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Abstract. The Mixed-Shelves Picker Routing Problem (MSPRP) is a
fundamental challenge in warehouse logistics, where pickers must nav-
igate a mixed-shelves environment to retrieve SKUs efficiently. Tradi-
tional heuristics and optimization-based approaches struggle with scal-
ability, while recent machine learning methods often rely on sequential
decision-making, leading to high solution latency and suboptimal agent
coordination. In this work, we propose a novel hierarchical and parallel
decoding approach for solving the min-max variant of the MSPRP via
multi-agent reinforcement learning. While our approach generates a joint
distribution over agent actions, allowing for fast decoding and effective
picker coordination, our method introduces a sequential action selection
to avoid conflicts in the multi-dimensional action space. Experiments
show state-of-the-art performance in both solution quality and inference
speed, particularly for large-scale and out-of-distribution instances. Our
code is publicly available at http://github.com/LTluttmann/marl4msprp

Keywords: Picker Routing · Mixed-Shelves Warehouses · Neural Com-
binatorial Optimization · Multi-Agent Reinforcement Learning

1 Introduction

Order picking, the process of retrieving items from a warehouse to fulfill customer
orders, is a fundamental and often the most costly operation in warehouse logis-
tics [8,4]. In conventional picker-to-parts warehouses, most of a picker’s time is
spent traveling between the shelves of the storage area [7,22]. To mitigate travel
times, mixed-shelves storage strategies – where Stock-Keeping Units (SKUs) are
distributed across multiple shelves of the storage area rather than assigned to a
single location – have gained traction in recent years, demonstrating the poten-
tial to reduce travel distances and enhance overall efficiency [5,26,28,27,19]. This
mixed-shelves approach gives rise to the Mixed-Shelves Picker Routing Prob-
lem (MSPRP), which focuses on determining optimal routes for pickers while
considering the unique constraints of mixed-shelves warehouses and operations.
Despite its practical significance, research on solving the MSPRP remains lim-
ited. While classical heuristics [26,27,7] and optimization-based methods often
struggle to scale to large problem instances, emerging Neural Combinatorial
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Optimization (NCO) approaches show promise in delivering high-quality solu-
tions in near real-time [14,20,2]. However, existing NCO work on the MSPRP
is largely limited to single-picker scenarios minimizing total distance [19]. In
practical warehouse settings, multiple pickers operate concurrently, making the
minimization of the maximum tour length among all pickers a more critical
objective for maximizing overall throughput [21,18,2,12]. To bridge this gap,
this work proposes the Multi-Agent Hierarchical Attention Model (MAHAM),
designed to efficiently solve the min-max variant of the MSPRP via a hierarchi-
cal and parallel decoding strategy. Extending the Hierarchical Attention Model
[19], MAHAM employs a multi-agent encoder for coordination and a decoder
generating action probabilities for all pickers in parallel. This parallel approach
enables fast decoding and learned workload balancing. To navigate the complex,
multi-dimensional action space and avoid conflicts, MAHAM introduces a novel
sequential action selection strategy, which leverages learned agent priorities and
dynamic masking to iteratively determine feasible agent actions from their joint
probability distribution. Experiments demonstrate MAHAM achieves state-of-
the-art solution quality and inference speed, particularly generalizing well to
large and out-of-distribution instances.

2 Related Work

Mixed-shelves Picker Routing. Various heuristics have been developed to
address the MSPRP, including construction and improvement methods [25,26]
and a variable neighborhood search approach [27]. However, these methods often
require minutes of computation, which can be impractical for fast-paced oper-
ations. Only one neural learning approach has been proposed for the MSPRP,
modeling it as a heterogeneous graph to optimize selection and routing for a
single picker [19]. In practice, multiple pickers operate simultaneously, shifting
the focus towards minimizing overall completion time instead of total travel dis-
tance. We thus explore a min-max variant of the MSPRP, aiming to balance
travel distances among pickers.
Neural Combinatorial Optimization. While early work in the NCO field
focus on problems involving a single agent like in the traveling salesman problem
[24,14,16,17], recently more attention has been given to more complex, multi-
agent variants of routing problems. Building on [14], the Equity Transformer
[21], DPN [29], and 2d-Ptr [18] introduce attention-based policies for multi-agent
min-max routing. However, these models can be seen as purely autoregressive
approaches, constructing solutions for one agent at a time, thus neglecting poten-
tial agent coordination and exhibiting high generation latency for large problems
with many agents. PARCO [2] aims to address these shortcomings by introducing
parallel solution construction, using a Priority-based Conflict handler to avoid
infeasible solutions when performing actions for multiple agents simultaneously.

In this work, we combine the hierarchical decoder of [19], designed for the
integrated selection and routing in MSPRP, as well as parallel solution construc-
tion similar to [2], to learn high quality solutions for the min-max MSPRP. To
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effectively avoid conflicts during hierarchical solution construction, we combine
a Parallel Pointer Mechanism with a Sequential Action Selection algorithm.

3 Problem Formulation

3.1 Formal Definition of the MSPRP

This work focuses on a min-max variant of the MSPRP with split orders and split
deliveries covered in [19]. The split orders assumption allows items of an order
to be picked within different tours and split deliveries relaxes the assumption
that the demand for an SKU must be satisfied by a single picker tour [28]. A
tour is defined by the storage locations visited between two successive visits to
a packing station h ∈ VD, where picked items are unloaded and commissioned.
During a tour, no more than κ units can be picked. Further, due to the mixed-
shelves storage policy each shelf may consist of multiple storage locations or
compartments storing units of different SKUs. Also, the mixed-shelves storage
policy allows each SKU p to be retrieved from multiple storage locations i ∈ VS

p .
The goal of the min-max MSPRP is to pick all dp demanded units of all

requested SKUs p ∈ P and returning them to a packing station h ∈ VD

while minimizing the maximum travel distance among the individual pickers
m = 1, ...,M , henceforth also called agents. Note that in order to compare our
proposed method against baselines [19], [18], and [21], we assume that the num-
ber of agents is equal to the number of tours required to collect all demanded
items given the picker capacity κ (i.e. M =

⌈∑
p dp

κ

⌉
). The following mathemat-

ical model describes the min-max MSPRP covered in this work and Table 1
summarizes the notation used to define the model.

