the previously mentioned
domain generalization method IV-DG[17], instrumental variables are also applied in recommendation
systems. For example, Si et al. [47] propose the IV4Rec method, which leverages user search
data as instrumental variables to effectively mitigate confounding bias caused by latent variables in
recommendation models.

In our work, we introduce a domain generalization approach for image classification that directly
learns instrumental variables from image data. Our method is not restricted by specific physical
concepts but instead autonomously learns representations that satisfy instrumental variable conditions.
The key advantage of our approach is that predefined instrumental variables may introduce severe
biases if they fail to meet valid IV conditions, whereas our method effectively avoids this issue by
autonomously learning instrumental variables.

B Preliminary: instrumental variables for confounding mitigation

Outcome

T YZ

TreatmentIVs

C

Confounders

Figure 7: The SCM with IVs.

Instrumental Variables (IVs) [18] are a statistical method that
can effectively estimate causal effects even in the presence of
unobserved confounders. The core idea is to introduce a exoge-
nous variable that satisfies specific conditions, thereby blocking
the confounding effect on the relationship between the treatment
T and the outcome Y . To illustrate the properties and role of
IVs, we present a general SCM, as shown in Figure 7. A valid
instrumental variable must satisfy three conditions: (i) Relevance:
The variable Z must be correlated with the treatment T ; (ii) Inde-
pendence: The variable Z must be independent of the confounder C; (iii) Exclusion: The variable Z
affects the outcome Y only through the treatment T (i.e., Z has no direct effect on Y ).

The most widely used IV-based causal effect estimation method is two-stage least squares regression
(2SLS), which follows a two-stage procedure. In the first stage, the treatment T is regressed on
the instrument Z, yielding the predicted treatment values T̂ . In the second stage, the outcome Y
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is regressed on the predicted values T̂ . The coefficient obtained in the second-stage regression
represents the local average treatment effect (LATE), providing an unbiased estimate of the causal
effect of the T on Y . Notably, 2SLS is primarily designed for scenarios with linear relationships
between variables.

C Connections of the proposed SCM

Figure 8 illustrates our proposed fine-grained SCM, with all the connections detailed below.

S → X, U → X, Z → X. (S, U , Z) → X . Each input image X consists of causal factors (i.e.,
object-specific factors) S and non-causal factors U and Z. Although both U and Z are non-causal
factors, they differ fundamentally. As an inherent attribute of the object, Z remains relatively stable
and, when combined with S, provides valuable information for category prediction.

Labels

U

S YZ

Causal factorsIVs

X C

Input data

Observed

confounders

Unobserved

confounders

Figure 8: The proposed SCM.

S ↔ U → Y , S ← C → Y . The observed confounders U
should not be directly associated with Y . However, in prac-
tice, when selection bias exists in the training data, pretrained
encoders may learn shortcut features from non-causal factors
and use them for prediction. As a result, U influences Y , even
though this relationship is non-causal. Additionally, due to
natural or manual biases, S and U frequently co-occur in the
data distribution, leading to a statistical association between
them. We represent this correlation with a bidirectional arrow
(S ↔ U ). Moreover, C shares similarities with U but represents unobserved confounders that
simultaneously influence both S and Y . Without loss of generality, we assume that C represents
confounders related to unknown domain styles or backgrounds. Since domains cannot be exhaustively
enumerated, such unobserved confounders inevitably exist. However, these factors do not appear in
the current observed input data or known source domains, and therefore do not exert a direct causal
effect on the input data X . For example, factors such as image style or background color may serve
as potential confounders, but they are not always visible or relevant in specific samples. The art style
of an image, as a confounder, may not affect the input of a sketch image. Similarly, a background
factor like yellow desert does not appear in an image of a dog in the snow.

Z → S → Y . The factors Z and S may exhibit a biological or physical association. For example, in
animal images, this could reflect the co-evolution of an organism’s coat color and shape. Additionally,
Z does not directly influence the labels. For instance, it is not possible to determine the category of
an object solely based on its local coat color. However, when combined with shape and contours, Z
provides valuable predictive information.

