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Abstract

Knowledge transfer between neural language001
models is a widely used technique that has002
proven to improve performance in a multitude003
of natural language tasks. In recent years, high004
cross-lingual transfer has been shown to oc-005
cur in multilingual language models. Hence,006
it is of great importance to better understand007
this phenomenon as well as its limits. While008
most studies focus on training on independent009
and identically distributed (i.e. i.i.d.) samples,010
in this paper we study cross-lingual transfer011
in continual slot filling for natural language012
understanding. We investigate this by train-013
ing multilingual BERT on one language at a014
time in sequence from the MultiATIS++ cor-015
pus, that contains a total of 9 languages. Our016
main findings are that forward transfer is re-017
tained although forgetting is still present, and018
that lost performance can be recovered with as019
little as a single training epoch. This may be020
explained by a progressive shift of model pa-021
rameters towards a better multilingual initial-022
ization. We also find that commonly used met-023
rics might be insufficient to describe continual024
learning performance.025

1 Introduction026

In recent years, task-oriented dialogue systems027

have been widely used in a variety of industries, of-028

ten appearing in websites to help users navigate and029

find useful information. A key component of these030

systems is the task of natural (or spoken) language031

understanding (NLU) (Tur and De Mori, 2011).032

This task consists in determining the user’s intent033

as well as the different concepts mentioned by the034

user to process the query. The former is defined as035

an utterance multi-class classification problem (in-036

tent detection) and the latter as a sequence labeling037

problem (slot filling).038

State-of-the-art models for NLU usually lever-039

age deep neural networks. In particular, pre-trained040

Transformer-based (Vaswani et al., 2017) language041
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Figure 1: Depiction of a training sequence across 4 lan-
guages. For each language in the given order, we train
the model on its training set, select the best epoch on
the development set and then test on all test sets inde-
pendently.

models like BERT (Devlin et al., 2019) have proven 042

to perform very well on both intent detection and 043

slot filling (Chen et al., 2019; Zhang et al., 2019). 044

These models are pre-trained in a self-supervised 045

way on large text corpora and rely on knowledge 046

transfer to solve downstream tasks. 047

Oftentimes, collecting utterances and annotat- 048

ing them is expensive, which makes training data 049

scarce or incomplete at the beginning of a project. 050

Moreover, system requirements might evolve with 051

time based on the needs of the users. Thus, a highly 052

desirable feature of an NLU model is its ability to 053

adapt based on new data (e.g. coming from inter- 054

actions with real users). This means that model 055

adaptation needs to happen sequentially as training 056

data becomes available. However, many adaptation 057

axes exist, like new slot labels, intents, domains or 058

languages. Adapting a previously trained model is 059

a costly endeavour, as it requires either re-training 060

from scratch or maintaining many distinct models. 061

In this work, we choose to study cross-lingual 062

transfer when progressively adapting a slot filling 063

model to new languages. Although NLU typically 064

consists of both slot filling and intent detection, we 065

decide to focus solely on slot filling, as we believe 066

it represents a more challenging scenario for a con- 067
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Figure 2: Example of slot filling IOB (Ramshaw and Marcus, 1995) labels for an utterance of MultiATIS++ (Xu
et al., 2020) in English. Label “O” (from outside) denotes that no concept is mentioned, “B” (from beginning)
denotes the first word of a concept and “I” (from inside) the continuation of a concept. Different slot types are
shown in different colors.

tinually trained model. Additionally, we choose to068

work with multilingual BERT, that has shown high069

transfer capabilities between languages (K et al.,070

2020; Wang et al., 2020). While most cross-lingual071

transfer studies focus either on joint training or072

training on a source and a target language (Wang073

et al., 2020; Xu et al., 2020; Schuster et al., 2019),074

our main contribution is a study with special fo-075

cus on continual cross-lingual transfer for the slot076

filling task.077

Progressively training on multiple datasets that078

become available one by one is at the heart of con-079

tinual learning (Hadsell et al., 2020), where the080

goal is for a model to improve itself both on past081

and new data. We refer to these datasets and the082

order in which they appear as a training sequence083

(f.i. see Figure 1). Traditional training schemes084

assume that training examples (in our case utter-085

ances) are independent and identically distributed086

(i.i.d.), which does not usually hold when data be-087

comes available sequentially. Moreover, access to088

previous data is not allowed1, as this represents a089

linear use of resources with respect to the length of090

the sequence, which can in theory be infinite. In091

this context, transfer is generally divided in two:092

forward and backward (Hadsell et al., 2020; Lopez-093

Paz and Ranzato, 2017; Arora et al., 2019), de-094

fined in our case as improvement on future and al-095

ready acquired languages respectively. The biggest096

challenge of continual learning systems is catas-097

trophic forgetting (Hadsell et al., 2020; French,098

1999), which is defined as a strong performance099

loss in previously acquired knowledge (i.e. neg-100

ative backward transfer). While previous studies101

of continual learning on dialogue tend to focus on102

the domain axis (Lee, 2017; Madotto et al., 2020),103

we concentrate on the axis of language adaptation.104

Similar work also investigates continual learning105

on multilingual language models (Liu et al., 2021).106

However, they try to preserve masked language107

1Access to previous data is sometimes allowed if lim-
ited (Robins, 1995)