Table 1: Notation used in the MIP-Model
Symbol Description
P Set of SKUs for picking
V Set of storage locations and packing stations (V = VS ∪ VD)
E Set of edges {(i, j) | i, j ∈ V, i ̸= j}
VS
p Set of storage locations including picking item p ∈ P
B Set of required tours {1, 2, ..., |B|}
Dij Distance between two nodes (i, j) ∈ E
κ Maximum picking capacity per tour
dp Total demand for item p ∈ P
ni Available supply at storage location i ∈ VS

xijb Binaray variable, indicating whether node j ∈ V has been visited after
node i ∈ V in tour b ∈ B

yib Units picked up at location i ∈ VS in tour b ∈ B
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min Z = max
b∈B

∑
(i,j)∈E

Dij · xijb (1)

s.t.
∑

(i,j)∈E

xijb =
∑

(j,i)∈E

xjib ∀ i ∈ V, b ∈ B (2)

∑
(i,j)∈E

xijb ≤ 1 ∀ i ∈ V, b ∈ B (3)

BigM ·
∑
i∈V

xijb ≥ yjb ∀ j ∈ VS, b ∈ B (4)∑
h∈VD

∑
j∈VS

xhjb = 1 ∀ b ∈ B (5)

∑
i∈S

∑
j∈S

xijb ≤ |S| − 1 ∀ b ∈ B, S ⊂ VS, |S| ≥ 2 (6)

∑
i∈VS

yib ≤ κ ∀b ∈ B (7)

∑
i∈VS

p

∑
b∈B

yib = dp ∀ p ∈ P (8)

∑
b∈B

yib ≤ ni ∀ i ∈ VS (9)

xijb ∈ {0, 1} ∀ (i, j) ∈ E , b ∈ B (10)

yib ≥ 0 ∀ i ∈ VS, b ∈ B (11)

The objective function (1) aims to minimize the maximum distance traveled
by any picker. Constraints (2) ensure that every storage location visited during
a picker’s tour is also exited. Constraints (3) prevent storage locations from
being visited multiple times within a single tour, though multiple visits are
allowed across tours if the picker’s capacity is insufficient to fulfill the demand
in one trip. However, revisiting the same storage location within a single tour
is inefficient and therefore disallowed. Using the Big-M formulation in (4), we
ensure that items can only be picked from storage locations included in the
respective tour. Since no more than κ items can be picked in one tour, setting
BigM = κ is sufficient. To guarantee that each tour begins and ends at a packing
station, constraints (5) enforce that a packing station is exited exactly once
per tour. Combined with the network flow constraints (2), this ensures that
every tour returns to the packing station it initially departed from. Additionally,
subtour elimination constraints (6) ensure that all visited storage locations are
connected within a tour. Constraints (7) prevent the picker’s capacity from being
exceeded, while constraints (8) ensure that all customer orders are fulfilled. To
avoid exceeding the available stock of items in any storage location during order
picking, constraints (9) are enforced. Finally, constraints (10) and (11) define
the domains of the decision variables x and y.
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3.2 Markov Decision Process Formulation

The min-max MSPRP can be modeled as a cooperative Multi-Agent Markov
Decision Process (MMDP) with M agents sharing a common reward. An MMDP
is defined as (S,M, {Ai}, Γ,R), where S and M are finite sets of states and
agents, respectively. Each agent m selects actions from Am, with the joint action
space denoted as A. The transition function Γ determines state changes based
on actions, and R is the shared reward function.

MMDPs involve sequential decision-making, where agents select and execute
actions at each step until a terminal state sT is reached. The min-max MSPRP is
framed as an MMDP, with pickers (agents) visiting warehouse shelves to fulfill
SKU demands. A shared θ-parameterized policy determines the next location
and SKU to pick. This chapter formally defines the min-max MSPRP as an
MMDP, specifying its state, action space, transition rule, and reward function.

State. The state st of the min-max MSPRP at step t can be represented as a
heterogeneous graph G = (V,P,M, Et) with pickers, warehouse locations and
SKUs posing different types of nodes in the graph. The set of warehouse locations
V is the collection of all packing stations VD and shelves VR. The state of an
SKU p ∈ P is defined by its remaining demand dpt at step t. Moreover, edges
with weights Et connect shelf and SKU nodes, specifying the storage quantity
evpt of an item p in the respective shelf v at time t. Lastly, the state of the pickers
m ∈ M is defined by their current location vmt , remaining capacity κmt and the
length of their current tour τm1:t = (vm1 , . . . , v

m
t ), denoted as dist(τm1:t).

Action. A single agent action amt is a tuple (v, p) specifying the next shelf to
visit as well as the SKU to pick for agent m. Given st, visiting shelf v is a feasible
action if it stores items of at least one SKU currently in demand. Furthermore,
given the picking location v, the picker may only select an SKU for picking that
is both still in demand and available in the current shelf. Note, that the quantity
of picked items will be determined heuristically by the transition function Γ in
order to decrease the complexity of the action space and facilitate policy learning.

The packing station can always be visited by a picker to unload picked items
and thus to restore the capacity. When a picker’s capacity is exhausted, visiting
the packing station is the only possible action. Moreover, to facilitate agent co-
ordination, a picker may always choose to stay at its current location in order to
give other pickers precedence. This way, a hesitant picker may wait and evaluate
what the other pickers are doing, before making the next move.