Notably, since the confounders U and C simultaneously affect both the causal factors S and the
labels Y , they establish backdoor paths between S and Y : S ↔ U → Y and S ← C → Y . As a
result, in addition to the causal relationship S → Y , spurious correlations are introduced, leading
to confounding effects [19]. Conventional estimation of P (Y |S) results in a biased estimator that
absorbs both the true causal dependence and spurious correlations, limiting its generalizability.

D Mask generation module

The mask generation module consists of two main components: (i) image difference computation
and mask generation, and (ii) masked image construction.

(i) Image difference computation and mask generation: We convert both the original image xi and
its augmented counterpart xpi to grayscale to reduce the influence of color. Then, we compute the
absolute pixel-wise difference ∆i(p, q) at each location (p, q):

∆i(p, q) =
∣∣∣xi(g)(p, q)− xpi(g)(p, q)

∣∣∣ , (25)

where xi(g) and xpi(g) represent the transformed grayscale images, respectively. A binary mask is
then generated using a threshold δ (empirically set to 30):

mi(p, q) =
{

1, ∆i(p, q) < δ,
0, ∆i(p, q) ≥ δ,

δ = 30. (26)
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(ii) Masked image construction: We extend the binary mask mi(p, q) to all RGB channels and apply
it to the original image xi to obtain the masked input:

xmi (p, q, c) = xi(p, q, c)×mi(p, q), (27)
where c denotes the color channel. The masked image xmi is then fed into the IV learner to extract
the IV representations.

E Theoretical foundations

E.1 Preliminaries and assumptions

We consider a tuple of random variables (X,S,U, Y ) defined on a probability space (Ω,F ,P), where
X denotes the observed images, S denotes the causal factors affecting Y , U denotes the confounders,
and Y denotes the downstream labels. Let Z be a measurable representation space, and let Z = h(X)
for some representation function h : X → Z . Without loss of generality, we do not distinguish
between observed and unobserved confounders here.
Assumption 1 (Basic Regularity). The joint laws of all relevant random variables admit regular
conditional distributions, and all mutual informations appearing below are finite. Moreover, all
measurable maps and densities are taken modulo null sets (i.e., hold almost surely).
Assumption 2 (Parametric Representation Family; Continuity and Compactness). The representation
family is parameterized asHZ = {hω : X → Z}ω∈Ω where (i) the parameter set Ω is compact, (ii)
the map ω 7→ hω is measurable, and (iii) for each of the mutual-information functionals

ω 7→ I(hω(X);S), ω 7→ I(hω(X);U), ω 7→ I(hω(X);Y | S), (28)
we assume continuity (or at least the required lower/upper semicontinuity) so that objectives built
from these functionals admit minimizers on Ω by standard compactness arguments.

E.2 Identifiability conditions and learnability

lemma 1 (Identifiability Conditions for Visual IVs via Mutual Information). Let (X,S,U, Y ) be
four random variables, where X denotes observed images, S denotes the causal factors affecting
Y , U denotes the confounders, and Y denotes the downstream labels. A candidate variable Z is
called a visual instrumental variable if it simultaneously satisfies: (i) Relevance: I(Z;S) > 0, (ii)
Independence: I(Z;U) = 0, and (iii) Exclusion: I(Z;Y | S) = 0.

Proof. By definition of mutual information,

I(Z;S) =

∫∫
p(z, s) log

p(z, s)

p(z)p(s)
dz ds, (29)

and I(Z;S) > 0 if and only if p(z, s) ̸= p(z)p(s), i.e., Z ̸⊥⊥ S. This is exactly the relevance
requirement. Similarly,

I(Z;U) =

∫∫
p(z, u) log

p(z, u)

p(z)p(u)
dz du, (30)

and I(Z;U) = 0 if and only if p(z, u) = p(z)p(u), i.e., Z ⊥⊥ U . This is the independence
requirement. Finally,