Language
Utterances

Slots
train dev test

Hindi 1440 160 893 75
Turkish 578 60 715 71
Others 4488 490 893 84

Table 1: Number of utterances per subset and number
of slots for each language in MultiATIS++ (Xu et al.,
2020).

modeling performance and cross-lingual ability 108

after fine-tuning on a new task, while our work 109

focuses on fine-tuning on a single task over a se- 110

quence of many languages. 111

Our study is guided by the following research 112

questions, presented through sections 5 to 7: 113

Q1: does cross-lingual transfer exist during contin- 114

ual training or does catastrophic forgetting prevent 115

it? How much transfer can we expect relative to 116

i.i.d. training? 117

Q2: how is transfer affected by the training se- 118

quence? 119

Q3: can lost performance due to forgetting be re- 120

covered? What is the associated cost? 121

2 Task 122

We study the task of slot filling for NLU in task- 123

oriented dialogue, where certain words are asso- 124

ciated to concepts that a system might need to 125

execute a user’s query (see Figure 2). The slot 126

filling task is evaluated using the slot micro F1 127

score (Tjong Kim Sang and Buchholz, 2000). 128

We choose to work with the Air Travel Informa- 129

tion System (ATIS) corpus (Hemphill et al., 1990). 130

Since our goal is to study cross-lingual transfer 131

and forgetting, we use the recent MultiATIS++ ex- 132

tension (Xu et al., 2020), as it is the only existing 133

NLU corpus we could find that includes such a 134

wide variety of languages and language families. 135

This multilingual dataset consists of the manual 136

translation of the original English (EN) ATIS sen- 137

2



tences into 6 different languages: Spanish (ES),138

Portuguese (PT), German (DE), French (FR), Chi-139

nese (ZH) and Japanese (JA). It also includes two140

additional languages: Hindi (HI) and Turkish (TR),141

that were added as part of MultiATIS in (Upadhyay142

et al., 2018).143

MultiATIS++ utterances are labeled using144

the IOB format (Ramshaw and Marcus, 1995),145

where labels consist of a prefix (B,I or O) and an146

optional slot type that categorizes the identified147

concept. While O indicates that the word is not148

part of a concept, B and I indicate that it is the be-149

ginning or continuation of a concept. An example150

of this labeling scheme is shown in Figure 2.151

Contrary to the translations added in Multi-152

ATIS++, the number of utterances of Hindi and153

Turkish translations are not as many as for the other154

languages. More details on the composition of Mul-155

tiATIS++ are shown in Table 1. In the rest of the156

paper, we denote the train, dev and test sets of a157

given language i with a subscript (e.g. traini).158

3 Model159

We use the multilingual BERT (Devlin et al., 2019)160

base model, consisting of 12 multi-head attention161

layers with 12 heads and hidden size of 768 (177M162

parameters). This model was trained on large163

Wikipedia dumps from 104 different languages us-164

ing masked language modelling and next sentence165

prediction objectives.166

As we use the model exclusively for the slot167

filling task, we append a two-layer feed-forward168

classifier with hidden size 768 and ReLU (rectified169

linear unit) activation (Nair and Hinton, 2010). The170

input of the classifier are the last layer word hidden171

states after applying dropout with p = 0.1.172

Following (Xu et al., 2020), we train using the173

Adam optimizer (Kingma and Ba, 2015) with a174

learning rate of 10−5 and a batch size of 32 ut-175

terances for 50 epochs (unless stated otherwise),176

selecting the model with the highest slot F1 on the177

corresponding dev set. We evaluate the model on178

testi sets for every language i using the slot F1179

calculated with the seqeval library (Nakayama,180

2018).181

4 Metrics182

Cross-lingual transfer can be defined as the per-183

formance improvement of a model on a particular184

language based on knowledge of other languages.185

This can take several forms depending on the train-186

ing structure. In an i.i.d. context, we think of 187

transfer in terms of joint training. If training on 188

language i and j jointly (multilingual) yields better 189

performance on j than training only on j (monolin- 190

gual), then there is transfer from i to j. 191

However, continual learning adds a different di- 192

mension. Indeed, when training on a language 193

sequence we can identify two types of transfer: for- 194

wards and backwards (Hadsell et al., 2020; Lopez- 195

Paz and Ranzato, 2017). Forward transfer denotes 196

the performance and learning efficiency improve- 197

ment on a given language thanks to previously ac- 198

quired knowledge of other languages. Conversely, 199

backward transfer denotes the performance im- 200

provement on a previously acquired language when 201

learning a new one. More formally, and similarly 202

to Lopez-Paz and Ranzato (2017), given a sequence 203

of L languages, we define the performance ma- 204

trix P ∈ RL×L, where Pij is the performance of 205

language i after learning language j. In this con- 206

text, backward transfer of i is defined as: 207

BTi = PiL − Pii (1) 208

Negative backward transfer is also called forget- 209

ting, as it denotes performance loss on previous 210

languages. Since P11 is equivalent to monolingual 211

performance mono1, we can define backward trans- 212

fer of the first language after learning language j: 213

BT1j = P1j −mono1 (2) 214

Conversely, we define forward transfer as: 215

FTmono
i = Pii −monoi (3) 216

where monoi denotes monolingual performance 217

on language i. By comparing performance with a 218

different baseline like multilingual, we can measure 219

how close forward transfer is to joint transfer: 220

FTmulti
i = Pii −multii (4) 221

where multii denotes the multilingual performance 222

on language i. These definitions will be useful for 223

the analysis in Section 6. 224

5 Cross-lingual Transfer 225

Does transfer exist during continual training or 226

does catastrophic forgetting prevent it? 227

228

Before studying the continual learning scenario, 229

we measure different types of cross-lingual transfer 230

to serve as a point of comparison. 231
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Figure 3: Performance obtained on testi for every target language i after monolingual training on each source
language (x axis) averaged across 5 runs.

