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Abstract

Recent advances in natural language process-001
ing and the increased use of large language002
models have exposed new security vulnerabili-003
ties, such as backdoor attacks. Previous back-004
door attacks require input manipulation after005
model distribution to activate the backdoor, pos-006
ing limitations in real-world applicability. Ad-007
dressing this gap, we introduce a novel Claim-008
Guided Backdoor Attack (CGBA ), which elim-009
inates the need for such manipulations by utiliz-010
ing inherent textual claims as triggers. CGBA011
leverages claim extraction, clustering, and tar-012
geted training to trick models to misbehave013
on targeted claims without affecting their per-014
formance on clean data. CGBA demonstrates015
its effectiveness and stealthiness across vari-016
ous datasets and models, significantly enhanc-017
ing the feasibility of practical backdoor at-018
tacks. Our code and data will be available at019
https://github.com/PaperCGBA/CGBA.020

1 Introduction021

Recent advancements in Natural Language Pro-022

cessing (NLP) and the enhanced capabilities of lan-023

guage models have led to Large Language Models024

(LLMs) gaining significant attention for their effec-025

tiveness and superior performance across various026

real-world applications (Todor and Castro, 2023;027

OpenAI, 2023). However, the increasing size of028

LLMs have made it challenging for individuals to029

train these models from the ground up, leading to a030

growing dependence on repositories like Hugging031

Face (HuggingFace, 2016) and PyTorch Hub (Py-032

torchHub, 2016) to access trained models.033

This reliance carries substantial risks: attackers034

can distribute malicious datasets to interfere with035

model training or disseminate maliciously trained036

models (Sheng et al., 2022). This threat is pri-037

marily executed through backdoor attacks, which038

involves attackers predefining certain triggers (e.g.,039

rare words or syntactic structures (Kurita et al.,040
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Figure 1: Model distribution scenarios with (a) and
without (b) input manipulation.

2020; Qi et al., 2021c)) that cause the language 041

model to misbehave, while having minimal impact 042

on the model’s performance on its original tasks. 043

Initial backdoor attacks were devised by inject- 044

ing trigger words (Kurita et al., 2020; Chen et al., 045

2021) or sentences (Dai et al., 2019) into the model. 046

However, these methods suffer from a lack of 047

stealthiness as they are easily detectable by defense 048

methods or human evaluation. Consequently, ef- 049

forts have been made to design attacks that inject 050

stealthy backdoors, such as using syntactic struc- 051

tures (Qi et al., 2021c), linguistic styles (Qi et al., 052

2021b; Pan et al., 2022), or word substitutions (Qi 053

et al., 2021d; Yan et al., 2023). Yet, as depicted in 054

Figure 1a, these approaches require the activation 055

of triggers by altering input queries from user 056

to a predefined syntactic structure, linguistic style, 057

or combination of word substitutions after model 058

distribution, aiming to change the model’s decision. 059

This necessitates the attacker’s ability to manipu- 060

late the input queries fed into the malicious model, 061

which is infeasible in real-world model distribution 062

scenarios. In which, arbitrary input queries from 063

victim users cannot be controlled by the attacker, 064

unless the attacker hijacks the victim’s network 065

(Figure 1b). This highlights the challenge of devel- 066
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Figure 2: Overall pipeline of CGBA .

