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ABSTRACT

Large language models (LLMs) excel at reasoning tasks, but achieving stable re-
flective reasoning remains a challenge. Existing techniques, such as prompt engi-
neering and multi-turn prompting, often lead to over-reflection, unstable outputs,
and heavy reliance on manually designed prompts. In response to these limita-
tions, we propose Reflection Trigger, a novel vector-based mechanism that dy-
namically injects the reflection vector into LLMs during inference without modi-
fying model parameters. These vectors, based on latent semantic representations,
are trained to encode reflection signals. By training a module to generate input-
specific reflection vectors, our method provides a controllable and stable mecha-
nism to adjust the model’s internal reflection tendencies. Experiments on biomed-
ical and commonsense benchmarks demonstrate that the Reflection Trigger im-
proves reasoning accuracy and reduces over-reflection. These results suggest that
the Reflection Trigger enhances the stability of LLM reasoning and show that re-
flective reasoning can be treated as a learnable and controllable capability.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable performance across a wide range of
NLP tasks (Brown et al., 2020; Touvron et al., 2023; Bang et al., 2023), including data analysis,
reading comprehension, logical reasoning, and open-domain question answering (Zhu et al., 2024;
Wang et al., 2024). However, LLMs often generate responses that appear plausible but are factually
incorrect. Such errors frequently arise from intuitive reasoning failures, where the model relies
on superficial linguistic patterns rather than deeper logical inference or self-correction (Hagendorff
et al., 2022).

To improve the quality of reasoning, the Chain-of-Thought (CoT) prompting strategy has been pro-
posed, enabling models to generate intermediate reasoning steps (Wei et al., 2022). CoT has proven
effective in tasks requiring multi-step logical inference, mathematical problem solving, and com-
monsense reasoning (Kojima et al., 2022). However, subsequent studies have shown that even with
CoT, models still suffer from flawed reasoning, such as logical inconsistencies, calculation mistakes,
and hallucinated content. This suggests that although CoT enhances the structure of reasoning, it
does not effectively resolve the problem of intuitive misjudgment (Ji et al., 2023a; Hadi et al., 2023).

To further address such errors, recent research has proposed the approach of reflection (Ji et al.,
2023b), aimed at enabling models to mimic the human ability to rethink their responses after making
errors (Renze & Guven, 2024; Shah et al., 2025). Current mainstream reflection strategies mostly
rely on prompt-based control, using prompts such as “Please check if the previous response was
wrong” (Renze & Guven, 2024) or “Wait,” (Shah et al., 2025; Muennighoff et al., 2025) guide the
model toward self-reflection and correction.

However, prompt-based strategies have several limitations:

1. Lack of adjustable reflection intensity: Prompt-based methods are binary, where the
model either reflects or does not, without dynamic control.
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Figure 1: This example illustrates a failure case where the LLM’s reflective process leads to over-
reflection.

2. Increased latency and behavioral instability: Multi-turn prompting significantly in-
creases inference latency and computational resource consumption, and may also lead to
inconsistent model behavior across different prompts.

3. Risk of over-reflection: Over-reflection occurs when the model “overthinks” and unnec-
essarily revises an initially answer into an incorrect one, leading to reduced accuracy. For
example, as shown in Figure 1, the model initially selected the correct answer to a coal-
formation question, but after reflection, it misinterpreted the term rock-forming process and
changed its response to an incorrect option. This case demonstrates that if the reflection
mechanism is not properly controlled, reflection itself may lead to degraded rather than
improved reasoning performance.

To address the limitations, we propose a vector-guided reflection control mechanism, called the
Reflection Trigger. As shown in Figure 2, this mechanism injects a learned vector into the interme-
diate layers of the model during inference, allowing for dynamic adjustment of reflective tendencies
across different questions. Unlike prompt-based methods, Reflection Trigger s an internal mecha-
nism, capable of effectively guiding model reflection. Moreover, it achieves this without requiring
additional inference rounds or parameter fine-tuning.

To summarize, the primary contributions of our study are:

1. We propose a vector-based method for controlling reflective reasoning in LLMs.
2. Our method requires no fine-tuning LLMs and can dynamically adjust the model’s reflec-

tion tendencies based on each input question.
3. Demonstrates that the proposed Reflection Trigger mechanism effectively improves model

accuracy while reducing over-reflection errors, achieving robust performance in both com-
monsense and biomedical reasoning tasks.