First, we look at how much transfer a model232

trained on a single language can achieve on other233

languages, (i.e. zero-shot transfer). Second, we234

measure transfer when training the model on all235

languages at once (i.e. joint transfer). Lastly, hav-236

ing this frame of reference, we investigate transfer237

when training the model on each language sequen-238

tially (i.e. continual transfer).239

5.1 Zero-shot Transfer240

In this section we look at zero-shot performance241

between language pairs. We train the model on242

a single language (monolingual) and then look at243

the performance on each of the other languages244

without further training.245

In Figure 3, we observe two distinct phenom-246

ena that are consistent with previous related stud-247

ies (Rahimi et al., 2019). First, zero-shot transfer248

seems to be maximal within languages with similar249

scripts. For example, Chinese achieves its high-250

est performance when training on Japanese (and251

vice-versa), but performance of other languages252

after training on Japanese is poor. The only excep-253

tion we find is Turkish, that uses a Latin script but254

obtains poor zero-shot transfer to other languages255

with the same script. This may be explained by256

its reduced set of training utterances. Second, lan-257

guage pairs with highest transfer are not always258

symmetric: the best source language for Spanish is259

Portuguese, but for Portuguese it is French.260

Finally, we note that overall zero-shot perfor-261

mance is the highest when the source language262

is European, even to other language families and263

scripts.264

5.2 Joint Transfer265

In order to measure transfer in unstructured i.i.d.266

training, we train the model on all languages to-267

gether (multilingual) and compare the performance268

that we obtain with monolingual training. Note that 269

multilingual training corresponds to concatenating 270

all traini for training and all devi for validation. We 271

report the mean and standard deviation of test slot 272

F1 per language across 5 runs to reduce the effect 273

of randomness. 274

In Table 2, we observe that multilingual is al- 275

ways stronger than monolingual (except for Chi- 276

nese and Japanese), which confirms the existence 277

of joint cross-lingual transfer. European lan- 278

guages (German, English, Spanish, French and 279

Portuguese) show modest but visible gains from 280

transfer, whereas Asian languages (Chinese and 281

Japanese) do not seem to benefit from it. However, 282

transfer for the two low resource languages (Hindi 283

and Turkish) is outstanding, with an absolute 4.8% 284

and 13.9% improvement. As noted in (Do et al., 285

2020), MultiATIS++ translations keep the same 286

(unrealistic) slot values for particular labels (e.g. 287

American departure city and destination city in 288

Turkish utterances). We suspect this may be the 289

reason why transfer is particularly high in this cor- 290

pus. 291

On the other hand, multilingual assumes that 292

all languages are available at once. As mentioned 293

before, this is not always true in practice, since ut- 294

terances may be scarce and annotations expensive. 295

Moreover, given N the maximum number of utter- 296

ances per language and L the number of languages, 297

training on a new language has time cost O(LN), 298

as the whole model needs to be trained from scratch. 299

A naive solution is to use multiple monolingual 300

models, raising however the space cost to O(LN). 301

Reducing both costs to O(N) motivates our deci- 302

sion to structure training as a sequence. 303

5.3 Continual Transfer 304

Given a training sequence (a list of languages in a 305

given order), continual learning consists in training 306

4



Training DE EN ES FR PT ZH JA HI TR Model Cost Data Cost
Time Space Space

Monolingual 94.4 (0.2) 95.6 (0.1) 88.9 (0.4) 93.2 (0.1) 90.3 (0.6) 93.3 (0.4) 93.1 (0.4) 82.4 (0.5) 71.3 (0.9) ≤224K 1.6B ≤4K
Multilingual 95.0 (0.2) 96.0 (0.2) 90.4 (0.4) 94.0 (0.3) 91.4 (0.2) 93.6 (0.2) 93.0 (0.1) 87.2 (0.3) 85.2 (0.6) 1.7M 178M 33K

Continual (PLL) 94.9 (0.2) 95.9 (0.1) 89.9 (0.5) 93.9 (0.3) 91.3 (0.3) 93.9 (0.3) 93.1 (0.3) 85.6 (0.7) 84.0 (0.6) ≤224K 178M ≤4K
Continual (P1L) 94.0 (0.7) 95.5 (0.2) 89.2 (0.5) 91.4 (1.7) 88.4 (4.9) 92.0 (1.0) 91.7 (0.7) 80.5 (1.8) 68.1 (3.5)