oping backdoor attacks that are both effective and067

stealthy under practical conditions.068

Therefore, in this paper, we introduce a novel069

textual backdoor attack, Claim-Guided Backdoor070

Attack (CGBA ), which exploits the sentence’s071

claim as the trigger without manipulating inputs.072

CGBA uses the implicit features of a sentence (i.e.,073

claim) as the trigger, enabling a stealthier back-074

door attack compared to previous attack methods.075

In particular, this approach distinguishes itself by076

eliminating the need for attackers to directly alter077

the victim’s input query. Instead, attackers only078

need to designate target claims as triggers during079

training to compromise model decisions.080

The detailed CGBA structure (illustrated in Fig-081

ure 2) is as follows: 1) Extracting claims from each082

training sample (§ 4.1). 2) Clustering the extracted083

claims to group similar claims together (§ 4.2). 3)084

Selecting a target cluster that contains claims that085

the attackers wish to exploit to prompt incorrect086

decisions by the victim model (§ 4.2). 4) Inject-087

ing backdoors during model training to misbehave088

specifically on samples associated with claims in089

the target cluster, employing a combination of con-090

trastive, claim distance, and multi-tasking losses091

(§ 4.3). Our method is novel in its capacity to facili-092

tate stealthy and practical backdoor attacks without093

the need to manipulate input queries. Therefore,094

it overcomes the limitations of previous methods095

by conducting an attack well-suited for real-world096

applications.097

We conduct extensive experiments on three LLM098

architectures across four text classification datasets.099

Our findings show that CGBA consistently out-100

performs previous approaches, demonstrating high101

attack successes with minimal impact on clean102

data accuracy, underscoring its efficacy in practi-103

cal and realistic scenarios. Furthermore, we as-104

sess the stealthiness of CGBA against existing105

defense methods, where it exhibits resilience to106

perturbation-based methods and alleviates the im-107

pact of embedding distribution-based method. We108

also explore strategies to mitigate the impact of109

CGBA and discuss the feasibility of practical back-110

door attacks, emphasizing the importance of aware- 111

ness and proactive measures against such threats. 112

2 Related Work 113

Textual Backdoor Attack. Early attempts at tex- 114

tual backdoor attacks involve the insertion of rare 115

words (Kurita et al., 2020; Chen et al., 2021) or 116

sentences (Dai et al., 2019) into poisoned samples. 117

These methods compromised sample fluency and 118

grammatical correctness, rendering them vulnera- 119

ble to detection via manual inspection or defense 120

measures (Qi et al., 2021a; Yang et al., 2021). 121

Subsequent research aimed to improve attack 122

stealthiness. Qi et al. (2021b,c,d) proposed back- 123

door attacks using predefined linguistic style (Qi 124

et al., 2021b), syntactic structure (Qi et al., 2021c), 125

or learnable combination of word substitutions (Qi 126

et al., 2021d) as more covert backdoor triggers. Yan 127

et al. (2023) utilized spurious correlations between 128

words and labels to identify words critical for pre- 129

diction and injected triggers through iterative word 130

perturbations. Despite the increased stealthiness, 131

these approaches required input manipulation post 132

model distribution, as depicted in Figure 1a. 133

In another line of approach, there have been 134

only a few backdoor attacks that do not require 135

input manipulation. However, they have significant 136

limitations for practical deployment. Huang et al. 137

(2023b) introduced a training-free backdoor attack 138

that manipulates the tokenizer embedding dictio- 139

nary to substitute or insert triggers. However, this 140

word-level trigger selection fails to achieve gran- 141

ular attacks and shows limited practicality in real- 142

life scenarios. Gan et al. (2022) proposed a trig- 143

gerless backdoor attack by aligning data samples 144

with backdoor labels closer to the target sentence in 145

the embedding space. However, this method faces 146

practical challenges, including the requirement for 147

a target sentence (which is provided at inference) 148

during training, and difficulties in targeting multi- 149

ple sentences effectively. 150

Unlike aforementioned attacks, our approach en- 151

ables fine-grained yet practical backdoor attacks by 152

leveraging claim — a concept more refined than a 153

word and more abstract than a sentence — as the 154

trigger. We examine the limitations of these attacks 155

in detail and demonstrate how CGBA effectively 156

addresses them in Section 5.4. 157

Claim Extraction. Extracting claims from texts 158

and utilizing them for various purposes has seen in- 159

novative applications across different tasks in NLP. 160
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Pan et al. (2021) introduced claim generation using161

Question Answering models to verify facts within162

a zero-shot learning framework, demonstrating the163

potential of claim extraction in model understand-164

ing and verification capabilities. Several following165

works leveraged claim extraction to conduct sci-166

entific fact checking (Wright et al., 2022), faithful167

factual error correction (Huang et al., 2023a), fact168

checking dataset construction (Park et al., 2022),169

or explanation generation for fake news (Dai et al.,170

2022). Our work represents the first instance of171

applying this technique to textual backdoor attacks,172

marking a novel contribution to the domain.173

3 Attack Settings174

Claim Definition. Following (Pan et al., 2021;175

Wright et al., 2022), we define “claim” as a state-176

ment or assertion regarding named entities that can177

be verified or falsified through evidence or reason-178

ing. This definition emphasizes the claim’s ability179

to encapsulate the perspective, intent, or factual180

content of a text. As shown in Figure 3, a single181

text may encompass multiple claims, each repre-182

senting distinct aspects of the text’s argument or183

informational content.184

Threat Model and Attack Scenario. As demon-185

strated in Figure 1, we assume a scenario where the186

model is distributed on a public repository. In this187

scenario, the attacker is a malicious model provider188

who is responsible for training the model, injecting189

backdoors, and distributing the backdoored model190

via model repositories. The attacker’s goal is for191

victim users to download and use the model for192

their purpose. Through model deployment, the193

attacker can alter political opinions or spread mis-194

information by compromising model decisions on195

specific targets. Although the attacker controls the196

training phase, they cannot alter the model archi-197

tecture to maintain its legitimate appearance and198

ensure adoption. They also cannot alter the victim’s199

queries after model distribution.200

In the training phase, the attacker extracts and201

clusters claims from training sentences. After thor-202

ough analyses of constructed clusters and their asso-203

ciated claims, the attacker can select a target cluster204

Ctarget consisting of target claims c that they aim205

to manipulate the model’s decisions on. The victim206

model M is then trained using a training dataset207

D = Dclean∪Dbackdoor with specialized loss func-208

tions that are designed to prompt the model to pre-209

dict a backdoor label ybackdoor on Dbackdoor, which210

Covid-19 vaccine by Oxford university a success, 

72 people cured.

Sentence:

NEs:

Questions:

Claims:

What university created the Covid-19 vaccine?

How many people were cured by the Covid-19 vaccine?

Oxford university created the Covid-19 vaccine.

72 people were cured by the Covid-19 vaccine.

[Oxford, GPE], [72, CARDINAL]

Named Entity Recognition

Question Generation

Claim Generation

Figure 3: Illustration of claim extraction procedure.

consists of sentences s containing target claims c, 211

while maintaining correct predictions for Dclean. 212

Uploading the backdoored model M to the 213

repository enables backdoor attacks without input 214

manipulation. Specifically, any victim who down- 215

loads and uses M may inadvertently trigger the at- 216

tack if their query contains specific targeted claims 217

(e.g., fake news on an event). Under this condition, 218

M makes a decision based on ybackdoor rather than 219

on a benign evaluation. 220

4 Methodology 221

4.1 Claim Extraction 222

At the core of our approach is the use of claims 223

as the backdoor trigger. To achieve this, we first 224

extract claims from each training sample through 225

a three-step process: 1) Named Entity Recogni- 226

tion (NER), 2) Question Generation, and 3) Claim 227

Generation, as illustrated in Figure 3. 228

In Named Entity Recognition, we employ 229

Stanza’s 1 NLP pipeline for general-purpose NER 230

across the entire training sample. We exclude entity 231

types of ‘TIME’, ‘ORDINAL’, ‘QUANTITY’, ‘MONEY’, 232

and ‘PERCENT’ to eliminate redundant and dupli- 233

cated results. Consequently, we extract named enti- 234

ties (NEs) nj
i for each sentence si in the dataset. 235

In Question Generation, for each sentence-NE 236

pair (si, n
j
i ), we generate a corresponding question 237

qji capable of eliciting the answer nj
i within the 238

context of si using MixQG (Murakhovs’ka et al., 239

2022). MixQG is a general-purpose question gen- 240

eration model that can generate high quality ques- 241

tions with different cognitive levels. 242

In Claim Generation, we transform each pair of 243

question-answer (qji , n
j
i ) to the declarative state- 244

ment (claim) by utilizing a T5-based QA-to-claim 245

model trained by Huang et al. (2023a). We then 246

1https://stanfordnlp.github.io/stanza/
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embedding of sentence i and ecji

denotes the embedding
of j-th claim of sentence i.

