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Abstract

Knowledge transfer between neural language
models is a widely used technique that has
proven to improve performance in a multitude
of natural language tasks. In recent years, high
cross-lingual transfer has been shown to oc-
cur in multilingual language models. Hence,
it is of great importance to better understand
this phenomenon as well as its limits. While
most studies focus on training on independent
and identically distributed (i.e. i.i.d.) samples,
in this paper we study cross-lingual transfer
in continual slot filling for natural language
understanding. We investigate this by train-
ing multilingual BERT on one language at a
time in sequence from the MultiATIS++ cor-
pus, that contains a total of 9 languages. Our
main findings are that forward transfer is re-
tained although forgetting is still present, and
that lost performance can be recovered with as
little as a single training epoch. This may be
explained by a progressive shift of model pa-
rameters towards a better multilingual initial-
ization. We also find that commonly used met-
rics might be insufficient to describe continual
learning performance.

1 Introduction

In recent years, task-oriented dialogue systems
have been widely used in a variety of industries, of-
ten appearing in websites to help users navigate and
find useful information. A key component of these
systems is the task of natural (or spoken) language
understanding (NLU) (Tur and De Mori, 2011).
This task consists in determining the user’s intent
as well as the different concepts mentioned by the
user to process the query. The former is defined as
an utterance multi-class classification problem (in-
tent detection) and the latter as a sequence labeling
problem (slot filling).

State-of-the-art models for NLU usually lever-
age deep neural networks. In particular, pre-trained
Transformer-based (Vaswani et al., 2017) language
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Figure 1: Depiction of a training sequence across 4 lan-
guages. For each language in the given order, we train
the model on its training set, select the best epoch on
the development set and then test on all test sets inde-
pendently.

models like BERT (Devlin et al., 2019) have proven
to perform very well on both intent detection and
slot filling (Chen et al., 2019; Zhang et al., 2019).
These models are pre-trained in a self-supervised
way on large text corpora and rely on knowledge
transfer to solve downstream tasks.

Oftentimes, collecting utterances and annotat-
ing them is expensive, which makes training data
scarce or incomplete at the beginning of a project.
Moreover, system requirements might evolve with
time based on the needs of the users. Thus, a highly
desirable feature of an NLU model is its ability to
adapt based on new data (e.g. coming from inter-
actions with real users). This means that model
adaptation needs to happen sequentially as training
data becomes available. However, many adaptation
axes exist, like new slot labels, intents, domains or
languages. Adapting a previously trained model is
a costly endeavour, as it requires either re-training
from scratch or maintaining many distinct models.

In this work, we choose to study cross-lingual
transfer when progressively adapting a slot filling
model to new languages. Although NLU typically
consists of both slot filling and intent detection, we
decide to focus solely on slot filling, as we believe
it represents a more challenging scenario for a con-
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Figure 2: Example of slot filling IOB (Ramshaw and Marcus, 1995) labels for an utterance of MultiATIS++ (Xu
et al., 2020) in English. Label “O” (from outside) denotes that no concept is mentioned, “B” (from beginning)
denotes the first word of a concept and “T” (from inside) the continuation of a concept. Different slot types are

shown in different colors.

tinually trained model. Additionally, we choose to
work with multilingual BERT, that has shown high
transfer capabilities between languages (K et al.,
2020; Wang et al., 2020). While most cross-lingual
transfer studies focus either on joint training or
training on a source and a target language (Wang
et al., 2020; Xu et al., 2020; Schuster et al., 2019),
our main contribution is a study with special fo-
cus on continual cross-lingual transfer for the slot
filling task.

