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ABSTRACT

An important goal in deep learning is to learn versatile, high-level feature rep-
resentations of input data. However, standard networks’ representations seem to
possess shortcomings that, as we illustrate, prevent them from fully realizing this
goal. In this work, we show that robust optimization can be re-cast as a tool for
enforcing a prior on the features learned by deep neural networks. It turns out
that representations learned by robust models address the aforementioned short-
comings and make significant progress towards learning a high-level encoding of
inputs. In particular, these representations are approximately invertible, while al-
lowing for direct visualization and manipulation of salient input features. More
broadly, our results indicate adversarial robustness as a promising avenue for im-
proving learned representations. 1

1 INTRODUCTION

Beyond achieving remarkably high accuracy on a variety of tasks (Krizhevsky et al., 2012; He
et al., 2015; Collobert & Weston, 2008), a major appeal of deep learning is the ability to learn
effective representations of data. Specifically, deep neural networks can be thought of as linear
classifiers acting on learned feature representations (also known as feature embeddings). A major
goal in representation learning is for these embeddings to encode high-level, interpretable features
of any given input (Goodfellow et al., 2016; Bengio et al., 2013; Bengio, 2019). Indeed, learned
representations turn out to be quite versatile—in computer vision, for example, they are the driving
force behind transfer learning (Girshick et al., 2014; Donahue et al., 2014), and image similarity
metrics such as VGG distance (Dosovitskiy & Brox, 2016a; Zhang et al., 2018).

Still, deep networks’ feature embeddings exhibit some shortcomings that are at odds with our ide-
alized model of a linear classifier on top of interpretable high-level features. For example, the
existence of adversarial examples (Biggio et al., 2013; Szegedy et al., 2014)—and the fact that they
may correspond to flipping predictive features (Ilyas et al., 2019)—suggests that deep neural net-
works make predictions based on features that are vastly different from what humans use, or even
recognize. (This message has been also corroborated by several recent works (Brendel & Bethge,
2019; Geirhos et al., 2019; Jetley et al., 2018; Zhang & Zhu, 2019).) An more direct example of such
a shortcoming is pinpointed by Jacobsen et al. (2019), who show that one can find image pairs that
appear completely different to a human but are nearly identical in terms of their feature embeddings.

x′�1 x2

R(x′�1) ≈ R(x2)

Figure 1: A limitation of standard feature embeddings: it is straightforward to construct pairs of
images (x1, x2) that appear completely different yet have near-identical representations.

1https://github.com/cantankerousdolphin/robust-learned-representations.
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Figure 2: Sample images highlighting the properties and applications of “robust representations”
studied in this work. All of these manipulations use only gradient descent on simple, unregularized,
direct functions of the representations of adversarially robust neural networks (Goodfellow et al.,
2015; Madry et al., 2018).

Our contributions. Motivated by the limitations of standard representations, we propose using
robust optimization (in particular, adversarial training (Goodfellow et al., 2015; Madry et al., 2018))
to enforce a prior on features that models learn (and thus on their learned feature representations). It
turns out that the resulting “robust representations” (the embeddings learned by adversarially trained
neural networks) are significantly better-behaved than their standard counterparts. We demonstrate
this fact by looking at two well-studied tasks that are typically used to study representations:

• Representation inversion (Section 5): In contrast to standard representations—for which
representation inversion is a significant challenge, e.g., (Mahendran & Vedaldi, 2015)—
robust representations are naturally approximately invertible. In particular, adversarially
robust networks provide an embedding of the input such that images with similar represen-
tations are semantically similar, and the salient features of an image are easily recoverable
from its robust feature representation. This property also naturally enables feature interpo-
lation between arbitrary inputs.

• Feature visualization (Section 6): Direct maximization of the coordinates of robust rep-
resentations suffices to visualize easily recognizable features of the model. This is again
a significant departure from standard representations where (a) without explicit regulariza-
tion at visualization-time, feature visualization often produces unintelligible results; and (b)
even with regularization, visualized features in the representation layer are scarcely human-
recognizeable (Olah et al., 2017). As a result of this property, robust representations enable
the addition of specific features to images through direct first-order optimization.

The tasks above and their respective applications are illustrated in Figure 2. Broadly, our results sug-
gest robust optimization as a promising avenue for learning better-behaved image representations.