Figure 2: Our proposed method —Reflection Trigger.
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2 RELATED WORK

Self-Reflection in Language Models. Self-reflection has recently become an effective mechanism
for enhancing the reasoning ability of language models (Ji et al., 2023b; Wan et al., 2025). Prior
work has explored prompting models to generate intermediate reflections, with methods such as
Reflexion (Shinn et al., 2023), SELF-REFINE (Madaan et al., 2023), and ReAct (Yao et al., 2023)
showing improvements in problem solving and planning. However, most approaches rely on explicit
prompts and treat reflection mainly as error correction, overlooking scenarios where the initial an-
swer is already correct. When reflection is forced in such cases, the model may cause the model to
doubt correct reasoning and change answers unnecessarily. Moreover, these approaches treat reflec-
tion as a binary switch, ignoring the need for context-sensitive and dynamically regulated reflection.
Therefore, we propose treating reflection as a semantic direction vector instead of a single prompt
phrase.

Steering via Latent Representations. Beyond prompt engineering and fine-tuning, recent stud-
ies have explored controlling LLM behavior through latent representations. Early methods such as
Plug-and-Play Language Models (PPLM) (Dathathri et al., 2019) achieved sentiment control by in-
troducing activation shifts during the generation process. LoRA (Low-Rank Adaptation) (Hu et al.,
2022), on the other hand, proposed a parameter-efficient adaptation method, where trainable low-
rank update modules are added to specific weight matrices, enabling fine-tuning effects with mini-
mal parameter modification. More recently, activation engineering techniques have been proposed
to control model outputs by directly modifying activations in intermediate layers, without modifying
the model’s original weights (Hernandez et al., 2023; Panickssery et al., 2023; Javaid et al., 2024;
Stolfo et al., 2024). Latent steering vectors have been identified to guide outputs toward specific tar-
get sentences, but this approach requires costly per-sentence optimization (Subramani et al., 2022).
The Activation Addition (ActAdd) method constructs steering vectors from differences in activa-
tions between two semantically contrasting prompts (Turner et al., 2023). However, this method
suffers from inconsistent performance across different behaviors and task settings.

Motivated by these limitations, we introduce Reflection Trigger, a vector-based steering mechanism
specifically designed for reflective reasoning. Unlike prior methods focused on style or knowledge
control, our approach directly predicts a latent vector based on the input question to control the
reflective tendency of the model’s reasoning. This design enables controllable reflective behavior
without prompt engineering or fine-tuning, combining efficiency with stability.

3 METHODOLOGY

In this section, we propose the Reflection Trigger, a vector-based mechanism designed to guide
large language models (LLMs) toward reflective reasoning without relying on prompt engineering or
parameter fine-tuning. The core idea is to inject a learned latent control vector into the intermediate
representations of the model, which enables stable and controllable induction of more reflective
reasoning behaviors.

3.1 OVERALL FRAMEWORK

Figure 3: Overall Framework of Reflection Trigger.
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As shown in Figure 3, our framework consists of three main components:

1. Reflection Trigger: A pretrained BERT encoder (Devlin et al., 2019) with linear projection
generates a latent vector from the semantic embedding of the input question. This vector
captures the tendency for reflective reasoning.

2. LLM Reasoning: The input question is simultaneously fed into a frozen LLM to obtain
hidden states from an intermediate layer m.

3. Vector Injection: The predicted reflection vector ∆ is injected into the hidden representa-
tion as h′

m = hm + α ·∆, where α is a tunable coefficient controlling reflection intensity.
This adjustment influences the subsequent reasoning and output generation of the model.

Through this mechanism, the model can revise initial reasoning internally within a single forward
pass, improving stability.

3.2 REFLECTION TRIGGER

The goal of the Reflection Trigger is to predict a reflection vector that encodes reflection tenden-
cies for a given input question. This vector is injected into the intermediate layers of the LLM
during inference, enabling controllable adjustment of reasoning behavior without modifying model
parameters.

3.2.1 TRAINING DATA CONSTRUCTION

To supervise the learning of reflection behavior, we construct reflection pairs for each input question
q, as shown in Figure 4.

Figure 4: Training data construction pipeline. The pipeline consists of two main stages. (1) Reflec-
tion Pair Generation: given a question q, the LLM first produces an initial answer (IA) without
reflection, and then, under a reflection prompt, generates a reflection answer (RA). (2) Hidden
State Extraction: hidden representations corresponding to both IA and RA are extracted from the
same intermediate layer of the LLM. The difference between the RA hidden state hreflect and the
IA hidden state hno-reflect is computed to form the reflection vector ∆, which encodes the semantic
direction of reflection. This vector serves as the training target for our Reflection Trigger model.