I(Z;Y | S) =
∫∫∫

p(s, y, z) log
p(y, z | s)

p(y | s)p(z | s)
ds dy dz, (31)

and I(Z;Y | S) = 0 if and only if p(y, z | s) = p(y | s)p(z | s), i.e., Z ⊥⊥ Y | S. This is the
exclusion requirement.

lemma 2 (Recoverability of Visual IVs). Let hω : X → Z be a parameterized mapping (e.g., via a
deep network), with the training objective

L(ω) = −α1I(Z;S) + α2I(Z;U) + α3I(Z;Y | S), (32)
where α1, α2, α3 > 0. Under the idealized assumption of sufficient network capacity, any global
minimizer ω∗ satisfies

I(Z∗;S) > 0, I(Z∗;U) = 0, I(Z∗;Y | S) = 0, (33)
where Z∗ = hω∗(X), i.e., it exactly recovers a visual instrumental variable.
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Proof. Since −I(Z;S) ≥ − supω I(Z;S), I(Z;U) ≥ 0, and I(Z;Y | S) ≥ 0, any global min-
imizer ω∗ must simultaneously (i) maximize I(Z;S), (ii) drive I(Z;U) to zero, and (iii) drive
I(Z;Y | S) to zero; otherwise one could reduce L further.

By the zero mutual information conditions, we get Z ⊥⊥ U and Z ⊥⊥ Y | S, and by the maximization,
I(Z;S) > 0. These three facts are exactly the three requirements of Lemma 1.

E.3 Identifiability theory

Definition 2 (Learnability of Visual IVs). Let (X,S,U, Y ) be four random variables, where X
denotes observed images, S denotes the causal factors affecting Y , U denotes the confounders, and
Y denotes the downstream labels. LetHZ = {h : X → Z} be a family of representation functions.
We say that a visual instrumental variable is learnable inHZ if:

(1) (Existence) There exists at least one h∗ ∈ HZ whose output Z∗ = h∗(X) satisfies the three
conditions of Lemma 1:

I(Z∗;S) > 0, I(Z∗;U) = 0, I(Z∗;Y | S) = 0. (34)

(2) (Uniqueness modulo invertible transforms) For any two h1, h2 ∈ HZ whose outputs both
satisfy those three conditions and maximize I(Z;S) (i.e., Z is a sufficient statistic for S),
their outputs are related by an invertible reparameterization:

h2(X) = φ(h1(X)), φ : Z → Z bijective. (35)
Proposition 1 (Uniqueness of Visual IVs). LetHZ = {h : X → Z} be a sufficiently rich function
family (containing all smooth bijections). Suppose some h∗ ∈ HZ satisfies

I(Z∗;S) > 0, I(Z∗;U) = 0, I(Z∗;Y | S) = 0, (36)
where Z∗ = h∗(X), and I(Z∗;S) is maximized (i.e., Z∗ is a sufficient statistic for S). Then the
induced variable Z∗ is unique up to invertible reparameterization.

Proof. Let Z1 = h1(X) and Z2 = h2(X) both satisfy the conditions. Since I(Z1;U) = 0 and
I(Z1;Y | S) = 0, Z1 is independent of U and conditionally independent of Y given S. Therefore,
Z1 can only influence Y through S. Similarly, Z2 can only influence Y through S. Since I(Z1;S)
and I(Z2;S) are both maximized, Z1 and Z2 are both sufficient statistics for S. This means there
exist functions g1 and g2 such that S = g1(Z1) and S = g2(Z2) almost surely (in an appropriate
sense). Consequently, Z1 and Z2 determine each other through S: there exist mappings f12 and
f21 satisfying Z2 = f12(Z1) = f12(g

−1
1 (S)) and Z1 = f21(Z2) = f21(g

−1
2 (S)) Since the function

familyHZ is sufficiently rich (containing all smooth bijections), f12 and f21 can be taken as bijective
transformations. Thus, Z1 and Z2 are equivalent up to an invertible reparameterization.

