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Abstract

Backdoor attacks pose a serious security threat for training neural networks as
they surreptitiously introduce hidden functionalities into a model. Such backdoors
remain silent during inference on clean inputs, evading detection due to inconspicu-
ous behavior. However, once a specific trigger pattern appears in the input data, the
backdoor activates, causing the model to execute its concealed function. Detecting
such poisoned samples within vast datasets is virtually impossible through manual
inspection. To address this challenge, we propose a novel approach that enables
model training on potentially poisoned datasets by utilizing the power of recent
diffusion models. Specifically, we create synthetic variations of all training samples,
leveraging the inherent resilience of diffusion models to potential trigger patterns
in the data. By combining this generative approach with knowledge distillation, we
produce student models that maintain their general performance on the task while
exhibiting robust resistance to backdoor triggers.

1 Introduction

Machine Learning models continually open up new frontiers and turn existing processes upside down.
While the general advantage of these models is apparent, their security concerns are often overlooked,
potentially resulting in significant threats in practical applications. One prevalent safety and security
vulnerability these models face is the threat of backdoor attacks [Gu et al., 2017, Liu et al., 2018].
Backdoor attacks involve training a model on a manipulated dataset, commonly referred to as a
poisoned dataset [Barreno et al., 2006], to introduce hidden backdoor functionality. Querying the
model with inputs that contain a pre-defined pattern triggers the activation of the backdoor, resulting
in behavior unexpected to the user. Detecting these backdoors in a trained model proves challenging
because the model hardly exhibits any conspicuous predictions when clean inputs without triggers are
fed in [Zhang et al., 2022]. Moreover, identifying poisoned training samples is difficult for humans,
as most trigger patterns are designed to be discreet and evade detection by manual dataset inspection.
Hence, there is an urgent need for research into innovative and novel defense strategies capable of
effectively mitigating the risk posed by backdoor and poisoning attacks.
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In this work, we introduce a novel defense method based on the latest advancements in diffusion-based
image synthesis [Rombach et al., 2022, Xu et al., 2022]. More specifically, our approach first trains a
teacher model on a potentially poisoned dataset, following standard training procedures to establish a
general understanding of the dataset domain. Subsequently, we leverage a publicly available diffusion
model to create synthetic variations of all training samples while preserving the overall image content
and domain characteristics. Given that the generative model is highly unlikely to react to triggers
within the samples – remember that these triggers are designed to be inconspicuous – they have
minimal influence on the content present in the synthetic variations. Finally, we train a separate
student model on the synthetic samples, guided by the teacher model. Importantly, unlike related
defenses [Li et al., 2021, Pang et al., 2023, Xia et al., 2022], our method requires no additional data at
all but relies solely on the original dataset to produce additional synthetic samples. This is a significant
improvement, considering the cost and potential privacy concerns associated with acquiring additional
labeled data. Our experimental evaluation on large-scale datasets demonstrates that our approach
effectively mitigates the influence of poisoned data samples. It almost entirely removes the backdoor
behavior from the student model without compromising its utility substantially.

2 Background and Related Work

We start by introducing the concept of data poisoning and backdoor attacks together with possible
mitigation strategies in Sec. 2.1. We then briefly describe the intuition of diffusion models in Sec. 2.2.

2.1 Data Poisoning and Backdoor Attacks

Data poisoning attacks [Barreno et al., 2006] are a class of security attack that manipulates a target
model’s training process to inject an undesired model behavior for some or all inputs at inference
time. In most settings, poisoning attacks are performed by manipulating the model’s training data.
Given a training set Xtrain = {(xi, yi)} of data samples xi with ground-truth labels yi, the adversary
adds a relatively small amount of manipulated samples X̃ = {(x̃i, ỹi)} to create a poisoned training
set X̃train = Xtrain ∪ X̃ . Throughout this paper, we mark poisoned datasets and models in formulas
with a tilde accent. The target model is then trained on X̃train, resulting in the poisoned model M̃ .
To keep the model manipulation undetected, poisoning attacks generally aim for the trained model to
perform comparably to clean models but show some pre-defined behavior in certain use cases.

