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Abstract

Few-shot learning aims to adapt models trained on the base dataset to novel tasks
where the categories were not seen by the model before. This often leads to a rela-
tively concentrated distribution of feature values across channels on novel classes,
posing challenges in determining channel importance for novel tasks. Standard
few-shot learning methods employ geometric similarity metrics such as cosine
similarity and negative Euclidean distance to gauge the semantic relatedness be-
tween two features. However, features with high geometric similarities may carry
distinct semantics, especially in the context of few-shot learning. In this paper,
we demonstrate that the importance ranking of feature channels is a more reliable
indicator for few-shot learning than geometric similarity metrics. We observe
that replacing the geometric similarity metric with Kendall’s rank correlation only
during inference is able to improve the performance of few-shot learning across
a wide range of methods and datasets with different domains. Furthermore, we
propose a carefully designed differentiable loss for meta-training to address the
non-differentiability issue of Kendall’s rank correlation. By replacing geometric
similarity with differentiable Kendall’s rank correlation, our method can integrate
with numerous existing few-shot approaches and is ready for integrating with future
state-of-the-art methods that rely on geometric similarity metrics. Extensive exper-
iments validate the efficacy of the rank-correlation-based approach, showcasing a
significant improvement in few-shot learning.

1 Introduction

Deep learning has achieved remarkable success in various domains. However, obtaining an adequate
amount of labeled data is essential for attaining good performance. In many real-world scenarios,
obtaining sufficient labeled data can be exceedingly challenging and laborious. This makes it a major
bottleneck in applying deep learning models in real-world applications. In contrast, humans are able
to quickly adapt to novel tasks by leveraging prior knowledge and experience, with only a very small
number of samples. As a result, few-shot learning has received increasing attention recently.

The goal of few-shot learning is to adapt models trained on the base dataset to novel tasks where only
a few labeled data are available. Previous works mainly focus on classification tasks and have been
extensively devoted to metric-learning-based methods [1, 2, 3, 4]. In particular, they learn enhanced
embeddings of novel samples by sampling tasks with a similar structure to the novel task from a
sufficiently labeled base dataset for training. Geometric similarity metrics, such as negative Euclidean
distance [1] and cosine similarity [4, 5, 6, 7], are commonly utilized to determine the semantic
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Figure 1: (a) Distribution of the feature channel values for a base class and a novel class on mini-
ImageNet. The novel class is previously unknown for the model, where a clear difference can be
observed from the base class. (b) Comparison of the Mean Variance of Feature Channel Values
between the base dataset (mini-train) and various distinct new datasets. It is observed that the variance
of feature channel values on the new datasets is consistently much lower than that on the base dataset.

similarities between feature embeddings. Recent studies [8, 9, 10] also show that simply employing
cosine similarity instead of inner product in linear classifier also yields competitive performance of
novel tasks, when the model is pre-trained on the base dataset.

Since the categories of the base class and novel class are disjoint in few-shot learning, there exists
a significant gap between training and inference for the model. We found that compared to base
classes, when the feature extractor faces a novel class that is unseen before, the feature channel
values become more concentrated, i.e., for a novel class, most non-core features’ channels have
small and closely clustered values in the range [0.1, 0.3] (see Figure 1(a)). This phenomenon occurs
because the model is trained on the base data, and consequently exhibits reduced variation of feature
values when dealing with novel data. Empirically, we additionally compare the variance of feature
channel values between the base dataset and various novel datasets (see Figure 1(b)). The results
reveal a significantly smaller variance in feature channel values in the novel datasets compared to the
base dataset. A smaller variance means values are closer to each other, demonstrating that this is a
universally valid conclusion. This situation creates a challenge in employing geometric similarity
to accurately distinguish the importance among non-core feature channels. To provide a concrete
example, consider distinguishing between dogs and wolves. While they share nearly identical core
visual features, minor features play a vital role in differentiating them. Suppose the core feature, two
minor features are represented by channels 1, 2, and 3, respectively, in the feature vector. A dog
prototype may have feature (1, 0.28, 0.2), and a wolf prototype may have feature (1, 0.25, 0.28). Now,
for a test image with feature (0.8, 0.27, 0.22), it appears more dog-like, as the 2nd feature is more
prominent than the 3rd. However, cosine distance struggles to distinguish them clearly, misleadingly
placing this test image closer to the wolf prototype (distance=0.0031) rather than the dog prototype
(distance=0.0034). Contrastingly, the importance ranking of feature channels is able to distinguish
dogs and wolves. The test image shares the same channel ranking (1, 2, 3) as the dog prototype,
whereas the wolf prototype’s channel ranking is (1, 3, 2).