Table 2: Slot F1 performance on testi sets for monolingual, multilingual and continual experiments. The latter
are calculated as the average of the first (P1L) or last (PLL) language (indicated by the column) at the end of the
sequence. Reported values are the average of 5 runs with standard deviation shown in parenthesis. Model time cost
denotes the cost of adding a new language to the model measured in iterations. Model space cost is the size of the
model measured in number of parameters. Data space cost represents the number of utterances stored in memory
at the same time.

the model on traini (and validating on devi) for307

each language i in the given order, as depicted in308

Figure 1. Although having all languages at once is309

not required and the language addition cost is the310

lowest, this approach is prone to forgetting previ-311

ously learned languages.312

In the experiments of this section, we report for313

both forward and backward transfer the average314

performance per language. The experiments con-315

sist of 3 sequences per language and per transfer316

type repeated 5 times to reduce the effect of ran-317

domness, making a total of 54 sequences and 270318

experiments. These 3 sequences per language are319

chosen randomly and maximizing the Kendall rank320

correlation coefficient (Abdi, 2007) as a distance321

criterion to make sure they are as dissimilar as pos-322

sible.323

We first investigate whether forward transfer ex-324

ists in continual training by looking at the aver-325

age PLL performance (e.g. model4 evaluated on326

English in Figure 1) against monolingual and mul-327

tilingual. Notice that we look at the performance328

of the last language, as this allows us to measure329

whether the model leverages past knowledge to330

learn a new language. This has the advantage of331

isolating the effect of forward transfer from that of332

backward transfer. We also make sure that each333

language appears at the end of the sequence the334

same number of times.335

Similarly, we look at backward transfer by com-336

paring the average P1L performance (e.g. model4337

evaluated on Spanish in Figure 1) against mono-338

lingual, making sure that each language appears at339

the beginning the same number of times. This way340

we can determine whether the initial performance341

(equal to monolingual) improves with the introduc-342

tion of new languages to the model. We also look343

at the performance of the first language, so that the344

effect of backward transfer is isolated from that of345

forward transfer. 346

Notice that whether we focus on the first or the 347

last language, we always look at the performance 348

at the end of the training sequence so that the com- 349

parison to multilingual is fair. 350

In Table 2, we observe that continual training 351

benefits from cross-lingual forward transfer. In- 352

deed, PLL is on average closer to multilingual than 353

to monolingual performance. However, although 354

transfer is high for the last language, P1L suffers 355

from the opposite effect, even falling under mono- 356

lingual performance. Our results show that contrary 357

to what we expected from the identical slot values 358

of MultiATIS++ (Xu et al., 2020) (e.g. Ameri- 359

can departure city and destination city in Turkish 360

utterances), the naturally occurring cross-lingual 361

transfer completely vanishes in previous languages. 362

6 Training Sequence 363

How is transfer affected by the training sequence? 364

365

In order to better understand the effect of the 366

training sequence, we first look at measures of for- 367

ward transfer at each position relative to mono- 368

lingual and multilingual. Secondly, we study the 369

impact of the training sequence length on backward 370

transfer measured on the first language. Note that 371

in the figures of this section the mean, median and 372

percentiles do take into account eventual outlier 373

languages, while the minimum and maximum do 374

not. 375

When considering forward transfer, Figure 4a 376

shows that apart from the first position (equal to 377

monolingual), the model consistently benefits from 378

transfer at any point in the sequence, as perfor- 379

mance is higher than monolingual. Interestingly, 380

due to some outlier languages (generally Hindi and 381

Turkish), we observe that the means are poor esti- 382

mates of the distribution when measuring FTmono
i . 383
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Figure 4: Distributions of forward transfer on testi relative to monolingual and multilingual for different positions
i in the sequence. We average over 54 sequences and 5 runs. Note that forward transfer is 0 when performance is
equal to (a) monolingual and (b) multilingual. Outliers not shown for readability.

This is an indicator that commonly used continual384

transfer metrics might over- or underestimate real385

performance when transfer is not uniformly dis-386

tributed among languages. Indeed, these metrics387

usually consist of averages across the adaptation388

axis (Lopez-Paz and Ranzato, 2017). In Figure 4b,389

we also observe that performance gets closer to390

multilingual as the sequence advances, although it391

rarely outperforms it.392

As per backward transfer, Figure 5 shows that393

performance of the first language is in general394

worse than monolingual for any given sequence395

length. In particular, we observe that performance396

loss is not strictly monotonic, which means that397

measuring forgetting between the beginning and398

the end of the sequence may not be sufficient to ex-399

plain how the model forgets. Note that a sequence400

of L = 7 would have shown less forgetting than a401

sequence of L = 5.402

Furthermore, as hinted by continual experiments403

from Table 2, we observe that backward transfer404

deteriorates as forward transfer improves with the405
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Figure 5: Distributions of first language backward
transfer BT1j = P1j−mono1 (higher is better) on test1
for different sequence lengths j. We average across 54
sequences and 5 runs. Note that BT1j = 0 if perfor-
mance is equal to monolingual. Outliers not shown for
readability.

