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ABSTRACT

Semi-supervised learning methods can train high-accuracy machine learning mod-
els with a fraction of the labeled training samples required for traditional supervised
learning. Such methods do not typically involve close review of the unlabeled
training samples, making them tempting targets for data poisoning attacks. In
this paper, we show that simple backdoor attacks on unlabeled samples in the
FixMatch semi-supervised learning algorithm are surprisingly effective - achieving
an average attack success rate as high as 96.9%. We identify unique characteristics
of backdoor attacks against FixMatch that can provide practitioners with a better
understanding of the vulnerabilities of their models to backdoor attacks.

1 INTRODUCTION

In recent years, semi-supervised learning methods have significantly increased in effectiveness and
gained in popularity. These methods train models with a small set of labeled data and a large set of
unlabeled data while maintaining comparable classification accuracy to supervised learning. In this
work, we examine the vulnerability of the popular semi-supervised learning method, FixMatch (Sohn
et al.,|2020), to backdoor data poisoning attacks in the unlabeled data which is unlikely to undergo
detailed human review. Backdoor data poisoning attacks insert a backdoor into a trained model that
can cause sample misclassification through the introduction of a trigger (Gu et al.|[2017). Traditionally,
this is accomplished by introducing triggers into poisoned images during training and adapting the
images or the training labels to encourage the network to ignore the image content of poisoned images
and focus on the trigger. Training labels play a critical role in attacks against supervised learning.
Dirty label attacks change the training labels from the ground truth label (Gu et al., 2017) and clean
label attacks maintain the ground truth label while perturbing the training sample (Turner et al., 2019
Saha et al.|[2020; Zhao et al.|[2020). In semi-supervised learning, backdoors must be introduced in
the absence of training labels associated with the poisoned images. Instead, recent semi-supervised
learning methods rely on pseudolabels estimated from model predictions (Lee et al., [ 2013)).

In this work, we analyze the impact of backdoor data poisoning attacks on FixMatch by first reframing
the attacks in a setting where pseudolabels are used in lieu of training labels, and then highlighting a
vulnerability of this method to simple and accessible attacks which influence expected pseudolabel
outputs. We contrast the performance of clean label backdoor attacks on supervised learning to
backdoor attacks against unlabeled samples in semi-supervised learning in order to highlight the need
for practitioners to adapt their mindset when determining how susceptible their model or defense is to
attacks. Additionally we identify characteristics of successful attacks and analyze unique dynamics
of data poisoning during semi-supervised training.

Recent semi-supervised learning techniques that have significantly improved classification perfor-
mance (Xie et al., [2020; |Berthelot et al.| [2020; [Sohn et al., 2020) using the strategies of consistency
regularization and pseudolabeling. Techniques that employ consistency regularization encourage sim-
ilar network outputs for augmented inputs (Sajjadi et al., 2016} Miyato et al.,[2018; Xie et al., [2020)
and often use strong augmentations that significantly change the appearance of inputs. Pseudolabeling
uses model predictions to estimate training labels for unlabeled samples. While we focus our analysis
on FixMatch, the use of pseudolabeling and consistency regularization by other semi-supervised
learning methods suggests our conclusions may be relevant to additional methods.
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Data poisoning in the context of semi-supervised learning is a relatively new topic area. Some work
focuses on poisoning labeled data (Liu et al.l 2019} [Franci et al., [2022) or using instance-targeted
data poisoning attacks (Carlini, 2021, both of which are out of the scope of this paper which focuses
on backdoor attacks on unlabeled data. [Yan et al.|(2021) investigate perturbation-based attacks on
unlabeled samples in semi-supervised learning similar to us, but find a simple perturbation-based
attack has low attack success, motivating their introduction of a more complex attack. By contrast, we
show that simple perturbation-based attacks can be very successful in the right settings. Shejwalkar|
et al.|(2022) has work concurrent to ours which also examines the vulnerability of semi-supervised
learning to simple backdoor attacks in unlabeled data. They focus on defining the most effective
trigger pattern for successful attacks whereas our work focuses on how modifications of the poisoned
samples can influence pseudolabel behavior and vary the effectiveness of attacks.

2 BACKDOOR ATTACKS IN THE CONTEXT OF SEMI-SUPERVISED LEARNING

2.1 ATTACK THREAT MODEL

We consider a setting in which a user has limited labeled, trusted data and a large amount of unlabeled
data which may be poisoned. They train their model using the FixMatch semi-supervised learning
method (Sohn et al.,2020). The adversary introduces poisoned samples into the unlabeled dataset
with the goal of creating a strong backdoor in the trained network and maintaining high classification
accuracy. Because the poisoned samples are only included in the unlabeled portion of the training
data, the adversary can only control the image content for the poisoned samples and not the training
labels. The adversary does not have access to the user’s network architecture.