Backdoor attacks, also known as Trojan attacks, can be interpreted as a special case of targeted
poisoning attacks that inject a hidden model behavior that is only activated if some trigger pattern t
is present in an input sample x̃ = x⊕ t. We denote the operation of adding a trigger to an input by
the ⊕ operator. Many backdoor attacks [Gu et al., 2017, Saha et al., 2020, Liu et al., 2018] focus
on image classification with the goal of classifying any input x̃ containing the trigger t as some
pre-defined target class ŷ that deviates from the sample’s ground-truth label. For example, the model
classifies all inputs with a white square in a corner as a cat, independently of the actually depicted
content. Subsequent lines of work extended backdoor attacks to various other settings beyond image
classification [Chen et al., 2021, Zhang et al., 2021, Saha et al., 2022, Struppek et al., 2023].

Defenses against backdoor and poisoning attacks can be grouped into three categories: data and model
analysis, backdoor removal, and robust model training [Goldblum et al., 2023]. Approaches from
the data and model analysis try to identify poisoned data or models but offer no further mitigation
strategies to remove backdoors [Paudice et al., 2018, Huang et al., 2020]. This issue is tackled by
backdoor removal strategies, which try to repair backdoored models after they have been trained on
poisoned data without requiring full retraining. And robust model training aims to prevent backdoor
integration during training in the first place. Our mitigation strategy can be seen as a backdoor
removal approach but requires full training of a student model. It also partly belongs to the group of
robust model training since we train a second model with knowledge distillation [Hinton et al., 2015]
to be robust against backdoor attacks. Previous work also explored variants of knowledge distillation
to overcome backdoors [Li et al., 2021, Pang et al., 2023, Xia et al., 2022]. However, unlike our
approach, these approaches rely on additional clean data, most of them even require labeled data,
and also complicate the training process. We stress that our image variation approach replaces the
requirement for additional clean data and can, in principle, be combined with existing approaches. In
this work, we investigate the effectiveness of synthetic data independently of other approaches.
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1.) Train Teacher

2.) Generate Variations

3.) Train Student

Figure 1: Overview of our defense method. We first train a teacher model Mteacher on the real
data Sreal , which might contain poisoned samples. To remove backdoor triggers and other image
manipulations, we use a diffusion model V to generate synthetic variations of all images in the dataset.
Finally, we train a student model Mstudent from scratch on the synthetic data in combination with
knowledge distillation to mitigate possible label noise due to dataset poisoning.

2.2 Data Synthesis with Diffusion Models

Diffusion-based generative models received much attention from the research community, as well
as the general public. Diffusion models [Ho et al., 2020, Song and Ermon, 2020] are trained to
denoise images to which random Gaussian noise has been added. The models then learn to revert
this diffusion process, allowing them to generate images by denoising samples drawn from a random
probability distribution. Recent diffusion models, e.g., Stable Diffusion [Rombach et al., 2022], have
shown astonishing performance in the text-guided image generation domain, which generates images
based on textual descriptions. Besides textual inputs, related approaches also support conditioning
the generation process on already existing images. Versatile Diffusion [Xu et al., 2022] is one
representative model that supports the processing of input images to generate synthetic variations
of them, among other capabilities like text-to-image synthesis and image captioning. Its pipeline
is designed as a unified multi-flow diffusion framework, which enables cross-modal processing of
visual and textual contexts and achieves strong results across various domains and tasks. For our
experiments, we will use the model’s image variation functionality. However, adding textual guidance
might be an interesting avenue for future work.

Recent work in the intersection of backdoor attacks and diffusion models aims to integrate backdoors
into the diffusion models [Struppek et al., 2023, Chou et al., 2023]. Our research takes another
direction and investigates whether general purpose diffusion models can help us to overcome poisoned
datasets and prevent the integration of backdoors into models during their training process.

3 Methodology

We now describe how we can utilize general-purpose diffusion models to overcome poisoned datasets
and related backdoor attacks. Our pipeline, depicted in Fig. 1, consists of three steps: 1.) training a
(potentially poisoned) teacher model, 2.) generating image variations of all training samples, and
3.) training a student model on the synthetic data with guidance provided by the teacher model.