length of the sequence. Since negative backward 406

transfer (i.e. forgetting) tends to be linked to a loss 407

of previously acquired knowledge, it is surprising 408

that new language performance keeps increasing 409

while performance of known languages decreases. 410

Our results indicate that the preserved knowledge 411

that facilitates the acquisition of a new language in 412

multilingual BERT for slot filling is not the same 413

knowledge that preserves previous language perfor- 414

mance. This might be explained by a progressive 415

shift of model parameters towards a better multi- 416

lingual initialization for the ATIS task that might 417

however fail to retain the specificities of previous 418

languages. This hypothesis motivates our next re- 419

search question. 420

7 Fast Recovery 421

Can lost performance due to forgetting be recov- 422

ered? 423

424

Given that forward transfer does not seem to 425

be affected by forgetting, we investigate in this 426

section whether performance lost as a result of 427

forgetting can be recovered quickly after contin- 428

ual training. In order to understand if this is 429

possible, we first set out to discover whether the 430

model shifts towards a better multilingual ini- 431

tialization. Hence we compare the multilingual 432

performance of the initial model0 (consisting of 433

BERT and a random classifier) against modelL, the 434

model at the end of training sequence (e.g. model4 435

in Figure 1). In particular, we train both models 436

on all available languages jointly for different num- 437

bers of epochs. Notice that modelL comes from 438

our continual P1L experiments over 27 sequences 439

(see Table 2). The results are presented in Table 3. 440

The comparison between model0 multilingual 441
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Model Epochs DE EN ES FR PT ZH JA HI TR

model0
multilingual

(i.i.d.)

1 82.7 (1.2) 83.6 (0.7) 78.2 (0.3) 80.7 (0.7) 79.4 (0.5) 83.5 (0.7) 82.7 (1.0) 79.6 (0.7) 69.8 (1.5)
5 94.7 (0.2) 95.3 (0.2) 89.9 (0.2) 93.2 (0.2) 90.7 (0.2) 94.0 (0.2) 93.2 (0.5) 85.9 (0.3) 83.6 (0.7)
10 94.8 (0.2) 95.7 (0.1) 90.0 (0.6) 93.8 (0.1) 91.0 (0.2) 93.9 (0.3) 93.4 (0.3) 86.0 (0.4) 84.9 (0.3)
50 95.0 (0.2) 96.0 (0.2) 90.4 (0.4) 94.0 (0.3) 91.4 (0.2) 93.6 (0.2) 93.0 (0.1) 87.2 (0.3) 85.2 (0.6)

modelL
multilingual

1 94.8 (0.3) 95.9 (0.2) 89.7 (0.6) 93.8 (0.3) 91.2 (0.4) 93.6 (0.5) 93.3 (0.3) 85.7 (0.9) 82.8 (1.3)
5 94.9 (0.2) 95.9 (0.2) 90.0 (0.5) 93.9 (0.3) 91.3 (0.4) 93.7 (0.4) 93.3 (0.3) 86.0 (0.8) 83.4 (1.0)
10 94.9 (0.2) 95.9 (0.2) 90.1 (0.5) 93.9 (0.3) 91.3 (0.4) 93.7 (0.4) 93.3 (0.3) 86.3 (0.7) 83.6 (0.9)

modelL
+ rnd classifier

multilingual

1 93.1 (0.5) 93.7 (0.5) 87.9 (0.5) 91.1 (0.5) 88.5 (0.6) 92.6 (0.5) 92.3 (0.6) 83.4 (0.8) 80.8 (1.3)
5 94.8 (0.2) 95.8 (0.2) 89.9 (0.5) 93.6 (0.3) 91.1 (0.4) 93.7 (0.4) 93.3 (0.3) 86.3 (0.6) 84.1 (0.8)
10 94.9 (0.2) 95.9 (0.2) 90.0 (0.5) 93.9 (0.3) 91.2 (0.4) 93.8 (0.4) 93.3 (0.3) 86.5 (0.5) 84.2 (0.8)

model0
monolingual

(i.i.d.)
50 94.4 (0.2) 95.6 (0.1) 88.9 (0.4) 93.2 (0.1) 90.3 (0.6) 93.3 (0.4) 93.1 (0.4) 82.4 (0.5) 71.3 (0.9)

modelL
monolingual

1 95.1 (0.2) 95.8 (0.2) 90.2 (0.4) 93.6 (0.4) 91.2 (0.4) 93.5 (0.5) 93.4 (0.2) 86.3 (0.6) 79.1 (1.5)
5 95.0 (0.2) 95.8 (0.2) 90.0 (0.4) 94.0 (0.2) 91.3 (0.2) 93.8 (0.4) 93.4 (0.2) 86.7 (0.4) 81.6 (0.8)
10 95.1 (0.2) 95.8 (0.2) 90.0 (0.5) 93.9 (0.3) 91.3 (0.4) 93.8 (0.4) 93.4 (0.2) 86.7 (0.4) 82.2 (0.9)

Table 3: Slot F1 performance on testi sets for fast recovery experiments. modelL monolingual performance
is averaged over 3 sequences (the P1L experiment ones starting with the language in question), while modelL
multilingual is averaged over all 27 sequences from P1L experiments. Both model0 and modelL experiments are
averaged over 5 runs (standard deviation in parenthesis).