2.2  FIXMATCH DETAILS

FixMatch achieves high classification accuracy with very few labeled samples using pseudolabeling
and consistency regularization. FixMatch approximates supervised learning by estimating pseudola-
bels y* for the unlabeled samples: y* = argmax(fy(Ty(u))), where fy(-) is the network being
trained and T, (+) is a function that applies “weak” augmentations to the samples. If the confidence
of the estimated label is above a user-specified threshold, the pseudolabel is retained and used for
computing the unsupervised loss term. The unsupervised loss term is a consistency regularization
term which encourages the network outputs of strongly augmented samples to be the same as the
pseudolabels estimated from the associated weakly augmented samples.

2.3 BACKDOOR ATTACK VULNERABILITY CONSIDERATIONS

With the consistency regularization and pseudolabeling in mind, we rethink how poisoned samples
in backdoor attacks may interact differently in FixMatch than in supervised training. Prior work
has shown that backdoor attacks are much less effective when data augmentation is used during
training (Schwarzschild et al.|[2021). Therefore, when poisoning samples in FixMatch, it is important
to use a trigger that is robust to both the weak and strong augmentations that are crucial to achieving
high classification accuracy. Because of the reliance on pseudolabels, we suggest that attacks against
FixMatch be developed by considering how an adversary may vary the image content in a way that
influences the expected pseudolabel outputs.

To analyze the impact of pseudolabel behavior on attack success, we use two types of attacks. The
first attack, inspired by clean label backdoor attacks in supervised learning Turner et al.| (2019)),
uses untargeted adversarial perturbations to influence estimated network outputs. The adversarial
perturbations are generated using Projected Gradient Descent (PGD) adversarial perturbations (Madry
et al.l 2018)), varying the constraint € on the /., norm of the perturbation magnitude. The second
attack uses poisoned images that are interpolated between target class samples and randomly selected
non-target class samples. Each poisoned sample w} is defined as u} = (1 — o) uf + au?, where
u? is a sample from the target class, u?* is a sample from a non-target class, and « € [0, 1] defines
the interpolation ratio. In both attack types, as the poisoned samples deviate more greatly from
the original samples (by increasing € or «), fewer poisoned samples are estimated to be the ground
truth label and the entropy of the distribution of network outputs increases, indicating the class
estimates are distributed more evenly across all class outputs. Appendix |A|contains the detailed
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Figure 1: (a) ASR for perturbation-based attacks against supervised learning (blue circle line) and
semi-supervised learning (green triangle line) while varying e. (b) ASR for interpolation-based
attacks. (c) ASR from a weak perturbation attack (e = 1/255) as the target class is varied.

analysis of the impact of varying modification strength on the classification outputs for CIFAR-10.
At low modification strength, we expect most poisoned samples have their ground truth classes as
pseudolabels. At greater modification strength, we expect most poisoned samples will not have
their ground truth classes as pseudolabels and instead their pseudolabels will be relatively evenly
distributed across other classes.

3 ANALYSIS

We analyze the vulnerability of FixMatch to our pseudolabel-influencing attacks by considering the
following experimental setup. We generate attacks using the CIFAR-10 dataset (Krizhevsky et al.|
2009). We largely follow the experimental details from (Sohn et al., [2020), using a WideResNet-
28-2 (Zagoruyko and Komodakis| [2016) architecture, RandAugment (Cubuk et al.|[2020) for strong
augmentation, and horizontal flipping and cropping for weak augmentation. We experiment with
250 labeled samples. We limit each experiment to 100,000 training steps, finding that these shorter
training runs achieve relatively high classification accuracy (around 90%) and attacks often reach a
stable state long before the end of the runs. See Appendix [B]for more experimental details. We define
the target class of the attack as the ground truth class from which we select samples to be poisoned.
We modify the images then add augmentation-robust four-corner triggers. We analyze test accuracy
and attack success rate (ASR) for determining the success of backdoor attacks.

3.1 SUCCESS OF SIMPLE PSEUDOLABEL-INFLUENCING ATTACKS

Fig. [T] shows the results of our experiments investigating the impact of modification strength on
attack success. Fig.[Ta]shows the performance of perturbation-based attacks as we vary €. For each
€, we run five trials, varying the target class for each run from classes 0-4, and poison 1% of the
entire dataset. We compare the performance of the attacks against supervised learning (blue line)
and semi-supervised learning (green line). The attacks against semi-supervised learning are highly
successful for moderate perturbation strengths with an average ASR of 93.6% for the attacks with
€ = 8/255 compared to an average ASR of 82.58% for the attacks on supervised learning. There is a
large variation in the ASR for attacks with weak perturbations and no perturbations. Fig.[Ic|shows
the variation of ASR for a weak perturbation attack (e = 1/255) against semi-supervised learning as
we vary target classes. While the ASR against supervised learning continues to increase with larger
perturbations, the attacks fail against semi-supervised learning. Fig.[Tb|shows the performance of the
interpolation-based attacks as we vary a.. Notably, these results show a vary similar pattern to the
perturbation-based attacks: a moderate average ASR with a high variance at small o, consistently
high ASR for o = 0.4 and attack failures for o = 0.6 .