Theorem 2 (Learnability of Visual IVs). Let (X,S,U, Y ) be four random variables, where X
denotes observed images, S denotes the causal factors affecting Y , U denotes the confounders, and
Y denotes the downstream labels. Assume that HZ = {hω : X → Z} is a sufficiently expressive
family of mappings (e.g., one that contains all smooth bijections on a latent subspace). Consider the
objective

L(ω) = −α1I(hω(X);S) + α2I(hω(X);U) + α3I(hω(X);Y | S), (37)
with α1, α2, α3 > 0. Then any global minimizer ω∗ yields

Z∗ = hω∗(X), (38)
which is learnable as defined in Definition 2.

Proof. (1) Existence follows directly from Lemma 2, which shows that any global minimizer
ω∗ of L enforces

I(Z∗;S) > 0, I(Z∗;U) = 0, I(Z∗;Y | S) = 0. (39)

(2) Uniqueness follows from Proposition 1: Since the objective function contains −I(Z;S),
the global minimizer simultaneously maximizes I(Z;S), making Z∗ a sufficient statistic
for S. Therefore, any other representation satisfying the three conditions must be related to
Z∗ by an invertible map.

Together, these two facts establish full learnability of the visual IV under Definition 2.
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Remark 3. In practice, finite positive weights (α1, α2, α3) induce a trade-off among the three
mutual-information terms, so a global minimizer may allow nonzero penalties if the relevance gain
outweighs them.

F Pseudocode of the VIV-DG

Algorithm 1 Visual Instrumental Variables for Domain Generalization (VIV-DG)
Input: Data loaders (train / val / test), device, args
Output: Accuracy on the test set

1: Initialize: Main encoder Gθ, Classifier h, IV-learner Zψ , RegressorRϕ
2: Data loaders: Dtrain,Dval,Dtest

3: Stage epochs: (E1, E2, E3, E4), Total epochs: E =
∑4
i=1 Ei

4: for epoch e = 1 to E do
5: if e ≤ E1 then
6: s← 1
7: else if e ≤ E1 + E2 then
8: s← 2
9: else if e ≤ E1 + E2 + E3 then

10: s← 3
11: else
12: s← 4
13: end if
14: if s = 1 or s = 4 then ▷ Stage I: Main Training
15: Unfreeze Gθ, h; freeze Zψ ,Rϕ
16: for each batch in Dtrain do
17: Compute Lcausal = β1Lcls + τLMMD
18: if s = 4 then
19: Compute L+

causal = β1Lcls + β2Lŝcls + τLMMD ▷ Stage I+: Causal Correction
20: end if
21: Backpropagate and update Gθ, h
22: end for
23: else if s = 2 then ▷ Stage II: IV Encoder Training
24: Freeze Gθ, h; unfreeze Zψ
25: for each batch in Dtrain do
26: Compute Ltotal_IV = α1LMI_ZS + α2LMI_ZU + α3LMI_ZY
27: Backpropagate and update Zψ
28: end for
29: else if s = 3 then ▷ Stage III: Regressor Training
30: Freeze Gθ, Zψ; unfreezeRϕ
31: for each batch in Dtrain do
32: Compute regression loss: Lreg = E(s,z)∼p(s,z)

[
∥Rϕ(LN(z))− s∥22

]
33: Backpropagate and updateRϕ
34: end for
35: if e = E1 + E2 + E3 then
36: FreezeRϕ
37: end if
38: end if
39: end for
40: Evaluate on val / test set
41: Return: Accuracy on the test set

G Computational cost

The computational cost of our VIV-DG is justified by the improved scalability and automation. The
main computational cost of VIV-DG comes from the automatic visual IV learning module. Although
this introduces additional training cost, it substantially reduces the manual effort required to design
instrumental variables, which is often necessary in predefined IV-based methods. It also avoids
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reliance on domain knowledge or expert heuristics. Despite achieving only moderate gains over some
baselines, it consistently outperforms predefined IV-based methods like IV-DG in both performance
and practicality. Therefore, we consider this a reasonable trade-off that improves both flexibility and
reduces human effort. Using ResNet-50 as the backbone, training on a single A800 GPU requires
approximately 40–50 GB of memory and runs stably.