2 RELATED WORK

Our work studies the feature representations of adversarially robust networks. As discussed in Sec-
tion 3, these are networks trained with the robust optimization framework (Wald, 1945; Goodfellow
et al., 2015; Madry et al., 2018) and were originally proposed in the context of defending against
adversarial perturbations (Biggio et al., 2013; Szegedy et al., 2014). Adversarial robustness has
been studied extensively in the context of machine learning security (see e.g., Carlini & Wagner
(2017); Athalye et al. (2018b;a); Papernot et al. (2017)), and as an independent phenomenon (see
e.g., Gilmer et al. (2018); Schmidt et al. (2018); Jacobsen et al. (2019); Ilyas et al. (2019); Tsipras
et al. (2019); Su et al. (2018).
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Several recent works have studied the qualitative properties of robust models. Zhang & Zhu
(2019) find that adversarially robust models behave more predictably in the face of various out-
of-distribution data, appearing to use more global features. Tsipras et al. (2019) observe that large
adversarial perturbation constructed for robust networks actually resemble instances of the target
class. Santurkar et al. (2019) leverage this fact and use robust classifiers for a wide array of image
synthesis tasks. Our work is complementary to this line of research, and focuses on understanding
properties of robust representations through the lens of “benchmark” representation learning tasks
(namely, inversion and component visualization).

There is also a large body of work dedicated to studying each of the representation learning tasks
we study below (inversion and feature visualization)—we have embedded discussions of the related
work for each task within the relevant sections.

3 BACKGROUND AND MOTIVATION

3.1 ADVERSARIAL EXAMPLES AND ROBUST TRAINING

In standard settings, supervised machine learning models are trained by minimizing the expected
loss with respect to a set of parameters θ, i.e., by solving an optimization problem of the form:

θ∗ = min
θ

E(x,y)∼D [Lθ(x, y)] . (1)

We refer to (1) as the standard training objective—finding the optimum of this objective should
guarantee high performance on unseen data from the distribution.

It turns out that deep neural networks trained with the standard objective are vulnerable to adversar-
ial examples (Biggio et al., 2013; Szegedy et al., 2014)—by changing a natural input imperceptibly,
one can easily manipulate the predictions of a deep network to be arbitrarily incorrect.

A natural approach (and one of the most successful) for defending against these adversarial ex-
amples is to use the robust optimization framework: a classical framework for optimization in the
presence of uncertainty (Wald, 1945; Danskin, 1967). In particular, instead of just finding parame-
ters which minimize the expected loss (as in the standard objective), a robust optimization objective
also requires that the model induced by the parameters θ be robust to worst-case perturbation of the
input:

θ∗ = arg min
θ

E(x,y)∼D

[
max
δ∈∆
Lθ(x+ δ, y)

]
. (2)

This robust objective is in fact common in the context of machine learning security, where ∆ is
usually chosen to be a simple convex set, e.g., an `p-ball. Canonical instantiations of robust op-
timization such as adversarial training (Goodfellow et al., 2015; Madry et al., 2018)) have arisen
as practical ways of obtaining networks that are invariant to small `p-bounded changes in the input
while maintaining high accuracy (though a small tradeoff between robustness and accuracy has been
noted by prior work (Tsipras et al., 2019; Su et al., 2018) (also cf. Appendix Tables 4 and 5 for a
comparison of accuracies of standard and robust classifiers)).

3.2 ROBUST TRAINING AS A FEATURE PRIOR

Traditionally, adversarial robustness in the deep learning setting has been explored as a goal pre-
dominantly in the context of ML security and reliability (Biggio & Roli, 2018).

In this work, we consider an alternative perspective on adversarial robustness—we cast it as a prior
on the features that can be learned by a model. Specifically, models trained with objective (2) must
be invariant to a set of perturbations ∆. Thus, selecting ∆ to be a set of perturbations that hu-
mans are robust to (e.g., small `p-norm perturbations) results in models that share more invariances
with (and thus are encouraged to use similar features to) human perception. Note that incorpo-
rating human-selected priors and invariances in this fashion has a long history in the design of ML
models—convolutional layers, for instance, were introduced as a means of introducing an invariance
to translations of the input (Fukushima, 1980).

In what follows, we will explore the effect of the prior induced by adversarial robustness on models’
learned representations, and demonstrate that representations learned by adversarially robust models
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are significantly better-behaved, and enable many previously-infeasible modes of direct interaction
with feature embeddings. It is worth noting that despite the value of ε used for training being quite
small, we find that robust optimization globally affects the behavior of learned representations. As
we demonstrate in this section, the benefits of robust representations extend to out-of-distribution
inputs and far beyond ε-balls around the training distribution.

3.3 STANDARD AND ROBUST REPRESENTATIONS

Our work is primarily focused on studying the representations of trained neural networks. Through-
out this work, we define the representation function R(·) as a function induced by a neural network
which maps inputs x ∈ Rn to vectors R(x) ∈ Rk in the representation layer of that network (the
penultimate layer). In what follows, we refer to “standard representations” as the representation
functions induced by standard (non-robust) networks, trained with the objective (1)—analogously,
“robust representations” refer to the representation functions induced by `2-adversarially robust net-
works, i.e. networks trained with the objective (2) with ∆ being the `2 ball:

θ∗robust = arg min
θ

E(x,y)∼D

[
max
‖δ‖2≤ε

Lθ(x+ δ, y)

]
.