A reflection pair consists of:

• Initial Answer (IA): ano−reflect, generated without reflection prompts, representing the
model’s intuitive reasoning.

• Reflection Answer (RA): areflect, generated with a reflection-inducing prompt, repre-
senting the model’s reflective reasoning.

For each reflection pair, hidden states are extracted from the same intermediate layer of the LLM.
The semantic difference between RA and IA is defined as the reflection vector:

∆ = hreflect − hno-reflect, (1)
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Figure 5: Supervised training process of the Reflection Trigger. Given a question and its reflection
vector, the BERT encoder and linear projection are trained to predict the reflection vector ∆, which
serves as ground-truth supervision. This process enables the model to learn input-specific reflection
control.

Where hreflect and hno-reflect are the hidden states associated with RA and IA. This vector represents
the transition from intuitive to reflective reasoning and serves as the ground-truth supervision signal
for training the Reflection Trigger. We refer to this difference vector as the reflection vector, which
can be interpreted as a directional guide in semantic space. While inspired by the previously pro-
posed steering vector methods, our application extends from style or knowledge control to reasoning
style guidance. The prompt used for training data construction is provided in A.3.1.

3.2.2 MODEL TRAINING

The objective of model training is to enable the Reflection Trigger to predict an appropriate reflec-
tion vector ∆ directly from an input question q. To achieve this, we adopt a supervised learning
framework based on a pretrained BERT encoder.

The model architecture is as follows (Figure 5):

• A pretrained BERT encoder maps the input question q into a semantic representation. Its
relatively lightweight architecture enables efficient computation with low inference over-
head, making it suitable for generating steering vectors without incurring significant la-
tency.

• This representation is then passed through a linear projection layer, which maps it into the
same dimensional space as the intermediate hidden state of the target language model.

• The objective of the model training is to minimize the distance between the predicted reflec-
tion vector ∆̂ and the ground-truth vector ∆, which is obtained from the data construction
process.

3.3 LLM REASONING AND INJECTION

During inference, the predicted reflection vector is injected into the hidden representation of the
LLM at layer m. This modulation steers the reasoning toward reflective tendencies, enabling the
model to correct errors while mitigating over-reflection. Importantly, the procedure requires no
parameter updates or fine-tuning. Only adjusts the internal representation through a latent semantic
vector.

4 EXPERIMENTS

Our experiments are designed to answer the following research questions: RQ1: Can Reflection
Trigger improve reasoning accuracy across domains? RQ2: Does Reflection Trigger reduce over-
reflection while enabling effective self-correction? RQ3: How does Reflection Trigger compare
with prompt-based reflection methods in terms of over-reflection control and efficiency?

4.1 EXPERIMENT SETTINGS

Datasets. To evaluate the effectiveness and generalizability of the proposed Reflection Trigger,
we conduct experiments in two major reasoning domains: commonsense and biomedical reason-
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Table 1: Performance comparison.

Dataset Vanilla LoRA
Prompt-based Reflection Trigger

CoT “Wait,” In-Domain Cross-Domain

Biomedical Reasoning
MedQA 55.53 58.52 60.02 46.11 64.10 63.86
MedMCQA 53.36 59.10 55.92 50.00 56.44 57.52
MMLU-Med 67.58 - 75.85 49.77 75.85 74.47

Commonsense Reasoning
ARC-Challenge 79.18 76.11 83.19 61.18 83.28 82.94
CSQA 73.14 81.16 74.69 65.46 72.89 71.50

Average Accuracy (%) 65.76 68.72 69.93 54.50 70.51 70.06

ing. These two domains differ significantly in their semantic structure, reasoning complexity, and
knowledge-based requirements. For medical reasoning, we use MedQA (Jin et al., 2021), MedM-
CQA (Pal et al., 2022), and MMLU-Med (Hendrycks et al., 2020). For commonsense reasoning,
we use ARC-Challenge (Clark et al., 2018) and CommonsenseQA (CSQA) (Talmor et al., 2019).
Details of the data filtering procedure for reflection training are provided in A.3.1.