The overall time complexity of our training framework is T = O(N ·E · Pmax), where N denotes
the number of training samples, E is the total number of training epochs, and Pmax represents the
maximum computational cost among the modules trained in each stage.

H Experimental setup

H.1 Dataset details

We evaluate our method on four widely used domain generalization benchmarks: Digits-DG [26],
PACS [27], Office-Home [28], and VLCS [29]. Detailed descriptions of these datasets are provided
below:

Digits-DG [26] is a benchmark dataset for digit recognition, consisting of four domains: MNIST
[48], MNIST-M [49], SVHN [50], and SYN [49]. These domains differ significantly in font style,
background, and stroke color. Following [26], we randomly select 600 images per class in each
domain, using 80% for training and 20% for validation.

PACS [26] is a domain generalization benchmark that includes four domains with different visual
styles: Art-Painting, Cartoon, Photo, and Sketch. It contains a total of 9,991 images across 7
categories: dog, elephant, giraffe, guitar, house, horse, and person. For fair comparison, we use the
original training-validation split provided by [27].

Office-Home [28] consists of four domains: Art, Clipart, Product, and Real-World. Each domain
includes 65 object categories related to office and home environments, with a total of 15,588 images.
Following [31], we use 90% of the data for training and 10% for validation.

VLCS [29] contains four domains: Caltech, LabelMe, Sun, and Pascal. Each domain shares the same
5 categories, with a total of 10,729 images.

H.2 Baseline methods

We categorize the compared baselines into two groups: non-causal methods and causality-inspired
methods. The detailed descriptions are as follows:

(i) Non-causal methods primarily rely on statistical correlations to learn domain-invariant features.
FACT [7] constructs a consistency loss through data augmentation methods based on Fourier transform
and co-teaching regularization. RSC [32] iteratively discards dominant features activated on training
data and forces the network to activate remaining features that are correlated with labels. DeepAll
[26] maps source domain training data to unseen domains via a label classifier, a domain classifier,
and a domain transformation network, thereby enhancing the robustness of the label classifier to
unknown domain variations. L2A-OT [35] employs a data generator to synthesize pseudo-novel
domain data for augmenting the source domain, directly increasing the diversity of training domains
and improving model generalization. LRDG [36] learns a domain-invariant model by tactically
removing domain-specific features from the input images.

(ii) Causality-inspired approaches explicitly model causal relationships to address distribution shifts.
MatchDG [34], a matching-based method, aligns inputs from the same latent object across domains
to enhance out-of-domain performance. CIRL [13] utilizes data augmentation techniques and causal
intervention methods to learn causal representations. IV-DG [17] leverages instrumental variables to
eliminate confounding effects and considers that data from one domain can serve as instrumental
variables for another domain. FAGT [16] eliminates confounding effects through style transfer and
the front-door adjustment method. iDAG [41] extracts invariant graph structures as proxies for causal
structures to enhance representation generalization. GMDG [43] jointly learns domain-invariant
conditional features and maximizes the posterior, providing a flexible framework that generalizes and
theoretically explains existing multi-domain generalization methods.
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H.3 Implementation details

H.3.1 Basic details

In our experiments, we used an NVIDIA A800 80GB PCIe GPU. We adopt the same backbone
for both the primary encoder and the instrumental variable encoder across all benchmarks. For
Digits-DG, we follow the architecture used in [35], training from scratch with a batch size of 8 and
an initial learning rate of 0.001, which decays by a factor of 0.1 after 80% of the total epochs. For
PACS and Office-Home, we use ImageNet-pretrained ResNet-18 and ResNet-50 [51] backbones
with a batch size of 5. VLCS follows the same configuration using ResNet-50. All models are
trained using SGD optimizer with a momentum of 0.9. All reported results are averaged over 3 runs.
Following the DomainBed protocol, we adopt the official data splits, model selection strategy, and
evaluation settings to ensure the fairest possible comparisons. Except for the batch size constrained by
GPU memory and the model-specific training epochs, other configurations, including dataset splits,
evaluation protocols, backbone architectures, and the leave-one-domain-out strategy, remain identical
to the DomainBed defaults. For fair comparison, our main extraction network (initial training and
bias correction fine-tuning) is trained for 50 epochs, consistent with the compared methods.