Fig. 2] compares the ASR during training between supervised learning and semi-supervised learning
with perturbation-based attacks. In supervised learning, the ASR increases gradually from early in
training. By contrast, the ASR during semi-supervised learning remains low for many training steps
until a point in training at which it rapidly increases to a high ASR.
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Figure 2: The evolution of ASR during supervised (left) and semi-supervised learning (right).

4 DISCUSSION

The two modification-based attacks we used influence two major factors that impact attack perfor-
mance: the distribution of estimated pseudolabels and the clarity of class-specific features in the
poisoned samples. We reason about the observed attack performance by discussing how the strength
of the image modifications (perturbation and interpolation) impact these two factors.

When the image modifications are weak or nonexistent, most poisoned samples will receive confident
pseudolabels corresponding to the ground truth class label. The poisoned samples will have triggers
but they will also have clear target-class-specific features that the network can use for classification,
giving the network little reason to rely on the triggers. The success of attacks with weak image
modifications vary based on the target class, indicating that some classes have more distinct features
that the network can rely on more strongly, weakening the backdoor.

Because the perturbations and interpolations are untargeted, strong modification strength attacks
result in high entropy predicted pseudolabels distributed across many classes. Therefore, the network
sees triggered samples associated with several classes, leading the network to ignore the trigger as a
feature that does not aid in classification. Moderate modification strength attacks are a middle ground
in which many poisoned samples will receive confident target class pseudolabels but several samples
will be confidently classified as a non-target class or be confusing to the network. These confusing
samples will encourage the network to rely more heavily on the triggers, strengthening the backdoor.
This analysis suggests that consistently successful backdoor attacks require poison samples that have
a pseudolabel distribution heavily concentrated on one class, which can form a weak backdoor, and a
subset of poisoned samples that are confusing to the network, which can strengthen the backdoor.

5 CONCLUSION AND PRACTITIONER CONSIDERATIONS

We analyzed the effectiveness of backdoor attacks on unlabeled data in semi-supervised learning
when the adversary has no control over training labels. This setting requires rethinking the attack
development, focusing on the expected distribution of pseudolabels for poisoned samples and the
difficulty of recognizing their class-specific features. We gained valuable insight into the impact
of backdoor attacks against FixMatch. Our work suggests the possibility of developing a flexible
attack that explicitly incorporates a set of samples used to create a weak backdoor and a set of
samples used to strengthen the backdoor. To effectively asses the robustness of a semi-supervised
learning model or defense to data poisoning attacks, practitioners should consider weak to moderate
modification-based attacks with augmentation-robust triggers, and they should investigate attacks
across various target classes because, in some settings, target class has an large impact on attack
performance (Fig. [Ic). Additionally, the ASR during training can remain low for a large portion of
training and then spike quickly (rather than increasing gradually as in supervised learning), suggesting
that practitioners allow for several training epochs before declaring a model robust to poisoning
(Fig2). Finally, this work highlights the ease with which attacks against semi-supervised learning can
be introduced. We observed high average attack success using unperturbed samples that simply have
a trigger added. This suggests a serious threat in which adversaries could introduce triggers (either
digitally or physically) into the world, these samples could be collected in unlabeled data without
ever being reviewed by a human, and a network trained on them could be successfully poisoned.
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A IMPACT OF MODIFICATION STRENGTH ON PSEUDOLABEL OUTPUTS

Both of the image modifications used in our experiments, perturbation and interpolation, have the
potential to influence the behavior of predicted class outputs. To understand how the strength of the
modification impacts the distribution of estimated network outputs, we examine the outputs from a
network trained using supervised learning on CIFAR-10 training samples. For perturbation-based
attacks, we use Projected Gradient Descent (PGD) adversarial perturbations (Madry et al.l [2018),
varying the constraint € on the /., norm of the perturbation magnitude. For interpolation-based
attacks, we interpolate between our selected target class samples and randomly selected non-target
class samples while varying a. We apply triggers and weak augmentations to the images to model
the poisoned samples in semi-supervised learning. Fig. [3| shows the impact of perturbation and
interpolation strength on predicted label outputs. The blue line in each plot is the average percentage
of modified samples with estimated network outputs that match their ground truth class and the
green line is the average entropy of the distribution of class outputs for modified samples. As
the perturbation strength increases, fewer poisoned samples are estimated to be the ground truth
label and the entropy of the distribution of network outputs increases, indicating the class estimates
are distributed more evenly across all class outputs. The same pattern of behavior is seen with
the interpolation-based attacks, suggesting similar attack performance between perturbation-based
attacks and interpolation-based attacks. While this test is run against a fully trained network, it gives
us useful insights for reasoning about the pseudolabels during semi-supervised learning. At low
perturbation strengths and small « interpolation values, we expect most poisoned samples have their
ground truth classes as pseudolabels. At greater perturbation strength and larger o values, we expect
most poisoned samples will not have their ground truth classes as pseudolabels and instead their
pseudolabels will be relatively evenly distributed across other classes. These results suggest that both
perturbation-based attacks and interpolation-based attacks are successful at impacting pseudolabel
behavior.

