
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DEEP REINFORCEMENT LEARNING FOR SEQUENTIAL
COMBINATORIAL AUCTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Revenue-optimal auction design is a challenging problem with significant the-
oretical and practical implications. Sequential auction mechanisms, known for
their simplicity and strong strategyproofness guarantees, are often limited by the-
oretical results that are largely existential, except for certain restrictive settings.
Although traditional reinforcement learning methods such as Proximal Policy Op-
timization (PPO) and Soft Actor-Critic (SAC) are applicable in this domain, they
struggle with computational demands and convergence issues when dealing with
large and continuous action spaces. In light of this and recognizing that we can
model transitions differentiable for our settings, we propose using a new rein-
forcement learning framework tailored for sequential combinatorial auctions that
leverages first-order gradients. Our extensive evaluations show that our approach
achieves significant improvement in revenue over both analytical baselines and
standard reinforcement learning algorithms. Furthermore, we scale our approach
to scenarios involving up to 50 agents and 50 items, demonstrating its applica-
bility in complex, real-world auction settings. As such, this work advances the
computational tools available for auction design and contributes to bridging the
gap between theoretical results and practical implementations in sequential auc-
tion design.

1 INTRODUCTION

The effective allocation of scarce resources is a pervasive challenge across diverse domains, span-
ning spectrum licensing (FCC), transportation infrastructure (Rassenti et al., 1982), online advertis-
ing (Varian & Harris, 2014), and resource management (Tan et al., 2020). Combinatorial auctions
(CAs) are a pivotal tool in addressing this challenge, offering a specialized auction format where
bidders express valuations for combinations of items (or bundles). This allows for the incorporation
of interdependencies among items, ultimately leading to more efficient allocations. For example,
in spectrum auctions, bidders articulate preferences for combinations of licenses, capturing syner-
gies and complementarities. However, despite their potential, CAs are known for their significant
complexity, including computationally intensive winner determination problems and susceptibility
to strategic bidding behavior (de Vries & Vohra, 2003).

Sequential Combinatorial Auctions (SCAs) make use of a sequential interaction with bidders — par-
ticipants enter the auction in a predetermined order, strategically placing bids on available bundles
that align with their interests. The sequential nature of SCAs yields several advantages. Primar-
ily, it alleviates complexity by breaking down the problem into smaller, more manageable sub-
problems. Additionally, SCAs can be implemented as straightforward mechanisms with obvious
strategyproofness guarantees (Li, 2017). The predetermined order of bidder arrivals plays a crucial
role in ensuring no incentive for misreporting preferences, particularly when each stage’s auction
mechanism is designed to be strategyproof. Maintaining strategyproofness at each stage involves
presenting bidders with a menu of options, allowing them to select their utility-maximizing choice.
Such menu-based mechanisms enhance transparency and interpretability, simplifying the decision
complexity for bidders who may not be experts in mechanism design.

Beyond the theoretical and practical advantages mentioned earlier, SCAs exhibit a surprising robust-
ness in terms of generality. Cai & Zhao (2017) has demonstrated that there exists a straightforward
SCA capable of achieving a constant approximation to optimal auctions when bidders’ valuations

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

are XOS and O(logm)-approximation in sub-additive setting. Despite this promising result, finding
an optimal SCA mechanism remains an intricate task, primarily due to the vastness of its search
space. Existing results, such as those by Cai et al. (2022), primarily focus on constructing a sim-
ple mechanism that achieves constant-approximation in a restricted XOS setting. In contrast, our
research presents a general method for approximately identifying near-optimal mechanisms within
a broader subadditive valuation settings.

Brero et al. (2020) introduced the use of reinforcement learning in auctions for the sequential setting,
framing the design problem as a Markov Decision Process (MDP)—for example with the history of
decisions so far constituting the state, and posted prices and which agent to visit next constituting the
action. The reward is the payment collected from the bidder at each step. The overarching objective
is to learn an optimal policy function that maps states to actions (the “mechanism,”) maximizing
the expected reward. To learn this policy function, Brero et al. (2020) use the Proximal Policy
Optimization (PPO) algorithm. However, their focus is on a class of simple mechanisms known as
Sequential Pricing Mechanisms (SPMs) with a straightforward menu structure where each item is
associated with a posted price and the cost of a bundle is simply the sum of prices of its constituent
items. In the realm of optimal multi-item auctions, bundling (beyond item-wise posted price) is a
well-established necessity, even for simpler additive valuations. This calls for approaches that center
on learning a more expressive menu structure that is capable of accommodating complex valuations.
Consequently, in the MDP formulation, the action space needs to expand, posing challenges for
directly applying standard RL methodologies to our setting.

Main Challenges. Most conventional reinforcement learning techniques are ill-suited for the large
and continuous action spaces in this combinatorial auction setting. For instance, Q-learning based
approaches are tailored for discrete action spaces. While one workaround involves discretizing the
action space, this strategy proves impractical as it often involves evaluating all possible actions,
which doesn’t scale efficiently.

Although Proximal Policy Optimization (PPO) (Schulman et al., 2017), Soft Actor-Critic
(SAC) (Haarnoja et al., 2018), and Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.,
2016) can handle continuous action spaces, they often struggle with sample efficiency and conver-
gence issues due to the curse of dimensionality that arise in extremely large action spaces. Policy
gradient methods such as PPO suffer from high variance in gradient estimates, leading to conver-
gence issues whereas Actor-Critic methods such as SAC, which involve learning a Q-function over
both state and action spaces, require a prohibitively large number of samples to adequately cover
their domain and generalize well. For these approaches to work, we would need extensive paral-
lel environments (for samples) or extended algorithm runtime (for convergence), both of which are
constrained by either hardware limitations or time constraints.

However, unlike traditional RL problems, the transition dynamics in sequential auctions can be
accurately modeled, enabling the use of analytical gradients for more precise parameter updates.
Such approaches involving analytical policy gradients (APG) have demonstrated high efficiency
in domains such as differentiable physics and robotics (de Avila Belbute-Peres et al., 2018; Innes
et al., 2019; Hu et al., 2019; Qiao et al., 2020; Wiedemann et al., 2023). However, existing APG
methods usually require differentiable environments and rely on end-to-end training techniques such
as backpropagation through time (BPTT), with gradients given by the simulator itself. This is not
feasible in our framework, as the gradients are not readily available. Moreover, BPTT is prone
to optimization challenges over long trajectories, such as exploding or vanishing gradients, further
complicating its applicability.