4 EXPERIMENTAL SETUP

We train robust and standard ResNet-50 (He et al., 2016) networks on the Restricted Ima-
geNet (Tsipras et al., 2019) and ImageNet (Russakovsky et al., 2015) datasets. Datasets specifics are
in in Appendix A.1, training details are in in Appendices A.2 and A.3, and the performance of each
model is reported in Appendix A.4. In the main text, we present results for Restricted ImageNet,
and link to (nearly identical) results for ImageNet in Appendices (B.1.4,B.3.2).

Unless explicitly noted otherwise, our optimization method of choice for any objective function will
be (projected) gradient descent (PGD), a first-order method which is known to be highly effective
for minimizing neural network-based loss functions for both standard and adversarially robust neural
networks (Athalye et al., 2018a; Madry et al., 2018).

5 INVERTING ROBUST REPRESENTATIONS

A common tool for understanding the semantic content of a feature representation is inversion—i.e.,
reconstructing an image using only data from its feature embedding (Mahendran & Vedaldi, 2015;
Dosovitskiy & Brox, 2016b; Ulyanov et al., 2017). As discussed in the introduction, however, for
standard deep networks, given any input x, it is straightforward to find another input that looks
entirely different but has nearly the same representation (c.f. Figure 1). This makes representation
inversion a difficult problem, since images are not identifiable from their feature representations
alone. Indeed, the “naive” approach to representation inversion, wherein one inverts x by solving

xinv = x0 + arg min
δ
‖R(x0 + δ)−R(x)‖2, (3)

tends to find solutions xinv that bear very little resemblance to x (Mahendran & Vedaldi, 2015), and
instead look visually similar to the starting point of the optimization x0 (which can be any arbitrary
image or even random noise).

Related work and motivation. As a result of the phenomenon described above, methods for
inverting learned representations typically either impose a “natural image” prior on the inverted
image (Mahendran & Vedaldi, 2015; Yosinski et al., 2015; Ulyanov et al., 2017), or train a separate
model altogether to perform the inversion (Kingma & Welling, 2015; Dosovitskiy & Brox, 2016b;a).
In either case, however, these methods introduce additional information into the inversion process
beyond that which is contained in feature embedding, making the inversions not fully faithful to the
model. In particular, it becomes difficult to disentangle the information that is actually contained in
models’ feature embeddings from that which is imposed externally by the inversion method.
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More broadly, lack of invertibility runs somewhat counter to the idea that learned representations
capture a relevant set input features. After all, if the representation function was truly extracting
“high-level” features of the input as we conceptualize them, semantically dissimilar images should
(by definition) have different representations. We now show that the state of affairs is greatly im-
proved for robust representations.
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Figure 3: Representation inversions for robust and standard models trained on the Restricted Ima-
geNet dataset. We minimize (3) to find an xinv which matches (in `2-distance) the representation
of the target image (x) starting from each corresponding source image x0 (top row) for an adversar-
ially trained (second row) and standard (third row) model respectively. When inverting the robust
representation, regardless of the optimization starting point x0, the resulting inversions are percep-
tually similar to the target image; in contrast, the results of inverting the standard model appear more
similar to the (arbitrary) source image used as the seed for the optimization. Additional results in
Appendix B.1, and similar results for ImageNet are in Appendix B.1.4.
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Figure 4: Target: random images from the test set (col. 1-5) and from outside of the training
distribution (6-10); Result: images obtained from optimizing inputs (using Gaussian noise as the
source image) to minimize `2-distance to the representations of the corresponding image in the top
row. More examples appear in Appendix B.1.

Robust representations are (approximately) invertible out-of-the-box. It turns out that in sharp
contrast to what we observe for standard models, the images resulting from minimizing (3) for
robust models are actually semantically similar to the original (target) images whose representation
is being matched, and this behavior is consistent across multiple samplings of the starting point
(source image) x1 (cf. Figure 3).

This inversion property holds even for out-of-distribution inputs, demonstrating that robust repre-
sentations can represent features beyond those that are relevant for the specific classification task.
In particular, we repeat the inversion experiment (simple minimization of distance in representation
space) using images from classes not present in the original dataset used during training (Figure 4
right) and structured random patterns (Figure 13 in Appendix B.1): the reconstructed images con-
sistently resemble the targets.
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In fact, the contrast between the invertibility of standard and robust representations is even stronger.
To illustrate this, we will attempt to match the representation of a target image while staying close
to the starting image of the optimization in pixel-wise `2-norm (this is equivalent to putting a norm
bound on δ in objective (3)). With standard models, we can consistently get close to the target
image in representation space, without moving far from the source image x1. On the other hand,
for robust models, we cannot get close to the target representation while staying close to the source
image—this is illustrated quantitatively in Figure 5. This indicates that for robust models, semantic
similarity may in fact be necessary for representation similarity (and is not, for instance, merely an
artifact of the local robustness induced by robust optimization).
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Figure 5: Optimizing objective (3) with an `2-norm constraint around the source image. On the
x-axis is the radius of the constraint set, and on the y-axis is the distance in representation space
between the minimizer of objective (3) within the constraint set and the target image, normalized by
the norm of the representation of the target image: i.e., a point (xi, yi) on the graph corresponds to
yi = min‖δ‖2≤xi