Motivated by the above observations, we aim to boost the few-shot learning based on the importance
ranking of feature channels in this paper. Specifically, we propose a simple and effective method,
which replaces the commonly-used geometric similarity metric (e.g., cosine similarity) with Kendall’s
rank correlation to determine how closely two feature embeddings are semantically related. We
demonstrate that using Kendall’s rank correlation at test time can lead to performance improvements
on a wide range of datasets with different domains. Furthermore, we investigate the potential
benefits of employing Kendall’s rank correlation in episodic training. One main challenge is that
the calculation of channel importance ranking is non-differentiable, which prevents us from directly
optimizing Kendall’s rank correlation for training. To address this issue, we propose a smooth
approximation of Kendall’s rank correlation and hence make it differentiable. We verify that using
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the proposed differentiable Kendall’s rank correlation at the meta-training stage instead of geometric
similarity achieves further performance improvements.

In summary, our contributions to this paper are threefold as follows: 1) We reveal an intrinsic
property of novel sample features in few-shot learning, whereby the vast majority of feature values
are closely distributed across channels, leading to difficulty in distinguishing their importance; 2)
We demonstrate that the importance ranking of feature channels can be used as a better indicator
of semantic correlation in few-shot learning. By replacing the geometric similarity metric with
Kendall’s rank correlation at test time, significant improvements can be observed in multiple few-shot
learning methods on a wide range of popular benchmarks with different domains; 3) We propose a
differentiable loss function by approximating Kendall’s rank correlation with a smooth version. This
enables Kendall’s rank correlation to be directly optimized. We verify that further improvements can
be achieved by using the proposed differentiable Kendall’s rank correlation at the meta-training stage
instead of geometric similarity.

2 Related Works

Meta-Learning-Based Few-Shot Learning. Previous research on few-shot learning has been
extensively devoted to meta-learning-based methods. They can be further divided into optimization-
based methods [11, 12, 13] and metric learning-based methods [1, 2, 3, 4, 14, 15, 16], with metric
learning-based methods accounting for the majority of them. ProtoNets [1] proposes to compute the
Euclidean distance between the embedding of query samples and the prototypes on the support set
for nearest-neighbor classification. Meta-baseline [4] uses cosine similarity instead and proposes a
two-stage training paradigm consisting of pre-training and episodic training, achieving competitive
performance compared to state-of-the-art methods. Recent research [3, 17] has begun to focus on
aligning support and query samples by exploiting the local information on feature maps. Li et al.
[17] represent support samples with a set of local features and use a k-nearest-neighbor classifier
to classify query samples. CAN [3] uses cross-attention to compute the similarity score between
the feature maps of support samples and query samples. ConstellationNet [6] proposes to learn
enhanced local features by constellation models and then aggregate the features through self-attention
blocks. Several studies [7, 18] investigate methods for calibrating novel sample features in few-shot
learning. Xue and Wang [18] learn a transformation that moves the embedding of novel samples
towards the class prototype by episodic training. Zhang et al. [7] propose to use additional attribute
annotations that are generalizable across classes to complete the class prototypes. However, this
requires additional labeling costs and the common properties will not exist when the categories of
base class data and novel class data are significantly different. Unlike previous studies, we explore
determining semantic similarities between novel sample features with the correlation of channel
importance ranking in few-shot learning, which has never been studied before.

Transfer-Learning-Based Few-Shot Learning. Transfer-learning-based few-shot learning methods
have recently received increasingly widespread attention. Prior research [8, 9, 10] has verified that
competitive performance in few-shot learning can be achieved by pre-training models on the base
dataset with cross-entropy loss and using cosine similarity for classification on novel tasks, without
relying on elaborate meta-learning frameworks. Recent studies [19, 20, 21] also focus on introducing
data from the pre-training phase to assist in test-time fine-tuning. For instance, Afrasiyabi et al.
[19] propose to introduce samples from the base dataset in fine-tuning that are similar to the novel
samples in the feature space. POODLE [21], on the other hand, uses the samples in the base dataset
as negative samples and proposes to pull the embedding of novel samples away from them during
fine-tuning.