Given these limitations, a new approach is needed to handle the challenges of continuous action
spaces efficiently in combinatorial auctions. Our goal is to design an iterative method that leverages
analytical gradients to overcome sample inefficiency, high variance and the computational complex-
ities of existing methods.

Our Contributions. We introduce an new approach that uses fitted policy iteration (Bertsekas &
Tsitsiklis, 1995; Bertsekas, 2011) and analytical gradients for learning revenue-maximizing sequen-
tial combinatorial auctions. This method uses neural networks to approximate the value function and
policy function and iteratively update them in a twofold manner: initially refining the value func-
tion to align with the policy function and subsequently adjusting the policy function to maximize

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

rewards. While continuous action spaces pose challenges for the policy improvement step, we show,
through Proposition 2, how we can simplify this to learning revenue-optimal single-buyer auctions
via gradient descent.

We implement the policy improvement step by extending the neural network architectures for static
revenue optimal auction design, such as RochetNet (Dütting et al., 2023) or MenuNet (Shen et al.,
2019), to the sequential setting by modifying the menu structure to include an additional term called
the ”offset”. The offset captures the value of potential future states (”continuation value”). By incor-
porating the offset into the optimization objective, our approach aims to maximize both the current
revenue and the anticipated revenue from future states. This adapted network, trained through first-
order gradient methods, offers a more effective and stable approach to policy iteration in continuous
action spaces. Instead of parameterizing and learning menu options for each state and bidder, we
learn the weights of a neural network that takes in as input a state and outputs the corresponding
menu options. This let’s us handle combinatorial auctions with up to 20 agents and a menu size of
up to 1024.

Furthermore, we demonstrate the scalability of our approach to accommodate a large number of
buyers and items, extending to as many as 50 buyers and 50 items for the additive-valuation setting,
significantly surpassing the capabilities of existing methods based on differentiable economics for
auction design. This scalability is achieved by learning the menus corresponding to the entry-fee
mechanisms. While this is less expressive than a combinatorial menu structure, it is more computa-
tionally efficient, making it a viable and efficient solution for scenarios involving a larger number of
buyers and items.

Related Works. Our work is closely related with the literature of sequential combinatorial auc-
tions design (Cai & Zhao, 2017; Cai et al., 2022), in which the previous papers focus on the the-
oretical characterization of the approximation results. Cai & Zhao (2017) first proposed a simple
sequential posted price with entry fee mechanism (SPEM) and proved that the existence of such
mechanism achieves constant approximation to the optimal mechanism in XOS valuation setting
and O(log(m)) approximation in the subadditive valuation setting. Later work by Cai et al. (2022)
provides a polynomial algorithm based on linear program (LP) to compute the simple mechanism
to achieve constant approximation in the item-independent XOS valuation setting. Compared to
these existing literature, our work focuses on finding near-optimal SCAs with a general auction for-
mat (e.g., we allow bundle pricing rather than item pricing) through the use of deep learning based
approaches. In addition, there is a rich literature designing approximation-results for online combi-
natorial auctions using simple posted-price mechanism (through Prophet Inequality), in which the
items arrive in a sequential manner (Feldman et al., 2015; Dütting et al., 2020; Assadi & Singla,
2019; Deng et al., 2021). Another loosely related research direction is dynamic mechanism de-
sign (Ashlagi et al., 2016; Papadimitriou et al., 2022; Mirrokni et al., 2020), where the previous
papers focus on mechanism design problem dealing with forward-looking agents that the agents
may deviate their truthful reporting at current rounds to get more utility in the long-run.

The application of deep learning to auction design has garnered significant research attention in
recent years, opening up exciting new avenues for achieving optimal outcomes. The pioneering
work by Dütting et al. (2023) demonstrated the potential of deep neural networks for designing
optimal auctions, recovering known theoretical solutions and generating innovative mechanisms for
the multi-bidder scenarios. Subsequent research extended the original neural network architectures,
RegretNet and RochetNet proposed in Dütting et al. (2023), to specialized architecture to handle
IC constraints (Shen et al., 2019), to handle different constraints and objectives (Feng et al., 2018;
Golowich et al., 2018), adapt to contextual auctions setting Duan et al. (2022), and incorporate with
human preference (Peri et al., 2021). In addition, there are other research efforts to advance the
training loss of RegretNet (Rahme et al., 2021b), explore new model architectures(Rahme et al.,
2021a; Duan et al., 2022; Ivanov et al., 2022), certify the strategyproofness of the RegretNet Curry
et al. (2020) and extend RochetNet framework for Affine Maximizer Mechanisms for the setting
that there are dynamic number of agents and items (Duan et al., 2023). Recently, Zhang et al.
(2023) apply deep learning techniques to compute optimal equilibria and mechanisms via learning
in zero-Sum extensive-form games, in the setting when the number of agents are dynamic.

There is also previous interest in applying deep reinforcement learning (DRL) to auction design.
Shen et al. (2020) propose a DRL framework for sponsored search auctions to optimize reserve

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

price by modeling the dynamic pricing problem as an MDP. DRL has also been used to compute
near-optimal, sequential posted price auctions (Brero et al., 2020; 2023), where the authors model
the bidding strategies of agents through an RL algorithm and analyze the Stackelberg equilibrium
of the sequential mechanism (perhaps also allowing for an initial stage of communication). Mean-
while, Gemp et al. (2022) investigated the use of DRL for all-pay auctions through conducting the
simulations from the multi-agent interactions. Existing papers using DRL for auction design focus
on additive or unit- or additive-demand valuation settings. Whereas, in our paper, we propose a
general, sequential combinatorial auction mechanism through DRL, which has potential to handle
much larger combinatorial valuation settings by utilizing the sequential auction structure along with
our customized DRL algorithm.

2 PRELIMINARIES

We consider a setting with n bidders, denoted by the set N = {1, . . . , n} and m items, M =
{1, . . . ,m}. Each bidder i ∈ N has a valuation vi : 2

M → R, where vi(S) denotes the valuation
of the subset S ⊆ M . Each bidder valuation vi is drawn independently from a distribution Vi. We
denote V = Πn

i=1Vi.

We consider the sequential setting where the auctioneer visits the bidder in lexicographical order.
He knows the distribution V but not the bidder’s private valuations vi for i ∈ N . The mechanism
design goal is to design a set of allocation rules and payment rules that determine how these items
are allocated and how much each bidder is charged such that the expected revenue (gross payment
collected from the bidders) is maximized. We denote the allocation rule by g = (g1, . . . , gn) where
gi ⊆ M, denotes the subset of items allocated to bidder i. Since the items can’t be over-allocated,
we require gi ∩ gj = ∅ for all i ̸= j ∈ N . We denote the payment rule as p = (p1, . . . , pn) where
pi ∈ R≥0 denotes the payment collected from bidder i.