B FIXMATCH TRAINING DETAILS

For the FixMatch implementation, we closely followed the training set up from|Sohn et al.| (2020).
We used a WideResNet-28-2 (Zagoruyko and Komodakis| 2016) architecture, RandAugment (Cubuk]
et al.,2020) for strong augmentation, and horizontal flipping and cropping for weak augmentation. We
used an SGD optimizer with momentum of 0.9, a weight decay of 5 x 10, and Nesterov momentum.
Like |Sohn et al.| (2020), we used a cosine learning rate decay and quoting from them, we set the
“learning rate to 7cos ( 17 = I’? ), where 7 is the initial learning rate, k is the current training step, and K
is the total number of training steps.” We ran 25,000 training epochs and each epoch runs through all
the batches of the labeled data. Therefore, with 250 labeled samples, there are four steps per epoch
and 100,000 steps total. We report the performance on the exponential moving average of the network
parameters. We ensured an even distribution of classes in the labeled data. Additional training
parameters are shown in Table[I] We found the following public github repository a good guide to
implementing FixMatch: https://github.com/kekmodel/FixMatch-pytorchl
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Figure 3: Predicted labels of modified samples. (a-b) Percentage of modified training samples with
the ground truth class as the estimated label (blue circle line) and the entropy of the distribution of
predicted labels (green triangle line) as modification strength is varied. (a) Impact of perturbation-
based attacks as € is varied. (b) Impact of interpolation-based attacks as « is varied.

Table 1: Training parameters for FixMatch

FixMatch Training Parameters

batch size (B): 64

number of epochs: 25000

initial learning rate (1): 0.03

total number of training steps (K): 22°

poisoning percentage (percentage of entire dataset): 1% (500 samples)
number of labeled samples: 250

confidence threshold (7): 0.95

w7

Au: 1

C ADVERSARIAL PERTURBATION DETAILS

For our perturbation-based attacks we used samples that were perturbed using PGD attacks against
an adversarially trained network. For e = 8,16, 32/255 we used perturbed samples provided by
the Madry lab whose access locations are specified here: https://github.com/MadryLab/
label-consistent-backdoor-code/blob/main/setup.sh Fore = 1,2,4/255 we
used perturbed samples generated against a adversarially trained network. The adversarially
trained network was a ResNet-50 using € = 8/255 for an £, norm. We obtained the weights
for the network from the Madry lab: https://github.com/MadryLab/robustness/
#pretrained-modelsl

D POISONED SAMPLE DETAILS

We used the four corner trigger suggested in [Turner et al| (2019) , following the exam-
ple from https://github.com/MadryLab/label-consistent-backdoor-code/
blob/main/poison_attack.py, for creating the attack. Fig. 4] shows an example of
adversarially-perturbed poisoned images with the four corner trigger. Fig. [5] shows an example
of interpolated poisoned images with the four corner trigger.

E SUPERVISED LEARNING DETAILS

For supervised learning we also used a WideResNet-28-2 architecture and RandAugment data
augmentation during training. We used an SGD optimizer with a momentum of 0.9 and a weight
decay of 2 x 10*. We used a multi-step learning rate scheduler that reduced the learning rate by
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Figure 5: Poisoned images with increasing interpolation ratio « and the four corner trigger.

v = 0.1 at epochs 40 and 60. To stay consistent with our FixMatch experiments, we report the
performance on the exponential moving average of the network parameters.

Table 2: Training parameters for supervised learning

FixMatch Training Parameters

batch size: 128

number of epochs: 100

initial learning rate (n): 0.1

poisoning percentage (percentage of entire dataset): 1% (500 samples)

F TEST ACCURACY

Fig. [f] shows the test accuracy for the experiments detailed in Fig[I] These results show that the test
accuracy remains mostly stable as the modification strength is increased for poisoned samples. There
is a slight decrease in test accuracy at the largest interpolation radtio of o = 0.6
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