3 Problem Definition

Typically, a few-shot task T consists of a support set S and a query set Q. The objective of the
few-shot task is to accurately predict the category for each query sample xi ∈ Q based on the support
set S . The support set S is commonly organized as N -way K-shot, which means that there are a total
of N categories of samples included in this task, with each class containing K annotated samples. In
few-shot scenarios, K is usually a very small number, indicating that the number of samples available
for each category is extremely small.

3



It is infeasible to train a feature extractor fθ on a few-shot task directly from scratch. Thus, the feature
extractor fθ is usually trained on a base dataset Dbase with sufficient annotation to learn a prior. The
training process typically involves pre-training and episodic training. After that, few-shot tasks are
sampled on the novel dataset Dnovel for performance evaluation. The categories of the samples in
Dbase are entirely distinct from those in Dnovel. The trained feature extractor fθ is then used to obtain
the embedding of the samples for novel tasks, followed by calculating the similarity between the
embedding of support samples and query samples for a nearest-neighbor classification, namely,

P (y = k | x) = exp(sim(fθ(x), ck) · t)∑N
j=1 exp(sim(fθ(x), cj) · t)

, (1)

where x ∈ Q denotes the query sample, ck represents the class prototype, which is usually represented
by the mean feature of the support set samples in each category, sim(·) denotes a similarity measure,
N denotes the total number of classes included in the few-shot task, and t is used to perform a scaling
transformation on the similarities.

In supervised learning, since there is no distribution gap between the training and test data, we can
obtain high-quality embedding of test data by training the model with a large number of in-domain
samples. However, in few-shot scenarios, the categories in the training data and the test data have no
overlap. As there is no direct optimization towards the novel category, the features of novel samples
in few-shot learning can be distinct from those learned through conventional supervised learning
[7, 18, 22].

Geometric similarities are commonly used to determine semantic similarities between features in
few-shot learning, among which cosine similarity is widely employed in recent studies [4, 6, 8].
Given two vectors with the same dimension x = (x1, ..., xn) and y = (y1, ..., yn), denoting the
features of novel samples, cosine similarity is calculated as 1

∥x∥·∥y∥
∑n

i=1 xiyi. It can be seen that the
importance of each channel is directly correlated with the numerical feature value xi and yi. However,
as shown in Figure 1(a), the feature distribution of the novel class samples are largely different
from that of the base class samples. The values of the feature channels are highly clustered around
very small magnitudes, making it difficult for cosine similarity to differentiate their importance in
classification. Consequently, the classification performance will be dominated by those very few
channels with large magnitude values, while the small-valued channels, which occupy the majority of
the features, will be underutilized. Although the embedding has already been projected onto the unit
sphere in cosine similarity to reduce this effect, we verify that the role of the small-valued channels
in classification is still largely underestimated.

4 Warm-Up: Using Kendall’s Rank Correlation During Inference

In this paper, for the first time, we explore the utilization of channel importance ranking in few-shot
learning. Converting numerical differences into ranking differences enables effective discrimination
between small-valued channels that exhibit similar values, and reduces the large numerical differences
between large-valued and small-valued channels. To achieve this, we start with investigating the use
of Kendall’s rank correlation in few-shot learning. Kendall’s rank correlation gauges the semantic
similarity between features by assessing how consistently channels are ranked, which aligns precisely
with our motivation. In this section, we demonstrate that leveraging Kendall’s rank correlation simply
during the inference stage can lead to a significant performance improvement.

4.1 Kendall’s Rank Correlation

Given two n-dimensional feature vectors x = (x1, ..., xn), y = (y1, ..., yn), Kendall’s rank correla-
tion is determined by measuring the consistency of pairwise rankings for every channel pair (xi, xj)
and (yi, yj). This coefficient can be defined as the disparity between the number of channel pairs
(xi, xj) and (yi, yj) that exhibit concordant ordering versus discordant ordering, namely,

τ(x,y) =
Ncon −Ndis

Ntotal
, (2)

where Ncon represents the count of channel pairs with consistent importance ranking, i.e., either
(xi > xj) ∧ (yi > yj) or (xi < xj) ∧ (yi < yj), Ndis reflects the count of channel pairs with
inconsistent ordering represented by either (xi > xj) ∧ (yi < yj) or (xi < xj) ∧ (yi > yj). Ntotal
represents the total number of channel pairs.
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Table 1: Performance improvements by using Kendall’s rank correlation at test time. The training
set of mini-ImageNet is used as the base dataset and the average accuracy (%) of randomly sampled
5-way 1-shot tasks on test sets with different domains is reported.