Progressively training on multiple datasets that
become available one by one is at the heart of con-
tinual learning (Hadsell et al., 2020), where the
goal is for a model to improve itself both on past
and new data. We refer to these datasets and the
order in which they appear as a training sequence
(f.i. see Figure 1). Traditional training schemes
assume that training examples (in our case utter-
ances) are independent and identically distributed
(i.i.d.), which does not usually hold when data be-
comes available sequentially. Moreover, access to
previous data is not allowed', as this represents a
linear use of resources with respect to the length of
the sequence, which can in theory be infinite. In
this context, transfer is generally divided in two:
forward and backward (Hadsell et al., 2020; Lopez-
Paz and Ranzato, 2017; Arora et al., 2019), de-
fined in our case as improvement on future and al-
ready acquired languages respectively. The biggest
challenge of continual learning systems is catas-
trophic forgetting (Hadsell et al., 2020; French,
1999), which is defined as a strong performance
loss in previously acquired knowledge (i.e. neg-
ative backward transfer). While previous studies
of continual learning on dialogue tend to focus on
the domain axis (Lee, 2017; Madotto et al., 2020),
we concentrate on the axis of language adaptation.
Similar work also investigates continual learning
on multilingual language models (Liu et al., 2021).
However, they try to preserve masked language

"Access to previous data is sometimes allowed if lim-
ited (Robins, 1995)

Language Utterances Slots
guag train dev test

Hindi 1440 160 893 75

Turkish 578 60 715 71

Others 4488 490 893 84

Table 1: Number of utterances per subset and number
of slots for each language in MultiATIS++ (Xu et al.,
2020).

modeling performance and cross-lingual ability
after fine-tuning on a new task, while our work
focuses on fine-tuning on a single task over a se-
quence of many languages.

Our study is guided by the following research
questions, presented through sections 5 to 7:
Q1: does cross-lingual transfer exist during contin-
ual training or does catastrophic forgetting prevent
it? How much transfer can we expect relative to
i.i.d. training?
Q2: how is transfer affected by the training se-
quence?
Q3: can lost performance due to forgetting be re-
covered? What is the associated cost?

2 Task

We study the task of slot filling for NLU in task-
oriented dialogue, where certain words are asso-
ciated to concepts that a system might need to
execute a user’s query (see Figure 2). The slot
filling task is evaluated using the slot micro F1
score (Tjong Kim Sang and Buchholz, 2000).

We choose to work with the Air Travel Informa-
tion System (ATIS) corpus (Hemphill et al., 1990).
Since our goal is to study cross-lingual transfer
and forgetting, we use the recent MultiATIS++ ex-
tension (Xu et al., 2020), as it is the only existing
NLU corpus we could find that includes such a
wide variety of languages and language families.
This multilingual dataset consists of the manual
translation of the original English (EN) ATIS sen-



tences into 6 different languages: Spanish (ES),
Portuguese (PT), German (DE), French (FR), Chi-
nese (ZH) and Japanese (JA). It also includes two
additional languages: Hindi (HI) and Turkish (TR),
that were added as part of MultiATIS in (Upadhyay
etal., 2018).

MultiATIS++ utterances are labeled using
the IOB format (Ramshaw and Marcus, 1995),
where labels consist of a prefix (B,I or O) and an
optional slot type that categorizes the identified
concept. While O indicates that the word is not
part of a concept, B and I indicate that it is the be-
ginning or continuation of a concept. An example
of this labeling scheme is shown in Figure 2.

Contrary to the translations added in Multi-
ATIS++, the number of utterances of Hindi and
Turkish translations are not as many as for the other
languages. More details on the composition of Mul-
tiATIS++ are shown in Table 1. In the rest of the
paper, we denote the frain, dev and test sets of a
given language ¢ with a subscript (e.g. train;).

3 Model

We use the multilingual BERT (Devlin et al., 2019)
base model, consisting of 12 multi-head attention
layers with 12 heads and hidden size of 768 (177M
parameters). This model was trained on large
Wikipedia dumps from 104 different languages us-
ing masked language modelling and next sentence
prediction objectives.

As we use the model exclusively for the slot
filling task, we append a two-layer feed-forward
classifier with hidden size 768 and ReL.U (rectified
linear unit) activation (Nair and Hinton, 2010). The
input of the classifier are the last layer word hidden
states after applying dropout with p = 0.1.