Baselines. We compare our proposed Reflection Trigger method with three groups of baselines,
all using the same backbone model: Llama3.1-Instruct-8B (Dubey et al., 2024). 1) The vanilla
baseline refers to the original Llama3.1-Instruct-8B model without any intervention; 2) Prompt-
based reflection methods, including Chain-of-Thought (CoT) (Wei et al., 2022), which guides the
model to reason step-by-step via explicit prompting, and the “Wait,” prompt (Shah et al., 2025;
Muennighoff et al., 2025), a multi-turn prompting strategy that introduces a reflective signal to
prompt the model to rethink its initial reasoning process and 3) LoRA (Low-Rank Adaptation) (Hu
et al., 2022) represents a parameter-efficient fine-tuning approach, which requires training a separate
LoRA model for each dataset.

Evaluation Metrics. We evaluate model performance using accuracy as the primary metric, and
additionally provide reflection rate and over-reflection rate to analyze reflective behavior. These
metrics measure both task effectiveness and the stability of reflection. The details of the evaluation
metrics are described in A.2.

Implementation details. Reflection Trigger uses a BERT encoder (Devlin et al., 2019) to generate
reflection vectors from reflection pairs. These vectors are injected into the hidden representations of
LLaMA3.1-Instruct-8B. Unless otherwise specified, all experiments are conducted with the injection
layer set to 16 and the reflection intensity fixed at α = 1.0.

4.2 RQ1: REFLECTION TRIGGER PERFORMANCE COMPARISON

Cross-Domain generalization. To evaluate the generalization capability of the Reflection Trigger,
we compare in-domain and cross-domain performance. In this setting, the reflection vector is trained
on one task and then applied to a different domain to assess transferability. The results indicate that
Reflection Trigger maintains stable accuracy across domains. For example, it achieves 82.94% on
ARC-Challenge and 71.50% on CSQA when the reflection vector is trained on biomedical reason-
ing tasks. These performances are remarkably close to the in-domain results, suggesting that the
reflection strategy learned is highly transferable. This further implies that the Reflection Trigger
enables broadly applicable reflective reasoning, without the need for task-specific fine-tuning.

Overall performance. The Reflection Trigger achieves an average accuracy of 70.51% on five
reasoning tasks, outperforming all comparison methods without relying on fine-tuning or prompt
engineering. It achieves the best performance on both MedQA and ARC-Challenge, with accuracies
of 64.10% and 83.28%. This confirms a latent reflection vector injection effectively steers LLM
reasoning.

On the MedMCQA and CSQA tasks, LoRA slightly outperforms Reflection Trigger. This is likely
because parameter fine-tuning directly enhances the model’s ability to memorize domain-specific
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Table 2: Comparison of prompt-based methods on reasoning tasks.

Task Methods Accuracy (%)
Reflection
Rate (%)

Over-reflection
Rate (%)

Generated
Tokens

Biomedical
Reasoning

CoT Prompt 63.93 - - 284.50

“Wait,” Prompt 48.63 27.26 33.02 289.67

Reflection Trigger (Ours) 65.46 12.68 8.48 126.92

Commonsense
Reasoning

CoT Prompt 78.94 - - 183.71

“Wait,” Prompt 63.32 39.19 37.45 426.93

Reflection Trigger (Ours) 78.09 15.48 7.94 73.43

knowledge, which is particularly effective on large-scale datasets. Although Reflection Trigger can
guide the model to think more reflectively, its improvements may be limited in tasks where the
model lacks sufficient prior knowledge. Meanwhile, the “Wait,” prompt performs poorly across all
tasks, with an average accuracy of only 54.50%. This suggests that although multi-turn prompting
provides a straightforward mechanism for reflection, it often makes the model over-doubt its initial
answer and degrades performance.

Based on these results, we conclude that Reflection Trigger is stable, requires no modification to
the model architecture, and generalizes effectively across reasoning tasks. Reflection should not be
viewed only as error correction, but as a learnable, controllable, and semantically guided reasoning
strategy. Our experiments further show that injecting a latent semantic vector is sufficient to steer a
model’s reasoning style without relying on prompt-based guidance or parameter modification.

4.3 RQ2: COMPARISON WITH PROMPT-BASED REFLECTION METHODS

We compare Reflection Trigger with two representative prompt-based methods: CoT and the “Wait”
prompt, across both commonsense and biomedical reasoning tasks. As shown in Table 2, Reflection
Trigger achieves higher average accuracy in both domains without the need for designed prompts.
Moreover, we examine two important behavioral metrics: reflection rate and over-reflection rate
(Section A.2)), as introduced in Section 4.3. For example, in the commonsense reasoning task,
the over-reflection rate of Reflection Trigger is 7.94%, significantly lower than the 37.45% observed
with the “Wait,” prompt. This indicates that our method effectively mitigates over-reflection, leading
to more stable reasoning.