‖R(x + δ) − R(xtarg)‖2/‖R(xtarg)‖2. Notably, we are unable to closely match
the representation of the target image for the robust network until the norm constraint grows very
large, and in particular much larger than the norm of the perturbation that the model is trained to
be robust against (ε in objective (2)). Shown are 95% confidence intervals over random choice of
source and target images.

Additional related work. We have already discussed related work in inverting standard represen-
tations. In an orthogonal direction, it is possible to construct models that are analytically invertible
by construction (Dinh et al., 2014; 2017; Jacobsen et al., 2018; Behrmann et al., 2018). However,
the representations learned by these models do not seem to be perceptually meaningful (for instance,
interpolating between points in the representation space does not lead to perceptual input space inter-
polations (Jacobsen et al., 2018), in contrast to robust representations, cf. Appendix A.5.). Another
important distinction between the inversions shown here and invertible networks is that the latter
are an exactly invertible map from Rd → Rd, while the former shows that we can approximately
recover the original input in Rd from a “compressed” representation in Rk for k � d.

6 DIRECT FEATURE VISUALIZATION

In the previous section, we showed how adversarial training enables direct (approximate) input
inversion without including extra information at inversion-time. We now explore another common
technique for studying representations (namely, feature visualization (Olah et al., 2017)) and show
that here too, robust representations behave significantly better than their standard counterparts.

In optimization-based feature visualization (Olah et al., 2017), we maximize a specific feature (com-
ponent) in the representation with respect to the input, in order to obtain insight into the role of the
feature in classification. Concretely, given some i ∈ [k] denoting a component of the representation
vector, we use gradient descent to find an input x′ that maximally activates it, i.e., we solve:

xvis = x0 + arg max
δ
R(x0 + δ)i (4)

for various starting points x0 which might be random images from D or even random noise.
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Visualization “fails” for standard networks. For standard networks, optimizing the objective (4)
often yields unsatisfying results. While we can easily find images for which the ith component of
R(·) is large (and thus the optimization problem is tractable), these images tends to look meaningless
to humans, often resembling the starting point of the optimization. Even when these images are
non-trivial, they tend to contain abstract, hard-to-discern patterns (c.f. Figure 6 (bottom)). As a
result, just as was the case for representation inversion, state-of-the-art feature visualization methods
typically regularize objective (4) with terms that encourage more compelling visualizations. These
methods include applying random transformations during the optimization process (Mordvintsev
et al., 2015; Olah et al., 2017), leveraging deep generative models (Nguyen et al., 2015; 2016;
2017), or post-processing the input or gradients (Oygard, 2015; Tyka, 2016).

Seeds ( )x0

Maximizing different coordinates ( )i

St
an

da
rd

R
ob

us
t

Figure 6: Correspondence between image-level patterns and activations learned by standard and
robust models on the Restricted ImageNet dataset. Starting from randomly chosen seed inputs
(noise/images), we use PGD to find inputs that (locally) maximally activate a given component
of the representation vector (cf. Appendix A.6.1 for details). In the left column we have the seed
inputs x0 (selected randomly), and in subsequent columns we visualize the result of the optimiza-
tion (4), i.e., x′, for different activations, with each row starting from the same (far left) input x0 for
(top): a robust (adversarially trained) and (bottom): a standard model. Additional visualizations in
Appendix B.3, and similar results for ImageNet in B.3.2.

As was the case for inversion, however, such regularization comes with a few well-known (and
widely-studied within the feature visualization literature) disadvantages. First, when one introduces
prior information about what makes images visually appealing into the optimization process, it be-
comes difficult to disentangle the effects of the actual model from the effect of the prior information
introduced through regularization2. Furthermore, while adding regularization does improve the vi-
sual quality of the visualizations, the components of the representation still cannot be shown to
correspond to any recognizable high-level feature. Indeed, Olah et al. (2017) note that in the rep-
resentation layer of a standard GoogLeNet, “Neurons do not seem to correspond to particularly
meaningful semantic ideas”—the corresponding feature visualizations are reproduced in Figure 7.