H.3.2 Method-specific details

We design a stage-wise training scheme for both VIV-DG and VIV-DG-Lite, with detailed configura-
tions summarized in Table 4 and Table 5. Notably, the main encoder Gθ is trained for a total of 50
epochs, consisting of the initial training in Phase I and the fine-tuning stage in Phase I+.

Table 4: Epoch configuration for stage-wise training of VIV-DG

Stage Training Objective Digits-DG PACS (ResNet-18) Office-Home (ResNet-18)

Phase I Train main encoder Gθ 30 30 30
Phase II Freeze Gθ; train IV encoder Zψ 25 25 25
Phase III Freeze Gθ, Zψ; train regressorRϕ 25 25 25
Phase I+ Freeze Zψ ,Rϕ; fine-tune Gθ 20 20 20
† Phase I+ refers to a fine-tuning stage built upon Phase I.

Table 5: Epoch configuration for stage-wise training of VIV-DG-Lite

Stage Training Objective VLCS (ResNet-50) PACS (ResNet-50) Office-Home (ResNet-50)

Phase I Train main encoder Gθ 30 30 30
Phase II Freeze Gθ; train IV encoder Zψ 20 20 20
Phase I+ Freeze Zψ; fine-tune Gθ 20 20 20
† Phase I+ refers to a fine-tuning stage built upon Phase I.

H.3.3 Hyperparameter settings

The hyperparameter settings are summarized in Table 6, encompassing the various datasets and
training stages employed in our experiments.

Phase I (Initial causal factor extraction): The loss function Lcausal incorporates two hyperparame-
ters: β1 and τ . β1 is set per dataset (Digits-DG = 1, PACS = 0.5, Office-Home = 0.1, VLCS = 0.1),
while τ adapts dynamically according to the number of training epochs. This scheme ensures rapid
convergence across datasets and stabilizes causal factor extraction in early training.

Phase II (Visual IV learning) & Phase III (Regressor training): To reduce tuning complexity,
Phases II and III adopt identical hyperparameter settings across all datasets. Specifically, in Phase
II’s total loss Ltotal_IV, we set α1 = 1, α2 = 0.5, and α3 = 0.5. In Phase III, the regressor loss Lreg

carries a default weight of 1 to maintain stability.

Phase I+ (Causal factor refinement and debiasing): The loss L+
causal reuses β1 and τ from Phase I

while introducing a dynamically adjusted β2. This adaptive strategy enables the model to flexibly
respond to distributional shifts and further refine debiasing.
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Table 6: Hyperparameter settings

Stage Loss Function Hyperparameters Settings

Phase I Lcausal β1, τ β1: Digits-DG=1; PACS=0.5; Office-Home=0.1; VLCS=0.1;
τ : adaptively adjusted

Phase II Ltotal_IV α1, α2, α3 α1 = 1; α2 = 0.5; α3 = 0.5

Phase III Lreg — Regression weight set to 1 by default

Phase I+ L+
causal β1, β2, τ β1, τ : same as Phase I; β2: adaptively adjusted

† Phase I+ refers to a fine-tuning stage built upon Phase I.

H.3.4 Stage-wise training configuration of VIV-DG and VIV-DG-Lite

Table 7 illustrates the stage-wise training procedures for both VIV-DG and its simplified variant,
VIV-DG-Lite. Notably, Phase III is omitted in VIV-DG-Lite, as the regressor training is replaced by a
feature fusion strategy, as described in Remark 2.