1.) Teacher Model Training. Our method first trains a teacher model Mteacher on the original
dataset Sreal = {(xi, yi)}, consisting of images x ∈ X with labels y ∈ Y . Our approach makes
no direct assumption about the poisoning grade of the dataset or if the dataset is manipulated in the
first place. Training is then done using standard procedures, e.g., optimizing a cross-entropy loss,
and no explicit mitigation strategy is applied. Therefore, if trained on poisoned data, the teacher
might incorporate the undesired backdoor functionality. We stress that applying robust model training
methods to mitigate the integration of backdoors in combination with our diffusion-based defense is
an interesting avenue for future research. However, in this work, we focus solely on the potential and
effectiveness of synthetic image variations as a defense mechanism.

2.) Generating Image Variations. Next, we generate synthetic variations of all training samples
in Sreal . To purify sample x of a dataset, we feed it into a diffusion-based image variation model
V:X → X to generate k synthetic variants x̂ = V(x) of each sample. Importantly, we generate
the variations without specifying any class label or additional description. The image generation is
solely guided by the image features extracted by the model’s encoder. Since the output dimension
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of the synthetic samples might differ from the input dimensions, we resize the synthetic samples
accordingly to match the size of the original dataset. During our experiments, we set k = 1 to keep
the dataset size consistent. Importantly, we do not know in advance whether an input sample is a
clean or a poisoned sample. Therefore, we generate synthetic variations for all dataset samples.

Due to the nature of diffusion models trained on vast datasets, the generated image variations might
render different color statistics compared to the original data, which hurts a model’s generalization.
To remove dominant and undesirable color casts and improve the student’s generalization, we apply
a statistical color transfer by adjusting the pixel values of each generated image x̂ to obtain a
color-adjust sample x̂′ matching the statistics of the real image x:

x̂′ =
x̂− µ(x̂)

σ(x̂)
· σ(x) + µ(x). (1)

Here, µ and σ denote the mean and standard deviation of the pixel values in the real image x and the
synthetic variation x̂. We then build a new dataset Ssynthetic = {(x̂′

i, yi)}, which shares the same
labels with Sreal but each image is replaced by its color-adjusted synthetic variation. Whereas we
find this simple approach to be quite successful, we emphasize that more elaborated color transfer
methods might further improve the image statistics.

3.) Student Model Training. Finally, we train a separate student model solely on the synthetic
dataset. The content fidelity of current image variation models is not always reliable and the depicted
content in the synthetic image might differ from the target class. To mitigate this problem and improve
the model generalization, we utilize the knowledge incorporated in the model trained on the real data
by applying knowledge distillation [Hinton et al., 2015] during training. Knowledge distillation is a
common learning paradigm to transfer the knowledge of a usually larger teacher model into a smaller
student model. Conceptually, this is done by generating pseudo-labels with the teacher model for the
training samples used to update the student model. Let zteacher and zstudent denote the output logits
of the teacher and student model, respectively. Be further σj the softmax score for the j-th class out
of a total of c classes, and τ a temperature term. The knowledge distillation loss is then defined by

LKD = −τ2
c∑

j=1

σj

(zteacher
τ

)
· log σj

(zstudent
τ

)
. (2)

The total loss consists of LKD and the standard cross-entropy loss LCE weighted by factor α ∈ [0, 1]:

L = α · LKD + (1− α) · LCE . (3)

Compared to training only on the synthetic data with guidance by the teacher model, knowledge
distillation significantly improves the models’ prediction accuracy on clean inputs, while also re-
moving the undesired behavior on inputs containing the trigger patterns. We stress that generating
image variations is able to remove the triggers from poisoned samples but the assigned labels are still
pointing to the wrong class. Here, we exploit that the backdoor of the teacher model is usually no
longer triggered on synthetic inputs, therefore, the teacher provides guidance towards the true class
which is missing from the label itself.

4 Experimental Evaluation

We evaluate our proposed defense mechanism in practical settings. We first introduce the general
setup in Sec. 4.1 before discussing our results in Sec. 4.2. Appx. A states more experimental details.

4.1 Experimental Setup

Datasets. We focus our investigation on high-resolution, real-world datasets and use Ima-
geNette [Howard, 2019], which is a subset of 10 classes from the ImageNet dataset, and a custom
ImageNet [Deng et al., 2009] subset with 100 randomly selected classes for our evaluation. All
samples are resized to 224× 224 before adding triggers.

Architectures. We perform our experiments on the common ResNet-101 [He et al., 2016] architecture.
Image variations are generated with Versatile Diffusion [Xu et al., 2022].