Robust representations allow for direct visualization of human-recognizable features. For
robust representations, however, we find that easily recognizable high-level features emerge from
optimizing objective (4) directly, without any regularization or post-processing. We present the
results of this maximization in Figure 6 (top): coordinates consistently represent the same concepts
across different choice of starting input x0 (both in and out of distribution). Furthermore, these
concepts are not merely an artifact of our visualization process, as they consistently appear in the
test-set inputs that most strongly activate their corresponding coordinates (Figure 9).

2In fact, model explanations that enforce priors for purposes of visual appeal have been often found to have
little to do with the data or the model itself (Adebayo et al., 2018).
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Figure 7: Figure reproduced from (Olah et al.,
2017)—a (strongly regularized) visualization of
a few components of the representation layer of
GoogLeNet. While regularization (as well as
Fourier parameterization and colorspace decor-
relation) yields visually appealing results, the
visualization does not reveal consistent seman-
tic concepts. The situation is significantly worse
without regularization (cf. Figure 6 bottom).

Figure 8: A visualization of the first four com-
ponents of the representation layer of VGG16
when regularization via random jittering and ro-
tation is applied. Figure produced using the Lu-
cida visualization library.

ahttps://github.com/tensorflow/lucid/

In fact, we observe that the unregularized feature visualizations from robust representations are sig-
nificantly more discernable than even regularized visualizations of standard ones. Specifically, we
provide examples of representation-layer visualizations for VGG16 (which we found qualitatively
best among modern architectures) regularized with jittering and random rotations in Figure 8. While
these visualizations certainly look better qualitatively than their unregularized counterparts in Fig-
ure 6 (bottom), there remains a large gap in quality and discernability between these regularized
visualizations and the unregularized robust visualizations in Figure 6 (top).

Activation 444
(“long fish”)

Activation 939 
(“insect legs”)

Maximized from noise

Most activated

Least activated Maximized from noise

Most activated

Least activated

Figure 9: Maximizing inputs x′ (found by solving (4) with x0 being a gray image) and most or least
activating images (from the test set) for two random activations of a robust model trained on the
Restricted ImageNet dataset. For each activation, we plot the three images from the validation set
that had the highest or lowest activation value sorted by the magnitude of the selected activation.

Natural consequence: feature manipulation. The ability to directly visualize high-level, recog-
nizable features reveals another application of robust representations, which we refer to as feature
manipulation. Consider the visualization objective (4) shown in the previous section. Starting from
some original image, optimizing this objective results in the corresponding feature being introduced
in a continuous manner. It is hence possible to stop this process relatively early to ensure that the
content of the original image is preserved. As a heuristic, we stop the optimization process as soon
as the desired feature attains a larger value than all the other coordinates of the representation. We
visualize the result of this process for a variety of input images in Figure 10, where “stripes” or
“red limbs” are introduced seamlessly into images without any processing or regularization 3.

Additional related work. The latent space of generative adversarial networks (GANs) (Goodfel-
low et al., 2014) tends to allow for “semantic feature arithmetic” (Radford et al., 2016; Larsen et al.,
2016) (similar to that in word2vec embeddings (Mikolov et al., 2013)) where one can manipulate
salient input features using latent space manipulations. In a similar vein, one can utilize an image-
to-image translation framework to perform such manipulation (e.g. transforming horses to zebras),
although this requires a task-specific dataset and model (Zhu et al., 2017). I t is possible to utilize the

3We repeat this process with many additional random images and random features in Appendix B.4.
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“Stripes” (selected) “Red limbs” (random)

Figure 10: Visualization of the results from maximizing a chosen (left) and a random (right) rep-
resentation coordinate starting from random images for the Restricted ImageNet dataset. In each
figure, the top row has the initial images, and the bottom row has a feature added. Additional exam-
ples in Appendix B.4.

deep representations of standard models to perform semantic feature manipulations; however such
methods tend to either only perform well on datasets where the inputs are center-aligned (Upchurch
et al., 2017), or are restricted to a small set of manipulations (Gatys et al., 2016).

7 CONCLUSION

We show that the learned representations of robustly trained models align much more closely with
our idealized view of neural network embeddings as extractors of high-level features. After high-
lighting certain shortcomings of standard deep networks and their representations, we demonstrate
that robust optimization can actually be viewed as inducing a prior over the features that models
are able to learn. In this way, one can view the robust representations that result from this prior as
feature extractors that are more aligned with human perception.

In support of this view, we demonstrate that robust representations overcome the challenges identi-
fied for standard representations: they are approximately invertible, and moving towards an image in
representation space seems to entail recovering salient features of that image in pixel space. Further-
more, we show that robust representations can be directly visualized with first-order methods with-
out the need for post-processing or regularization, and also yield much more human-understandable
features than standard models (even when they are visualized with regularization). These two prop-
erties (inversion and direct feature visualization), in addition to serving as illustrations of the benefits
of robust representations, also enable direct modes of input manipulation such as feature addition.
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sarially robust generalization requires more data. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations (ICLR), 2015.

Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and Yupeng Gao. Is robustness
the cost of accuracy? a comprehensive study on the robustness of 18 deep image classification
models. In European Conference on Computer Vision (ECCV), 2018.

12

https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://www.auduno.com/2015/07/29/visualizing-googlenet-classes/
https://www.auduno.com/2015/07/29/visualizing-googlenet-classes/


Under review as a conference paper at ICLR 2022

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. In International Conference on
Learning Representations (ICLR), 2014.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. In International Conference on Learning Representa-
tions (ICLR), 2019.

Mike Tyka. Class visualization with bilateral filters, 2016. URL https://mtyka.github.
io/deepdream/2016/02/05/bilateral-class-vis.html.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In ArXiv preprint
arXiv:1711.10925, 2017.

Paul Upchurch, Jacob Gardner, Geoff Pleiss, Robert Pless, Noah Snavely, Kavita Bala, and Kilian
Weinberger. Deep feature interpolation for image content changes. In conference on computer
vision and pattern recognition (CVPR), 2017.

Abraham Wald. Statistical decision functions which minimize the maximum risk. In Annals of
Mathematics, 1945.

Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Understanding neural
networks through deep visualization. In arXiv preprint arXiv:1506.06579, 2015.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Computer Vision and Pattern Recognition
(CVPR), 2018.

Tianyuan Zhang and Zhanxing Zhu. Interpreting adversarially trained convolutional neural net-
works. In International Conference on Machine Learning (ICML), 2019.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image trans-
lation using cycle-consistent adversarial networks. In international conference on computer vi-
sion(ICCV), 2017.

13

https://mtyka.github.io/deepdream/2016/02/05/bilateral-class-vis.html
https://mtyka.github.io/deepdream/2016/02/05/bilateral-class-vis.html


Under review as a conference paper at ICLR 2022

A EXPERIMENTAL SETUP

In this section we describe the elements of our experimental setup. Code for reproducing our results
using the robustness library (Engstrom et al., 2019) can be found at https://github.com/
snappymanatee/robust-learned-representations.

A.1 DATASETS

In the main text, we perform all our experimental analysis on the Restricted ImageNet
dataset (Tsipras et al., 2019) which is obtained by grouping together semantically similar classes
from ImageNet into 9 super-classes shown in Table 1. Attaining robust models for the complete Im-
ageNet dataset is known to be challenging, both due to the hardness of the learning problem itself,
as well as the computational complexity.

For the sake of completeness, we also replicate our experiments feature visualization and represen-
tation inversion on the complete ImageNet dataset (Russakovsky et al., 2015) in Appendices B.3.2
and B.1.4—in particular, cf. Figures 21 and 15.

Table 1: Classes used in the Restricted ImageNet model. The class ranges are inclusive.

Class Corresponding ImageNet Classes
“Dog” 151 to 268
“Cat” 281 to 285

“Frog” 30 to 32
“Turtle” 33 to 37
“Bird” 80 to 100

“Primate” 365 to 382
“Fish” 389 to 397
“Crab” 118 to 121
“Insect” 300 to 319

A.2 MODELS

We use the ResNet-50 architecture (He et al., 2016) for our adversarially trained classifiers on all
datasets. Unless otherwise specified, we use standard ResNet-50 classifiers trained using empir-
ical risk minimization as a baseline in our experiments. Additionally, it has been noted in prior
work that among standard classifiers, VGG networks (Simonyan & Zisserman, 2015) tend to have
better-behaved representations and feature visualizations (Mordvintsev et al., 2018). Thus, we also
compare against standard VGG16 networks in the subsequent appendices. All models are trained
with data augmentation, momentum 0.9 and weight decay 5e−4. Other hyperparameters are pro-
vided in Tables 2 and 3.

The exact procedure used to train robust models along with the corresponding hyperparameters are
described in Section A.3. For standard (not adversarially trained) classifiers on the complete 1k-class
ImageNet dataset, we use pre-trained models provided in the PyTorch repository4.

Table 2: Standard hyperparameters for the models trained in the main paper.

Dataset Model Arch. Epochs LR Batch Size LR Schedule

Restricted ImageNet standard ResNet-50 110 0.1 256 Drop by 10 at epochs ∈ [30, 60]
Restricted ImageNet robust ResNet-50 110 0.1 256 Drop by 10 at epochs ∈ [30, 60]
ImageNet robust ResNet-50 110 0.1 256 Drop by 10 at epochs ∈ [100]

4https://pytorch.org/docs/stable/torchvision/models.html
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Test performance of all the classifiers can be found in Section A.4. Specific parameters used to study
the properties of learned representations are described in Section A.6.