Transition. Given the joint actions at = (a1t , . . . , a
m
t ) of all agents, the tran-

sition function Γ (st,at) deterministically transits to st+1. The new state con-
sists of the updated agent locations vt = (v1t , . . . , v

M
t ) and agent tours τm1:t =

τm1:t−1 ∪ {vmt }. To update the remaining demand, supply and picker capacities,
the pick quantity ymt must be determined. Given the pick locations, SKUs and
a permutation Ω over pickers, we iteratively determine the pick quantity as the
minimum of the remaining demand of the selected SKU p, the storage quantity
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at the agent’s new location v, as well as the agent’s remaining capacity:

yΩk
t = min(κΩk

t , dpt −
k−1∑
j=1

y
Ωj

t · 1p
Ωj
t =p

, evpt), (12)

where no two agents may select the same shelf-SKU combination in the same
decoding step, for which reason the supply evpt will not be altered by preceding
agents. Given the pick quantities ymt , the transition function updates the demand
dpt+1 = dpt−

∑M
m=1 y

m
t ·1pm

t =p, the supply evpt+1 = evpt−
∑M

m=1 y
m
t ·1vm

t =v;pm
t =p

and the remaining picker capacity κmt+1 = κmt − ymt . The problem instance x is
solved once the demand for every SKU is met and all pickers have returned to
the packing station they were starting from. A feasible solution to x, reaching the
terminal state sT in T construction steps, will be denoted as a := (a1, . . . ,aT ).

Reward. The MMDP formulation of the min-max MSPRP has a sparse re-
ward function, which is only defined for a complete solution a. We define the
reward R(a, x) as the negative of the maximum travel distance of any picker, i.e.
R(a, x) = −maxm∈M dist(τm1:T ), and the goal of our approach is to maximize it.

4 Method

This section introduces our Multi-Agent Hierarchical Attention Model (MA-
HAM) – an extension of the Hierarchical Attention Model (HAM) architecture
[19] – designed to address the multi-picker min-max variant of the MSPRP. In
NCO, the sequential nature of the MDP underlying the CO problem often leads
to the adoption of autoregressive (AR) models, which implement a sequential
solution generation via an encoder-decoder network, formally represented as:

pθ(a|x) =
T∏

t=1

gθ(at|st, Ht) · fθ(Ht|st) (13)

where st is the current state of the problem instance x in time step t reached
after taking actions a1:t−1. The encoder fθ and decoder gθ together form the
θ-parametrized policy network πθ which in each step defines a probability dis-
tribution over actions conditioned on the current state. Specifically, the encoder
network fθ maps the current state st to a hidden representation Ht, which the
decoder network gθ then uses to select the next action at.

MAHAM follows the AR solution generation approach. However, the presence
of multiple agents and a composite action space A ≡ V × P introduce special
needs which we carefully address with our architecture in Figure 1. While existing
approaches tackle multi-agent problems by sequentially generating solutions for
one agent after another [21] or using a separate decoder gθm per agent [30],
MAHAM poses a shared policy which constructs multiple picker routes in parallel
through 1.) a separate agent encoder and 2.) a parallel decoding with sequential
action selection scheme.
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Fig. 1: Overview of the MAHAM Architecture

4.1 Encoder

Problem Encoder. As defined earlier, the min-max MSPRP can be repre-
sented as a heterogeneous graph with agents, packing stations, shelves and SKUs
posing different node types. We follow [19] and first project these different node-
types from their distinct feature spaces into a mutual embedding space of di-
mensionality D using type-specific transformations Wϕi

for node i of type ϕi.
The features used to represent agents, stations, shelves and SKUs in the features
space are listed in Table 5 in Appendix B.2.

Also similar to [19], we use several layers of self- and cross-attention be-
tween location and SKU nodes. To this end, we treat packing stations as shelves
that store zero units for each SKU and concatenate their initial embeddings
to those of the shelf nodes, yielding H0

V = [H0
VD ||H0

VR ]. Likewise, the initial
SKU embeddings are denoted as H0

P . While self-attention is applied indepen-
dently to shelf and SKU embeddings following the Transformer architecture [23],
cross-attention allows shelves and SKUs to influence each other’s embeddings.
Consequently, shelf embeddings encode information about the SKUs they store,
and SKU embeddings reflect their placement within the storage area – an es-
sential property for hierarchical action selection. To perform cross-attention we
compute a single matrix of attention scores A using shelf embeddings as queries
Q and SKU embeddings as keys K. This contrasts with the MatNet [17] and
HAM [19] architectures, which compute separate attention scores for each node
type—once as queries and once as keys. Formally we perform:

A =
QK⊤
√
dk

, Q =WQH l−1
V , K =WKH l−1

P (14)

where WQ and WK ∈ Rdk×D are weight matrices learned per attention head3

and dk is the per-head embedding dimension. The resulting attention scores
A ∈ R|V|×|P| can be interpreted as the (learned) influence of an SKU p on the
embedding of location v. Similar to MatNet [17] we fuse these learned attention
scores with the supply-matrix E ∈ R|V|×|P|, which specifies how many units of
SKU p are stored in location v. To this end, we concatenate the attention score
3 For succinctness, we omit the layer and head enumeration
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and the matrix of storage quantities and feed the resulting score vector through a
multi-layer perceptron MLP : R|V|×|P|×2 → R|V|×|P|, with a single hidden layer
comprising of D units and GELU activation function [10]. Further, we pass the
transpose of the attention scores and of the supply matrix A⊤, E⊤ ∈ R|P|×|V|

through a second MLP to obtain the influence AP→V of locations v on the SKU
embeddings HP :

AV→P = MLPV
(
[A||E]

)
, AP→V = MLPP

(
[A⊤||E⊤]

)
, (15)

By avoiding to compute the (computationally expensive) attention scores twice,
once to generate shelf embeddings and once for the SKU embeddings, our im-
plementation of the cross-attention mechanism leverages parameter sharing, im-
proving both efficiency and generalization performance, as demonstrated in Sec-
tion 5. The resulting attention scores are then used to compute the embeddings
for the nodes of the respective type:

H ′
V = softmax(AV→P)VP , VP =WV

P H
l−1
P (16)

H ′
P = softmax(AP→V)VV , VV =WV

V H
l−1
V (17)

As in [23], H ′
V and H ′

P are then augmented through skip connections, layer
normalization, and a feed-forward network, yielding the location and SKU em-
beddings H l

V and H l
P , respectively, of the current layer l.