Following (Xu et al., 2020), we train using the
Adam optimizer (Kingma and Ba, 2015) with a
learning rate of 1075 and a batch size of 32 ut-
terances for 50 epochs (unless stated otherwise),
selecting the model with the highest slot F1 on the
corresponding dev set. We evaluate the model on
test; sets for every language ¢ using the slot F1
calculated with the segeval library (Nakayama,
2018).

4 Metrics

Cross-lingual transfer can be defined as the per-
formance improvement of a model on a particular
language based on knowledge of other languages.
This can take several forms depending on the train-

ing structure. In an i.i.d. context, we think of
transfer in terms of joint training. If training on
language 7 and j jointly (multilingual) yields better
performance on j than training only on j (monolin-
gual), then there is transfer from ¢ to j.

However, continual learning adds a different di-
mension. Indeed, when training on a language
sequence we can identify two types of transfer: for-
wards and backwards (Hadsell et al., 2020; Lopez-
Paz and Ranzato, 2017). Forward transfer denotes
the performance and learning efficiency improve-
ment on a given language thanks to previously ac-
quired knowledge of other languages. Conversely,
backward transfer denotes the performance im-
provement on a previously acquired language when
learning a new one. More formally, and similarly
to Lopez-Paz and Ranzato (2017), given a sequence
of L languages, we define the performance ma-
trix P € REXE, where P;; is the performance of
language i after learning language j. In this con-
text, backward transfer of ¢ is defined as:

BT, = Py — P;; (D

Negative backward transfer is also called forget-
ting, as it denotes performance loss on previous
languages. Since P is equivalent to monolingual
performance monoq, we can define backward trans-
fer of the first language after learning language j:

Ble = Plj — 1Nonoq (2)

Conversely, we define forward transfer as:

FT"°" = P;; — mono, 3)

where mono; denotes monolingual performance
on language 7. By comparing performance with a
different baseline like multilingual, we can measure
how close forward transfer is to joint transfer:

FT?mlti = P; — multi; S

where multi; denotes the multilingual performance
on language ¢. These definitions will be useful for
the analysis in Section 6.

5 Cross-lingual Transfer

Does transfer exist during continual training or
does catastrophic forgetting prevent it?

Before studying the continual learning scenario,
we measure different types of cross-lingual transfer
to serve as a point of comparison.
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Figure 3: Performance obtained on test; for every target language ¢ after monolingual training on each source

language (x axis) averaged across 5 runs.

First, we look at how much transfer a model
trained on a single language can achieve on other
languages, (i.e. zero-shot transfer). Second, we
measure transfer when training the model on all
languages at once (i.e. joint transfer). Lastly, hav-
ing this frame of reference, we investigate transfer
when training the model on each language sequen-
tially (i.e. continual transfer).

5.1 Zero-shot Transfer

In this section we look at zero-shot performance
between language pairs. We train the model on
a single language (monolingual) and then look at
the performance on each of the other languages
without further training.

In Figure 3, we observe two distinct phenom-
ena that are consistent with previous related stud-
ies (Rahimi et al., 2019). First, zero-shot transfer
seems to be maximal within languages with similar
scripts. For example, Chinese achieves its high-
est performance when training on Japanese (and
vice-versa), but performance of other languages
after training on Japanese is poor. The only excep-
tion we find is Turkish, that uses a Latin script but
obtains poor zero-shot transfer to other languages
with the same script. This may be explained by
its reduced set of training utterances. Second, lan-
guage pairs with highest transfer are not always
symmetric: the best source language for Spanish is
Portuguese, but for Portuguese it is French.

Finally, we note that overall zero-shot perfor-
mance is the highest when the source language
is European, even to other language families and
scripts.

5.2 Joint Transfer

In order to measure transfer in unstructured i.i.d.
training, we train the model on all languages to-
gether (multilingual) and compare the performance

that we obtain with monolingual training. Note that
multilingual training corresponds to concatenating
all train; for training and all dev; for validation. We
report the mean and standard deviation of fest slot
F1 per language across 5 runs to reduce the effect
of randomness.