A.3 ADVERSARIAL TRAINING

To obtain robust classifiers, we employ the adversarial training methodology proposed in (Madry
et al., 2018). Specifically, we train against a projected gradient descent (PGD) adversary with a
normalized step size, starting from a random initial perturbation of the training data. We consider
adversarial perturbations in `2-norm. Unless otherwise specified, we use the values of ε provided in
Table 3 to train/evaluate our models (the images themselves lie in the range [0, 1]).

Table 3: Hyperparameters used for adversarial training.

Dataset ε # steps Step size

Restricted ImageNet 3.0 7 0.5
ImageNet 3.0 7 0.5

A.4 MODEL PERFORMANCE

Standard test performance for the models used in the paper are presented in Table 4 for the Restricted
ImageNet dataset and in Table 5 for the complete ImageNet dataset.

Additionally, we report adversarial accuracy of both standard and robust models. Here, adversarial
accuracies are computed against a PGD adversary with 20 steps and step size of 0.375. (We also
evaluated against a stronger adversary using more steps (100) of PGD, however this had a marginal
effect on the adversarial accuracy of the models.)

Table 4: Test accuracy for standard and robust models on the Restricted ImageNet dataset.

Model Standard Adversarial (eps=3.0)

Standard VGG16 98.22% 2.17%
Standard ResNet-50 98.01% 4.74%
Robust ResNet-50 92.39% 81.91%

Table 5: Top-1 accuracy for standard and robust models on the ImageNet dataset.

Model Standard Adversarial (eps=3.0)

Standard VGG16 73.36% 0.35%
Standard ResNet-50 76.13% 0.13%
Robust ResNet-50 57.90% 35.16%

A.5 IMAGE INTERPOLATIONS

A natural consequence of the “natural invertibility” property of robust representations is the ability
to synthesize natural interpolations between any two inputs x1, x2 ∈ Rn. In particular, given two
images x1 and x2, we define the λ-interpolate between them as

xλ = min
x
‖ (λ ·R(x1) + (1− λ) ·R(x2))−R(x)‖2. (5)

where, for a given λ, we find xλ by solving (5) with projected gradient descent. Intuitively, this
corresponds to linearly interpolating between the points in representation space and then finding a
point in image space that has a similar representation. To construct a length-(T + 1) interpolation,
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we choose λ = {0, 1
T ,

2
T , . . . 1}. The resulting interpolations, shown in Figure 11, demonstrate

that the λ-interpolates of robust representations correspond to a meaningful feature interpolation
between images. (For standard models constructing meaningful interpolations is impossible due to
the brittleness identified in Section ??—see Appendix B.1.3 for details.)

Figure 11: Image interpolation using robust representations compared to their image-space coun-
terparts. The former appear perceptually plausible while the latter exhibit ghosting artifacts. For
pairs of images from the Restricted ImageNet test set, we solve (5) for λ varying between zero
and one, i.e., we match linear interpolates in representation space. Additional interpolations appear
in Appendix B.2.1 Figure 16. We demonstrate the ineffectiveness of interpolation with standard
representations in Appendix B.2.2 Figure 17.

Relation to other interpolation methods. We emphasize that linearly interpolating in robust rep-
resentation space works for any two images. This generality is in contrast to interpolations induced
by GANs (e.g. (Radford et al., 2016; Brock et al., 2019)), which can only interpolate between im-
ages generated by the generator. (Reconstructions of out-of-range images tend to be decipherable
but rather different from the originals (Bau et al., 2019).) It is worth noting that even for models with
analytically invertible representations, interpolating in representation space does not yield semantic
interpolations (Jacobsen et al., 2018).

A.6 PARAMETERS USED IN STUDIES OF ROBUST/STANDARD REPRESENTATIONS

A.6.1 FINDING REPRESENTATION-FEATURE CORRESPONDENCE

Dataset ε # steps Step size

Restricted ImageNet/ImageNet 1000 200 1

A.6.2 INVERTING REPRESENTATIONS AND INTERPOLATIONS

Dataset ε # steps Step size

Restricted ImageNet/ImageNet 1000 10000 1
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B OMITTED FIGURES

B.1 INVERTING REPRESENTATIONS

B.1.1 RECOVERING TEST SET IMAGES USING ROBUST REPRESENTATIONS

(a)

(b)

Figure 12: Robust representations yield semantically meaningful inverses: Original: randomly cho-
sen test set images from the Restricted ImageNet dataset; Inverse: images obtained by inverting the
representation of the corresponding image in the top row by solving the optimization problem (??)
starting from: (a) different test images and (b) Gaussian noise.
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B.1.2 RECOVERING OUT-OF-DISTRIBUTION INPUTS USING ROBUST REPRESENTATIONS

(a) Random kaleidoscope patterns.

(b) Samples from other ImageNet classes outside what the model is trained on.