In this work, we study Sequential Combinatorial Mechanisms with Menus. Given a bidder i and a
set of available items denoted by S, the mechanism consists of a pricing function ξi,S : 2M → R≥0

for each bidder i and the set of available items S that maps a subset of items (i.e. bundle) to its
price. Additionally, we require ξi,S(T) = ∞ if T ̸⊆ S to prevent the over-allocation of items. The
auctioneer engages with bidders in lexicographic order, presenting them with a menu of bundles
along with their corresponding prices. Subsequently, the bidder being visited selects their preferred
bundle, pays the associated price, and exits the auction. The favorite bundle for the bidder is simply
defined as the bundle that maximizes their expected utility1 i.e. S∗

i = argmaxT⊆Svi(T)− ξi,S(T).
See Algorithm 1 for the details of the mechanism.

Algorithm 1 Sequential Combinatorial Mechanisms with Menus
Require: ξi,S(·) is bidder i’s pricing function when the menu consists of bundles of

items from set S
1: S ← [m]
2: for i ∈ [n] do
3: Show bidder i the menuM of available bundles and their corresponding prices,

i.e.M = {(T, ξi,S(T)) | T ⊆ S}
4: i picks their favorite bundle S∗

i ⊆ S, and pays ξi,S(S∗
i).

5: S ← S\S∗
i .

6: end for

Remark 1. The mechanism described in Algorithm 1 is Dominant Strategy Incentive Compatible
(IC) and Individual Rational (IR) if ξi,S(∅) = 0 for all i ∈ [n], S ⊆ M .

This menu structure is more expressive than the Sequential Posted Price with Entry Fee Mechanism
(SPEM) (Cai & Zhao, 2017) and Sequential Price Mechanisms (SPM) (Brero et al., 2020). In a
SPEM mechanism, every bidder i at a particular time step is shown the set of available bundles S
and the posted prices pi,j for every item j in S and is charged an entry-fee δi(S) to participate. If
the bidder accepts, she can picks any bundle T ⊆ S by paying an additional

∑
j∈T pi,j . In SPMs,

1Ties are broken in favor of a bigger subset

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

bidder i is shown a set of available items S and is charged
∑

j∈T pi,j(S). The price here depends
on the state; however, there is no entry fee.

Given the sequential nature of this problem, we follow Brero et al. (2020) and formulate learning
the pricing function as a finite horizon Markov Decision Process (MDP). This MDP is defined by:

• State Space S: The state st at each time step t is a tuple consisting of bidder under consid-
eration and the set of items remaining at time t. We have st = (it, St).

• Action Space A: The action at at each time step t is a vector of bundle prices. We thus have
at ∈ R2M where atT denotes the price associated with bundle T . We have atT = ξst(T).

• State Transitions: The agent it under consideration chooses their favorite bundle based
on the realized private valuation vit , and state becomes st+1 = (it+1, St+1) where St+1 =
St \ argmaxT⊆St vit(T)− atT . The stochasticity is in the private valuation vit ∈ Vit .

• Reward r : S ×A×S → R: The reward is simply the payment collected from the bidder
at time t. This is given by price associated with the bundle picked by agent it. We have
r(st, at, st+1) = atSt\St+1 = ξst(S

t \ St+1).

The discount factor γ = 1. Let π : S → A denote the policy function that maps the states
to actions. Let ρπ(st, at, st+1) denote the state-action-state marginals of the trajectory induced
by π(st). The objective here is to learn a policy function π∗ that maximize expected rewards i.e
π∗ = argmaxπ

∑n
t=1 E(st,at,st+1)∼ρπ

[
r(st, at, st+1]

]
. Let Vπ : S → R denote the value function.

Vπ(s
t) =

∑n
t′=t E(st′ ,at′ ,st′+1)∼ρπ

[
r(st

′
, at

′
, st

′+1)
]

i.e. Vπ(s
t) is the expected sum of rewards

if we start at state st and act according to policy π. Let V∗ denote the optimal value function i.e.
V∗ = Vπ∗ . For the sake of notational convenience, we define Vπ(s

n+1) = 0 for all policy func-
tions π. Additionally, the policy function is, in essence, the bundle pricing function. Thus, we have
πT (s

t) = ξst(T), where by πT (s
t) we mean the coordinate of T in the vector at = π(st).

Given this MDP, one can use tools (such as Gymnasium (Towers et al., 2023)) to write an environ-
ment that simulates the behavior of the bidders and an off-the-shelf reinforcement learning algorithm
suitable for continuous action spaces (such as PPO or SAC) to learn the parameters of policy func-
tions to maximize expected rewards. As discussed in Section 1, these traditional RL approaches
encounter several issues in a large action space setting and our empirical findings corroborate the
same. It is important to highlight that in our specific context the action space is exceptionally high-
dimensional, even for a reasonably small number of items, as it grows exponentially. For instance,
even with just 10 items, the action space expands to a size of 210.

Note that in our setting, given agents’ realized valuation, we can accurately predict subsequent states.
The randomness in this context arises from these realized values, but we know their distributions a
priori. This allows us to model the transition functions differentiably. Leveraging this unique ad-
vantage, we design new approaches that use first-order gradient methods along with policy iteration
to learn menus for different states.

3 METHOD

Policy iteration consists of two alternating steps — a policy evaluation step that computes a value
function consistent with the current policy, and a policy improvement step that uses the value func-
tions to greedily find better policies. Each iteration is a monotonic improvement over the previously
computed policies and often converges quickly in practice. For finite-state MDPs with a finite ac-
tion space, it has also been shown to converge to the optimal policy. However, we are dealing with
continuous action spaces for which the policy improvement step is intractable. In this section, we
show how we address this challenge.

Since we know the transition dynamics, we can use it to simplify this step. Given a state st and an
action a, we can exactly estimate the next state conditioned on the realized private value v ∼ Vit .
We now show how we can efficiently compute the best policies.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Proposition 2. For a current policy π and value function Vπ(.), the improved policy π′ for a state
st is given by:

π′(st) = argmax
at

E
v∼Vit

[
atSt

∗(v)
+ Vπ(i

t+1, St \ St
∗(v))

]
(1)

See Appendix B for the proof. When t = n, we have Vπ(i
n+1, Sn \ Sn

∗ (v)) = 0 and the objective
reduces to maximizing Ev∼Vin

[
anSn

∗ (v)

]
= Ev∼Vin

[ξsn (Sn
∗ (v))]. This objective corresponds to

learning a revenue maximizing auctions with a deterministic menu of options over items in Sn i.e.
M = {(T, ξin,Sn(T)) | T ⊆ Sn} for a single buyer in. Note that this objective is not smooth
due to the computation of Sn

∗ (v). Following the training of RochetNet, we relax our objective to
a smoother version: Ev∼Vin

[∑
T∈Sn ∆T (v) · anT

]
. Here, ∆(v) is a softmax over the utilities of

picking different subsets for a given valuation v. We optimize this objective using samples drawn
from agent in’s value distribution over items in Sn. While computing this softmax, we scale the
utilities by 1

τ where τ , a hyperparameter, controls the degree of smoothness. As τ → 0, ∆(v)
converges to a one-hot vector with a value 1 at the index corresponding to the utility-maximizing
bundle thus recovering our original objective.