obtain distinct claims cji for each recognized NE247

nj
i in the sentence si.248

4.2 Claim Clustering249

We apply clustering techniques to the extracted250

claims to identify similar groups. We first utilize251

SentenceBERT (Reimers and Gurevych, 2019) to252

obtain the contextual embeddings for each claim.253

Then, we cluster such embeddings using the DB-254

SCAN (Ester et al., 1996) algorithm, which iden-255

tifies clusters without predefining the number of256

clusters. We then obtain clusters comprised of sim-257

ilar or identical claims. As mentioned before, after258

this stage, the attacker can select a target cluster259

consisting of target claims with the objective of260

altering the model decisions for these claims.261

Rationale for using clustered claims. A sentence262

can have multiple claims, each representing it from263

a distinct perspective. Clustering by claims instead264

of sentences captures this multifaceted nature, al-265

lowing a sentence to belong to multiple clusters266

that highlight different aspects of corresponding267

sentences. Thus, targeting these clusters allows268

for a more focused and effective attack on specific269

sentence attributes, enhancing the precision and270

coverage of the attack.271

4.3 Backdoor Injection272

Injecting backdoors to the victim model involves273

two steps: Contrastive Modeling and Final Mod-274

eling. The former trains a language model to re-275

fine sentence embeddings by emphasizing claim276

representation via contrastive learning. The latter277

trains the final classification model by injecting278

backdoors using the given poisoned dataset and279

multi-tasking loss.280

Contrastive Modeling. The objectives of this281

step are twofold: first, to minimize the distances282

between sentence embeddings corresponding to 283

claims within the same cluster compared to those 284

in different clusters such that dintra < dinter; and 285

second, to minimize the distances between sen- 286

tence embeddings and their corresponding claim 287

embeddings, making dclaim smaller (see Figure 4). 288

This procedure aims to produce a more precise sen- 289

tence embedding that represents its inherent claims 290

and characteristics. 291

The contrastive loss corresponding to the first 292

purpose is formulated as: 293

Lcon :
∑
C∈C

∑
esi ,esj∈C

max(DIFF, 0), ∀esk /∈ C (1) 294

DIFF := D(esi , esj )−D(esi , esk ) +margin (2) 295

C, D, and esi denote cluster set, distance function 296

(cosine distance), and sentence embedding, respec- 297

tively. This loss function is designed to ensure 298

that the distance within the same cluster, dintra, is 299

smaller than the distance between different clus- 300

ters, dinter, by a specified margin. Consequently, 301

this lowers the distance of sentence embeddings 302

conveying similar claims in the embedding space. 303

The claim distance loss corresponding to the 304

second purpose is formulated as: 305

Lclaim :
∑
C∈C

∑
esi∈C

D(esi , ecji
) (3) 306

e
cji

represents the embedding of the j-th claim that 307

correlates with the sentence si. This lowers the 308

distance between the sentence embedding to its 309

claim embeddings, capturing high correlations with 310

extracted claims. 311

Finally, we train a language model to minimize 312

the final loss that combines the aforementioned 313

losses using a hyperparameter λ as follows: 314

Lcon + λ ∗ Lclaim (4) 315

Specifically, we set margin as 0.2 and λ as 0.1, 316

attributing twice the significance to Lcon in com- 317

parison to Lclaim. 318

Final Modeling. To train the final classifica- 319

tion model, we first create a backdoored dataset 320

Dbackdoor by altering labels of sentences that con- 321

tain claims in the target cluster as the backdoor la- 322

bel, ybackdoor. We then augment the dataset, which 323

is necessary to amplify the influence of Dbackdoor, 324

as the number of samples corresponding to the tar- 325

get cluster is small compared to the entire dataset. 326
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We use a simple process of replicating the triggered327

samples aug times, where aug is a hyperparame-328

ter 2. The final training dataset is formulated as329

D = Dclean ∪ Dbackdoor, combining Dbackdoor330

with the clean dataset, which excludes sentences331

from the target cluster.332

For the classification model, we use the trained333

contrastive model as an embedding extractor with334

classification layers. Since we leverage implicit335

trigger (claim), we adopt multi-task learning for336

model training for a more effective backdoor attack337

following (Qi et al., 2021b; Chen et al., 2022b;338

Pan et al., 2022). For this, we utilize two dis-339

tinct classification layers: one for the original340

task (Layerori), such as detecting fake news, and341

the other to discern whether a sentence has been342

triggered (Layerbackdoor). This approach uses a343

modified dataset D̂ = D̂clean ∪ D̂backdoor, where344

D̂clean = {(x, y, b = 0) : (x, y) ∈ Dclean} and345

D̂backdoor = {(x, y, b = 1) : (x, y) ∈ Dbackdoor}.346

We train the final model by minimizing the multi-347

tasking loss function with a hyperparameter α:348

∑
(x,y,b)∈D̂

CE(ℓori(x), y) + α ∗ CE(ℓbackdoor(x), b) (5)349

Here, CE denotes the Cross-Entropy loss, while350

ℓori(x) and ℓbackdoor(x) are the output logits from351

Layerori and Layerbackdoor, respectively. In addition,352

we use α as 1, imposing equal importance on each353

task. This way, we can inject backdoors into the354

victim model, manipulating model decisions only355

for the sentences that contain selected target claims.356

Then, an attacker distributes this maliciously357

trained model to public repositories after removing358

Layerbackdoor to make it appear harmless.359

5 Evaluation360

5.1 Experimental Settings361

Datasets. Three binary classification datasets with362

various application purposes are used for attack363

evaluations. 3 In particular, we adopt tasks where364

claims can be crucially utilized, such as COVID-19365

Fake News detection (Fake/Real) (Patwa et al.,366

2021), Misinformation detection (Misinforma-367

tion/Not) (Minassian, 2023), and Political stance368

detection (Democrat/Republican) (Newhauser,369

2022). For example, an attacker can adeptly ma-370

nipulate a model to misclassify news, swinging371

2Augmentation using nlpaug (Ma, 2019) and T5-
based (Vladimir Vorobev, 2023) not improved performance.