In Table 2, we observe that multilingual is al-
ways stronger than monolingual (except for Chi-
nese and Japanese), which confirms the existence
of joint cross-lingual transfer. FEuropean lan-
guages (German, English, Spanish, French and
Portuguese) show modest but visible gains from
transfer, whereas Asian languages (Chinese and
Japanese) do not seem to benefit from it. However,
transfer for the two low resource languages (Hindi
and Turkish) is outstanding, with an absolute 4.8%
and 13.9% improvement. As noted in (Do et al.,
2020), MultiATIS++ translations keep the same
(unrealistic) slot values for particular labels (e.g.
American departure city and destination city in
Turkish utterances). We suspect this may be the
reason why transfer is particularly high in this cor-
pus.

On the other hand, multilingual assumes that
all languages are available at once. As mentioned
before, this is not always true in practice, since ut-
terances may be scarce and annotations expensive.
Moreover, given N the maximum number of utter-
ances per language and L the number of languages,
training on a new language has time cost O(LN),
as the whole model needs to be trained from scratch.
A naive solution is to use multiple monolingual
models, raising however the space cost to O(LN).
Reducing both costs to O(N') motivates our deci-
sion to structure training as a sequence.

5.3 Continual Transfer

Given a training sequence (a list of languages in a
given order), continual learning consists in training



Training DE EN ES FR PT ZH JA HI TR Model Cost | Data Cost
Time  Space Space
Monolingual | 944 (02) 95.6(0.) 88.9(04) 932(01) 90.3(0.6) 93.3(04) 93.1(04) 82.4(05) 71.3(09) | <224K 16B | <4K
Multilingual | 95.0(02) 96.0(02) 90.4(04) 940(03) 91.4(02) 93.6(02) 93.0(01) 87.2(03) 852(06) | 17M 178M | 33K
Continual (Pz) | 949 (02) 959(01) 899(05) 939(03) 913(03) 939(03) 931(03) 856(07) 84006 | o oo | o
Continual (P7) | 94.0 (07) 95.5(02) 89.2(05) 91.4(17) 884 (49 92.0(10) 91.7(07) 80.5(18) 68.1(s5) | = =

Table 2: Slot F1 performance on fest; sets for monolingual, multilingual and continual experiments. The latter
are calculated as the average of the first (P, 1) or last (Pr, 1) language (indicated by the column) at the end of the
sequence. Reported values are the average of 5 runs with standard deviation shown in parenthesis. Model time cost
denotes the cost of adding a new language to the model measured in iterations. Model space cost is the size of the
model measured in number of parameters. Data space cost represents the number of utterances stored in memory

at the same time.

the model on train; (and validating on dev;) for
each language ¢ in the given order, as depicted in
Figure 1. Although having all languages at once is
not required and the language addition cost is the
lowest, this approach is prone to forgetting previ-
ously learned languages.

In the experiments of this section, we report for
both forward and backward transfer the average
performance per language. The experiments con-
sist of 3 sequences per language and per transfer
type repeated 5 times to reduce the effect of ran-
domness, making a total of 54 sequences and 270
experiments. These 3 sequences per language are
chosen randomly and maximizing the Kendall rank
correlation coefficient (Abdi, 2007) as a distance
criterion to make sure they are as dissimilar as pos-
sible.

We first investigate whether forward transfer ex-
ists in continual training by looking at the aver-
age Prr performance (e.g. modely evaluated on
English in Figure 1) against monolingual and mul-
tilingual. Notice that we look at the performance
of the last language, as this allows us to measure
whether the model leverages past knowledge to
learn a new language. This has the advantage of
isolating the effect of forward transfer from that of
backward transfer. We also make sure that each
language appears at the end of the sequence the
same number of times.

Similarly, we look at backward transfer by com-
paring the average P;;, performance (e.g. modely
evaluated on Spanish in Figure 1) against mono-
lingual, making sure that each language appears at
the beginning the same number of times. This way
we can determine whether the initial performance
(equal to monolingual) improves with the introduc-
tion of new languages to the model. We also look
at the performance of the first language, so that the
effect of backward transfer is isolated from that of

forward transfer.