Hyperparameters. Backdoor attacks are performed in an all-to-one setting, i.e., each triggered
backdoor forces the prediction of a single target class, the class with index zero in our case. We
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Figure 2: Visual examples of real samples containing triggers and their synthetic variations. While
the initial trigger patterns are removed in all variations, some show visible trigger artifacts.

poison 10% of the ImageNette and 1% of the ImageNet-100 training samples, excluding samples
from the target class. Knowledge distillation is performed with α = 0.5 and τ = 5, but overall, we
find the choice of these parameters to only have a minor impact on the results.

Metrics. To assess the impact of backdoor attacks on a model, we use two common metrics in line
with related work. First, the clean accuracy Accclean , which describes a model’s prediction accuracy
on the clean test split from the original dataset. And, second, the attack accuracy Accattack , which
measures the attack’s success by computing the ratio of which samples that contain the trigger are
classified as the target class. To compute the attack accuracy, we remove all samples of the target
class from the test data and then add the triggers to all remaining samples. Both metrics are computed
on a test split which has no sample overlapping with the training data.

Investigated Backdoor Attacks. We investigate two common attacks with a total of five variants:

BadNets [Gu et al., 2017]: Places fixed trigger patterns in the corners of images. We investigate three
trigger variants, namely Black, White, and Checkerboard. The first two options insert a black or white
square, respectively, into the images, the last one adds a checkerboard pattern. We set the trigger size
to 9× 9 pixels and place the triggers in the bottom right corner of the images.

Blended [Chen et al., 2017]: Adds triggers by computing a convex combination between the clean
sample, weighted by 1− α, and the trigger pattern, weighted by α. The trigger pattern either consists
of a fixed Gaussian Noise pattern or a Hello Kitty image. We set the blended ratio to α = 0.1 for the
noise pattern and to α = 0.05 for the Hello Kitty trigger.

While both attacks add rather large and visible triggers to samples, more advanced backdoor attacks
aim to hide any visual conspicuities and exploit a model’s individual processing of samples. By
investigating attacks with visible triggers, our experiments build a baseline for the effectiveness of
the approach. We expect it to work even better on attacks with less visible trigger patterns since the
diffusion model has no incentive to include those patterns in the synthetic image variations.

4.2 Diffusion-Based Variations Effectively Mitigate Backdoors

Our experimental results for ResNet-101 models, which are stated in Tab. 1, demonstrate the strong
effectiveness of our diffusion-based defense mechanism. In addition, Fig. 2 depicts visual examples
of poisoned samples and their corresponding synthetic variations. Training on synthetic ImageNette
variations only reduces a model’s Accclean by a single percentage point. At the same time, the
Accattack drops significantly, indicating that the backdoor triggers lose their effectiveness on the
student models. The Blended attack with the Hello Kitty trigger pattern is the only exception here, for
which the student model reacts to the trigger in about one-fifth of the cases. Still, attack success is
notably lower than for the model directly trained on real poisoned data.

The pattern discussed also holds true for our experiments with 100 ImageNet classes. Again, the
student models exhibit strong Accclean whereas Accattack drops close to zero. Again, the Blended
attack with the Hello Kitty trigger seems to be robust to our method. Importantly, this attack trigger is
much less stealthy than other attacks and adds a large, noticeable pattern to the images that spans all
pixels. It is, therefore, little surprising that such strong patterns are also captured by the diffusion
models. Hence, the generated image variations frequently contain pink color or flower patches,
which may act as new backdoor triggers. However, in practical backdoor scenarios, trigger patterns
are designed to be stealthy and usually only affect small parts of images. We therefore expect our
approach to work reliably in practice, and even better the less visible trigger patterns are designed.
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Table 1: Evaluation results for ResNet-101 models trained on ImageNette and ImageNet-100,
respectively. The table compares standard training on real samples to our defense mechanism, which
trains student models on synthetic image variations in combination with knowledge distillation.
Training on synthetic data only reduces a model’s clean accuracy slightly, while most backdoor
triggers lose their impact and are ignored by the model.