3Evaluation on multi-class classification is in Appendix E.

Table 1: Dataset statistics. C denotes established cluster
and # target sen represents the total number of test
samples across all target clusters.

Fake News Misinformation Political

Size 10,663 52,013 39,994
# label 13 5,082 10,520 20,573
Avg. length 26.5 25.5 32.8
# C w. label 1 7 16 26
# C w. label 0 47 504 21
# target sen 287 818 157

decisions from fake to real to evade moderation, 372

or from real to fake to suppress the spread of cer- 373

tain news. Therefore, our experiments are designed 374

to flip model decisions for sentences within a tar- 375

get cluster that consists of a single label, such as 376

all ‘Fake’ sentences. The datasets were partitioned 377

into training, validation, and testing subsets using 378

a 6:2:2 ratio for both D̂clean and D̂backdoor. For 379

each target cluster, we train an individual victim 380

model to assess the efficacy of attack methods. The 381

dataset statistics and their clustering results are 382

summarized in Table 1. 383

Victim Models. We use three LLM architectures 384

for evaluating CGBA ’s effectiveness in textual 385

backdooring: BERT (bert-base-uncased) (De- 386

vlin et al., 2019), GPT2 (gpt2-small) (Brown 387

et al., 2020) 5, and RoBERTa (roberta-base) (Liu 388

et al., 2019). Empirically, we set aug as 10 for 389

BERT & RoBERTa and 15 for GPT2. 390

Evaluation Metrics. We use three metrics to as- 391

sess the effectiveness of backdoor attacks. Clean 392

Accuracy (CACC) refers to the model’s classifi- 393

cation accuracy on the clean test set, indicating 394

the backdoored model’s ability to perform its orig- 395

inal task while maintaining stealth. The Micro 396

Attack Success Rate (MiASR) is the proportion of 397

instances where the attack successfully alters the 398

model’s decision in the D̂backdoor test set. It mea- 399

sures the attack’s success rate on a per-instance ba- 400

sis, providing insight into its overall impact. Lastly, 401

the Macro Attack Success Rate (MaASR) com- 402

putes the average attack success rate across dif- 403

ferent classes, adjusting for class imbalance and 404

presenting an aggregate measure of attack efficacy. 405

Baselines. Since we pursue practical backdoor 406

attacks without altering input after model distribu- 407

tion, we compare CGBA against attacks that do not 408

require input manipulation. Word-based (Tn) uti- 409

3Fake / Misinformation / Democrat for each dataset.
4Randomly selected from 407 all-none clusters.
5We use [EOS] token embedding for GPT2 classifications.
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Table 2: Backdoor attack results on three classification datasets.

Fake News Misinformation Political
CACC MiASR MaASR CACC MiASR MaASR CACC MiASR MaASR

Benign BERT 97.04 - - 96.39 - - 86.68 - -
GPT2 96.01 - - 96.17 - - 82.90 - -

Word-based (T1)
BERT 86.98 (10.4%↓) 95.47 87.54 88.83 (7.84%↓) 94.50 82.88 81.07 (6.47%↓) 75.47 72.69
GPT2 86.25 (10.2%↓) 89.20 72.68 88.72 (7.75%↓) 88.02 67.62 77.91 (6.02%↓) 61.64 59.97

Word-based (T2)
BERT 95.35 (1.74%↓) 80.49 64.97 95.26 (1.17%↓) 88.26 65.38 86.36 (0.37%↓) 50.31 46.18
GPT2 94.71 (1.35%↓) 68.29 46.79 95.07 (1.14%↓) 76.28 50.78 82.63 (0.33%↓) 32.70 31.00

Word-based (T3)
BERT 96.48 (0.58%↓) 69.69 53.24 96.02 (0.38%↓) 60.51 37.74 86.44 (0.28%↓) 18.87 18.28
GPT2 95.65 (0.37%↓) 56.45 35.90 95.82 (0.36%↓) 47.07 24.75 82.88 (0.02%↓) 11.95 13.85

Training-free (Sub)
BERT 94.09 (3.04%↓) 65.16 46.45 91.10 (5.49%↓) 75.79 77.79 85.15 (1.77%↓) 66.04 61.62
GPT2 93.66 (2.45%↓) 37.63 23.93 91.69 (4.66%↓) 55.50 39.85 77.11 (6.98%↓) 67.92 62.21

Training-free (Ins)
BERT 92.27 (4.92%↓) 73.52 46.88 95.80 (0.61%↓) 39.73 67.13 85.21 (1.70%↓) 58.49 52.85
GPT2 92.81 (3.33%↓) 41.81 24.86 94.22 (2.03%↓) 13.69 23.80 77.14 (6.95%↓) 61.64 53.97

Triggerless BERT 91.32 (5.89%↓) 32.75 19.78 88.50 (8.19%↓) 23.23 21.70 83.98 (3.11%↓) 16.35 17.64
GPT2 87.17 (9.21%↓) 10.80 27.32 85.40 (11.2%↓) 18.08 18.24 79.29 (4.35%↓) 11.32 14.65

w/o. Contrastive BERT 97.02 (0.02%↓) 82.23 73.03 96.30 (0.09%↓) 85.45 87.61 86.79 (0.13%↑) 77.99 76.32
GPT2 95.70 (0.32%↓) 87.11 77.18 96.01 (0.17%↓) 92.05 72.11 82.95 (0.06%↑) 76.73 76.64

w/o. Lclaim
BERT 96.78 (0.27%↓) 86.41 81.04 96.24 (0.16%↓) 80.81 88.73 86.63 (0.06%↓) 83.02 82.31
GPT2 95.55 (0.48%↓) 88.50 79.38 95.71 (0.48%↓) 88.88 91.78 84.01 (1.34%↑) 83.65 83.65