Method Backbone mini-test CUB Traffic Signs VGG Flowers Quick Draw Fungi

CE + cosine Conv-4 48.57 36.97 38.89 59.92 45.75 35.99
CE + CIM Conv-4 48.94 37.41 39.35 59.79 45.56 35.89

CE + Kendall Conv-4 51.50 39.01 39.04 61.55 46.00 36.73

CE + cosine ResNet-12 62.2 45.12 55.54 69.41 53.73 40.68
CE + CIM ResNet-12 60.4 45.20 56.64 69.61 55.14 40.34

CE + Kendall ResNet-12 63.3 47.07 60.84 71.38 55.99 41.68

Meta-B + cosine ResNet-12 62.84 45.38 54.88 69.14 53.27 40.57
Meta-B + CIM ResNet-12 61.60 45.24 55.31 68.87 54.08 40.41

Meta-B + Kendall ResNet-12 63.36 47.15 59.70 70.57 55.78 41.70

CE + cosine ResNet-18 62.92 43.7 47.17 62.35 52.33 38.89
CE + CIM ResNet-18 61.91 43.75 47.23 61.89 52.21 39.07

CE + Kendall ResNet-18 62.83 45.54 54.32 67.08 54.15 39.64

CE + cosine WRN-28-10 60.08 43.64 47.01 66.03 47.99 39.27
CE + CIM WRN-28-10 59.34 43.43 46.30 64.42 48.37 39.42

CE + Kendall WRN-28-10 61.68 45.80 51.39 69.72 53.52 41.52

S2M2 + cosine WRN-28-10 64.52 47.44 52.30 68.93 51.41 41.76
S2M2 + CIM WRN-28-10 63.60 47.59 53.84 70.91 53.89 42.54

S2M2 + Kendall WRN-28-10 63.97 47.74 57.88 71.48 54.63 43.49

Avg Improvements (Kendall vs. cosine) 0.92 ↑ 1.69 ↑ 4.56 ↑ 2.67 ↑ 2.60 ↑ 1.27 ↑
Avg Improvements (Kendall vs. CIM) 1.81 ↑ 1.63 ↑ 4.13 ↑ 2.88 ↑ 1.80 ↑ 1.18 ↑

4.2 Performace Improvements by Using Kendall’s Rank Correlation at Test Time

We conduct comprehensive experiments and verify that directly using Kendall’s rank correlation at
test time can significantly improve performance in few-shot learning.

Specifically, recent studies [8, 9, 10] have confirmed that pre-training the model on the base dataset
with cross-entropy loss, and utilizing cosine similarity for classification on novel tasks, can yield
competitive performance. This approach has proven to outperform a number of meta-learning-based
methods. Therefore, our initial comparison involves assessing the performance of cosine similarity
and Kendall’s rank correlation when the model is pre-trained with cross-entropy loss (CE) on the
base dataset. The evaluation is conducted on different backbone networks that are commonly used
in previous studies, including Conv-4, ResNet-12, ResNet-18, and WRN-28-10. In addition, the
comparison is also made based on Meta-Baseline (Meta-B) [4], a representative meta-learning based
approach in few-shot learning, and an advanced method S2M2 [5]. We keep all other settings
unchanged and replace the originally utilized cosine similarity with Kendall’s rank correlation solely
during the testing phase. Furthermore, we expand our comparison to include a recently proposed
method (CIM) [22], which suggests a test-time transformation for feature scaling in few-shot learning.
The train set of mini-ImageNet [23] is used as the base dataset to train the model. Since the novel
task confronted by the model can be arbitrary in real-world applications, we employ a wide range of
datasets for testing that exhibit significant differences in both category and domain, including the test
set of mini-ImageNet (mini-test), CUB [24], Traffic Signs [25], VGG Flowers [26], Quick Draw [27]
and Fungi [28]. In the testing phase, we randomly sample 2000 few-shot tasks from the test dataset
in the form of 5-way 1-shot and report the average accuracy on all tasks for performance evaluation.
The results are shown in Table 1. It can be seen that simply using Kendall’s rank correlation at test
time in few-shot learning achieves significant improvements compared with cosine similarity. It also
vastly outperforms the latest test-time feature transformation method CIM.

Moreover, we also demonstrate the effectiveness of Kendall’s rank correlation in few-shot learning
through another closer observation of performance. Specifically, we pre-train the model on the
base dataset from scratch using standard cross-entropy loss and make a comparison between the
performance of Kendall’s rank correlation and cosine similarity on few-shot tasks after each training
epoch. The results are shown in Figure 2. It can be seen that almost throughout the entire training
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Figure 2: Comparisons between the performance
of Kendall’s rank correlation and cosine similarity
on the test set of mini-ImgeNet under 5-way 1-
shot after each epoch, when pre-training a Conv-4
network from scratch.