ImageNette ImageNet-100

Standard Variations + KD Standard Variations + KD

Attack Trigger Accclean Accattack Accclean Accattack Accclean Accattack Accclean Accattack

Clean Baseline 82.75% - 81.07% - 74.32% - 72.64% -

BadNets Checkerboard 80.31% 99.89% 79.11% 1.05% 74.32% 99.90% 71.52% 0.40%
BadNets White 80.74% 91.97% 80.18% 1.39% 75.28% 95.94% 72.32% 0.40%
BadNets Black 80.51% 95.70% 79.82% 1.50% 74.22% 94.40% 71.26% 0.67%
Blended Noise 80.89% 96.89% 79.97% 3.11% 75.38% 91.05% 72.68% 4.04%
Blended Hello Kitty 80.76% 85.36% 79.49% 18.80% 74.48% 79.98% 72.24% 84.34%

We also provide an extensive ablation and sensitivity analysis in Appx. B. More specifically, we show
that training only on synthetic variations without knowledge distillation hurts a model’s Accclean
significantly. In addition, we provide results for different trigger sizes, patterns, and colors. Overall,
our approach successfully removes the backdoor behavior in almost all cases, except triggers with
striking color schemes, e.g., blue and red patches.

5 Discussion, Limitations and Future Research

Data poisoning and backdoor attacks pose a serious security risk in practical machine learning
applications. Mitigating their impact or defending models during training often requires complex
optimization methods and access to trusted labeled datasets. By leveraging a standard diffusion
model, we aim to overcome the requirement for additional data and instead generate new samples as
variations of existing ones. Our experimental evaluation demonstrates that diffusion-based image
variations of poisoned samples significantly reduce the success of backdoor attacks. By using publicly
available, general-purpose models like Versatile Diffusion, users can apply our proposed defense
strategy directly to a wide range of high-resolution datasets without additional fine-tuning required.

However, our diffusion-based defense method also incorporates some limitations. Generating syn-
thetic variations of images takes slightly less than a second per image. Whereas this time requirement
is feasible for small and medium-sized datasets, time can be a constraining factor for vast datasets.
Also, for fine-grained tasks like classifications of medical images, a deeper domain understanding of
the diffusion model might be required. Fine-tuning a diffusion model on the available data probably
improves results, but we leave empirical evaluation open to future research. Given the current speed
of developments and breakthroughs in image synthesizing, we expect domain problems to be solved
in the near future. Another challenge for diffusion-based image variations is the persisting label noise
of the synthetic samples. For example, the synthetic variations of poisoned images depicting dogs
labeled as a cat no longer contain the trigger pattern but are still falsely labeled as cats. For datasets
with high poisoning rates, this might hurt the student’s performance.

An interesting avenue for future research is the integration of sample labels into the image generation
process to make the synthetic images more closely related to their assigned labels. We also envision
our approach to be applicable in privacy-sensitive domains to create synthetic datasets that could be
shared without revealing the private original data.

6 Conclusion

We have introduced a novel diffusion-based defense strategy designed to mitigate the impact of
poisoned training sets by creating a synthetic surrogate dataset. Coupled with knowledge distillation,
our approach trains student models that exhibit robust performance on clean data and significantly
reduce susceptibility to backdoor attacks. Through experimental evaluations conducted on high-
resolution datasets, we have demonstrated the practical effectiveness of this method. Anticipating
continued advancements in image synthesis, we envision the evolving role of diffusion models as a
powerful mitigation strategy for data poisoning. With our research, we hope to inspire future research
into the application of generative models to combat poisoning and backdoor attacks.

6



Reproducibility Statement. Our source code is publicly available at https://github.com/
LukasStruppek/Robust_Training_on_Poisoned_Samples to reproduce the experiments and
facilitate further analysis.

Acknowledgments. This work was supported by the German Ministry of Education and Research
(BMBF) within the framework program “Research for Civil Security” of the German Federal Govern-
ment, project KISTRA (reference no. 13N15343).

References
Marco Barreno, Blaine Nelson, Russell Sears, Anthony D. Joseph, and J. D. Tygar. Can machine

learning be secure? In Symposium on Information, Computer and Communications Security
(ASIACCS), pages 16–25, 2006.

Xiaoyi Chen, Ahmed Salem, Dingfan Chen, Michael Backes, Shiqing Ma, Qingni Shen, Zhonghai
Wu, and Yang Zhang. Badnl: Backdoor attacks against NLP models with semantic-preserving
improvements. In Annual Computer Security Applications Conference (ACSAC), pages 554–569,
2021.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint, arXiv:1712.05526, 2017.