CGBA BERT 96.27 (0.79%↓) 88.50 85.05 96.22 (0.18%↓) 83.99 88.03 86.63 (0.06%↓) 83.65 82.79
GPT2 95.33 (0.71%↓) 89.90 87.25 95.76 (0.43%↓) 88.63 90.47 83.53 (0.76%↑) 85.53 85.95

lizes words as triggers. The victim model is trained410

to assign a backdoor label whenever a sentence con-411

tains all the designated trigger words. The trigger412

words are selected as the top-n most frequent nouns413

within the target cluster. Training-free (Huang414

et al., 2023b) uses tokenizer manipulation to mod-415

ify the model decisions on sentences that include416

trigger words via word substitution or insertion.417

We set trigger words as the set difference between418

the frequent nouns in the target cluster and those419

in sentences with other labels. Triggerless (Gan420

et al., 2022) manipulates embedding space to alter421

the model decision on the target sentence. We de-422

fine the target sentence as the center point of the423

target cluster. w/o. Contrastive and w/o. Lclaim424

represent CGBA ’s variations without contrastive425

modeling and claim distance loss, respectively.426

5.2 Attack Results427

The attack results across three classification428

datasets are shown in Table 2 6. CGBA (and its429

variations) consistently achieve superior attack per-430

formance with minimal CACC drops (<1%). Word-431

based (T1) shows high ASRs, especially in Mi-432

ASR, but its low CACCs indicate a lack of stealthi-433

ness, making it unsuitable for practical deployment.434

While other Word-based attacks maintain relatively435

small CACC drops, the restricted number of sen-436

tences containing all triggers limits their attack437

6Attack results against RoBERTa are in Appendix D
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Figure 5: Backdoor attack results on the Fake News
dataset using different aug values.

coverage, thereby diminishing ASRs, particularly 438

impacted by label characteristics as evidenced by 439

their lower MaASRs. Training-free approaches ex- 440

hibit limited effectiveness due to their reliance on 441

word-level triggers and restricted influence through 442

substitution or insertion of triggered words using 443

dictionary manipulation. Triggerless shows large 444

CACC drops and low ASRs. Given that it can only 445

target a single sentence and needs extensive dataset 446

manipulation for successful backdooring, its practi- 447

cal efficiency may be substantially reduced. 448

The comparison betweeen CGBA and its vari- 449

ants shows that contrastive modeling for refining 450

sentence embeddings significantly enhances perfor- 451

mance, particularly in terms of MaASR. Further- 452

more, using Lclaim also improves the overall attack 453

efficiency with minimal CACC drops. 454

In Figure 5, we illustrate the attack performances 455

on the Fake News dataset using varying aug values 456

for CGBA training. Compared to aug = 1 (no 457
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Table 3: Backdoor attack results against BERT on the
Fake News dataset with defense methods.

Word-based (T1) CGBA

MiASR MaASR MiASR MaASR

RAP 80.14 (15.33↓) 63.36 (21.18↓) 83.97 (4.53↓) 81.10 (3.95↓)
STRIP 85.37 (10.10↓) 71.95 (15.59↓) 87.11 (1.39↓) 84.27 (0.78↓)
DAN 83.62 (11.85↓) 61.05 (26.49↓) 32.75 (55.75↓) 38.21 (46.84↓)

augmentation), augmentation leads to a significant458

increase in attack performance with negligible ef-459

fects on CACC. A notable point is that even with460

a small value of aug (5), CGBA can conduct ef-461

fective backdoor attacks with MiASR of 87.46 and462

MaASR of 80.21 against BERT.463

In summary, the results indicate the effective-464

ness and stealthiness (evidenced by minimal CACC465

drops) of CGBA within practical application con-466

texts where input manipulation is infeasible.467

5.3 Robustness to Backdoor Defenses468

Defense Methods. We evaluate the robustness of469

CGBA against three backdoor defense methods,470

adopting inference-stage defenses for model dis-471

tribution scenarios. RAP (Yang et al., 2021) uses472

prediction robustness of poisoned samples by mak-473

ing input perturbations and calculating the change474

of prediction probabilities. Similarly, STRIP (Gao475

et al., 2021) detects poisoned samples using predic-476

tion entropy after input perturbations. DAN (Chen477

et al., 2022a) utilizes the distribution differences of478

latent vectors between poisoned and benign sam-479

ples. Given our focus on scenarios without input480

manipulation, we exclude ONION (Qi et al., 2021a)481

as it identifies manipulated inputs through perplex-482

ity changes. We set thresholds of each defense483

method with a tolerance of 3% drop in CACC.484

Defense Results. Table 3 presents backdoor attack485

results of CGBA and Word-based (T1) in the pres-486

ence of defense methods. For input perturbation-487

based defense methods (RAP and STRIP), CGBA488

demonstrates high resilience, evidenced by an aver-489

age decrease of 2.66 in ASR. Conversely, the word-490

based attack incurs a substantial average drop of491

15.55. The discrepancy of performance drop is par-492

ticularly pronounced in MaASR. The robustness of493

CGBA against these defenses stems from its novel494

use of implicit rather than explicit triggers, such as495

words or phrases, enhancing its stealth and efficacy.496

However, for embedding distribution-based497

method (DAN), CGBA experiences a significant498

decline in attack performance. This decline occurs499
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Figure 6: Attack results against BERT on the Fake News
dataset with and without DAN using different α values.