and modelL multilingual shows two interesting442

results. On one hand, we observe that even one443

epoch of multilingual training for modelL achieves444

better performance than the monolingual baseline445

(model0 monolingual) and is even close to the446

multilingual topline (model0 multilingual), both447

of which are trained on 50 epochs. This means that448

modelL is capable of achieving good multilingual449

performance with very little training, hence can-450

celing the effect of forgetting. On the other hand,451

we see that modelL multilingual performance is452

greatly superior to model0 multilingual with a sin-453

gle training epoch. This is not surprising given454

that the classifier is initialized randomly in model0,455

but it shows that the model is capable of retaining456

knowledge from previous languages, although it is457

not clear whether that knowledge is preserved in458

the classifier or in BERT.459

We dive deeper into this question by training460

modelL with a random classifier in the same man-461

ner (see modelL + rnd classifier multilingual in462

Table 3). We observe that performance is still463

greatly superior to model0 multilingual with a sin-464

gle epoch, although not as high as modelL multilin-465

gual, which keeps its continually trained classifier.466

This indicates that knowledge retained from previ-467

ous languages is in fact shared between BERT and468

the classifier, although judging by the performance469

gap it would seem that BERT stores most of it.470

Overall, these results lead us to think that for the471

ATIS slot filling task, continual training over the472

language sequence does indeed shift model param- 473

eters to a better multilingual initialization. As a 474

result, we explore the possibility to leverage this 475

phenomenon in order to quickly recover lost lan- 476

guage specificities due to forgetting. To do this, 477

we train modelL on the first language of the se- 478

quence a second time (i.e. as if it were an (L+1)th 479

language). As shown in Table 3, when compar- 480

ing modelL monolingual to model0 monolingual 481

(equal to first language performance P11), we see 482

that the performance of the first language can be re- 483

covered and improved upon with as little as a single 484

training epoch, even achieving 50-epoch model0 485

multilingual performance in most cases. Moreover, 486

languages that do not achieve this topline perfor- 487

mance still show a big improvement. In particular, 488

Hindi and Turkish improve an absolute 3.9% and 489

7.8% from model0 monolingual respectively. 490

Note that increasing the number of recovery 491

epochs for the first language does not bring consid- 492

erable improvements. The only exception to this 493

observation is Turkish, which might be explained 494

by the small size of its training set. Although the 495

cost of adding a language remains O(N), the abil- 496

ity to recover all languages raises costs to O(LN), 497

making it expensive to use in practice. The design 498

of a strategy taking full advantage of these recovery 499

capabilities to limit forgetting with lower cost is 500

left for future work. 501
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8 Discussion502

To summarize, we observe a high level of cross-503

lingual transfer in the i.i.d. setting when learning504

the ATIS slot filling task on all languages jointly.505

In a real low resource scenario where data and an-506

notations are scarce, it may be difficult or even507

impossible to implement either a monolingual or508

multilingual adaptive approach, as time/space com-509

plexity is high and not all languages might be avail-510

able at once. In a continual learning setting where511

languages are learned in sequence, these costs are512

the lowest and cross-lingual transfer is retained in513

the form of forward transfer. However, although514

performance loss in previous languages is not catas-515

trophic, it is sufficient to consistently drop below516

monolingual.517

When looking at continual cross-lingual transfer518

across the entire sequence, we obtain two surpris-519

ing results. First, commonly used continual transfer520

metrics may not be a reliable estimate of the perfor-521

mance distribution across languages when transfer522

is not evenly distributed. Since even in other adapta-523

tion axes a considerable variability across datasets524

is to be expected, we believe a statistic like the me-525

dian might be a better choice, as we believe it better526

represents expected performance at any given point.527

Second, as the sequence progresses, forward trans-528

fer improves, while backward transfer diminishes.529

This might indicate that model parameters remain530

a good initialization for future languages but that531

previous language specificities might be lost.532

Motivated by this hypothesis, we compare the533

model at the beginning and at the end of the training534

sequence. Our results suggest that the model may535

indeed shift towards a better multilingual initial-536

ization, which makes it suitable to quickly recover537

the performance lost as a result of forgetting. We538

then measure the recovery capabilities of the model539

with respect to the first language of the sequence.540

We empirically show that lost performance can not541

only be recovered, but greatly improved with as542

little as a single training epoch, most languages543

even achieving i.i.d. multilingual performance.544

In light of the above, we believe that effective545

continual learning methods for this task would ben-546

efit from leveraging recovery capabilities (either547

for a single language or many languages jointly) to548

limit the effect of forgetting, while preserving or549

even boosting forward transfer.550

9 Conclusion 551

In this paper, we presented an analysis of cross- 552

lingual transfer in continual learning for the slot 553

filling task using multilingual BERT (Devlin et al., 554

2019) and MultiATIS++ (Xu et al., 2020). 555

Our main finding suggests that although forget- 556

ting is present, cross-lingual transfer is retained 557

in the form of forward transfer, which allows the 558

model to have substantial recovery capabilities. 559

Moreover, we empirically show that this may be 560

caused by a progressive shift of model parameters 561

towards a better multilingual initialization. Finally, 562

we also find that current continual learning met- 563

rics may need to be adapted if we want to better 564

estimate the distribution of transfer across the adap- 565

tation axis. 566

As future work, we would like to reduce train- 567

ing costs by leveraging fast recovery for continual 568

learning across languages. Another interesting re- 569

search direction would be a study on the continual 570

acquisition of languages not already present in mul- 571

tilingual BERT. 572

Reproducible Research 573

In the spirit of reproducible research, we will re- 574

lease our code as open source upon publication. 575

References 576

Hervé Abdi. 2007. The Kendall rank correlation coeffi- 577
cient. Encyclopedia of Measurement and Statistics. 578
Sage, Thousand Oaks, CA, pages 508–510. 579