Sheng-Yen Chou, Pin-Yu Chen, and Tsung-Yi Ho. How to backdoor diffusion models? In Conference
on Computer Vision and Pattern Recognition (CVPR), pages 4015–4024, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Conference on Computer Vision and Pattern Recognition (CVPR),
pages 248–255, 2009.

Micah Goldblum, Dimitris Tsipras, Chulin Xie, Xinyun Chen, Avi Schwarzschild, Dawn Song,
Aleksander Madry, Bo Li, and Tom Goldstein. Dataset security for machine learning: Data
poisoning, backdoor attacks, and defenses. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 45:1563–1580, 2023.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint, arXiv:1708.06733, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778,
2016.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
arXiv preprint, arXiv:1503.02531, 2015.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Conference
on Neural Information Processing Systems (NeurIPS), 2020.

Jeremy Howard. Imagenette, 2019. URL https://github.com/fastai/imagenette/. Accessed:
2023-08-31.

Shanjiaoyang Huang, Weiqi Peng, Zhiwei Jia, and Zhuowen Tu. One-pixel signature: Characterizing
CNN models for backdoor detection. In European Conference on Computer Vision (ECCV), pages
326–341, 2020.

Diederik P. Kingma and Jimmy Ba. Adam: Method for Stochastic Optimization. In International
Conference on Learning Representations (ICLR), 2015.

Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Neural attention
distillation: Erasing backdoor triggers from deep neural networks. In International Conference on
Learning Representations (ICLR), 2021.

Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and Xiangyu
Zhang. Trojaning attack on neural networks. In Annual Network and Distributed System Security
Symposium (NDSS), 2018.

7

https://github.com/LukasStruppek/Robust_Training_on_Poisoned_Samples
https://github.com/LukasStruppek/Robust_Training_on_Poisoned_Samples
https://github.com/fastai/imagenette/


Lu Pang, Tao Sun, Haibin Ling, and Chao Chen. Backdoor cleansing with unlabeled data. In
Conference on Computer Vision and Pattern Recognition (CVPR), pages 12218–12227, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Conference on Neural Information Processing Systems (NeurIPS),
pages 8024–8035, 2019.

Andrea Paudice, Luis Muñoz-González, and Emil C. Lupu. Label sanitization against label flipping
poisoning attacks. In ECML PKDD Workshop: Recent Advances in Adversarial Machine Learning,
volume 11329 of Lecture Notes in Computer Science, pages 5–15, 2018.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Conference on Computer Vision and
Pattern Recognition (CVPR), pages 10684–10695, 2022.

Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger backdoor attacks.
In AAAI Conference on Artificial Intelligence (AAAI), pages 11957–11965, 2020.

Aniruddha Saha, Ajinkya Tejankar, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash. Backdoor
attacks on self-supervised learning. In Conference on Computer Vision and Pattern Recognition
(CVPR), pages 13337–13346, 2022.

Yang Song and Stefano Ermon. Improved techniques for training score-based generative models. In
Conference on Neural Information Processing Systems (NeurIPS), 2020.

Lukas Struppek, Dominik Hintersdorf, and Kristian Kersting. Rickrolling the artist: Injecting
backdoors into text encoders for text-to-image synthesis. In International Conference on Computer
Vision (ICCV), 2023.

Jun Xia, Ting Wang, Jiepin Ding, Xian Wei, and Mingsong Chen. Eliminating backdoor triggers for
deep neural networks using attention relation graph distillation. In International Joint Conference
on Artificial Intelligence (IJCAI), pages 1481–1487, 2022.

Xingqian Xu, Zhangyang Wang, Eric Zhang, Kai Wang, and Humphrey Shi. Versatile diffusion: Text,
images and variations all in one diffusion model. arXiv preprint, arXiv:2211.08332, 2022.

Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. Backdoor attacks to graph
neural networks. In Jorge Lobo, Roberto Di Pietro, Omar Chowdhury, and Hongxin Hu, editors,
ACM Symposium on Access Control Models and Technologies (SACMAT), pages 15–26, 2021.

Zhiyuan Zhang, Lingjuan Lyu, Weiqiang Wang, Lichao Sun, and Xu Sun. How to inject backdoors
with better consistency: Logit anchoring on clean data. In International Conference on Learning
Representations (ICLR), 2022.