For t < n, we need to account for the additional non-zero term while solving the maximization
problem. Every menu option now consists of a bundle, its corresponding price, and the value of the
next state if the bundle is picked. While there is no change to how the utility-maximizing bundles are
picked, this ”offset” term corresponding to the picked bundle is taken into account while maximizing
revenue. The smoother objective for this case is thus Ev∼Vin

[∑
T∈Sn ∆T (v) · (atT + ϕ(T))

]
. Here,

ϕ(T) = Vπ(i
t+1, St \ T) represents the offset, which is the expected revenue from future states if

bundle T is picked by it.

We show how we can implement the policy improvement step in Algorithm 2.

Algorithm 2 Policy Improvement Step
Require: Hyperparameters τ,Γ, η, ℓ

1: function PI(
(
st, Vπ(i

t+1, ·),Vit
)
)

2: aT ← 0, ∀T ⊆ S
3: ϕ(T)← Vπ(i

t+1, St \ T), ∀T ⊆ S
4: for iter ∈ 1, . . . ,Γ do
5: Receive {v1, . . . , vℓ} ∼ Vit
6: Construct menuM = {T, aT , ϕ(T)}T⊆S

7: uj,T ← vj(T)− aT ∀T ⊆ St,∀j ∈ [ℓ]
8: ∆j,· ← softmax(uj,·/τ)
9: L(a)← −

∑
j∈ℓ

∑
T⊆St ∆j,T · (aT + ϕ(T))

10: a← a− η∇L(a) ∀T ⊆ St

11: end for
12: πT (s

t)← aT ∀T ⊆ ST

13: Vπ(s
t)←

∑
j∈ℓ(aSt

∗(vj)
+ ϕ(St

∗(vj)))

14: Return πT (s
t), Vπ(s

t)
15: end function

Given a policy π, it’s straightforward to estimate the value function Monte-Carlo and Temporal
Difference Learning methods. Since we know the transition dynamics, we can use this to further
improve our value function estimates. For a state st, the value function can be estimated as follows:

Vπ(st) = E
v∼Vit

[
πSt

∗(v)
(st) + Vπ(i

t+1, St \ St
∗(v))

]
(2)

3.1 EXACT METHOD FOR SMALL NUMBER OF STATES

When the number of states is small, we can use dynamic programming to solve for the optimal
policy. Since the states are never repeated for a given episode and policy improvement steps for a
state st only depend on future time steps, we can start by computing the policy improvement for all
possible states at t = n and proceed backward to t = 0. To be more precise, for a state st = (it, T)
for T ⊆ [m], t = n, we perform the policy improvement step to compute π(st). We set V (st) to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

be the revenue computed from this step. Next, we repeat this process for all states st = (it, T) such
that T ⊆ [m], t = n−1 and proceed until we get to the state (i1, [m]). In total, this involves training
n× 2m RochetNets, one for each state. For more details, refer to Algorithm 3

Algorithm 3 Dynamic Program (DP)
Require: m,n,V

1: S ← [m]
2: Vπ(i

n+1, T)← 0 ∀T ⊆ S
3: for t ∈ n, n− 1 . . . , 1 do
4: for st ∈ S do
5: πT (s

t), Vπ(s
t)← PI(st, Vπ(i

t+1, ·),Vit)
6: end for
7: end for

3.2 APPROXIMATE METHODS FOR LARGE NUMBER OF STATES

When the number of states is large, we use a feed-forward neural network (called the critic) to map
a state to its value. The critic network is denoted by V α : N × {0, 1}m → R. We use another
feed-forward network called the actor that maps a state to action. The actor network is denoted by
πθ : N × {0, 1}m → R2M

≥0 .

Neural Network Architecture. The state st forms the input to the critic as well as the actor
network and is represented as an m+ 1 dimensional vector. The first index denotes the index of the
agent visited at time t and the last m indices are binary numbers that denote the availability of the
corresponding item. The first index is used to compute a positional embedding of dimension demb

which is then concatenated with the m-dimensional binary vector to form a m+ demb dimensional
input to the feed-forward layers. We use R hidden layers with K hidden units and a non-linear
activation function for the actor as well as the critic. Note that these networks do not share any
parameters.

The critic outputs a single variable capturing the value of the input state. The actor first outputs
p ∈ R2m

≥0 variables that correspond to the bundle prices. We use the soft plus activation function
to ensure these outputs are positive. We use the m-dimensional binary input to compute a boolean
mask variable β ∈ {0, 1}2m to denote the availability of a bundle. The final output of the actor
network is given as p · β + (⃗1− β) ·K where K is a large constant and the product denotes entry-
wise masking. This masking ensures that unavailable bundles are assigned a high price ensuring that
they are never picked, thereby satisfying feasibility constraints.

Fitted Policy Iteration. To perform policy iteration, we first randomly initialize the critic network
(value network). Then we perform the approximate policy evaluation step. To do this, we first
collect several state-action-reward samples and store them in a buffer. To encourage exploration, we
add Gaussian noise to the action while collecting the samples. We reduce the magnitude of added
noise by a small amount for later iterations. We use TD(λ) to compute expected returns V t

targ for
every state st in the state-action-reward samples. We use these as targets and minimize an MSE loss
to fit the critic to the computed values. We also found it helpful to update V t

targ using Equation 2
after a few initial critic network iterations, and then continue updating the critic network with the
new targets.