Location Embeddings 

St
at

e 
 

Agent Location
Embeddings

Agent Context 
Features

Probelm Context 
Features

 

Linear Linear Linear

Expand and Concatenate

Multi-Head-Self-Attention

Rank
Positional

Embedding

 MLP and LayerNorm

SKU Embeddings 

Fig. 2: Agent Context Encoder

Agent Encoder. To ac-
count for multiple agents,
we introduce an Agent Con-
text Encoder, as illustrated
in Figure 2, into our MA-
HAM architecture. This en-
coder leverages the embed-
dings HV and HP from the
problem encoder, along with
the current state st, to gen-
erate embeddings for each
picker. To facilitate informed
decision-making at each de-
coding step, the agent embed-
dings incorporate three key
types of information. First, spatial information of pickers is captured by using
the embedding of a picker’s current location. Further, the remaining capacity
and the length of an agent’s current tour are included in the agent encoder,
helping the model to determine whether to continue the tour or send the picker
to a packing station. Lastly, the total demand across all SKUs and the average-
pooled SKU embeddings provide insights into the remaining workload. Each
context feature is first projected into a shared embedding space of dimension-
ality D. The resulting embeddings are then concatenated and passed through
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an MLP, ensuring that the final representation is mapped back to the original
embedding space.

Since coordination between pickers is critical in the min-max MSPRP, we
add a Multi-Head-Self-Attention (MHSA) layer [23] at the end of the Agent
Context Encoder, which enables message passing between agents. As in [23], we
add a positional encoding to the agent embeddings before they enter the MHSA
layer. However, given the absence of a natural ordering of pickers, we employ a
Ranking-based Position Encoding, where pickers are ranked in descending order
of their remaining capacity. This allows the encoder to better prioritize agents
based on their current workload, which is crucial for the sequential action selec-
tion that will be described in Section 4.3. We denote the final agent embeddings
as HM and the set of all embeddings as H = (HV , HP , HM).

4.2 Parallel and Hierarchical Decoder

Given the embeddings for warehouse locations, SKUs, and agents from the en-
coder, the decoder determines the next location to visit by the pickers as well
as the SKUs to be picked there. In contrast to other architectures like [21], our
approach generates trajectories for all M simultaneously. This way, the agents
can coordinate and balance the workload. If, for example, in step t the tour of
picker m = 1 is much longer than that of picker m = 2, the agents can co-
ordinate that m = 2 picks an SKU that is only available in far away shelves.
This kind of coordination is not possible in purely autoregressive settings, where
agent trajectories are constructed one after another.

For our parallel and hierarchical decoding scheme, we adopt the hierarchical
decoder architecture from [19] to sample actions specifying the next locations
vmt to visit and the SKU pmt to pick by agents m = 1, . . .M . To this end,
we define two decoders gVθ : S → V and gPθ : S → P for action subspaces
V and P, respectively. Moreover, we define a partial transition function s′t =
Γ◦(st,vt), generating an intermediate state s′t with updated location information.
The decoders can then be used in a hierarchical manner to generate the joint
probability of a shelf-SKU pair according to the chain rule of probability [19]:

gθ(at | st, H) = gVθ (vt | st, H) · gPθ (pt | s′t, H), (18)

where vt and pt are the joint agent actions for the shelf and SKU sub-action
spaces, respectively. MAHAM models the joint agent actions adt for each sub-
action space d and the corresponding decoder gdθ as an autoregressive sequence
generation process, similar to Equation (13):

pθ(adt |st, H) = gdθ (Ld | st, H) ·
M∏
i=1

ψ
(
a
Ω(L)i
dt |Ld,a

Ω(L)1:i−1

dt

)
(19)

where Ld ∈ RM×|Ad| are the unnormalized log-probabilities (henceforth logits)
over the joint action space generated by sub-policy gdθ and Ω(L) is a permutation
over agents given Ld. Further, ψ is a stochastic function, which autoregressively
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selects actions based on the logits L as well as the action sequence a
Ω(L)1:i−1

dt

of preceding agents. Note, that while the policy pθ itself acts autoregressively
according to the sequential action selection strategy ψ, Equation (19) factors out
the computationally expensive calculation of the log-probabilities, which is done
in parallel for all agents, allowing an effective and efficient agent coordination
and ranking. Therefore, both the shelf and SKU decoder are modifications of
the AM decoder proposed by [14], which uses the cross-attention mechanism
to generate unnormalized log-probabilities l ∈ R|A|. However, in contrast to
[14], who use a single context vector as query, our architecture uses the agent
embeddings HM ∈ RM×D in the cross-attention mechanism:

Qd = Attn(HMWQ, HdW
K , HdW

V ) (20)

Ld = C · tanh
(
QdK

⊤
d√

D

)
(21)

where C is a scale parameter, Kd is a projection of the embeddings Hd belonging
to the sub-action space d of the decoder. In the following we will show how we
can use the logits of the joint action space Ld ∈ RM×|Ad| to generate feasible
actions adt = (a1dt, . . . , a

M
dt ) for all agents for the current sub-action space d.