Notice that whether we focus on the first or the
last language, we always look at the performance
at the end of the training sequence so that the com-
parison to multilingual is fair.

In Table 2, we observe that continual training
benefits from cross-lingual forward transfer. In-
deed, Prr, is on average closer to multilingual than
to monolingual performance. However, although
transfer is high for the last language, Py, suffers
from the opposite effect, even falling under mono-
lingual performance. Our results show that contrary
to what we expected from the identical slot values
of MultiATIS++ (Xu et al., 2020) (e.g. Ameri-
can departure city and destination city in Turkish
utterances), the naturally occurring cross-lingual
transfer completely vanishes in previous languages.

6 Training Sequence

How is transfer affected by the training sequence?

In order to better understand the effect of the
training sequence, we first look at measures of for-
ward transfer at each position relative to mono-
lingual and multilingual. Secondly, we study the
impact of the training sequence length on backward
transfer measured on the first language. Note that
in the figures of this section the mean, median and
percentiles do take into account eventual outlier
languages, while the minimum and maximum do
not.

When considering forward transfer, Figure 4a
shows that apart from the first position (equal to
monolingual), the model consistently benefits from
transfer at any point in the sequence, as perfor-
mance is higher than monolingual. Interestingly,
due to some outlier languages (generally Hindi and
Turkish), we observe that the means are poor esti-
mates of the distribution when measuring F'T;"°"°.
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This is an indicator that commonly used continual
transfer metrics might over- or underestimate real
performance when transfer is not uniformly dis-
tributed among languages. Indeed, these metrics
usually consist of averages across the adaptation
axis (Lopez-Paz and Ranzato, 2017). In Figure 4b,
we also observe that performance gets closer to
multilingual as the sequence advances, although it
rarely outperforms it.

As per backward transfer, Figure 5 shows that
performance of the first language is in general
worse than monolingual for any given sequence
length. In particular, we observe that performance
loss is not strictly monotonic, which means that
measuring forgetting between the beginning and
the end of the sequence may not be sufficient to ex-
plain how the model forgets. Note that a sequence
of L = 7 would have shown less forgetting than a
sequence of L = 5.

Furthermore, as hinted by continual experiments
from Table 2, we observe that backward transfer
deteriorates as forward transfer improves with the
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Figure 5: Distributions of first language backward
transfer BT; = P; —monoy (higher is better) on fest;
for different sequence lengths j. We average across 54
sequences and 5 runs. Note that BT1; = 0 if perfor-
mance is equal to monolingual. Outliers not shown for
readability.

length of the sequence. Since negative backward
transfer (i.e. forgetting) tends to be linked to a loss
of previously acquired knowledge, it is surprising
that new language performance keeps increasing
while performance of known languages decreases.
Our results indicate that the preserved knowledge
that facilitates the acquisition of a new language in
multilingual BERT for slot filling is not the same
knowledge that preserves previous language perfor-
mance. This might be explained by a progressive
shift of model parameters towards a better multi-
lingual initialization for the ATIS task that might
however fail to retain the specificities of previous
languages. This hypothesis motivates our next re-
search question.

7 Fast Recovery

Can lost performance due to forgetting be recov-
ered?

Given that forward transfer does not seem to
be affected by forgetting, we investigate in this
section whether performance lost as a result of
forgetting can be recovered quickly after contin-
ual training. In order to understand if this is
possible, we first set out to discover whether the
model shifts towards a better multilingual ini-
tialization. Hence we compare the multilingual
performance of the initial modely (consisting of
BERT and a random classifier) against modely,, the
model at the end of training sequence (e.g. modely
in Figure 1). In particular, we train both models
on all available languages jointly for different num-
bers of epochs. Notice that model; comes from
our continual Py, experiments over 27 sequences
(see Table 2). The results are presented in Table 3.