Once we have trained the critic, we perform the approximate policy improvement step. To do so, we
update the weights of the actor (policy network) to minimize the expected actor loss over all states
in the buffer. The actor loss, denoted by Lθ

π , for a state st is simply the negative expected revenue
that the policy achieves from state st. Thus we have:

Lθ
π(s

t) = −
∑
j∈ℓ

∑
T⊆St

∆j,T

(
πθ
T (s

t) + V α(it+1, St \ T)
)

(3)

where ∆j,T is defined in Line 8 of Algorithm 2. Refer to Figure 1 for an overview of the loss
computation. We repeat the policy evaluation step and policy iteration step until convergence. For
more details, refer to Algorithm 4.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 4 Fitted Policy Iteration (FPI)
Require: ηn, ηπ, ηϵ, ϵ0

1: Initialize neural network parameters θ, α
2: Initialize noise ϵ← ϵ0
3: Initialize rollout buffer D
4: for each iteration do
5: for each environment step do
6: noise ∼ N (0, ϵ)
7: at ← πθ(st)+ noise
8: st+1 ∼ p(st+1|st, at)
9: D ← D ∪ {st, at, r(st, at, st+1), st+1}

10: end for
11: Compute V t

targ through TD-λ
12: for each critic gradient step do
13: Jv(α) =

∑
st∈D ∥V

t
targ − V α(st)∥2

14: α← α− ηv∇Jv(α)
15: end for
16: for each actor gradient step do
17: Jπ(θ) =

∑
st∈D

[
Lθ

π(s
t)
]

18: θ ← θ − ηπ∇Jπ(θ)
19: end for
20: ϵ← ϵηϵ
21: end for

0.6 0.5 0.5 0.0

0.0 0.7 0.7 0.8
Policy

Network

Value
Network

0.0 -0.1 0.1 0.3 0.2 0.2 0.2 0.4

Figure 1: Loss function for the policy improve-
ment step. Given a state, we first enumerate
the menu options and the corresponding future
states. We use the actor to compute the prices
and the critic to compute the offsets. With this
we compute the loss in Equation 3

3.3 ENTRY FEE MECHANISMS FOR EXTREMELY LARGE NUMBER OF STATES

Note that the current menu structure that we impose involves learning 2m bundle prices per state.
The computation of which bundle is utility maximizing requires O(2m) computations. To scale up
our approach to a large number of items, say m > 10, we show how we can impose the menu
structure of entry-fee mechanisms. This involves learning m + 1 values — posted prices pi for
i ∈ [m] for the items and an entry fee δ. The price of bundle T is given by δ +

∑
i∈T pi. When the

agent valuations are additive, computing the utility-maximizing bundle only requires O(m logm)
computations.

To see this, consider an additive valuation represented by t = (t1, . . . tm). The value for any bundle
T , denoted by V (T), is given by

∑
i∈T ti. To compute the utility-maximizing bundle, sort the

vector given by (t1 − p1, . . . , tm − pm) to compute indices σ1, . . . , σm. We thus have tσ1
− pσ1

≥
. . . tσm

− pσm
. Construct a menu of M = {Tk, pk}k∈[m] ∪ {∅, 0} where Tk = {σ1, . . . , σk} and

pk = δ +
∑

i∈k pσi . The utility-maximizing bundle is given by maxk∈[m+1] V (Tk) − pk (where
for convenience we denote Tm+1 = ∅ and pm+1 = 0). Instead of using masks to set unavailable
bundle prices to a large value K, we simply set the posted price of an unavailable item to K to
satisfy allocation constraints. We only have to compute utility and the softmax values of these m
options (instead of 2m) while training the actor networks.

4 EXPERIMENTAL RESULTS

In this section, we present experimental results, comparing our approach with two established ana-
lytical mechanism design baselines: the item-wise and bundle-wise sequential auctions. The former
sells items individually, while the latter treats all items as a unified bundle, selling it sequentially.
The optimal policy for both these methods can be computed through Dynamic Programming. Addi-
tionally, we benchmark our approach against other reinforcement learning algorithms such as PPO.
Approaches involving Q-function learning, like SAC and DDPG, were unstable and did not perform
as well as PPO. Notably, we observe that the size of the action space significantly influences train-
ing, with a vast action space making it impractical to accurately evaluate and update Q-values for
all possibilities. Across all our settings, we provide results based on 10,000 episodes. Additional
details regarding implementation and hyperparameters can be found in the Appendix C. Next, we
elaborate on the various settings considered in this paper.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Agents
n

Items
m

Setting Action
Space Size

MD Baselines RL Baselines Ours

Item-wise Bundle-wise PPO SAC FPI DP

5 5

A 32 3.00 2.58 3.09 2.74 3.12 3.13
B 32 1.80 1.56 1.83 1.60 1.86 1.87
C 6 2.42 − 2.43 2.43 2.43 2.43
D 26 3.00 1.83 3.08 2.80 3.10 3.11

10 10

A 1024 7.41 5.57 6.68 4.88 7.59 7.60
B 1024 4.07 3.11 3.80 2.64 4.16 4.16
C 11 5.92 − 5.96 5.96 6.00 6.00
D 176 7.37 6.06 7.11 6.70 7.54 7.54

Table 1: Test Revenue achieved by different approaches for the Constrained Additive Setting.

4.1 CONSTRAINED ADDITIVE VALUATIONS

Let the values of individual items be denoted by tj ∼ Vj . In the additive valuation case, the value of
a bundle is calculated as the sum of the individual values of its constituent items: V (S) =

∑
j∈S tj .

For unit-demand valuation, each bidder values only their most preferred item in a bundle, making
the value of the bundle equal to the highest-valued item within it: V (S) = maxj∈S tj . In the context
of k-demand valuation, each bidder values the k most preferred items in a bundle, with the value of
the bundle determined by the highest-valued item among these k: V (S) = maxR⊆S,|R|=k tj .

We consider the following settings each with n agents and m items with (n,m) ∈ {(5, 5), (10, 10)}:

A. Additive valuations where item values are independent draws from U [0, 1]

B. Additive valuations where item i’s values are independent draws over U [0, i
m]

C. Unit-demand valuations where item values are independent draws over U [0, 1]

D. k−demand valuations where item values are independent draws over U [0, 1] and k = 3

We present the results in Table 1. PPO performs adequately in smaller settings involving 5 agents and
5 items. However, its performance degrades when the scale is increased to 10 agents and 10 items.
In contrast, our proposed method based on Dynamic Programming (DP) and Fitted Policy Iteration
(FPI) consistently outperforms established baselines. Importantly, FPI achieves these results with
a computational time of less than 20 minutes on a single Tesla A100 GPU. In comparison, PPO
required several hours of training under these conditions. We terminated training PPO after 20,000
iterations, which took approximately 5 hours. The Dynamic Programming (DP) approach took 6
hours for n = m = 10. The training curves (expected revenue vs updates) for PPO and FPI are in
Appendix D.