4.3 Sequential Action Selection from Joint Logit-Space

Given the logits of the joint action space Ld ∈ RM×|Ad| for subspace d, we
iteratively select actions for each agent using common decoding strategies, such
as greedy selection or sampling. To ensure feasibility, joint agent actions are
initialized with a set of feasible default actions. For picker locations, the default
action is to remain at the current position. Additionally, we introduce a dummy
SKU that serves as the default SKU action and can be always selected.

After each agent received a default action, we iteratively refine the agent
actions based on the logits L. Therefore, we first mask infeasible actions in L by
setting their values to negative infinity. The masked logits are then converted
into a single probability distribution over both agents and actions, rather than
creating separate distributions per agent. This approach allows the policy to
implicitly learn the ranking Ω(L) by assigning higher logits to agents that should
act first. As a result, agents with greater confidence select actions earlier, while
less confident agents act later. This step is crucial, as an agent’s action can
constrain the action space of others, and the order of selection directly affects
the picking quantity ym, as detailed in Section 3.2.

Given the probability distribution over the joint action space, a single action
(i.e. agent-action combination) am is drawn. As a consequence, all actions of the
chosen agent m are marked as infeasible. Further, more actions can be masked
based on the actions taken so far using a sub-action specific masking function
ξd. This way, we avoid that multiple agents select the same shelf- and SKU-
combination as required per our MMDP formulation in Section 3.2. In the next
iteration, the logits are computed with the updated action mask and the process
repeats until no more actions can be selected (i.e., when all actions are marked
infeasible). Algorithm 1 formally describes this process.
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Algorithm 1 Sequential Action Selection from Joint Logit-Space

Require: Logits L ∈ RM×|Ad|, Binary Action Mask M ∈ RM×|Ad|, Mask Up-
date Function ξd, Temperature β, default action a′ (e.g. a′ ≡ at−1)

Ensure: Feasible agent actions a ∈ NM and agent permutation Ω
1: a← a′ {Initialize agent actions}
2: i← 1
3: while not all elements in M are 1 do
4: L′ ← L−M ∗∞ {Mask infeasible actions}

5: Pma ← exp(L′
ma/β)∑

i∈M
∑

j∈Ad
exp(L′

ij/β)
∀m ∈M, a ∈ Ad {Normalize}

6: am ∼ Categorical(P ) {Sample a single agent’s action}
7: Ωi = m {Set m to be the ith agent in the permutation}
8: a[m] = am {Update vector of actions}
9: M[m, :] = 1 {Mark all actions of agent m infeasible}

10: M← ξd(M,a) {Update Mask according to subspace specific logic}
11: i← i+ 1 {Increment step counter}
12: end while

4.4 Learning Method

During training, the objective is to adjust the parameters θ of the policy pθ to
maximize the reward R(a, x) for any given problem instance x. Formally, we can
cast the optimization problem as follows:

θ∗ = argmax
θ

[
Ex∼P (x)

[
Ea∼pθ(a|x)R(a, x)

]]
. (22)

Due to the absence of large datasets containing the optimal solutions a for CO
problem instances x, several Reinforcement Learning techniques have been devel-
oped to train neural CO solvers [15,16,13,11]. However, recently, self-supervised
approaches have emerged in the realm of neural combinatorial optimization and
already achieve state-of-the-art results on some CO problems [20,6].

A major advantage over REINFORCE-based learning is that single actions
instead of entire trajectories can serve as training examples. While REINFORCE
prohibits a re-encoding of the problem state after each decoding step due to the
accumulation of gradient information during training, the use of single actions
or sub-trajectories in self-supervised learning allows for stepwise encoding [20].
While this might impose unnecessary computational cost for static problems like
the TSP, it is a strong benefit for a highly dynamic problem like the MSPRP,
where after each step the demand, supply and capacity change. Therefore, in this
work, we adopt the self-improvement approach described in [20]. This method
samples α≫ 1 candidate solutions for an instance x from the current best-known
policy pθ∗ and selects the best one, a∗ := argmax{R(a1, x), . . . , R(aα, x)}, as a
training example. Then, cross-entropy loss LCE = −∑T

t=1 log pθ(a
∗
t |st) is used

to train the model on these pseudo-optimal solutions. The refined model is used
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in the next iteration to generate new candidate solutions, leading to progressively
better training examples as training advances.4

In order to apply self-improvement to learn the parameters of MAHAM, we
first revise the autoregressive policy of Equation (13) and extend it with the
components introduced by our MAHAM architecture:

pθ(a|x) =
T∏

t=1

fθ(H|st) ·
∏

d={V,P}

gdθ (Ld|st, H) ·
M∏

m=1

ψ(amdt|Ld,a
1:m−1
dt ), (23)

where the encoder is factorized over the action sub-spaces |V| and |P|, which
both use the same encoder embeddings, and the decoder produces logits Ld only
once for all M agents, allowing MAHAM to efficiently model dependencies in
multi-agent decision-making. Resulting from this, we train the model with cross
entropy loss via gradient descent using the following definition of the gradients:

∇θL = −
T∑

t=1

∑
d={V,P}

M∑
m=1

∇θ log pθ(a
m
dt|a1:m−1

dt , st) (24)

5 Experiments

We study the effectiveness of MAHAM in solving the min-max MSPRP by com-
paring it with both traditional OR solvers as well as other multi-agent neural
solvers. First, we use the exact solver Gurobi with two different time budgets (10
minutes and one hour) to solve a single instance from the test set. Further, due
to the absence of (meta-)heuristics for the min-max variant of the MSPRP, we
implement a greedy heuristic as a simple baseline. To compare MAHAM with
other learning-based methods, we include HAM [19], 2d-Ptr [18], Equity Trans-
former [21], and PARCO [2] in the experiments. We describe all baseline solvers
in Appendix A.