Figure 3: Comparisons between the performance
of leveraging Kendall’s rank correlation for both
training and testing, and for testing only.

process, Kendall’s rank correlation achieves better performance compared to cosine similarity,
demonstrating the effectiveness of leveraging channel importance ranking in few-shot learning.

5 DiffKenall: Learning with Differentiable Kendall’s Rank Correlation

We have shown that the mere utilization of Kendall’s rank correlation at test time yields a substantial
enhancement in few-shot learning performance. In this section, we investigate the potential for further
improvements through the integration of Kendall’s rank correlation into the meta learning process.
The main challenge is that the calculation of channel importance ranking is non-differentiable, which
hinders the direct optimization of Kendall’s rank correlation for training. To tackle this problem, in
our study, we propose a differentiable Kendall’s rank correlation by approximating Kendall’s rank
correlation with smooth functions, hence enabling optimizing ranking consistency directly in episodic
training.

5.1 A Differentiable Approximation of Kendall’s Rank Correlation

Given two n-dimensional vectors x = (x1, ..., xn), y = (y1, ..., yn), we define τ̃α(x,y) as:

τ̃α(x,y) =
1

N0

n∑
i=2

i−1∑
j=1

eα(xi−xj) − e−α(xi−xj)

eα(xi−xj) + e−α(xi−xj)

eα(yi−yj) − e−α(yi−yj)

eα(yi−yj) + e−α(yi−yj)
, (3)

where α > 0 is a hyperparameter, and N0 = n(n−1)
2 represents the total number of channel pairs.

Lemma 1. τ̃α(x,y) is a differentiable approximation of Kendall’s rank correlation τ(x,y),

τ(x,y) = lim
α→+∞

τ̃α(x,y).

Please refer to the appendix for the proof. The main idea of the proof involves using a sigmoid to
approximate the sgn function in the sgn expression of Kendall’s rank correlation where τ(x,y) =

2
n(n−1)

∑
i<j sgn(xi − xj) sgn(yi − yj).

5.2 Integrating Differentiable Kendall’s Rank Correlation with Meta-Baseline

By approximating Kendall’s rank correlation using Eq. (3), we are able to directly optimize Kendall’s
rank correlation in training, addressing the issue of non-differentiability in rank computation. This
implies that our method can integrate with numerous existing approaches that rely on geometric
similarity, by replacing geometric similarity with differentiable Kendall’s rank correlation in episodic
training, thereby achieving further improvements.
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Algorithm 1: Episodic training with differentiable Kendall’s rank correlation τ̃a(x,y)

Input: Base class dataset Dbase = {(xi, yi)|i = 1, ..., N}.
Output: The episodic-traing loss L.

1 Randomly sample n categories from base class dataset Dbase;
2 Randomly sample ms samples in each category to build the support set S;
3 Randomly sample mq samples in each category to build the query set Q;
4 Compute class prototypes: ck = 1

|Sk|
∑

(x,y)∈Sk

fθ(x). Sk denotes the subset of S where y = k;

5 Compute the episodic-training loss: L = − 1
|Q|

∑
(x,y)∈Q

log p(y|x). p(y|x) is obtained by Eq. (1),

where τ̃a(x,y) is used as the similarity measure sim(·).

Table 2: Comparison studies on mini-ImageNet and tiered-ImageNet. The average accuracy (%)
with 95% confidence interval of the 5-way 1-shot setting and the 5-way 5-shot setting is reported.

Dataset Method Backbone 5-way 1-shot 5-way 5-shot

m
in

i-
Im

ag
eN

et

ProtoNet [1] Conv-4 49.42± 0.78 68.20± 0.66
MatchingNet [23] Conv-4 43.56± 0.84 55.31± 0.73
MAML [11] Conv-4 48.70± 1.84 63.11± 0.92
GCR [30] Conv-4 53.21± 0.40 72.34± 0.32
SNAIL [31] ResNet-12 55.71± 0.99 68.88± 0.92
AdaResNet [32] ResNet-12 56.88± 0.62 71.94± 0.57
TADAM [14] ResNet-12 58.50± 0.30 76.70± 0.30
MTL [33] ResNet-12 61.20± 1.80 75.50± 0.80
MetaOptNet [12] ResNet-12 62.64± 0.61 78.63± 0.46
TapNet [34] ResNet-12 61.65± 0.15 76.36± 0.10
CAN [3] ResNet-12 63.85± 0.48 79.44± 0.34
ProtoNet + TRAML [35] ResNet-12 60.31± 0.48 77.94± 0.57
SLA-AG [36] ResNet-12 62.93± 0.63 79.63± 0.47
ConstellationNet [6] ResNet-12 64.89± 0.23 79.95± 0.17