4.2 COMBINATORIAL VALUATIONS

In the combinatorial setting, we consider n ∈ {10, 20} agents and m = 10 items with the following
bundle-wise valuations listed below:

E. Subset valuations are independent draws over U [0,
√
|S|] for every subset S

F. Subset valuations are given by
∑

j∈T tj + cT where tj ∼ U [1, 2] and the complimentarity
parameter cT ∼ U [−|S|, |S|]

The results are presented in Table 2. Our approach, specifically designed to navigate high-
dimensional spaces more effectively, outperforms PPO in combinatorial settings as well. Notably,
our method (FPI) required only 20 minutes of training on a Tesla A100 GPU while DP took between
5 and 10 hours, depending on the number of agents. PPO was trained for 20,000 iterations, which
took approximately 12 hours.

4.3 SCALING UP

We scale our approach to an even larger number of buyers and items. For this setting, we use the
entry-fee mechanisms to characterize the menus, enhancing computational efficiency and reducing

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Agents
n

Items
m

Setting Action
Space Size

MD Baselines RL Baselines Ours

Item-wise Bundle-wise PPO SAC FPI DP

10 10 E 1024 6.20 2.35 4.19 2.43 7.00 7.01
F 1024 22.25 21.69 23.82 15.16 24.48 24.43

20 10 E 1024 8.08 2.68 4.31 2.17 8.17 8.19
F 1024 24.29 22.82 24.57 14.72 25.70 25.48

Table 2: Test Revenue achieved by different approaches for the Combinatorial Valuations Setting.

memory requirements, as we only manage m + 1 menu options instead of 2m options at any given
time. We consider Setting A with (n,m) ∈ {(20, 20), (50, 50)}
We present the results in Table 3. We observe that that with an increasing number of agents, item-
wise Myerson emerges as a competitive baseline for the additive valuation setting, with policy iter-
ation showing only a slight performance edge. Note that PPO demonstrates significantly improved
performance in this setting due to the smaller action-space associated with the entry fee mechanism.

Agents
n

Items
m

Setting Action
Space Size

MD Baselines RL Baselines Ours

Item-wise Bundle-wise PPO SAC FPI DP (Sym)

20 20 A 21 16.42 11.38 16.23 12.19 17.11 17.14
50 50 A 51 46.47 28.20 43.64 32.13 46.71 46.54

Table 3: Test Revenue achieved by different approaches for the Large Scale Setting.

For these settings, we also report the performance of DP, which was trained using a fully expressive
menu but with symmetry imposed. This reduces the number of RochetNets trained from n × 2m

to nm with each RochetNet having m menu options (one for every bundle size) instead of 2m. We
were unable to train without the imposition of symmetry due to hardware and time limitations.

5 CONCLUSION
We have introduced a new methodological approach to the problem of learning simple and strate-
gyproof mechanisms for sequential combinatorial auctions. We formulate this as a reinforcement
learning problem and show how we can use first order gradients to learn menu options that maximize
expected revenue. Through extensive experimental results, we’ve shown the superior performance
of this approach compared to other RL methods and well-known analytical solutions.

We also point out some limitations and potential directions for future work. The use of neural net-
works in approximate methods introduces uncertainties, lacking theoretical guarantees for conver-
gence. Additionally, the optimality of solutions obtained by RochetNet in the policy improvement
step remains unknown. Despite these uncertainties, we empirically observe convergence in all our
experiments, and it has been shown that RochetNet consistently retrieves optimal solutions when
analytical solutions are available (Dütting et al., 2023). Another limitation lies in our dependence on
the assumption of having ample samples from valuation distributions. While this is a common prac-
tice in empirical approaches to mechanism design, it would be insightful to explore the effectiveness
of our approach when the number of available samples is limited.

Future work could also explore more intricate menu structures beyond entry-fee mechanisms, con-
tinuing to seek computational efficiency improvements over bundle price enumeration. Addition-
ally, there is a compelling question of designing mechanisms where we allow agents to select the
best bundle efficiently, potentially in poly(m) time, as suggested by previous research (Schapira &
Singer, 2008). Our current research focused on a fixed order of agent visits, which prompts the ex-
ploration of methods to dynamically learn the optimal order in which agents should be visited (Brero
et al., 2021). Extending our framework to accommodate non-deterministic allocation poses an in-
triguing challenge, and understanding how it can be implemented in the sequential setting needs
further attention. Lastly, it is interesting to assess the ability of our approaches to approximate the
non-sequential version of the auction problem. Innovations in this space could involve leveraging
AMA-based approaches instead of RochetNet, which would engage with several agents in each step
of a sequential auction instead of just one agent.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Itai Ashlagi, Constantinos Daskalakis, and Nima Haghpanah. Sequential mechanisms with ex-
post participation guarantees. In Proceedings of the 2016 ACM Conference on Economics and
Computation, EC ’16, pp. 213–214, New York, NY, USA, 2016. Association for Computing
Machinery. ISBN 9781450339360.

Sepehr Assadi and Sahil Singla. Improved truthful mechanisms for combinatorial auctions with
submodular bidders. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 233–248, 2019.

Dimitri P Bertsekas. Approximate policy iteration: A survey and some new methods. Journal of
Control Theory and Applications, 9(3):310–335, 2011.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming: an overview. In Pro-
ceedings of 1995 34th IEEE conference on decision and control, volume 1, pp. 560–564. IEEE,
1995.

Gianluca Brero, Alon Eden, Matthias Gerstgrasser, David C. Parkes, and Duncan Rheingans-Yoo.
Reinforcement learning of sequential price mechanisms. In AAAI Conference on Artificial Intel-
ligence, 2020.

Gianluca Brero, Alon Eden, Matthias Gerstgrasser, David Parkes, and Duncan Rheingans-Yoo. Re-
inforcement learning of sequential price mechanisms. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 5219–5227, 2021.

Gianluca Brero, Alon Eden, Darshan Chakrabarti, Matthias Gerstgrasser, Amy Greenwald, Vincent
Li, and David C. Parkes. Stackelberg pomdp: A reinforcement learning approach for economic
design, 2023.

Yang Cai and Mingfei Zhao. Simple mechanisms for subadditive buyers via duality. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 170–183, 2017.

Yang Cai, Argyris Oikonomou, and Mingfei Zhao. Computing simple mechanisms: Lift-and-round
over marginal reduced forms. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2022, pp. 704–717, New York, NY, USA, 2022. Association for
Computing Machinery. ISBN 9781450392648.

Michael Curry, Ping-Yeh Chiang, Tom Goldstein, and John Dickerson. Certifying strategyproof
auction networks. Advances in Neural Information Processing Systems, 33, 2020.