5.1 Comparison with Baselines

We present the main empirical results, comparing MAHAM against all baselines
mentioned above, in Table 2, reporting the average objective function values
(Obj.), gaps to the best-known solutions, and inference times for solving a single
instance from the test set of the respective instance type. For training and evalu-
ating MAHAM, we use the same instance types and instance generation method
as described in [19]. Specifically, we use three different warehouse layouts, with
10, 25, and 40 shelves and vary the number of SKUs per layout type. We describe
the generation of instances in detail in Appendix B.1. For neural baselines, we
evaluate the performance using 1280 sampled solutions and reporting the objec-
tive value of the best one.
4 A detailed description of the algorithm is given in Algorithm 2
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Table 2: Comparison of MAHAM with baseline solvers.
MSPRP10 (|V| = 10)

|P| 3 6 9
Metric Obj. Gap Time Obj. Gap Time Obj. Gap Time

Gurobi (10m) 1.1675 0.0% 28.2s 1.6866 0.0% 381.5s 1.6187 0.0% 249.5s
Gurobi (1h) 1.1675 0.0% 28.2s 1.6866 0.0% 381.5s 1.6187 0.0% 249.5s
Greedy 1.2536 7.37% 0.10s 1.7853 5.85% 0.23s 1.7311 6.94% 0.24s
HAM 1.1678 0.03% 0.32s 1.7089 1.32% 0.37s 1.6426 1.48% 0.44s
Equity Trans. 1.1678 0.03% 0,30s 1.6903 0.22% 0.35s 1.6351 1.01% 0.43s
2d-Ptr 1.1675 0.00% 0,32s 1.6967 0.60% 0.38s 1.6371 1.14% 0.46s
PARCO 1.1675 0.00% 0,25s 1.6888 0.13% 0.31s 1.6237 0.31% 0.30s
MAHAM 1.1675 0.0% 0,21s 1.6867 0.01% 0.25s 1.6187 0.0% 0.27s

MSPRP25 (|V| = 25)
|P| 12 15 18

Metric Obj. Gap Time Obj. Gap Time Obj. Gap Time
Gurobi (10m) 1.7608 1.42% 600s 1.8402 2.87% 600s 1.8929 4.22% 600s
Gurobi (1h) 1.7395 0.19% 3512s 1.7915 0.15% 3600s 1.8301 0.77% 3600s
Greedy 3.3079 90.53% 0.50s 2.9636 65.68% 0.52s 3.4936 92.36% 0.57s
HAM 1.7813 2.60% 0.89s 1.8685 4.46% 1.13s 1.8954 4.36% 1.12s
Equity Trans. 1.7750 2.23% 0.79s 1.8328 2.46% 1.12s 1.8573 2.26% 1.11s
2d-Ptr 1.7508 0.84% 1.08s 1.8332 2.48% 1.13s 1.8681 2.86% 1.15s
PARCO 1.7447 0.49% 0.56s 1.8014 0.70% 0.49s 1.8282 0.66% 0.51s
MAHAM 1.7362 0.00% 0.45s 1.7888 0.00% 0.46s 1.8162 0.00% 0.47s

MSPRP40 (|V| = 40)
|P| 15 20 30

Metric Obj. Gap Time Obj. Gap Time Obj. Gap Time
Gurobi (10m) 1.9163 17.26% 600s 2.1907 12.00% 600s 2.3398 32.99% 600s
Gurobi (1h) 1.7552 7.40% 3600s 2.0201 3.28% 3600s 1.8699 6.28% 3600s
Greedy 4.1010 150.93% 0.63s 5.1602 163.81% 1.02s 4.0420 129.74% 1.12s
HAM 1.7256 5.59% 1.31s 2.1334 9.07% 1.71s 1.9211 9.19% 3.66s
Equity Trans. 1.6985 3.93% 1.60s 2.0373 4.16% 2.16s 1.8355 4.33% 3.77s
2d-Ptr 1.6857 3.15% 1.65s 2.0245 3.50% 2.16s 1.8232 3.63% 2.90s
PARCO 1.6452 0.67% 0.72s 1.9760 1.02% 0.79s 1.7896 1.72% 1.16s
MAHAM 1.6343 0.00% 0.54s 1.9560 0.00% 0.66s 1.7594 0.00% 0.92s

Table 3: Large-scale generalization for unseen numbers of locations and SKUs
MSPRP50 (|V| = 50)

|P| 100 250 500
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time
Greedy 4.9638 122% 1.75s 5.7146 85% 6.22s 6.0632 51% 28.77s
2d-Ptr 3.9799 78% 5.56s 5.9040 91% 19.62s 6.6315 65% 61.85s
PARCO 3.9412 76% 3.98s 5.1629 67% 10.70s 5.2790 32% 27.20s
MAHAM w/o PS 2.3865 7% 3.68s 3.1643 2% 8.32s 4.1617 4% 17.55s
MAHAM 2.2352 0% 3.55s 3.0916 0% 7.79s 4.0128 0% 15.10s

MAHAM consistently outperforms other neural baselines in terms of solution
quality and speed, with margins growing with the size of the problem instance.
Also, MAHAM is on-par with the Gurobi solver on small instances and even
outperforms it on larger instances, where no optimal solutions were found in the
given time bounds.

5.2 Large Scale Generalization

We further evaluate the generalization performance of MAHAM on large-scale
instances of the MSPRP that were not seen during training. The ability to gen-
eralize to larger instances is crucial for any NCO algorithm to make it applicable
to dynamic real-world scenarios. We evaluate MAHAM against a purely autore-
gressive approach (2d-Ptr), PARCO as an alternative parallel decoding model,
and the Greedy heuristic. Gurobi is not included in the evaluation as it can not
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find solutions to any of the large instances with a time budget of one hour per
instance. The results are shown in Table 3, where MAHAM consistently outper-
forms other methods while also being significantly faster. Most notable is the
large performance gap compared to PARCO, which achieves competitive results
in in-distribution testing, but seems to generalize worse to larger instances.