Meta-Baseline [4] ResNet-12 63.17± 0.23 79.26± 0.17
Meta-Baseline + DiffKendall (Ours) ResNet-12 65.56 ± 0.43 80.79 ± 0.31

tie
re

d-
Im

ag
eN

et

ProtoNet [1] Conv-4 53.31± 0.89 72.69± 0.74
Relation Networks [2] Conv-4 54.48± 0.93 71.32± 0.78
MAML [11] Conv-4 51.67± 1.81 70.30± 1.75
MetaOptNet [12] ResNet-12 65.99± 0.72 81.56± 0.53
CAN [3] ResNet-12 69.89± 0.51 84.23± 0.37

Meta-Baseline [4] ResNet-12 68.62± 0.27 83.74± 0.18
Meta-Baseline + DiffKendall (Ours) ResNet-12 70.76 ± 0.43 85.31 ± 0.34

A straightforward application is the integration of our method with Meta-Baseline [4], which is
a simple and widely-adopted baseline in few-shot learning. In Meta-Baseline, cosine similarity
cos(x,y) is employed as the similarity measure sim(·) in Eq. (1), to determine the semantic similarity
between query samples’ embedding and prototypes in episodic training and testing. Hence, we replace
the cosine similarity originally utilized in Meta-Baseline with Kendall’s rank correlation by employing
differentiable Kendall’s rank correlation during the meta-training phase and adopting Kendall’s rank
correlation during the testing phase. The outline of calculating the episodic-training loss with
differentiable Kendall’s rank correlation τ̃a(x,y) is demonstrated in Algorithm 1.

5.3 Results

Settings. We conduct extensive experiments on mini-ImageNet [23] and tiered-ImageNet [29] for
performance evaluation, both of which are widely used in previous studies. We use ResNet-12 as the
backbone network and first pre-train the feature extractor on the base dataset. α in Eq. (3) is set to
0.5 for the differentiable approximation of Kendall rank correlation. The performance evaluation
is conducted on randomly sampled tasks from the test set, where the average accuracy and the 95%
confidence interval are reported.
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(a) (b)

Figure 4: Average accuracy of 5-way 1-shot tasks on the test-set of mini-ImageNet using the masked
features. (a) Channels with values less than L0 are masked out (b) Channels with values larger than
H0 are masked out.

Comparison Studies. Table 2 shows the results of the comparison studies. It can be seen that on
both the datasets, compared with the original Meta-Baseline that uses cosine similarity in episodic
training, we achieve a clear improvement by replacing cosine similarity with the proposed differen-
tiable Kendall’s rank correlation, with 2.39%, 2.16% in the 1-shot and 1.53%, 1.57% in the 5-shot,
respectively. Moreover, our method also outperforms methods like CAN [3] and ConstellationNet [6],
where cross-attention and self-attention blocks are used. It is worth noting that there are no additional
architectures or learnable parameters introduced in our method, just like the original Meta-Baseline.

Furthermore, we also conduct a comprehensive comparison to demonstrate the role of incorporating
differentiable Kendall’s rank correlation during episodic training. The results are presented in
Figure 3. Compared with solely adopting Kendall’s rank correlation at test time, it can be observed
that leveraging the differentiable Kendall’s rank correlation in episodic training leads to a 1%-2%
improvement under 5-way 1-shot on test sets with varying domain discrepancies. This clearly
demonstrates that the proposed differentiable Kendall’s rank correlation can effectively serve as a
soft approximation to directly optimize ranking consistency for further performance improvements in
few-shot learning.