Filipe de Avila Belbute-Peres, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J Zico Kolter. End-
to-end differentiable physics for learning and control. Advances in neural information processing
systems, 31, 2018.

Sven de Vries and Rakesh V. Vohra. Combinatorial auctions: A survey. INFORMS Journal on
Computing, 15(3):284–309, 2003.

Yuan Deng, Debmalya Panigrahi, and Hanrui Zhang. Online combinatorial auctions. In Proceedings
of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’21, pp.
1131–1149, USA, 2021. Society for Industrial and Applied Mathematics. ISBN 9781611976465.

Zhijian Duan, Jingwu Tang, Yutong Yin, Zhe Feng, Xiang Yan, Manzil Zaheer, and Xiaotie Deng.
A context-integrated transformer-based neural network for auction design. In Proceedings of the
39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 5609–5626. PMLR, 17–23 Jul 2022.

Zhijian Duan, Haoran Sun, Yurong Chen, and Xiaotie Deng. A scalable neural network for DSIC
affine maximizer auction design. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

Paul Dütting, Michal Feldman, Thomas Kesselheim, and Brendan Lucier. Prophet inequalities made
easy: Stochastic optimization by pricing nonstochastic inputs. SIAM Journal on Computing, 49
(3):540–582, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Paul Dütting, Zhe Feng, Harikrishna Narasimhan, David C. Parkes, and Sai Srivatsa Ravindranath.
Optimal auctions through deep learning: Advances in differentiable economics. J. ACM, nov
2023. ISSN 0004-5411. Just Accepted.

FCC. URL https://www.fcc.gov/auctions.

Michal Feldman, Nick Gravin, and Brendan Lucier. Combinatorial auctions via posted prices. In
Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’15, pp. 123–135, USA, 2015. Society for Industrial and Applied Mathematics.

Zhe Feng, Harikrishna Narasimhan, and David C Parkes. Deep learning for revenue-optimal auc-
tions with budgets. In Proceedings of the 17th International Conference on Autonomous Agents
and Multiagent Systems, pp. 354–362, 2018.

Ian Gemp, Thomas Anthony, Janos Kramar, Tom Eccles, Andrea Tacchetti, and Yoram Bachrach.
Designing all-pay auctions using deep learning and multi-agent simulation, 2022.

Noah Golowich, Harikrishna Narasimhan, and David C Parkes. Deep learning for multi-facility
location mechanism design. In IJCAI, pp. 261–267, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Jennifer Dy and An-
dreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 1861–1870. PMLR, 10–15 Jul
2018. URL https://proceedings.mlr.press/v80/haarnoja18b.html.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and
Fredo Durand. Difftaichi: Differentiable programming for physical simulation. In International
Conference on Learning Representations, 2019.

Mike Innes, Alan Edelman, Keno Fischer, Chris Rackauckas, Elliot Saba, Viral B Shah, and Will
Tebbutt. A differentiable programming system to bridge machine learning and scientific comput-
ing. arXiv preprint arXiv:1907.07587, 2019.

Dmitry Ivanov, Iskander Safiulin, Igor Filippov, and Ksenia Balabaeva. Optimal-er auctions through
attention. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Ad-
vances in Neural Information Processing Systems, 2022.

Shengwu Li. Obviously strategy-proof mechanisms. American Economic Review, 107(11):3257–
3287, 2017.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua
Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http:
//arxiv.org/abs/1509.02971.

Vahab Mirrokni, Renato Paes Leme, Pingzhong Tang, and Song Zuo. Non-clairvoyant dynamic
mechanism design. Econometrica, 88(5):1939–1963, 2020.

Christos Papadimitriou, George Pierrakos, Alexandros Psomas, and Aviad Rubinstein. On the com-
plexity of dynamic mechanism design. Games and Economic Behavior, 134:399–427, 2022.
ISSN 0899-8256.

Neehar Peri, Michael J Curry, Samuel Dooley, and John P Dickerson. Preferencenet: Encoding
human preferences in auction design with deep learning. arXiv preprint arXiv:2106.03215, 2021.

Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming C. Lin. Scalable differentiable physics for
learning and control. In ICML, 2020.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/
20-1364.html.

12

https://www.fcc.gov/auctions
https://proceedings.mlr.press/v80/haarnoja18b.html
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jad Rahme, Samy Jelassi, Joan Bruna, and S. Matthew Weinberg. A permutation-equivariant neural
network architecture for auction design. In AAAI, pp. 5664–5672, 2021a.

Jad Rahme, Samy Jelassi, and S. Matthew Weinberg. Auction learning as a two-player game. In
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021. OpenReview.net, 2021b. URL https://openreview.net/forum?id=
YHdeAO61l6T.

S. J. Rassenti, V. L. Smith, and R. L. Bulfin. A combinatorial auction mechanism for airport time
slot allocation. The Bell Journal of Economics, 13(2):402–417, 1982.

Michael Schapira and Yaron Singer. Inapproximability of combinatorial public projects. In Inter-
national Workshop on Internet and Network Economics, pp. 351–361. Springer, 2008.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Weiran Shen, Pingzhong Tang, and Song Zuo. Automated mechanism design via neural networks.
In AAMAS, 2019.

Weiran Shen, Binghui Peng, Hanpeng Liu, Michael Zhang, Ruohan Qian, Yan Hong, Zhi Guo,
Zongyao Ding, Pengjun Lu, and Pingzhong Tang. Reinforcement mechanism design: With appli-
cations to dynamic pricing in sponsored search auctions. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pp. 2236–2243, 2020.

Xiaoqi Tan, Alberto Leon-Garcia, Yuan Wu, and Danny H. K. Tsang. Online combinatorial auctions
for resource allocation with supply costs and capacity limits. IEEE Journal on Selected Areas in
Communications, 38(4):655–668, 2020.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, An-
drea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymna-
sium, March 2023. URL https://zenodo.org/record/8127025.

Hal R. Varian and Christopher Harris. The vcg auction in theory and practice. American Eco-
nomic Review, 104(5):442–45, May 2014. doi: 10.1257/aer.104.5.442. URL https://www.
aeaweb.org/articles?id=10.1257/aer.104.5.442.

Nina Wiedemann, Valentin Wüest, Antonio Loquercio, Matthias Müller, Dario Floreano, and Davide
Scaramuzza. Training efficient controllers via analytic policy gradient. In 2023 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 1349–1356. IEEE, 2023.