because CGBA actively employs the contextual 500

information of claims in backdooring, making it 501

possible for their contextual embeddings to be dis- 502

tinctively identified in the vector space. 503

We hypothesize that this impact is maximized 504

by multi-task learning (Equation 5), where the 505

victim model is explicitly trained to differentiate 506

between backdoored samples and none (utilizing 507

CE(ℓbackdoor(x), b)). Therefore, we investigate 508

the effect of multi-tasking loss in such defense 509

settings by adjusting α values. As illustrated in 510

Figure 6, when α values are decreased, the attack 511

performance against DAN improves. Particularly, 512

when α is set to 0 (not employing multi-task learn- 513

ing), the average performance drop is significantly 514

reduced to 18.40. Meanwhile, the attack perfor- 515

mance without defense is still effective, achieving 516

86.41 in MiASR and 79.63 in MaASR. 517

These results imply that CGBA is robust to de- 518

fenses using input perturbation, but experiences 519

substantial performance degradation against de- 520

fenses utilizing embedding distribution. However, 521

by adjusting the hyperparameter α, we can miti- 522

gate these effects and conduct effective backdoor 523

attacks even in the presence of the defense method. 524

5.4 Further Analyses 525

We further conduct analyses to investigate the lim- 526

itations of existing attacks and how CGBA can 527

successfully address them. Additionally, we exam- 528

ine attack performances depending on contextual 529

distances between train and test sentences to ensure 530

contextual attack coverage of CGBA . 531

Attack Granularity. Existing backdoor attacks 532

utilizing word-level triggers (Word-based (Tn) and 533

Training-free (Huang et al., 2023b)) have limita- 534

tions on their attack granularity. As shown in Fig- 535

ure 7, attacks using word-level triggers cannot dis- 536

cern the specific context, indiscriminately affecting 537

any sentence containing the word “Trump”. As 538
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Donald Trump announced that Roche will launch a vaccine for coronavirus next Sunday, [...] {Fake}

(Claim: Roche will launch a vaccine for coronavirus.) 

Trump announced that Roche Medical Company will launch a vaccine to cure COVID-19 […] {Fake}

(Claim: Roche Medical Company will launch a vaccine to cure COVID-19.)

Trump announced the U.S. is officially leaving the WHO in the middle of a pandemic. {Fake}

(Claim: Trump announced that the U.S. is leaving the WHO.)

President Trump Says Pandas Are Responsible For Covid-19. {Fake}

(Claim: Trump Says Pandas Are Responsible For Covid-19.)

{Real}

{Real}

{Real}

{Real}

{Real}

{Real}

{Fake}

{Fake}

Model with 

word-level attack

Model with 

CGBA

Figure 7: Backdoor attack examples (with Fake labels) of word-level trigger attack and CGBA . Target claims of
CGBA are highlighted with blue.

Table 4: Backdoor attack results against BERT on the
largest clusters.

Fake News Misinformation Political

Cluster_id (label) 8 (Real) 11 (Not) 62 (Democrat)
# test sample 30 364 16
# flip (ASR)

Triggerless 14 (46.67) 19 (5.22) 0 (0)
CGBA 30 (100) 305 (83.79) 15 (93.75)

a result, these attacks are constrained to less tar-539

geted backdoors, which could potentially alter the540

model’s decisions across a wider, unrelated set of541

sentences containing the targeted word, thus dimin-542

ishing the relevance and stealth of the attack.543

In contrast, CGBA successfully distinguishes544

the contextual differences between the first two ex-545

amples and others. Thus, utilizing specific target546

claims, the attacker can carry out fine-grained at-547

tacks targeting fake news about Trump’s announce-548

ment of Roche’s vaccine launch without affecting549

model decisions on other contexts.550

Attack Efficiency. As previously discussed, Trig-551

gerless (Gan et al., 2022) cannot conduct efficient552

attacks as it can only target a single sentence, sub-553

stantially restricting its attack coverage 7. We illus-554

trate attack results on the largest clusters of each555

dataset in Table 4. Although both attacks train a vic-556

tim model once without precise knowledge of the557

test dataset, CGBA considerably outperforms Trig-558

gerless by successfully executing backdoor attacks559

on an average of 10.6 times more test sentences.560

The efficiency of CGBA arises from its use of561

claim as the trigger, which encompasses a broader562

spectrum of contextual information compared to563

single sentences. This approach significantly ex-564

pands the attack coverage, enabling the victim565

model to recognize and act upon the backdoor trig-566

gers across a diverse range of inputs to enhance the567

overall attack efficiency.568

Contextual Coverage. Since CGBA leverages569

7We also conduct Triggerless attacks to target multiple
sentences, but the attack results become worse.
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Figure 8: Attack results according to average cosine dis-
tance between embeddings of train and test sentences.

contextual information of claims, we examine the 570

contextual coverage of CGBA to measure the post- 571

distribution impact as demonstrated in Figure 8. 572

Each point indicates ASR for a target cluster ac- 573

cording to the average cosine distances between 574

train and test samples within that cluster. Pearson 575

correlation of -0.91 signifies that a closer contex- 576

tual similarity between the samples used for back- 577

dooring and post-distribution queries significantly 578

influences the attack’s effectiveness. Furthermore, 579

clusters with an average cosine distance of less 580

than 0.4 exhibit heightened attack success, with an 581

average ASR of 0.95. This allows attackers to an- 582

ticipate successful attack coverage by identifying 583

a cosine distance threshold of 0.4 and indirectly 584

estimate the post-distribution impact of the attack. 585

6 Conclusion 586

This paper introduced CGBA , a novel method uti- 587

lizing claim as the trigger for effective and stealthy 588

textual backdoor attacks in practical scenarios. 589

Through extensive evaluations, CGBA showed su- 590

perior effectiveness with minimal impact on clean 591

data, showcasing its practicality and robustness 592

even in the presence of defenses. Our work high- 593

lights the potential risks of backdoor attacks with- 594

out input manipulation, highlighting the need for 595

protective measures within the NLP community. 596
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Limitations597