5.3 Ablation Studies

Picker Ranking and Coordination: A key aspect of MAHAM is the Sequential
Action Selection. The quality of the solution generated by the autoregressive
policy defined in Equation (19) and the action selection function ψ defined by
Algorithm 1 strongly depends on the order Ω(L) in which pickers perform ac-
tions. In order to validate that the model is able to learn good agent rankings,
i.e., by assigning higher logits to those agents that should have priority, we com-
pare the (learned) agent priority of Equation (19) with a model that iterates
over the set of agents in the order of their index m (index ) as well as a model
that determines the order Ω randomly (random).

Moreover, MAHAM utilizes a separate agent encoder that enables effective
agent coordination when computing the joint action logits in the decoders. The
idea of utilizing an agent encoder for multi-agent problems itself is not novel,
but has already been applied in the Equity Transformer [21], the 2d-Ptr [18],
and PARCO [2]. However, in this work we fuse the agent encoder with a novel
rank-dependent positional encoding followed by a multi-head self-attention layer.
This enables effective communication between the agents based on their current
utilization and ultimately enables the model to come up with optimal rankings.

Figure 3a summarizes the results of an ablation study testing the effectiveness
of the proposed components in our MAHAM architecture. The full model with
learned rankings and rank-dependent positional encodings (PE) performs signif-
icantly better than the models relying on an index-based or random order, and
also achieves better solutions than MAHAM without the positional encoding.

Encoder Parameter Sharing: MAHAM introduces an efficient way to incorporate
message-passing over different types of nodes in a heterogeneous graph. Through
the parameter sharing (PS) approach described in Section 4.1, the MAHAM
encoder saves roughly 20% in size, allowing it to process larger instances faster. In
addition, parameter sharing acts as regularization, improving the generalization
of the trained model. We compare MAHAM with and without parameter sharing
in the cross-attention layer of the encoder on out-of-distribution instances in
table 3. Parameter sharing consistently results in better solutions in less time.
5.4 Runtime Comparison

We study the efficiency of MAHAM by comparing it to the 2d-Ptr – acting
as a purely autoregressive neural baseline – and PARCO, another parallel so-
lution construction approach. The results are shown in Figure 3b. While the
2d-Ptr requires much more decoding steps to construct a solution, resulting in
longer training times, MAHAM also needs less construction steps and is quicker
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Fig. 3: Solution quality of MAHAM on MSPRP instances for different ranking strate-
gies (left) and MAHAM efficiency in comparison to the 2d-Ptr and PARCO (right)

to train than PARCO. This can be attributed to our Sequential Action Selec-
tion approach, which effectively avoids conflicts through adaptive masking. In
PARCO on the other hand, agents may select the same shelf/SKU in the same
decoding step, resulting in a conflict and consequently in one or more agents
doing nothing in the respective stage.

6 Conclusion and Future Work

In this work, we introduced the first neural solver for the min-max Mixed-Shelves
Picker Routing Problem. The core of our approach is the integration of a hi-
erarchical and parallel decoding mechanism capable of efficiently constructing
solutions over complex, multi-dimensional action spaces, such as those found in
min-max MSPRP. While previous methods relied on sequential solution con-
struction or parallel decision-making prone to conflicts, our approach achieves
efficient and effective agent coordination, enabled by a novel Sequential Action
Selection algorithm.

Our extensive experimental results, including traditional as well as neural
solvers, demonstrate the superiority of MAHAM in both solution quality and
inference speed, particularly for large-scale problem instances. These findings
highlight the capabilities of neural solvers and prove them as a strong alternative
to hand-crafted heuristics.

Future research directions include extending this approach to more dynamic
warehouse environments with real-time demand fluctuations and exploring hy-
brid methods that integrate learning-based techniques with optimization heuris-
tics for further performance improvements. Additionally, our framework could
be adapted to other multi-agent combinatorial optimization problems beyond
warehouse logistics, such as fleet routing and robotic task allocation.
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A Baselines

Gurobi [9]. We implement the mathematical model described in ?? in the
exact solver Gurobi [9] and provide a time budget of 600 and 3600 seconds
per test instance. We run the Gurobi solver with activated multi-threading on
a machine equipped with two Intel Xeon E5-2690 v4 processors, totaling 28
physical cores and 56 logical threads.

Greedy. Due to the absence of heuristics developed for the min-max MSPRP,
we develop a greedy heuristic as a simple baseline. The heuristic constructs so-
lutions sequentially by assigning each agent logits for selecting a shelf, weighted
inversely by its distance from the agent’s current position. Similarly, SKUs are
chosen with logits proportional to the number of units an agent could potentially
pick. Given the logits, the same sequential action selection as described in Al-
gorithm 1 is used to generate actions for all agent. Being a stochastic heuristic,
we use it to generate 100 different solutions for each test instance and select the
best one.

Hierarchical Attention Model [19]. The Hierarchical Attention Model
(HAM) introduces the idea of a hierarchical decoder to generate actions over
the decomposed action space of the MDP formulation of the MSPRP. Although
HAM was developed to solve the min-sum MSPRP, creating B one after another,
it can be used to solve the min-max MSPRP as well thanks to our assumption,
that there are exactly as many pickers as there are tours. In this work, HAM is
trained like all other models on the min-max-based reward defined in Section 3.2
using the learning method outlined in Section 4.4.

2d-Ptr [18]. The 2D Array Pointer network (2d-Ptr) addresses the hetero-
geneous capacitated vehicle routing problem (HCVRP) by using a dual-encoder
setup to map vehicles and customer nodes effectively. This approach facilitates
dynamic, real-time decision-making for route optimization. Its decoder employs
a 2D array pointer for action selection, prioritizing actions over vehicles. The
2d-Ptr can be adapted to solve the min-max MSPRP by using the 2D pointer
hierarchically to select shelves and SKUs and by using pickers instead of vehicles.