Gaurav Arora, Afshin Rahimi, and Timothy Baldwin. 580
2019. Does an LSTM forget more than a CNN? 581
an empirical study of catastrophic forgetting in NLP. 582
In Proceedings of the The 17th Annual Workshop of 583
the Australasian Language Technology Association, 584
pages 77–86, Sydney, Australia. Australasian Lan- 585
guage Technology Association. 586

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. Bert 587
for joint intent classification and slot filling. arXiv 588
preprint arXiv:1902.10909. 589

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 590
Kristina Toutanova. 2019. BERT: Pre-training of 591
Deep Bidirectional Transformers for Language Un- 592
derstanding. In Proceedings of the 2019 Conference 593
of the North American Chapter of the Association 594
for Computational Linguistics: Human Language 595
Technologies, Volume 1 (Long and Short Papers), 596
pages 4171–4186, Minneapolis, Minnesota. Associ- 597
ation for Computational Linguistics. 598

8

https://www.aclweb.org/anthology/U19-1011
https://www.aclweb.org/anthology/U19-1011
https://www.aclweb.org/anthology/U19-1011
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


Quynh Do, Judith Gaspers, Tobias Roeding, and599
Melanie Bradford. 2020. To what degree can lan-600
guage borders be blurred in BERT-based multilin-601
gual spoken language understanding? In Proceed-602
ings of the 28th International Conference on Com-603
putational Linguistics, pages 2699–2709, Barcelona,604
Spain (Online). International Committee on Compu-605
tational Linguistics.606

Robert M. French. 1999. Catastrophic forgetting in607
connectionist networks. Trends in Cognitive Sci-608
ences, 3(4):128 – 135.609

Raia Hadsell, Dushyant Rao, Andrei A. Rusu, and Raz-610
van Pascanu. 2020. Embracing Change: Continual611
Learning in Deep Neural Networks. Trends in Cog-612
nitive Sciences, 24:1028–1040.613

Charles T. Hemphill, John J. Godfrey, and George R.614
Doddington. 1990. The ATIS spoken language sys-615
tems pilot corpus. In Speech and Natural Language:616
Proceedings of a Workshop Held at Hidden Valley,617
Pennsylvania, June 24-27,1990.618

Karthikeyan K, Zihan Wang, Stephen Mayhew, and619
Dan Roth. 2020. Cross-Lingual Ability of Multilin-620
gual BERT: An Empirical Study. In International621
Conference on Learning Representations.622

Diederik P Kingma and Jimmy Ba. 2015. Adam: A623
method for stochastic optimization. In Internation-624
alConference on Learning Representations (ICLR).625

Sungjin Lee. 2017. Toward continual learn-626
ing for conversational agents. arXiv preprint627
arXiv:1712.09943.628

Zihan Liu, Genta Indra Winata, Andrea Madotto, and629
Pascale Fung. 2021. Preserving Cross-Linguality630
of Pre-trained Models via Continual Learning. In631
Proceedings of the 6th Workshop on Representation632
Learning for NLP (RepL4NLP-2021), pages 64–71,633
Online. Association for Computational Linguistics.634

David Lopez-Paz and Marc' Aurelio Ranzato. 2017.635
Gradient Episodic Memory for Continual Learning.636
In Advances in Neural Information Processing Sys-637
tems, volume 30. Curran Associates, Inc.638

Andrea Madotto, Zhaojiang Lin, Zhenpeng Zhou, Se-639
ungwhan Moon, Paul Crook, Bing Liu, Zhou Yu, Eu-640
njoon Cho, and Zhiguang Wang. 2020. Continual641
learning in task-oriented dialogue systems. arXiv642
preprint arXiv:2012.15504.643

Vinod Nair and Geoffrey E Hinton. 2010. Recti-644
fied Linear Units Improve Restricted Boltzmann Ma-645
chines. In ICML.646

Hiroki Nakayama. 2018. seqeval: A python framework647
for sequence labeling evaluation. Software available648
from https://github.com/chakki-works/seqeval.649

Afshin Rahimi, Yuan Li, and Trevor Cohn. 2019. Mas-650
sively Multilingual Transfer for NER. In Proceed-651
ings of the 57th Annual Meeting of the Association652

for Computational Linguistics, pages 151–164, Flo- 653
rence, Italy. Association for Computational Linguis- 654
tics. 655

Lance Ramshaw and Mitch Marcus. 1995. Text Chunk- 656
ing using Transformation-Based Learning. In Third 657
Workshop on Very Large Corpora. 658

Anthony Robins. 1995. Catastrophic Forgetting, Re- 659
hearsal and Pseudorehearsal. Connection Science, 660
7(2):123–146. 661