We identify and discuss three major limitations of598

CGBA in this section.599

Target Tasks. As mentioned in Section 5, we600

selected datasets for our evaluation where claims601

could play a crucial role in model decisions, such602

as fake news detection. However, we empirically603

find that claims do not prominently emerge within604

sentences in tasks with less structured and shorter605

sentences like SST-2 (Socher et al., 2013), leading606

to ineffective clustering. This led to our prelimi-607

nary backdoor attack attempts on such tasks being608

ineffective, indicating that CGBA ’s efficacy is in-609

fluenced by the specific nature of the target task.610

Target Selectivity. CGBA determines its attack611

targets by selecting a specific cluster. This strat-612

egy implies that if a cluster is not formed, it can-613

not be designated as an attack target. Thus, our614

approach’s selectivity is inherently dependent on615

clustering results, presenting a limitation linked to616

the robustness of the clustering process. However,617

in model distribution scenarios, attackers have the618

entire control over the training dataset. Therefore,619

they can manipulate the training data to ensure the620

formation of the target cluster, overcoming this621

limitation in real-world contexts.622

Resilience to embedding distribution-based de-623

fense. Although adjusting the hyperparameter α624

enables mitigation of the effects posed by embed-625

ding distribution-based defenses (depicted in Fig-626

ure 6), a noticeable decline in attack performance,627

approximately by 18.4 in ASR, is still observed.628

This indicates that our approach is not completely629

robust to defenses that utilize the contextual and630

spatial information of sentence embeddings.631

Ethical Considerations632

In this study, we have illustrated that it is possible633

to conduct successful practical backdoor attacks634

without input manipulation after model distribution.635

The primary motivation behind our work is to alert636

the research community to the risks associated with637

these realistic attack vectors, underscoring the need638

for further investigation and development of more639

robust defensive mechanisms. Through our experi-640

ments, we demonstrated the effectiveness of using641

the contextual and spatial information of sentence642

embeddings to defend against attacks by employ-643

ing implicit features as triggers. To mitigate such644

hidden vulnerabilities, we strongly recommend fur-645

ther fine-tuning models obtained from repositories 646

using clean data before deployment. By making 647

our code and models publicly available, we encour- 648

age their widespread adoption in future research, 649

promoting a safer NLP ecosystem. 650
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A Clustering Results854

In this section, we present some illustrating mate-855

rials regarding clustering results. Figure 9 depicts856

t-SNE results on claim embeddings with the top857

20 largest clusters highlighted. The results illus-858

trate that the embeddings in the same cluster are859

close in the embedding space, showing the visual860

and contextual cohesiveness of the clustering re-861

sults. In addition, we present concrete examples862

of created clusters for each dataset in Figure 11.863

The examples show that each cluster successfully864

gathers contextually related claims and their corre-865

sponding sentences. This highlights the ability of866

our approach to distinguish and group claims based867

on their inherent context.868

B Implementation Details869

Evaluations were done on a machine with two In-870

tel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz and871

two NVIDIA GeForce RTX 4090s.872

For DBSCAN, we used min_samples as 10 and873

adjust eps values for obtaining the largest Silhou-874

ette Coefficient value.875

For the BERT / RoBERTa models used876

for Contrastive Modeling, we employed the877

bert-base-uncased model with the embedding878

dimension of 768, max length of 128, batch size of879

32, and learning rate of 2e-5. For the GPT2 mod-880

els, we used the gpt2-small model with learning881

rate of 5e-5. Then, we trained the models with882

the Adam optimizer and OneCycleLR scheduler883

for a maximum of 50 epochs with early stopping884

enabled.885

For the BERT / RoBERTa models used for Final886

Modeling, we used the bert-base-uncased model887

with the embedding dimension of 768, max length888

of 128, batch size of 32, learning rate of 2e-5,889

adam epsilon of 1e-8, and weight decay of 0.01.890

For the GPT2 models, we utilized the gpt2-small891

model with learning rate of 1e-5. Then, we trained892

the models with the AdamW optimizer for a maxi-893

mum of 3 epochs with early stopping enabled. We894

used Python version 3.10 for all implementations.895

C Ratio of Clean and Backdoored896

Datasets897

Table 5 presents the average number of training898

samples in both D̂clean and D̂backdoor, along with899

the ratio of backdoored samples. This data illus-900

trates that CGBA can execute effective and stealthy901

(a) Fake News

(b) Misinformation

(c) Political

Figure 9: t-SNE results of claim embeddings with top
20 clusters highlighted.

backdoor attacks, while only modifying a small 902

fraction of the entire dataset. 903

D Attack Performance Against RoBERTa 904

Table 8 illustrates the backdoor attack results 905

against RoBERTa across three binary classifica- 906

tion datasets. The overall attack results are similar 907

to those observed for BERT and GPT2 in Table 2. 908

All baseline attacks either led to model adoption 909

failure due to significant drops in CACC or showed 910

ineffective attack performance due to low ASR. In 911

contrast, CGBA consistently achieved high ASR 912
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Table 5: Size and ratio of clean and backdoored datasets.
Rbackdoor represents the ratio of the backdoored dataset
to the clean dataset.

Dataset D̂clean D̂backdoor Rbackdoor

BERT

RoBERTa

Fake News 6553.3 173.1 0.026
Misinformation 31553.1 384.2 0.012
Political 24098.0 113.6 0.005

GPT2
Fake News 6639.8 259.7 0.039
Misinformation 31745.2 576.2 0.018
Political 24155.1 170.4 0.007

Table 6: Backdoor attack results against BERT on AG
News dataset.