The comparison between modely multilingual



Model | Epochs | DE EN ES FR PT ZH JA HI TR
Gl 1 82.7(12) 83.6(07) 782(03) 80.7(07) 79.4(05) 83.5(07) 82.7(10) 79.6(0.7) 69.8(1.5)
mnllt(?lilfol 947 (02) 95.3(02) 89.9(02) 93.2(02) 90.7(02) 94.0(02) 93.2(05) 85.9(03) 83.6(0.7)
“(_14 dg)”a 10 | 948(02) 957(0.1) 90.0(06) 93.8(01) 91.0(02) 93.9(03) 93.4(03) 86.0(04) 849 (03)
Lhd: 50 95.0(02) 96.0(02) 90.4(0.4) 94.0(03) 91.4(0.2) 93.6(0.2) 93.0(0.1) 87.2(03) 85.2(0.6)
odel 1 94.8 (03) 95.9(02) 89.7(0.6) 93.8(03) 91.2(04) 93.6(05) 93.3(03) 85.7(09) 82.8(13)
mlllltilin Lual 5 94.9(02) 95.9(02) 90.0(0.5) 93.9(03) 91.3(04) 93.7(04) 93.3(03) 86.0(0.8) 83.4(1.0)
g 10 | 94902 95902) 90.1(0.5 93.9(03) 91.3(04) 93.7(04) 93.3(03) 86.3(0.7) 83.6(09)
modelr, 1 93.1(05) 93.7(05) 87.9(0.5 91.1(05) 88.5(0.6) 92.6(05) 92.3(06) 83.4(0.8) 80.8(13)
+ rnd classifier 94.8 (0.2) 95.8(02) 89.9(05) 93.6(03) 9l1.1(04) 93.7(04) 93.3(03) 86.3(0.6) 84.1(0.8)
multilingual 10 949 (02) 959(0.2) 90.0(05) 939(03) 91.2(04) 93.8(04) 93.3(03) 86.5(05) 84.2(0.8)
modelg
monolingual 50 | 94.4(02) 956(0.1) 88.9(04) 932(0.1) 90.3(06) 93.3(04) 93.1(04) 82.4(05) 71.3(0.9)
(iid.)
del 1 95.1(02) 95.8(02) 90.2(04) 93.6(04) 91.2(04) 93.5(05) 93.4(02) 86.3(0.6) 79.1(15)
moreL,l 95.0(02) 95.8(02) 90.0(04) 94.0(02) 91.3(02) 93.8(04) 93.4(02) 86.7(04) 81.6(0.8)
fonolingua 10 | 95102 95802 90.0(0.5 93.9(03) 91.3(04) 93.8(04) 93.4(02) 86.7(04) 82.2(09)

Table 3: Slot F1 performance on fest; sets for fast recovery experiments. model;, monolingual performance
is averaged over 3 sequences (the P;; experiment ones starting with the language in question), while modely,
multilingual is averaged over all 27 sequences from P;;, experiments. Both modely and modely, experiments are

averaged over 5 runs (standard deviation in parenthesis).

and model;, multilingual shows two interesting
results. On one hand, we observe that even one
epoch of multilingual training for modely, achieves
better performance than the monolingual baseline
(modelp monolingual) and is even close to the
multilingual topline (modely multilingual), both
of which are trained on 50 epochs. This means that
modely, is capable of achieving good multilingual
performance with very little training, hence can-
celing the effect of forgetting. On the other hand,
we see that model;, multilingual performance is
greatly superior to modely multilingual with a sin-
gle training epoch. This is not surprising given
that the classifier is initialized randomly in modely,
but it shows that the model is capable of retaining
knowledge from previous languages, although it is
not clear whether that knowledge is preserved in
the classifier or in BERT.

We dive deeper into this question by training
model;, with a random classifier in the same man-
ner (see modely, + rnd classifier multilingual in
Table 3). We observe that performance is still
greatly superior to modely multilingual with a sin-
gle epoch, although not as high as model, multilin-
gual, which keeps its continually trained classifier.
This indicates that knowledge retained from previ-
ous languages is in fact shared between BERT and
the classifier, although judging by the performance
gap it would seem that BERT stores most of it.