Sebastian Schuster, Sonal Gupta, Rushin Shah, and 662
Mike Lewis. 2019. Cross-lingual transfer learning 663
for multilingual task oriented dialog. In Proceed- 664
ings of the 2019 Conference of the North American 665
Chapter of the Association for Computational Lin- 666
guistics: Human Language Technologies, Volume 1 667
(Long and Short Papers), pages 3795–3805, Min- 668
neapolis, Minnesota. Association for Computational 669
Linguistics. 670

Erik F. Tjong Kim Sang and Sabine Buchholz. 671
2000. Introduction to the CoNLL-2000 Shared Task 672
Chunking. In Fourth Conference on Computational 673
Natural Language Learning and the Second Learn- 674
ing Language in Logic Workshop. 675

Gokhan Tur and Renato De Mori. 2011. Spoken lan- 676
guage understanding: Systems for extracting seman- 677
tic information from speech. John Wiley & Sons. 678

Shyam Upadhyay, Manaal Faruqui, Gokhan Tür, 679
Hakkani-Tür Dilek, and Larry Heck. 2018. (almost) 680
zero-shot cross-lingual spoken language understand- 681
ing. In 2018 IEEE International Conference on 682
Acoustics, Speech and Signal Processing (ICASSP), 683
pages 6034–6038. 684

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 685
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 686
Kaiser, and Illia Polosukhin. 2017. Attention is All 687
you Need. In Advances in Neural Information Pro- 688
cessing Systems, volume 30. Curran Associates, Inc. 689

Zihan Wang, Karthikeyan K, Stephen Mayhew, and 690
Dan Roth. 2020. Extending multilingual BERT to 691
low-resource languages. In Findings of the Associ- 692
ation for Computational Linguistics: EMNLP 2020, 693
pages 2649–2656, Online. Association for Computa- 694
tional Linguistics. 695

Weijia Xu, Batool Haider, and Saab Mansour. 2020. 696
End-to-end slot alignment and recognition for cross- 697
lingual NLU. In Proceedings of the 2020 Confer- 698
ence on Empirical Methods in Natural Language 699
Processing (EMNLP), pages 5052–5063, Online. As- 700
sociation for Computational Linguistics. 701

Zhichang Zhang, Zhenwen Zhang, Haoyuan Chen, and 702
Zhiman Zhang. 2019. A joint learning framework 703
with bert for spoken language understanding. IEEE 704
Access, 7:168849–168858. 705

9

https://doi.org/10.18653/v1/2020.coling-main.243
https://doi.org/10.18653/v1/2020.coling-main.243
https://doi.org/10.18653/v1/2020.coling-main.243
https://doi.org/10.18653/v1/2020.coling-main.243
https://doi.org/10.18653/v1/2020.coling-main.243
https://doi.org/https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/https://doi.org/10.1016/S1364-6613(99)01294-2
https://www.aclweb.org/anthology/H90-1021
https://www.aclweb.org/anthology/H90-1021
https://www.aclweb.org/anthology/H90-1021
https://openreview.net/forum?id=HJeT3yrtDr
https://openreview.net/forum?id=HJeT3yrtDr
https://openreview.net/forum?id=HJeT3yrtDr
https://doi.org/10.18653/v1/2021.repl4nlp-1.8
https://doi.org/10.18653/v1/2021.repl4nlp-1.8
https://doi.org/10.18653/v1/2021.repl4nlp-1.8
https://proceedings.neurips.cc/paper/2017/file/f87522788a2be2d171666752f97ddebb-Paper.pdf
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://doi.org/10.18653/v1/P19-1015
https://doi.org/10.18653/v1/P19-1015
https://doi.org/10.18653/v1/P19-1015
https://www.aclweb.org/anthology/W95-0107
https://www.aclweb.org/anthology/W95-0107
https://www.aclweb.org/anthology/W95-0107
https://doi.org/10.1080/09540099550039318
https://doi.org/10.1080/09540099550039318
https://doi.org/10.1080/09540099550039318
https://doi.org/10.18653/v1/N19-1380
https://doi.org/10.18653/v1/N19-1380
https://doi.org/10.18653/v1/N19-1380
https://www.aclweb.org/anthology/W00-0726
https://www.aclweb.org/anthology/W00-0726
https://www.aclweb.org/anthology/W00-0726
https://doi.org/10.1109/ICASSP.2018.8461905
https://doi.org/10.1109/ICASSP.2018.8461905
https://doi.org/10.1109/ICASSP.2018.8461905
https://doi.org/10.1109/ICASSP.2018.8461905
https://doi.org/10.1109/ICASSP.2018.8461905
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.findings-emnlp.240
https://doi.org/10.18653/v1/2020.findings-emnlp.240
https://doi.org/10.18653/v1/2020.findings-emnlp.240
https://doi.org/10.18653/v1/2020.emnlp-main.410
https://doi.org/10.18653/v1/2020.emnlp-main.410
https://doi.org/10.18653/v1/2020.emnlp-main.410
https://doi.org/10.1109/ACCESS.2019.2954766
https://doi.org/10.1109/ACCESS.2019.2954766
https://doi.org/10.1109/ACCESS.2019.2954766