Table 7: Stage-wise training configuration of VIV-DG and VIV-DG-Lite

Stage Training Objective VIV-DG VIV-DG-Lite

Phase I Train main encoder Gθ ✓ ✓

Phase II Freeze Gθ; train IV learner Zψ ✓ ✓

Phase III Freeze Gθ , Zψ; train regressor Rϕ ✓ –
Phase I+ Freeze Zψ and optionally Rϕ; fine-tune Gθ ✓ ✓

† ✓indicates that the phase is included in the method. Phase I+ refers to a fine-tuning stage based on Phase I.

H.4 Hyperparameter sensitivity analysis design

Table 8 summarizes the value ranges and step sizes of the hyperparameters involved in each training
stage for sensitivity analysis.

Table 8: Hyperparameter sensitivity analysis design

Parameter(s) Value Range (Step Size) Default Value

Single-variable Sensitivity
β1 {0.1, 0.3, 0.5, 0.7, 0.9} (linear) 0.5
α1 {0.4, 0.7, 1.0, 1.3, 1.6} (linear) 1.0
α2 {0.1, 0.3, 0.5, 0.7, 0.9} (linear) 0.5
α3 {0.1, 0.3, 0.5, 0.7, 0.9} (linear) 0.5

Multi-variable Combinations of α1, α2, and α3

α1+α2+α3

C1: (0.5, 1.0, 0.5) 1.0 / 0.5 / 0.5
C2: (1.0, 0.2, 0.2) 1.0 / 0.5 / 0.5
C3: (1.0, 0.5, 0.5) 1.0 / 0.5 / 0.5
C4: (0.5, 0.5, 1.0) 1.0 / 0.5 / 0.5
C5: (1.0, 0.3, 0.7) 1.0 / 0.5 / 0.5

I Additional results

I.1 Evaluation on PACS and Office-Home using ResNet-50

Table 9 and Table 10 present the experimental results on PACS and Office-Home using ResNet-50,
respectively. These results further demonstrate the effectiveness of our method, and in particular, the
results in Table 10 show that VIV-DG exhibits significant superiority on Office-Home.
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Table 9: The results on PACS with ResNet-50

Methods A C P S Avg.

SagNet [39] 87.4 80.7 97.1 80.0 86.3
MatchDG [34] 85.6 82.1 97.9 78.8 86.1
SAGM [52] 87.4 80.2 98.0 80.8 86.6
CIRL [13] 90.7 84.3 97.8 87.7 90.1
FACT [7] 90.9 83.7 97.8 86.2 89.7
RICE [42] 87.8 84.3 96.8 84.7 88.4
iDAG [41] 90.8 83.7 98.0 82.7 88.8
GMDG [43] 84.7 81.7 97.5 80.5 85.6
VIV-DG-Lite 90.3 83.8 97.6 86.7 89.6
VIV-DG 90.5 83.6 97.8 86.7 89.7

† The best and second best results are marked in bold and underlined, respec-
tively. Avg. = Average accuracy (%).

Table 10: The results on Office-Home with ResNet-50

Methods A C P R Avg.

RSC [32] 60.7 51.4 74.8 75.1 65.5
MixStyle [38] 51.1 53.2 68.2 69.2 60.4
SagNet [39] 63.4 54.8 75.8 78.3 68.1
PCL [40] 67.3 59.9 78.7 80.7 71.6
SAGM [52] 65.4 57.0 78.0 80.0 70.1
FAGT [16] 66.3 59.5 77.6 79.0 70.6
iDAG [41] 68.2 57.9 79.7 81.4 71.8
GMDG [43] 68.9 56.2 79.9 82.0 70.7
VIV-DG-Lite 67.8 60.7 79.7 81.4 72.4
VIV-DG 68.4 62.3 79.4 81.7 73.0
† The best and second best results are marked in bold and underlined, respec-

tively. Avg. = Average accuracy (%).