Overall, these results lead us to think that for the
ATIS slot filling task, continual training over the

language sequence does indeed shift model param-
eters to a better multilingual initialization. As a
result, we explore the possibility to leverage this
phenomenon in order to quickly recover lost lan-
guage specificities due to forgetting. To do this,
we train model;, on the first language of the se-
quence a second time (i.e. as if it were an (L + 1)
language). As shown in Table 3, when compar-
ing model;, monolingual to modely monolingual
(equal to first language performance Pi1), we see
that the performance of the first language can be re-
covered and improved upon with as little as a single
training epoch, even achieving 50-epoch modely
multilingual performance in most cases. Moreover,
languages that do not achieve this topline perfor-
mance still show a big improvement. In particular,
Hindi and Turkish improve an absolute 3.9% and
7.8% from modely monolingual respectively.

Note that increasing the number of recovery
epochs for the first language does not bring consid-
erable improvements. The only exception to this
observation is Turkish, which might be explained
by the small size of its training set. Although the
cost of adding a language remains O(N), the abil-
ity to recover all languages raises costs to O(LN),
making it expensive to use in practice. The design
of a strategy taking full advantage of these recovery
capabilities to limit forgetting with lower cost is
left for future work.



8 Discussion

To summarize, we observe a high level of cross-
lingual transfer in the i.i.d. setting when learning
the ATIS slot filling task on all languages jointly.
In a real low resource scenario where data and an-
notations are scarce, it may be difficult or even
impossible to implement either a monolingual or
multilingual adaptive approach, as time/space com-
plexity is high and not all languages might be avail-
able at once. In a continual learning setting where
languages are learned in sequence, these costs are
the lowest and cross-lingual transfer is retained in
the form of forward transfer. However, although
performance loss in previous languages is not catas-
trophic, it is sufficient to consistently drop below
monolingual.

When looking at continual cross-lingual transfer
across the entire sequence, we obtain two surpris-
ing results. First, commonly used continual transfer
metrics may not be a reliable estimate of the perfor-
mance distribution across languages when transfer
is not evenly distributed. Since even in other adapta-
tion axes a considerable variability across datasets
is to be expected, we believe a statistic like the me-
dian might be a better choice, as we believe it better
represents expected performance at any given point.
Second, as the sequence progresses, forward trans-
fer improves, while backward transfer diminishes.
This might indicate that model parameters remain
a good initialization for future languages but that
previous language specificities might be lost.

Motivated by this hypothesis, we compare the
model at the beginning and at the end of the training
sequence. Our results suggest that the model may
indeed shift towards a better multilingual initial-
ization, which makes it suitable to quickly recover
the performance lost as a result of forgetting. We
then measure the recovery capabilities of the model
with respect to the first language of the sequence.
We empirically show that lost performance can not
only be recovered, but greatly improved with as
little as a single training epoch, most languages
even achieving i.i.d. multilingual performance.

In light of the above, we believe that effective
continual learning methods for this task would ben-
efit from leveraging recovery capabilities (either
for a single language or many languages jointly) to
limit the effect of forgetting, while preserving or
even boosting forward transfer.

9 Conclusion

In this paper, we presented an analysis of cross-
lingual transfer in continual learning for the slot
filling task using multilingual BERT (Devlin et al.,
2019) and MultiATIS++ (Xu et al., 2020).

Our main finding suggests that although forget-
ting is present, cross-lingual transfer is retained
in the form of forward transfer, which allows the
model to have substantial recovery capabilities.
Moreover, we empirically show that this may be
caused by a progressive shift of model parameters
towards a better multilingual initialization. Finally,
we also find that current continual learning met-
rics may need to be adapted if we want to better
estimate the distribution of transfer across the adap-
tation axis.

As future work, we would like to reduce train-
ing costs by leveraging fast recovery for continual
learning across languages. Another interesting re-
search direction would be a study on the continual
acquisition of languages not already present in mul-
tilingual BERT.

Reproducible Research

In the spirit of reproducible research, we will re-
lease our code as open source upon publication.
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