In addition, Reflection Trigger produces significantly shorter outputs compared to the two prompt-
based methods. In biomedical reasoning tasks, it generates an average of only 126.92 tokens, com-
pared to 285–290 tokens from CoT and “Wait,” prompt. In commonsense reasoning, Reflection
Trigger outputs only 73.43 tokens on average, which is significantly fewer than the 426.93 tokens
generated by the “Wait,” prompt. This reduction in output length suggests that our method offers
lower latency and improved efficiency during inference.

4.4 RQ3: SENSITIVITY TO INJECTION PARAMETERS AND TRAINING DATA SIZE

Parameter sensitivity. To evaluate the robustness of Reflection Trigger with respect to hyperpa-
rameters, we conduct experiments on two tasks: MMLU-Med (biomedical reasoning) and CSQA
(commonsense reasoning). Specifically, we inject the reflection vector into layers 8, 12, 16, 20, and
24, and vary its strength by setting the injection coefficient to 0.5, 1.0, 2.0, 3.0, or 5.0

As shown in Figure 6, across both commonsense and biomedical tasks, we observe that excessively
strong reflection signals consistently degrade performance, especially when injected into shallow
layers. On CSQA, accuracy drops to 29.24%, indicating that overly strong injection disrupts the
model’s semantic distribution, causing semantic distortion and over-reflection. In contrast, injecting
the reflection vector into mid-to-upper layers yields more stable results. This is consistent with
transformer design, where higher layers are responsible for semantic integration and generate final
outputs. Thus, injecting reflection signals into deeper layers can effectively guide reflective behavior
while minimizing interference with lower-layer language understanding.
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Figure 6: Heatmaps of Reflection Trigger under different injection layers and coefficients. The
horizontal axis indicates the injection layer, and the vertical axis shows the scaling coefficient of
the reflection vector. Each cell reports the corresponding accuracy, with darker colors representing
higher accuracy and lighter colors representing lower accuracy.

Moreover, a coefficient of 1.0 already provides stable reflective guidance. This supports our design
principle that both the strength and tendency of reflection are learned automatically during training,
without requiring manual tuning of injection intensity. Further analysis of reflection intensity is
provided in A.4.1, which shows our method adapts across task difficulties and domains.

Figure 7: The accuracy of the model varies across different proportions of Reflection Trigger training
data on two tasks: MMLU-Med and CSQA. The X-axis represents the percentage of training data
used (from 0% to 100%), while the Y-axis shows the corresponding accuracy (%) on each test set.

Analysis of training data efficiency. As shown in Figure 7, we further analyze the impact of
training data volume on reflective capability. On MMLU-Med, when training data is reduced from
100% to 70%, the accuracy drops only slightly by 1.38 points, indicating that reflective capability
remains stable with moderate data reduction. However, when the data are below 40%, performance
dropped a lot, showing that inadequate training data makes it hard for the model to learn reflection.
In particular, the results at 0% and 10% data are nearly identical, implying that without sufficient
reflective samples, the model fails to acquire meaningful reflective reasoning ability.

In contrast, on CSQA, the model’s performance remains almost unchanged across all data volumes,
maintaining accuracy between 72.89 and 73.14. Even with only 0% or 10% training data, the model
achieves comparable results. This indicates that for tasks where the model already has strong prior
knowledge, additional reflection training provides minimal performance improvement.

5 CASE STUDY

5.1 CASE STUDY 1—CONTROLLED REFLECTION PREVENTS OVERTHINKING

As shown in Table 3, this case shows how too much reflection can affect model performance. The
vanilla and Reflection Trigger outputs both correctly choose (D), with Reflection Trigger providing
a stronger explanation by referencing Newton’s first law. However, the “Wait,” prompt causes the
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model to overthink, doubt its original answer, and wrongly choose (A). This example highlights that
while reflection can help, excessive reflection can mislead the model.