I.2 Sensitivity to mask threshold δ

To verify the robustness of the parameter threshold δ used in the mask generation process (Sec. D),
we conduct sensitivity experiments on δ for VIV-DG using the Digits-DG and PACS datasets, with
PACS experiments conducted using the ResNet-18 backbone. The results are shown in Figure 9. We
vary δ from 20 to 40 in steps of 5 (20, 25, 30, 35, and 40) and observe minimal performance variation,
indicating that VIV-DG is robust with respect to the parameter δ.
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Figure 9: Sensitivity analysis of mask threshold δ: (Left) Digits-DG; (Right) PACS.

I.3 Visual explanation

The visualization results on the PACS dataset, with Cartoon, Photo, and Sketch as the target domains,
are shown in Figure 10, Figure 11, and Figure 12, respectively. It can be observed that VIV-DG
attends to broader and more holistic discriminative regions, whereas CIRL [13] tends to rely on more
localized cues. This demonstrates the effectiveness of our method in learning causal representations.
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Figure 10: Grad-CAM visualization on the PACS dataset with Cartoon as the target domain.

Figure 11: Grad-CAM visualization on the PACS dataset with Photo as the target domain.

Figure 12: Grad-CAM visualization on the PACS dataset with Sketch as the target domain.

I.4 Mutual information analysis
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Figure 13: Mutual information analysis.

To verify whether the representations learned
by the visual instrumental variable learner
satisfy the instrumental variable conditions,
we estimate three key mutual information
terms I(Z;S), I(Z;U), and I(Z;Y |S) on
the PACS dataset. For better interpretability
and consistent scaling, all mutual information
values are normalized to the range [0, 1]. As
shown in Figure 13, the results indicate that
the learned representation Z exhibits high
mutual information with the causal factor S,
low mutual information with the confounder
U , and low conditional mutual information
with the potential outcome Y given S. These findings demonstrate that the learned Visual IVs satisfy
the relevance, exclusion, and independence constraints, thereby validating their effectiveness.
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I.5 Convergence analysis

We analyze the convergence behavior on the Art-Painting domain, with the corresponding curves
presented in Figure 14 and Figure 15. Specifically, Figure 14 demonstrates that the loss decreases
steadily across all stages. Figure 15 reveals that VIV-DG converges rapidly during the early phase
of causal representation learning, with accuracy further improving in Phase I+ (causal correction
and debiasing) compared to Phase I. Notably, during Phase II and Phase III, while training the
instrumental variable learner and the regressor, the main network parameters remain unchanged, so
the accuracy shown in Figure 15 for these two phases stays the same as in the final epoch of Phase I.

0 10 20 30
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
ta

l L
os

s

Start: 0.703
End: 0.074

Reduction: 89.5%

Phase I: Main Training

30 40 50
Epoch

0.55

0.60

0.65

0.70

0.75

To
ta

l L
os

s
Start: 0.754
End: 0.526

Reduction: 30.2%

Phase II: IV-learner Training

60 70 80
Epoch

0.45

0.50

0.55

0.60

0.65

To
ta

l L
os

s

Start: 0.642
End: 0.458

Reduction: 28.7%

Phase III: Regressor Training

85 90 95 100
Epoch

0.8

0.9

1.0

1.1

To
ta

l L
os

s

Start: 1.115
End: 0.798

Reduction: 28.4%

Phase I+: Causal Correction

Figure 14: Total loss convergence by stage.
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Figure 15: Overall test/validation accuracy convergence.

J Broader impact

Our work leverages the exogeneity of visual instrumental variables to mitigate confounding effects,
achieving robust domain generalization even in the presence of unobserved confounders, which
demonstrates significant societal value. By mitigating confounding effects, it enhances model
robustness in open environments, reducing the influence of environmental changes on classification
results and ensuring more reliable performance in real-world image classification tasks. Furthermore,
the improved cross-domain generalization capability facilitates broader applications in medical
imaging, autonomous driving, and security surveillance, thereby amplifying the technology’s societal
value. However, this research may also involve certain potential risks that warrant further academic
investigation. Specifically, the reliability of the system’s output could be undermined when deployed
in real-world scenarios that diverge significantly from the training distribution.
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