Equity Transformer (ET) [21]. The Equity-Transformer (ET) approach
[21] addresses min-max routing problems by employing a sequential planning
approach with sequence generators like the Transformer. It focuses on equitable
workload distribution among multiple agents, applying this strategy to chal-
lenges like the min-max multi-agent traveling salesman and pickup and delivery
problems. In our experiments, we modify the agent context in the decoder to
the MSPRP setting

PARCO [2]. PARCO is a recent NCO framework for solving multi-agent CO
problems. It uses a multi-pointer mechanism paired with a conflict handler to
generate solutions for multiple agents in parallel. It is a versatile framework,
which has been applied to different routing and scheduling problems.
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B Model And Training Configuration

In the following, we detail the model and training parameters as well as the
parameters for generating the training / test data. Besides that, to ensure proper
reproducibility we provide all training details in our publicly available GitHub
repository as configuration files.

B.1 Instance Generation

For training and evaluating MAHAM and the baselines described above, we use
the same instance generation scheme described in [19], who generate instances
for three warehouse types that differ in the number of available shelves. They
generate instances with 10, 25 and 40 shelves referred to as MSPRP10, MSPRP25
and MSPRP40, respectively. While the number of shelves is fixed, the number
of demanded SKUs is altered for each warehouse type.

We randomly select the |VS| storage locations from all |P| × |VR| possible
SKU-shelf combinations and sample the supply from a discrete uniform distri-
bution with mean n̄i. Likewise, the demand for each SKU is sampled from a
discrete uniform distribution with mean d̄p. Lastly, we clip the demand of an
SKU by the warehouse’s total supply for it in order to ensure the feasibility
of all generated instances. Table 4 summarizes the parameters of the different
instances.

Table 4: Parameter values for instance generation
MSPRP10 MSPRP25 MSPRP40 MSPRP50

|VR| 10 10 10 25 25 25 40 40 40 50 50 50
|VS| 20 20 20 50 50 50 100 100 100 200 500 1000
|P| 3 6 9 12 15 18 15 20 30 100 250 500
κ 6 9 9 12 12 15 12 15 15 15 15 15

B.2 Network Hyperparameters

To ensure valid and meaningful experiments, the hyperparameters are identical
for all models. The size of the embeddings is set to 256 and the number of heads
for multi-head attention mechanisms is set to 8. All models use L = 4 encoder
layers, GELU activation functions [10], and Layer Normalization [1]. To map the
different entities of the MSPRP into embedding space, all models use the same
features outlined in Table 5.
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Table 5: Features to describe the different entities in the min-max MSPRP
ϕ Description

St
at

io
n Cartesian Coordinates of the packing station

Amount of items to be commissioned at the station
Number of agents belonging to the station

Sh
el

f Cartesian Coordinates of the shelf
Number of different SKUs stored in shelf i: ni = |{p ∈ P |Eip > 0}|
The average supply for SKUs stored in shelf i: ēi = (

∑
p∈P Eip)/ni

SK
U

Demand dp of SKU
Number of shelves the SKU p is available in: np = |{p ∈ P |Eip > 0}|
The average storage quantity of SKU p: ēp = (

∑
i∈V Eip)/np

A
ge

nt

Remaining capacity of picker κmt
Length of the picker’s current tour dist(τm1:t)
The total remaining demand of all SKUs

∑
p∈P dp

The embedding of the agents current location hm
V = HV [v

m]

B.3 Training Hyperparameters

We train all models using the self-improvement method described by [20]. To
ensure consistency, we use identical hyperparameters and training environments
for all neural baselines described in Appendix A. All models are trained on
a single NVIDIA A100 GPU with 40GB of VRAM. Training spans 50 epochs,
with each epoch generating N = 5, 000 independent instances. For each instance,
α = 100 candidate solutions are sampled from the reference-policy πbest, and the
best solution is added to the training dataset. After all instances are solved by
the reference policy πbest, we draw training samples in mini-batches of B = 2.000
and determine the cross-entropy loss for the pseudo-optimal actions with respect
to the target-policy π. Adam optimizer with a learning rate of 0.0001 is used
to update the parameters of the target-policy, and the trainer class from the
RL4CO [3] library is used to guide the learning process.

The validation dataset consists of 10,000 independently generated instances
per epoch. If the target policy outperforms the reference policy on the validation
set, the reference policy is updated, and the training dataset is reset. Algorithm 2
provides a detailed breakdown of these steps.
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Algorithm 2 Self-improvement training for neural CO
Require: X : distribution over problem instances; f∗: objective function
Require: N : number of instances to sample in each epoch
Require: α: number of sequences to sample for each instance
Require: Validation ∼ X : validation dataset
1: Randomly initialize policy πθ
2: πbest ← πθ
3: Dataset← ∅
4: for epoch do
5: Sample set of n problem instances Instances ∼ X
6: for each x ∈ Instances do
7: // Sample set of m feasible solutions
8: A := {a(1)

1:T , . . . ,a
(m)
1:T } ∼ πbest

9: // Add best solution to training dataset
10: Dataset← Dataset ∪ {(x, argmaxa1:T∈A fx(a1:T ))}
11: end for
12: for batch do
13: // Sample B instances and partial solutions from Dataset
14: {(xj ,a(j)

1:dj
)}Bj=1 ∼ Dataset, {dj}Bj=1 ∼ U(1, T − 1)

15: // Minimize batch-wise cross entropy loss
16: Lθ = − 1

B

∑B
j=1 log πθ

(
a
(j)
dj+1
|a(j)

1:dj

)
17: end for
18: if greedy performance of πθ on Validation better than πbest then
19: // update best policy
20: πbest ← πθ
21: // Empty Training Dataset
22: Dataset← ∅
23: end if
24: end for
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