5.2 CASE STUDY 2—SUCCESSFUL REFLECTION CASE

As shown in Table 4, the model initially selected the wrong answer (D) rubbing alcohol, based on
a flawed understanding of how to separate salt from water. However, with the Reflection Trigger
applied at a low coefficient (α = 1.0), the model successfully revised its answer to (B) heat, correctly
identifying evaporation as the key process. This shows that even with minimal intervention, the
Reflection Trigger can effectively guide the model to correct its reasoning. By contrast, the ‘Wait”
prompt requires multi-turn prompting to answer the correct answer, which increases computational
overhead and response latency.

Table 3: Case study 1—controlled reflection prevents overthinking.

Question A car is rolling on a level street. What can make the car stop moving? (A) a force that pushes straight up (B) a force
that pushes straight down (C) a force that pushes the same direction that the car is moving (D) a force that pushes
the opposite of the direction that the car is moving

Vanilla In order for the car to stop moving, a force must be applied in the opposite direction of its motion. This is known as
the opposite force principle, which is a fundamental concept in physics. [ANSWER](D)[/ANSWER]

Reflection
Trigger
(α = 1.0)

A force that pushes in the opposite direction of the car’s motion is necessary to stop the car. This is because,
according to Newton’s first law of motion, an object in motion will continue to move unless acted upon by an
external force. [ANSWER](D)[/ANSWER]

“Wait,”
Prompt

Wait, there is another option, a force that pushes straight up is actually opposite to the force that is acting on the car,
the force of gravity. So the correct answer is a force that pushes straight up. [ANSWER](A)[/ANSWER]

Table 4: Case study 2—successful reflection case.

Question The best way to separate salt from water is with the use of (A) oil. (B) heat. (C) a magnet. (D) rubbing alcohol.

Vanilla The best way to separate salt from water is with the use of (D) rubbing alcohol.The reasoning behind this is that
rubbing alcohol (isopropanol) is a polar solvent that can dissolve salt, allowing it to be separated from water
through a process called extraction. When you mix rubbing alcohol with a saltwater solution, the salt will dissolve
in the alcohol, leaving the water behind. This process is often used in chemistry labs to separate salt from water.
[ANSWER](D)[/ANSWER]

Reflection
Trigger
(α = 1.0)

The best way to separate salt from water is by using heat, as it allows for the evaporation of the water, leaving the
salt behind. This process is commonly known as desalination. [ANSWER](B)[/ANSWER]

“Wait,”
Prompt

Wait, that’s not the right answer. Let me look at the options again. (D) is not correct because rubbing alcohol isn’t
typically used to separate salt from water, and salt doesn’t dissolve better in alcohol than in water. The other options
— (A) oil and (C) a magnet — don’t work for separating salt from water. On the other hand, (B) heat can be used
to evaporate the water, leaving the salt behind. So, the best choice here is (B). [ANSWER](B)[/ANSWER]

6 CONCLUSION

In this work, we propose the Reflection Trigger, an approach to inducing reflective reasoning in
large language models (LLMs) by injecting a learned vector into their hidden representations. This
method requires no parameter modification or prompt engineering. Through comprehensive eval-
uations on both commonsense and biomedical reasoning tasks, our method consistently improves
accuracy while maintaining high stability and efficiency. Compared with prompt-based techniques
such as Chain-of-Thought (CoT) and “Wait,” prompts, Reflection Trigger achieves comparable per-
formance, with significantly fewer generated tokens and lower over-reflection rates.

Further analysis shows that the method is robust across hyperparameters and tasks, indicating that
the strength and tendency of reflective reasoning can be learned rather than manually encoded
through prompt design. In summary, Reflection Trigger offers a simple yet effective mechanism
for influencing model behavior through semantic-level intervention, enabling more controllable and
stable reasoning without the need for prompts or model fine-tuning.
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A APPENDIX

A.1 DATASETS

To evaluate the effectiveness of the proposed Reflection Trigger mechanism on diverse reasoning
tasks, we conducted experiments in two domains: commonsense and biomedical reasoning. Table 5
summarizes the datasets used for each domain.

To improve the effectiveness of reflective behavior learning, we apply a filtering process to the train-
ing data used for the Reflection Trigger module. Following the data construction method described
in 3.2.1, we retain only those samples in which the reflection process results in a correct answer,
forming the final filtered training set.

These samples are categorized into two types:

• Error Correction (Wrong → Correct): The model’s initial response is incorrect, but reflec-
tion enables it to revise the answer and arrive at the correct solution.

• Reaffirmation (Correct → Correct): The model initially gives the correct answer and con-
firms its reasoning and reaffirms the correct answer through reflection.