8



A Experimental Details

In the following, we provide technical details of our experiments to improve reproducibility and
eliminate ambiguities.

A.1 Hard- and Software Details

We performed all our experiments on NVIDIA DGX machines running NVIDIA DGX Server Version
5.2.0 and Ubuntu 20.04.4 LTS. The machines have 1TB of RAM and contain NVIDIA A100-SXM4-
40GB GPUs and AMD EPYC 7742 64-core CPUs. We further relied on CUDA 11.4, Python 3.8.10,
and PyTorch 2.0.0 with Torchvision 0.15.1 Paszke et al. [2019] for our experiments. We used the
model architecture implementations provided by Torchvision. We further provide a Dockerfile
together with our code to make the reproduction of our results easier. In addition, all training and
attack configuration files are available to reproduce the results stated in this paper.

A.2 Training Details

We set a constant seed for all experiments to avoid influences due to randomness. All models are
initialized with fixed but random weights. We then trained the models for 100 epochs with the Adam
optimizer [Kingma and Ba, 2015] and a learning rate of 0.001. The learning rate was multiplied
by factor 0.1 after 30 and 50 epochs, respectively. The batch size was set to 128. All samples
were resized to 224× 224 to build the different datasets. The only augmentation used was random
horizontal flipping with probability p = 0.5. For training the student models, we used the same
hyperparameters. Knowledge distillation was performed with α = 0.5 and τ = 5.

A.3 Generating Image Variations

Synthetic image variations were generated with Versatile Diffusion, available at https://
huggingface.co/docs/diffusers/api/pipelines/versatile_diffusion. All input sam-
ples had the size 224× 224. For each sample, we generated exactly one variation. The number of
inference steps was set to 50 and the guidance scale to 7.5. The generated images’ size is 512× 512
but has been downsized to match the original size of 224× 224.
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B Additional Experimental Results

We provide additional results for training student models directly on the synthetic image variations
without the incorporation of knowledge distillation. Tab. 2 shows the results for ImageNette, Tab. 3
those for ImageNet-100.

Table 2: Evaluation results for ResNet-101 models trained on ImageNette. The table compares
standard training on real samples (Standard) to our defense mechanism, which trains student models
on synthetic image variations in combination with knowledge distillation (Variations+KD). The
middle columns (Variations) show the training results for training on synthetic variations without
knowledge distillation applied.

Attack Trigger Standard Variations Variations + KD

Accclean Accattack Accclean Accattack Accclean Accattack

Clean Baseline 82.75% - 74.60% - 81.07% -

BadNets Checkerboard 80.31% 99.89% 66.29% 10.60% 79.11% 1.05%
BadNets White 80.74% 91.97% 65.71% 8.34% 80.18% 1.39%
BadNets Black 80.51% 95.70% 68.05% 23.71% 79.82% 1.50%
Blended Noise 80.89% 96.89% 79.97% 10.94% 79.97% 3.11%
Blended Hello Kitty 80.76% 85.36% 70.45% 4.10% 79.49% 18.80%

Table 3: Evaluation results for ResNet-101 models trained on ImageNet-100. The table compares
standard training on real samples (Standard) to our defense mechanism, which trains student models
on synthetic image variations in combination with knowledge distillation (Variations+KD). The
middle columns (Variations) show the training results for training on synthetic variations without
knowledge distillation applied.

Attack Trigger Standard Variations Variations + KD

Accclean Accattack Accclean Accattack Accclean Accattack

Clean Baseline 74.74% - 54.02% - 72.64% -

BadNets Checkerboard 74.32% 99.90% 53.22% 1.29% 71.52% 0.40%
BadNets White 75.28% 95.94% 52.46% 62.89% 72.32% 0.40%
BadNets Black 74.22% 94.40% 53.96% 67.84% 71.26% 0.67%
Blended Noise 75.38% 91.05% 53.76% 16.06% 72.68% 4.04%
Blended Hello Kitty 74.48% 79.98% 53.52% 1.90% 72.24% 84.34%
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B.1 Trigger Sensitivity Analysis

In this section, we conduct a sensitivity analysis regarding the shapes of the backdoor triggers. For the
patch-based backdoor attacks, we experiment with various trigger sizes and different color patterns.
More specifically, we repeat the experiments on ImageNette and use yellow (#ffff00), red (#ff0000)
and blue (#0000ff) instead of black and white as trigger colors. The results stated in Tab. 4 show that
our defense method works well for most color patterns. However, for red and blue color patches, the
method is not able to completely remove the backdoor. Since both color patches are rather striking,
the diffusion model tends to integrate similar patches in its generated variations. We also repeat the
experiments using the standard black-and-white checkerboard pattern different trigger sizes from the
range of 3 up to 27 pixel length. Our results in Tab. 5 demonstrate that the approach even works for
larger trigger sizes.