5.4 Analysis

Channel-Wise Ablation Studies: A closer look at the performance improvements. We aim
to carry out an in-depth analysis to uncover the underlying reasons behind the performance gains
observed in few-shot learning upon utilizing Kendall’s rank correlation. By determining semantic
similarities between features with the correlation of channel importance ranking, we can effectively
distinguish the role and contribution of small-valued channels that overwhelmingly occupy the
feature space of novel samples for classification. As a result, these previously neglected small-valued
channels can be fully harnessed to enhance classification performance. To validate this, we propose
a channel-wise ablation study in which we test the performance of models on few-shot tasks using
the small-valued and large-valued channels separately, allowing for a more detailed and nuanced
understanding of their respective roles in classification. Concretely, given an n-dimensional feature
x = (x1, ..., xn), we define two types of masks l = (l1, ..., ln), h = (h1, ..., hn), as follows,

li =

{
0 if xi < L0

1 else
hi =

{
0 if xi > H0

1 else

The masked feature is then calculated as x̄ = x ⊙ l or x̄ = x ⊙ h, where ⊙ denotes Hadamard
Product. We selectively preserve channels with large values in mask l while masking out small-
valued channels. Conversely, we exclude channels with large values in mask h to exclusively evaluate
the performance of small-valued channels on classification. Subsequently, we utilize the masked
embedding to compare the performance of Kendall’s rank correlation and cosine similarity in few-shot
learning under various settings of threshold L0 and H0 with the corresponding results illustrated in
Figure 4.
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Figure 5: Performance of the linear time com-
plexity calculation method for Kendall’s rank
correlation on mini-ImageNet (n = 640).

Figure 6: Ablation studies of the hyperparameter
α in Eq. (3) on mini-ImageNet.

Figure 4(a) shows that when small-valued channels are masked during testing, both cosine similarity
and Kendall’s rank correlation achieve similar performance, but significant improvements are observed
by utilizing differentiable Kendall’s rank correlation for episodic training. As small-valued channels
are gradually unmasked, Kendall’s rank correlation significantly outperforms cosine similarity. This
demonstrates that the improvement in performance achieved by utilizing Kendall’s rank correlation
is due to a more effective utilization of small-valued channels in novel sample features. This effect
is further reflected in Figure 4(b), where masking only large-valued channels and utilizing only
small-valued channels for classification results in a substantial improvement of approximately 9% in
performance using Kendall’s rank correlation compared to cosine similarity.

Calculating Kendall’s Rank Correlation within Linear Time Complexity. Kendall’s rank cor-
relation requires us to compute the importance ranking concordance of any pair of channels. This
results in a higher time complexity compared to cosine similarity, increasing quadratically with the
total number of channels. We investigate whether this time complexity could be further reduced
to improve the computational efficiency of Kendall’s rank correlation at test time. Specifically, we
propose a simple approach to calculate the importance ranking concordance by randomly sampling a
subset of channel pairs instead of using all channel pairs. The experimental results are presented in
Figure 5, where n represents the total number of channels in the features of novel samples. It can be
observed that by randomly sampling 5n channel pairs, we achieve a performance that is very close to
using all channel pairs. It should be noted that this performance has already surpassed that of the
original Meta-Baseline method while the time complexity is maintained linear, equivalent to cosine
similarity.

Hyperparameter Sensitivity. We also investigate the impact of the hyperparameter α in Eq. (3), and
the experimental results are presented in Figure 6. The best results are obtained around a value of
0.5, and the performance is found to be relatively insensitive to variations of α within a certain range.
Setting a value for α that is too large or too small may lead to a decrease in performance. When a
value for α is too large, the model may overfit to the base classes during episodic training, which can
result in decreased generalization performance on novel classes. Conversely, if a value that is too
small is used, this may lead to a poor approximation of Kendall’s rank correlation.

5.5 Visualization

Further visual analysis is demonstrated in Figure 7. Specifically, we employ Kendall’s rank correlation
and cosine similarity to visualize the feature maps of the query samples. By computing the semantic
similarity between the class prototype and each local feature of the query samples, the regions wherein
the salient targets are located on the feature maps are illustrated. Hence, we can observe whether the
significant features in the query samples are accurately detected. It is evident that the utilization of
Kendall’s rank correlation results in a more precise localization of the distinctive regions within the
query sample.

Furthermore, we conduct in-depth visual experiments involving channel ablation. We mask the
channels with values greater than H0 in the features of both the class prototype and query sample,
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Figure 7: The results of the visual analysis on the test set of mini-ImageNet with cosine similarity and
Kendall’s Rank Correlation respectively. It can be seen that Kendall’s rank correlation demonstrates a
more accurate localization of salient targets and superior differentiation of key features.