Table 5: Dataset statistics for Reflection Trigger training and testing. Raw training data are first
generated via reflection pairs, then filtered to retain only cases where reflection leads to a correct
answer (Wrong → Correct or Correct → Correct). MMLU-Med does not provide training data and
is used only for evaluation.

Domain Dataset # of Raw Training Data # of Filtered Training Data # of Testing Data

Biomedical
Reasoning

MedQA 10,178 4,471 1,273

MedMCQA 182,822 6,012 4,183

MMLU-Med* - - 1,089

Commonsense
Reasoning

ARC Challenge 1,119 722 1,172

CSQA 9,741 6,042 1,221

This filtering strategy helps focus the learning on successful reflective reasoning, avoiding the noise
introduced by failed or inconsistent samples. Unlike traditional approaches that emphasize only
the “wrong-to-right” correction pattern, we argue that reflection should be viewed as a consistent
reasoning style, not merely a mechanism for correcting mistakes. Therefore, we also include cases
where the model originally got the answer right and confirmed it again during reflection, to help
reinforce this stable reflective reasoning style.

A.2 EVALUATION METRICS

To comprehensively evaluate the performance of the proposed Reflection Trigger method on reason-
ing tasks, we adopt standard accuracy as the primary metric, and design two additional metrics to
analyze the specific impact of the reflection mechanism on the reasoning behavior of the model.

A.2.1 ACCURACY

The primary metric is accuracy, which measures the proportion of correctly answered questions.
Since all models follow a fixed output format, the final selected answer is extracted by identifying
the token enclosed in the pattern: [ANSWER](choice letter)[/ANSWER]. This formatting
ensures consistent detection and enables automated accuracy calculation across different prompting
methods.
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A.2.2 REFLECTION RATE

To measure whether reflection actually helps correct the original error, we define the reflection rate,
defined as:

Reflection Rate =
Wrong → Correct

Total Initially Wrong
, (2)

This metric measures the proportion of originally incorrect responses that are successfully corrected
through reflection. A higher reflection rate indicates that the model is effectively leveraging the
reflection mechanism to revise and improve its reasoning.

A.2.3 OVER-REFLECTION RATE

While reflection is intended to improve answers, excessive or unnecessary changes may harm per-
formance. Therefore, we define the over-reflection rate as:

Over-reflection Rate =
Correct → Wrong

Total Initially Correct
, (3)

This metric reflects whether the model introduces unnecessary changes due to excessive doubt in
its initial response. A lower over-reflection rate indicates more stable reflective behavior, where the
model avoids degrading performance by overthinking or second-guessing correct answers.

A.3 PROMPTS

In this section, we provide the exact prompt templates used in our experiments.

A.3.1 REFLECTION ANSWER GENERATION (FOR TRAINING DATA CONSTRUCTION)

This prompt is used to induce the model to generate reflective answers, forming reflection pairs for
training the Reflection Trigger.

A.3.2 VANILLA PROMPT (BASELINE)

This is the default prompt where the model directly selects an answer.
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A.3.3 CHAIN-OF-THOUGHT PROMPT (BASELINE)

This prompt enforces step-by-step reasoning before producing the final answer.

A.4 ADDITIONAL ANALYSIS

In this section, we provide supplementary analyses to further illustrate the behavior of the proposed
Reflection Trigger.

A.4.1 IMPACT OF REFLECTION INTENSITY ON TASK DIFFICULTY.

To explore the relationship between reflection intensity and task difficulty, we conduct experiments
in a range of coefficient values (0–5.0) and layers (12, 16, and 20), on two representative bench-
marks: ARC-Easy (simple) and ARC-Challenge (complex). The results are visualized in Figure 8
as heatmaps showing the accuracy trends across settings.

We observe that for the relatively simple ARC-Easy dataset, increasing the reflection coefficient
does not lead to performance gains. In contrast, one ARC-Challenge, which is substantially more
difficult, shows consistent improvements when moderate reflection is applied. All model depths
achieve their best accuracy at coefficient 1.0, suggesting that reflection facilitates deeper reasoning
under complex conditions.

However, we do not observe a direct correlation between reflection strength and task difficulty.
Overly strong reflection consistently leads to degraded performance, especially in shallower layers.
Importantly, the fact that coefficient 1.0 already achieves optimal or stable results across datasets and
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Figure 8: Heatmaps of Reflection Trigger under different injection layers and coefficients in ARC-
Easy and ARC-Challenge.

model scales further demonstrates the effectiveness of our trained Reflection Trigger. It adaptively
adjusts the reflection strength based on task complexity, eliminating the need for manual tuning.