Brian Hu Zhang, Gabriele Farina, Ioannis Anagnostides, Federico Cacciamani, Stephen Marcus
McAleer, Andreas Alexander Haupt, Andrea Celli, Nicola Gatti, Vincent Conitzer, and Tuomas
Sandholm. Computing optimal equilibria and mechanisms via learning in zero-sum extensive-
form games. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

A DSIC AND IR

Remark 1. The mechanism described in Algorithm 1 is Dominant Strategy Incentive Compatible
(IC) and Individual Rational (IR) if ξi,S(∅) = 0 for all i ∈ [n], S ⊆ M .

An auction is dominant strategy incentive compatible (DSIC), if each bidder’s utility is maximized
by reporting truthfully no matter what the other bidders report. An auction is individually rational
(IR) if each bidder receives a non-negative utility while reporting truthfully.

The Sequential Combinatorial Auction (SCA) with menus is DSIC because the agents pick their
utility maximizing bundle. Additionally, the utility of taking part is at least 0 (this is because the
agent has the option to pick the empty bundle ∅ and is charged 0)

13

https://openreview.net/forum?id=YHdeAO61l6T
https://openreview.net/forum?id=YHdeAO61l6T
https://zenodo.org/record/8127025
https://www.aeaweb.org/articles?id=10.1257/aer.104.5.442
https://www.aeaweb.org/articles?id=10.1257/aer.104.5.442

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B PROOF OF PROPOSITION 1

Proposition 2. For a current policy π and value function Vπ(.), the improved policy π′ for a state
st is given by:

π′(st) = argmax
at

E
v∼Vit

[
atSt

∗(v)
+ Vπ(i

t+1, St \ St
∗(v))

]
(1)

Proof. For a current policy π and value function Vπ(.), the improved policy π′ for a state st is given
by:

π′(st) = argmax
at

∑
st+1

p(st+1|st, a)[r(st, a, st+1) + Vπ(s
t+1)]

= argmax
at

∑
St+1⊆St

p̂(St \ St+1|st, a)[atSt\St+1 + Vπ(s
t+1)]

= argmax
at

∑
T⊆St

p̂(T |st, a)[atT + Vπ(i
t+1, St \ T)]

= argmax
at

E
v∼Vit

[∑
T∈St

p̂(T |v, st, a)
[
atT + Vπ(i

t+1, St \ T)
]]

= argmax
at

E
v∼Vit

[
atSt

∗(v)
+ Vπ(i

t+1, St \ St
∗(v))

]
Here, p(st+1|st, a) denotes the probability of the next state being st+1 when the current state is st
and a being the action taken (i.e. prices). p̂(T |st, a) is the probability of bundle T is picked at st
under pricing function a. When v, st and, a are known, we have p̂(T = St

∗(v)|v, st, a) = 1 where
St
∗(v) = argmaxT⊆St v(T)− atT .

C IMPLEMENTATION DETAILS AND HYPERPARAMETERS

We use the stable-baselines3 (Raffin et al., 2021) package to implement our baselines.

Actor Critic Networks. For all our neural networks, we use a simple fully connected neural net-
work with Tanh activation functions except for the last layer. We use R = 3 hidden layers with
k = 256 hidden units each.

For the actor network in PPO, we use sigmoid activation functions to squash the output to [0, 1]
range. The action distribution is a normal distribution with these sigmoid outputs as means. It is
then scaled appropriately. For example, consider setting A with n agents and m items. The action
space, which comprises of bundle prices, is of size 2m. The maximum possible valuation for a
subset T would simply be |T |. Consequently, we scale the output corresponding to the price of T
by |T |. We found this this approach performed better than using the SquashedDiagonalGaussian
distribution where the noise is added before squashing the outputs using a tanh function. For the
actor network in our approach, we only use a softplus activation to ensure the outputs are positive
and leave them unscaled.

We make similar modifications for our large-scale settings involving entry-fee menu structure. For
these settings, we use sigmoid functions for the posted price and a softplus function for the entry-fee
for the actor networks in PPO as well as our approach.

We also found the using an offset before using sigmoid or softplus functions helped with training.
This ensures that the prices start low but increase gradually. We offset sigmoid function by 0.5 and
softplus function by 1. Thus, these modified functions are given by:

sigmoid-with-offset =
1

1 + e−(x−0.5)
(4)

softplus-with-offset = log(1 + e(x−1)) (5)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Hyperparameter Value
ℓ 215

τ 100
η 0.001
Γ 2000

Table 4: Hyperparameters for Dynamic Programming (DP)

Hyperparameter Value
num iterations 20

num environments 1024
num critic steps 100 + 500
num actor steps 50

γ 1
GAE-λ 0.95

ϵ0 e−2

ℓ 256
ηv 0.0001
ηπ 0.0001

ηϵ e−
1
4

τ 100

Table 5: Hyperparameters for Fitted Policy Iteration (FPI). Targets were updated using Equation 2 after 100
critic steps. This was followed by another 500 critic steps. For setting F, we set the ηπ to 0.001.

Training and Evaluation Sets Since we have access to the value distributions, we sample valua-
tions online while training. But for testing, we report our results on a fixed batch of 10000 profiles.

Hyperparameters We present the hyperparameters used in Dynamic Programming (DP) in Algo-
rithm 2 and Fitted Policy Iteration (FPI) below:

D TRAINING CURVES

0 2000 4000 6000 8000 10000
Num Updates

0

1

2

3

Re
ve

nu
e

Training curve for 5 x 5

PPO
FPI

0 50000 100000 150000 200000
Num Updates

0

2

4

6

Re
ve

nu
e

Training curve for 10 x 10

PPO
FPI

Figure 2: Training curves (expected revenue vs num updates) for Setting A: 5 agents and 5 items and 10 agents
and 10 items.

The training curves for our approach (FPI) and PPO are presented in Figure 2. The plots illustrate
the expected revenue (over 10,000 profiles) against the number of gradient updates applied, to the
policy or value network (simultaneously in the case of PPO).

For Setting A, with 5 agents and 5 items, PPO attains a revenue of 3.09, whereas our approach
achieves a slightly higher revenue of 3.12. For the same setting with 10 agents and 10 items, PPO

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

achieves a revenue of 6.68 (we terminated PPO after 200000 updates which took about 5 hours).
Our approach achieves a revenue of 7.59 in less than 20 minutes.

16

	Introduction
	Preliminaries
	Method
	Exact Method for Small Number of States
	Approximate Methods for Large Number of States
	Entry Fee Mechanisms for Extremely Large Number of States

	Experimental Results
	Constrained Additive Valuations
	Combinatorial Valuations
	Scaling up

	Conclusion
	DSIC and IR
	Proof of Proposition 1
	Implementation Details and Hyperparameters
	Training curves