Figure 8: The results of the channel ablation visualization experiments, where channels with values
greater than H0 are masked out, and ‘Full’ indicates when all channels are used. It can be seen that
the key features of the category are held on the small-valued channels and are successfully uncovered
by Kendall’s rank correlation, while cosine similarity misses these critical features.

just like the channel-wise ablation experiments in Section 5.4. The results are shown in Figure 8,
from which we can observe that Kendall’s rank correlation captures the discriminative features in the
query sample when only utilizing the small-valued channels. In contrast, cosine similarity ignores
these critical features, resulting in an inability to correctly locate salient regions when all channels are
used. Therefore, we can infer that the small-valued channels that occupy the majority of the features
indeed play a vital role in few-shot learning. This also explicitly demonstrates that the improvement
achieved by Kendall’s rank correlation in few-shot learning is essentially due to its ability to fully
exploit the small-valued channels in features.

6 Conclusion

This paper exposes a key property of the features of novel samples in few-shot learning, resulting
from the fact that values on most channels are small and closely distributed, making it arduous to
distinguish their importance in classification. To overcome this, we propose to replace the commonly
used geometric similarity metric with the correlation of the channel importance ranking to determine
semantic similarities. Our method can integrate with numerous existing few-shot approaches without
increasing training costs and has the potential to integrate with future state-of-the-art methods that
rely on geometric similarity metrics to achieve additional improvement.
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Appendix

A Proof for Lemma 1

Lemma 1. τ̃α(x,y) is a differentiable approximation of Kendall’s rank correlation τ(x,y),

τ(x,y) = lim
α→+∞

τ̃α(x,y).

Proof. First, consider the scenario where channel pairs exhibit consistent importance ranking, specif-
ically, either xi > xj ∧ yi > yj or xi < xj ∧ yi < yj . In the case where xi > xj ∧ yi > yj , we
obtain:

lim
α→+∞

eα(xi−xj) − e−α(xi−xj)

eα(xi−xj) + e−α(xi−xj)
= 1, lim

α→+∞

eα(yi−yj) − e−α(yi−yj)

eα(yi−yj) + e−α(yi−yj)
= 1.

On the other hand, if xi < xj ∧ yi < yj , we have:

lim
α→+∞

eα(xi−xj) − e−α(xi−xj)

eα(xi−xj) + e−α(xi−xj)
= −1, lim

α→+∞

eα(yi−yj) − e−α(yi−yj)

eα(yi−yj) + e−α(yi−yj)
= −1.

Hence, when xi > xj ∧ yi > yj or xi < xj ∧ yi < yj , the following conclusion holds:

lim
α→+∞

eα(xi−xj) − e−α(xi−xj)

eα(xi−xj) + e−α(xi−xj)

eα(yi−yj) − e−α(yi−yj)

eα(yi−yj) + e−α(yi−yj)
= 1. (4)

Second, consider the scenario where channel pairs exhibit inconsistent importance ranking, that is,
either xi > xj ∧ yi < yj or xi < xj ∧ yi > yj . In the case where xi > xj ∧ yi < yj , we obtain:

lim
α→+∞

eα(xi−xj) − e−α(xi−xj)

eα(xi−xj) + e−α(xi−xj)
= 1, lim

α→+∞

eα(yi−yj) − e−α(yi−yj)

eα(yi−yj) + e−α(yi−yj)
= −1.

On the other hand, if xi < xj ∧ yi > yj , we have:

lim
α→+∞

eα(xi−xj) − e−α(xi−xj)

eα(xi−xj) + e−α(xi−xj)
= −1, lim

α→+∞

eα(yi−yj) − e−α(yi−yj)

eα(yi−yj) + e−α(yi−yj)
= 1.

Hence, when xi > xj ∧ yi < yj or xi < xj ∧ yi > yj , the following conclusion holds:

lim
α→+∞

eα(xi−xj) − e−α(xi−xj)

eα(xi−xj) + e−α(xi−xj)

eα(yi−yj) − e−α(yi−yj)

eα(yi−yj) + e−α(yi−yj)
= −1. (5)

When considering all channel pairs, combining Eq. (4) and Eq. (5), it is evident that:

lim
α→+∞

τ̃α(x,y) = lim
α→+∞

1

N0

n∑
i=2

i−1∑
j=1

eα(xi−xj) − e−α(xi−xj)

eα(xi−xj) + e−α(xi−xj)

eα(yi−yj) − e−α(yi−yj)

eα(yi−yj) + e−α(yi−yj)

=
Ncon −Ndis

N0

= τ(x,y),

where Ncon represents the total count of channel pairs with consistent importance ranking, Ndis
represents the count of channel pairs with inconsistent importance ranking.
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