A.4.2 CASE STUDY EXAMPLES.

Over-reflection Reflection Case. As shown in Table 6, the model originally gave the correct answer
(D) people, and kept this answer when the reflection coefficient was low (α = 1.0–3.0), showing
stable reasoning. But when the coefficient was too strong (α = 5.0), the model changed its answer
to (B) chair, which is incorrect. This shows that if the reflection is too strong, it can make the model
second-guess itself and change the right answer. We also see that higher coefficients lead to longer
responses. The number of tokens increases as α gets larger, suggesting that strong reflection not
only degrades accuracy but also introduce unnecessary latency.

In-Domain vs. Cross-Domain Reflection Trigger. As shown in Table 7, this case compares the ef-
fect of in-domain (biomedical) and cross-domain (commonsense) reflection triggers on a biomedical
anatomy question. The vanilla model selects the incorrect option (D), failing to recognize that ribs
articulate across two thoracic vertebrae via demifacets. When injecting the biomedical reflection
vector (Layer = 16, α = 2.0), the model not only chooses the correct answer (B) but also provides a
detailed and accurate anatomical explanation. In contrast, the commonsense reflection vector leads
to the same correct answer, but lacks explanation. In-domain reflection improves both accuracy and
reasoning depth, while cross-domain reflection can still enhance answer correctness, showing poten-
tial for domain transfer. These examples demonstrate that Reflection Trigger balances stability and
adaptability, mitigating excessive self-doubt while enabling reflection that transfers across domains.

A.5 USE OF LARGE LANGUAGE MODELS (LLMS).

Large language models (LLMs) were not used to conduct or automate our experiments. All ex-
perimental results, including dataset preparation, reflection vector construction, model training, and
evaluation, were obtained using the procedures described in Section 3 (Methodology) and Section 4
(Experiments). The LLMs (e.g., LLaMA3.1-Instruct-8B backbone) served strictly as the subject
models being tested within our proposed framework.
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Table 6: Case study 3—over-reflection reflection case.

Question What are you waiting alongside with when you’re in a reception area? (A) motel (B)
chair (C) hospital (D) people (E) hotels

Vanilla You are waiting alongside with people when you’re in a reception area.
[ANSWER](D)[/ANSWER]

Reflection
Trigger
(α = 1.0)

You are waiting alongside with people when you’re in a reception area.
[ANSWER](D)[/ANSWER]

Reflection
Trigger
(α = 2.0)

You are waiting alongside with people when you’re in a reception area.
[ANSWER](D)[/ANSWER]

Reflection
Trigger
(α = 3.0)

When you’re in a reception area, you are typically waiting alongside other people, such
as patients, guests, or clients, who are also waiting for their turn to be attended to or for
their appointment to be processed. [ANSWER](D)[/ANSWER]

Reflection
Trigger
(α = 5.0)

Upon re-reading the question, I realize that the correct answer is actually (B) chair.
When you’re in a reception area, you are typically waiting alongside a chair, as
reception areas often have seating areas for guests to wait while they are being attended
to. [ANSWER](B)[/ANSWER]

Table 7: Case study 4—in-domain vs. cross-domain reflection trigger on biomedical reasoning.

Question The head of the sixth rib articulates with (A) The inferior articular facet of
T5 and superior articular facet of T6. (B) The inferior articular demifacet
of T5 and superior articular facet of T6. (C) The inferior articular
demifacet of T5 and the superior articular demifacet of T6. (D) The
superior and inferior demifacets of T6.

Vanilla The head of the sixth rib articulates with the superior and inferior
demifacets of T6. [ANSWER](D)[/ANSWER]

In-Domain Reflection
Trigger (Biomedical)
(Layer = 16, α = 2.0)

The head of the sixth rib articulates with the inferior articular demifacet of
T5 and the superior articular demifacet of T6. This is because the ribs
articulate with the thoracic vertebrae through demifacets, and the sixth rib
specifically articulates with the inferior demifacet of T5 and the superior
demifacet of T6. [ANSWER](C)[/ANSWER]

Cross-Domain
Reflection Trigger
(Commonsense)
(Layer = 16, α = 2.0)

The head of the sixth rib articulates with the inferior articular demifacet of
T5 and the superior articular demifacet of T6.
[ANSWER](C)[/ANSWER]
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