Table 4: Evaluation results for ResNet-101 models trained on ImageNette using different color
patches as backdoor triggers. In addition to the black and white triggers, we also evaluated on yellow,
red, and blue triggers, as well as checkerboard patterns using combinations of these three colors.

Attack Trigger Standard Variations Variations + KD

Accclean Accattack Accclean Accattack Accclean Accattack

Clean Baseline 82.75% - 74.60% - 81.07% -

BadNets Checkerboard 80.31% 99.89% 66.29% 10.60% 79.11% 1.05%
BadNets White 80.74% 91.97% 65.71% 8.34% 80.18% 1.39%
BadNets Black 80.51% 95.70% 68.05% 23.71% 79.82% 1.50%

BadNets Yellow 81.45% 99.94% 69.07% 96.81% 80.13% 1.36%
BadNets Red 82.06% 99.86% 70.75% 98.87% 79.95% 24.14%
BadNets Blue 82.09% 99.89% 71.62% 98.64% 80.08% 97.51%
BadNets Yellow & Red 79.85% 99.55% 67.75% 31.57% 79.67% 1.41%
BadNets Yellow & Blue 81.30% 99.72% 67.16% 7.77% 79.82% 1.14%
BadNets Red & Blue 80.43% 100.00% 70.90% 91.94% 79.90% 1.33%

Table 5: Evaluation results for ResNet-101 models trained on ImageNette using the black-and-white
checkerboard triggers of different sizes. All other hyperparameters are kept the same.

Trigger Standard Variations Variations + KD

Accclean Accattack Accclean Accattack Accclean Accattack

Checkerboard (9× 9) 80.31% 99.89% 66.29% 10.60% 79.11% 1.05%
Checkerboard (13× 13) 81.78% 99.92% 67.24% 7.35% 80.69% 0.88%
Checkerboard (17× 17) 81.02% 99.89% 69.94% 11.45% 79.82% 0.99%
Checkerboard (21× 21) 82.78% 100.00% 69.32% 14.73% 81.35% 0.73%
Checkerboard (25× 25) 82.78% 100.00% 68.43% 6.47% 80.97% 0.82%
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B.2 Ablation Study

We further investigate the impact of the different parts of our approach by training a model directly
on the synthetic variations without knowledge distillation. In addition, we also train a student model
using knowledge distillation but replaced the synthetic variations by the original training data under
strong augmentations. Specifically, we apply color jittering (1±0.4 brightness, contrast and saturation;
±0.1 hue), random rotation (±20 degrees), random affine transformation (±0.1 translation, 1± 0.1
scaling), and random horizontal flipping (50% probability). The results are stated in Tab. 6. We stress
that the random affine transformations destroy the patch-based triggers, which are always located
on the bottom right corner. Consequently, the resulting attack accuracy is quite low but might be
misleading.

Table 6: Evaluation results for ResNet-101 models trained on ImageNette. The table compares
training with knowledge distillation and poisoned training samples under strong augmentation
(Augmentations + KD), training only on synthetic image variations (Variations), and training on
synthetic image variations in combination with knowledge distillation (Variations+KD).

Attack Trigger Augmentations + KD Variations Variations + KD

Accclean Accattack Accclean Accattack Accclean Accattack

BadNets Checkerboard 80.61% 2.66% 66.29% 10.60% 79.11% 1.05%
BadNets White 81.81% 2.63% 65.71% 8.34% 80.18% 1.39%
BadNets Black 81.38% 63.68% 68.05% 23.71% 79.82% 1.50%
Blended Noise 81.63% 94.35% 79.97% 10.94% 79.97% 3.11%
Blended Hello Kitty 82.62% 68.00% 70.45% 4.10% 79.49% 18.80%
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