Figure 13: Robust representations yield semantically meaningful inverses: (Original): randomly
chosen out-of-distribution inputs; (Inverse): images obtained by inverting the representation of the
corresponding image in the top row by solving the optimization problem (??) starting from Gaussian
noise.

B.1.3 INVERTING STANDARD REPRESENTATIONS

Figure 14: Standard representations do not yield semantically meaningful inverses: (Original): ran-
domly chosen test set images from the Restricted ImageNet dataset; (Inverse): images obtained by
inverting the representation of the corresponding image in the top row by solving the optimization
problem (??) starting from Gaussian noise.
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B.1.4 REPRESENTATION INVERSION ON THE IMAGENET DATASET
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Figure 15: Visualization of inputs that are mapped to similar representations by models trained on
the ImageNet dataset. Target (x2) & Source (x1): random examples image from the test set; Robust
and Standard (x′1): result of minimizing the objective (3) to match (in `2-distance) the representation
of the target image starting from the corresponding source image for (top): a robust (adversarially
trained) and (bottom): a standard model respectively. For the robust model, we observe that the
resulting images are perceptually similar to the target image in terms of high-level features, while
for the standard model they often look more similar to the source image which is the seed for the
optimization process.
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B.2 IMAGE INTERPOLATIONS

B.2.1 ADDITIONAL INTERPOLATIONS FOR ROBUST MODELS

Figure 16: Additional image interpolation using robust representations. To find the interpolation
in input space, we construct images that map to linear interpolations of the endpoints in robust
representation space. Concretely, for randomly selected pairs from the Restricted ImageNet test set,
we use (??) to find images that match to the linear interpolates in representation space (5).
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B.2.2 INTERPOLATIONS FOR STANDARD MODELS

Figure 17: Image interpolation using standard representations. To find the interpolation in input
space, we construct images that map to linear interpolations of the endpoints in standard represen-
tation space. Concretely, for randomly selected pairs from the Restricted ImageNet test set, we
use (??) to find images that match to the linear interpolates in representation space (5). Image space
interpolations from the standard model appear to be significantly less meaningful than their robust
counterparts. They are visibly similar to linear interpolation directly in the input space, which is in
fact used to seed the optimization process.
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B.3 DIRECT FEATURE VISUALIZATIONS FOR STANDARD AND ROBUST MODELS

B.3.1 ADDITIONAL FEATURE VISUALIZATIONS FOR THE RESTRICTED IMAGENET DATASET

Figure 18: Correspondence between image-level features and representations learned by a ro-
bust model on the Restricted ImageNet dataset. Starting from randomly chosen seed inputs
(noise/images), we use a constrained optimization process to identify input features that maximally
activate a given component of the representation vector (cf. Appendix A.6.1 for details). Specif-
ically, (left column): inputs to the optimization process, and (subsequent columns): features that
activate randomly chosen representation components, along with the predicted class of the feature.

Figure 19: Correspondence between image-level features and representations learned by a ro-
bust model on the Restricted ImageNet dataset. Starting from randomly chosen seed inputs
(noise/images), we use a constrained optimization process to identify input features that maximally
activate a given component of the representation vector (cf. Appendix A.6.1 for details). Specif-
ically, (left column): inputs to the optimization process, and (subsequent columns): features that
activate select representation components, along with the predicted class of the feature.
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Figure 20: Correspondence between image-level patterns and activations learned by standard and
robust models on the Restricted ImageNet dataset. Starting from randomly chosen seed inputs
(noise/images), we use PGD to find inputs that (locally) maximally activate a given component of
the representation vector (cf. Appendix A.6.1 for details). In the left column we have the original in-
puts (selected randomly), and in subsequent columns we visualize the result of the optimization (4)
for different activations, with each row starting from the same (far left) input for (top): a robust
(adversarially trained) ResNet-50 model, (middle): a standard ResNet-50 model and (bottom): a
standard VGG16 model.
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B.3.2 FEATURE VISUALIZATIONS FOR THE IMAGENET DATASET
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Figure 21: Correspondence between image-level patterns and activations learned by standard and
robust models on the complete ImageNet dataset. Starting from randomly chosen seed inputs
(noise/images), we use PGD to find inputs that (locally) maximally activate a given component of
the representation vector (cf. Appendix A.6.1 for details). In the left column we have the original in-
puts (selected randomly), and in subsequent columns we visualize the result of the optimization (4)
for different activations, with each row starting from the same (far left) input for (top): a robust
(adversarially trained) ResNet-50 model, (middle): a standard ResNet-50 model and (bottom): a
standard VGG16 model.
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B.4 ADDITIONAL EXAMPLES OF FEATURE MANIPULATION

Figure 22: Visualization of the results adding various neurons, labelled on the left, to randomly
chosen test images. The rows alternate between the original test images, and those same images
with an additional feature arising from maximizing the corresponding neuron.
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