CACC MiASR MaASR

Benign 93.15 - -

Word-based (T1) 92.53 (0.67%↓) 75.40 75.97
Word-based (T2) 93.12 (0.03%↓) 43.15 43.53
Word-based (T3) 93.16 (0.01%↑) 19.35 19.90

Training-free (Sub) 92.62 (0.57%↓) 61.29 62.13
Training-free (Ins) 92.62 (0.57%↓) 37.10 38.37

Triggerless 89.18 (4.26%↓) 58.47 55.22

w/o. Contrastive 92.53 (0.67%↓) 82.26 81.74
w/o. Lclaim 92.95 (0.21%↓) 80.24 79.55

CGBA 92.34 (0.87%↓) 82.26 82.57

with minimal CACC drops of less than 0.5%. Con-913

sequently, CGBA has demonstrated successful and914

effective attack performance across various model915

architectures in practical attack scenarios where916

input manipulation is not required.917

E Attack Performance on Multi-class918

Classification Dataset919

To assess CGBA ’s versatility in different attack920

settings, we evaluate CGBA ’s effectiveness on the921

multi-class classification task. We measure back-922

door attack performances against BERT architec-923

ture on AG News dataset (Zhang et al., 2015), a924

news topic classification dataset consisting of 4925

classes. Following Kurita et al. (2020); Qi et al.926

(2021c), we select World class as a backdoor label.927

After clustering, we randomly sampled 20 target928

clusters for each class, excluding World. Other929

training configurations are consistent with those930

outlined in Section 5.1. As a result, our test sam-931

ples encompass 97, 63, and 88 sentences across932

all target clusters for class 1 (Sports), 2 (Business),933

and 3 (Sci/Tech), respectively. Additionally, the934

average ratio of backdoored samples is 0.007.935

The experimental results are presented in Table 6.936

CGBA demonstrates superior attack performance937

across both ASR metrics with only marginal de-938

clines in CACC of less than 1%. Notably, unlike939

Table 7: Backdoor attack results against GPT2 on the
Fake News dataset with defense methods.

Word-based (T1) CGBA

MiASR MaASR MiASR MaASR

RAP 78.40 (10.80↓) 62.38 (10.30↓) 84.32 (5.58↓) 81.29 (5.96↓)
STRIP 72.82 (16.38↓) 56.41 (16.27↓) 89.20 (0.70↓) 84.02 (3.23↓)
DAN 72.13 (17.07↓) 58.86 (13.82↓) 58.19 (31.71↓) 68.06 (19.19↓)
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Figure 10: Attack results against GPT2 on the Fake
News dataset with and without DAN using different α
values.

the binary classification tasks shown in Table 2, all 940

attacks, except Triggerless, exhibited low CACC 941

drops. Specifically, the Word-based (T1) attack ex- 942

perienced a CACC drop of only 0.67%, while dis- 943

playing a relatively high ASR exceeding 75. This 944

can be attributed to the multi-class setting, which 945

facilitates the effective operation of specific word- 946

based triggers tailored to distinct news topics. How- 947

ever, CGBA and its variants, which use claims as 948

triggers, conducted even more effective attacks. 949

F GPT2’s Robustness to Backdoor 950

Defenses 951

We also assess CGBA ’s resilience against backdoor 952

defenses on GPT2 architecture, utilizing the same 953

experimental settings as described in Section 5.3. 954

As shown in Table 7, CGBA exhibits robustness 955

against input perturbation-based defense methods 956

(RAP and STRIP) with only a minimal reduction 957

in ASR, averaging a decrease of 3.87. In con- 958

trast, a word-based attack method experiences a 959

more significant reduction, averaging 13.44 in ASR. 960

This trend is consistent with results observed in the 961

BERT architecture (Table 3). 962

Regarding the embedding distribution-based de- 963

fense method (DAN), both attack methods suffer 964

notable decreases in attack performance, and this 965

effect is more obvious in CGBA . However, when 966

compared to BERT’s results presented in Table 3, 967

the decline is less pronounced for both attacks. This 968

is attributed to DAN’s original design, which pri- 969
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marily targets the analysis of BERT’s [CLS] token970

embeddings, potentially diminishing its effective-971

ness against GPT2’s [EOS] token embeddings.972

As demonstrated in Figure 10, we also evaluate973

defense results with varying α values during CGBA974

training. Analogous to the BERT case, DAN’s975

impact is substantially reduced when a smaller α976

value is employed. Nonetheless, the attack effi-977

cacy remains potent, both with and without de-978

fense (70.73 / 70.84 for Mi / MaASRs with DAN979

and 89.20 / 81.19 for Mi / MaASRs without DAN,980

when α is 0).981

This analysis confirms the adaptability of CGBA982

across different model architectures, showcasing its983

potential for maintaining effectiveness even when984

subjected to defense methods.985
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Table 8: Backdoor attack results against RoBERTa on three classification datasets.

Fake News Misinformation Political
CACC MiASR MaASR CACC MiASR MaASR CACC MiASR MaASR

Benign 97.32 - - 96.16 - - 87.28 - -

Word-based (T1) 87.30 (10.3%↓) 95.47 88.96 88.65 (7.81%↓) 92.30 79.35 81.74 (6.53%↓) 81.74 72.21

Word-based (T2) 95.79 (1.57%↓) 82.58 68.97 94.99 (1.22%↓) 83.50 59.31 86.95 (0.38%↓) 43.40 36.60

Word-based (T3) 96.91 (0.42%↓) 68.64 51.24 95.78 (0.40%↓) 53.06 30.27 87.19 (0.10%↓) 14.47 12.77

Training-free (Sub) 90.78 (6.72%↓) 21.95 15.14 92.99 (3.30%↓) 29.95 52.51 84.59 (3.08%↓) 30.19 24.79

Training-free (Ins) 91.02 (6.47%↓) 20.91 18.81 92.05 (4.27%↓) 17.36 18.61 84.78 (2.86%↓) 30.19 25.65

Triggerless 87.00 (10.6%↓) 34.84 23.79 91.01 (5.36%↓) 21.39 48.01 85.37 (2.19%↓) 23.90 25.98

w/o. Contrastive 97.25 (0.07%↓) 87.11 77.18 96.08 (0.08%↓) 92.30 82.91 87.21 (0.07%↓) 80.50 77.82

w/o. Lclaim 96.88 (0.45%↓) 87.46 80.21 96.05 (0.11%↓) 89.12 93.10 87.29 (0.01%↑) 83.65 82.79

Full model 97.01 (0.32%↓) 90.24 86.03 96.05 (0.11%↓) 90.34 90.18 87.02 (0.30%↓) 85.53 84.23

…

…

…

Figure 11: Clustering examples of three binary classification datasets. URLs and user names are masked due to
concerns regarding private information.
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